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Abstract A scheduling problem commonly observed in the
metal working industry has been studied in this research
effort. A job shop equipped with one batch processing
machine (BPM) and several unit-capacity machines has
been considered. Given a set of jobs, their process routes,
processing requirements, and size, the objective is to sched-
ule the jobs such that the makespan is minimized. The BPM
can process a batch of jobs as long as its capacity is not
exceeded. The batch processing time is equal to the longest
processing job in the batch. If no batches were to be formed,
the scheduling problem under study reduces to the classical
job shop problem with makespan objective, which is known
to be nondeterministic polynomial time-hard. A network
representation of the problem using disjunctive and con-
junctive arcs, and a simulated annealing (SA) algorithm
are proposed to solve the problem. The solution quality
and run time of SA are compared with CPLEX, a commer-
cial solver used to solve the mathematical formulation and
with four dispatching rules. Experimental study clearly

highlights the advantages, in terms of solution quality and
run time, of using SA to solve large-scale problems.
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1 Introduction

Most scheduling research on job shops considers discrete or
unit-capacity machines (i.e., each machine can process one
job at a time). However, in this paper, we consider a sched-
uling problem that is commonly observed in many
manufacturing facilities—job shops with both discrete pro-
cessing and batch processing machines (BPMs).

This research is motivated by a practical application
observed at a metal working industry. Many fabrication
facilities have not only discrete processing machines, but
also BPMs. For example, metal working companies which
make boilers, pressure vessels, and heat exchangers, use
both discrete processing machines (such as press brake,
bending machines, and other forming equipment) and
BPM (such as a furnace). The discrete processing machines
are commonly used to shape the metal (i.e., cut, bend, or
punch), and the BPMs are commonly used to heat treat
semifinished parts. The primary objective of this research
effort is to schedule both discrete machines and a BPM in a
job shop so that the makespan or the completion time of the
last job is minimized. By minimizing the makespan, the
utilization of the machines can be improved.

Based on our interactions with the metal working indus-
try, the problem under study can be explained as follows.
There are several discrete processing machines and one
BPM in the facility. The BPM can process a batch of jobs
as long as the total number of jobs and total size of all the
jobs in a batch do not exceed the machine’s capacity. The
discrete processing machines can process one job at any
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time. Each job has its own process route. The processing
times of the jobs on each machine are known. The scheduler
needs to schedule the jobs on both the discrete and BPMs
such that the completion time of the last job or the makespan
is minimized. When scheduling the BPMs, the scheduler
needs to identify which jobs can be grouped into a batch and
in what sequence the batches need to be scheduled. When
considering jobs to be grouped in a batch, the ready times of
the jobs need to be taken into account. As the jobs can
follow unique routes, the completion time of each job at
the machine preceding the BPM is taken as the ready time of
the job. When jobs are grouped in a batch, the batch process-
ing time is equal to the longest processing time of all the jobs
in the batch. The BPM can process a batch only when all the
jobs in the batch are ready (i.e., batch ready time is equal to the
latest ready time of all the jobs in the batch). The scheduler
faces a dilemma when it comes to batching jobs; waiting too
long for a job can delay the start time of a batch, but sched-
uling too many batches can lead to longer completion times as
the processing times at the BPM is typically longer. The
objective of this research is to develop a solution approach
which is capable of solving large problems in a short time with
good solution quality and is easy to implement.

2 Problem description

The problem under study can be formally stated as follows.
Given a set of jobs (J) and a set of machines (M), the
objective is to schedule the jobs on the machines such that
the makespan is minimized. The set M includes one BPM
and several discrete processing machines. The route or
processing sequence (πj) for each job j∈J, its processing
time on each machine (pmj), and size (sj) is known. The
BPM can process a batch of D jobs simultaneously, where D
is the capacity of the machine. For example, D could be the
number of fixtures available. The batch is also constrained
by the size of the jobs. The BPM can process a batch of jobs
only when the total size of all the jobs in a batch does not
exceed S, where S is the capacity of the machine along one
of its critical dimension. When several jobs are batched
together, the processing time of the batch is equal to the
job which requires the largest amount of processing among
all the jobs in the batch. The ready time of the batch is equal
to the latest ready time of the job in the batch.

Table 1 presents an instance for the problem under study.
There are three jobs and four machines in this instance.
Here, machine 1 is assumed as the BPM, and machines 2,
3, and 4 are considered to be discrete processing machines.
Column 2 shows the machining sequence for each job.
Column 3 gives the processing time of the jobs in their
respective machines. Column 4 provides the size of each
job. Suppose D=2 (i.e., the total number of jobs allowed in a

batch cannot exceed 2) and S=10 (i.e., the total size of all
jobs in a batch cannot exceed 10), then there are several
ways to form feasible batches. For example, the jobs can be
processed individually (i.e., no batching—see Fig. 1) or
batched (see Fig. 2).

Figure 1 presents the network representation of the ex-
ample problem instance shown in Table 1 when all the
machines are assumed to be discrete processing machines.
In Fig. 1, each node (except the source and sink nodes)
represents an operation. The solid arcs (or conjunctive arcs)
represent the precedence constraint (or process route) for
each job. The dotted arcs (or disjunctive arcs) are used to
form cliques. There is one clique for each machine indicat-
ing all the jobs that need to be processed on that machine. In
Fig. 1, there is no clique for machine 4 as there is only one
job that is processed in it. All arcs (both disjunctive and
conjunctive) emanating from a node have a length equal to
the processing time of the operation that is represented by
the node. Shifting bottleneck heuristic is a well-known
heuristic to minimize makespan in a job shop. It is based
on the above given network representation. For more details
on the network construction and shifting bottleneck heuris-
tic, we refer the reader to [1].

Figure 2 presents the network for the example problem
instance shown in Table 1 when machine 1 is assumed to be
a BPM. Figure 2 shows two feasible ways to form batches:

Table 1 Data for a three-job and four-machine problem

Jobs Machining sequence Processing time sj

1 1→2→3 p11=9, p21=8, p31=4 3

2 1→2→4 p12=5, p22=6, p42=3 7

3 3→1→2 P33=10, p13=4, p23=9 5

1,1 2,1 3,1

2,21,2 4,2

2,33,3 1,3
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410

89
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Conjunctive arc Machine i, Job ji, jDisjunctive arc

Source Sink 

Fig. 1 A three-job and four-machine problem representation when
none of the jobs are batched
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option a—jobs 1 and 2 can be batched and job 3 is
processed individually (i.e., {j1 and j2, j3}) and option b—
jobs 1 and 3 can be batched and job 2 is processed
individually (i.e., {j1 and j3, j2}). In Fig. 2, for the sake
of clarity, only the disjunctive arcs that belong to jobs
related with the BPM are shown. Two rectangles are
used to denote two possible batch formations; the inside
of each rectangle has two nodes representing operations
in the BPM. The first feasible batch formation is denot-
ed by appending a to the node representing “dummy”
machine 1 in which the job is processed. Similarly, b is
used to denote the second batching option. The shifting
bottleneck heuristic was applied on this network to find
a feasible solution. The Cmax value for this example
problem was found to be 32. The final solution from

the shifting bottleneck heuristic is shown in Fig. 3 (i.e.,
red thicker line). As the number of jobs increase, the
different combinations in which jobs can be batched
also increase. This would result in a bigger network
with a longer run time to find the solution.

The problem under study can be represented using
the standard three field notation as Jm|batch|Cmax. It is
well known that Jm||Cmax is nondeterministic polyno-
mial time (NP)-hard. When the BPM capacity is adjust-
ed such that it can process one job at a time, then the
problem under consideration will reduce to the classical
job shop problem. Since the special case of the problem
under study is a well-known NP-hard problem, the
problem under study is also NP-hard. The research
objective is to develop a solution approach which takes
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Fig. 2 A three-job and four-
machine problem representation
when two possible batch
formations a (j1 and j2, j3) and b
(j1 and j3, j2) are considered on
machine 1
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Fig. 3 Graphical solution for
the three-job and four-machine
problem with machine 1 as
BPM
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less time to find a good solution and is easy to
implement.

3 Literature review

Most research on job shop scheduling to date has focused on
unit-capacity machines. Job shop with BPMs has received
very little attention. Unit-capacity machines can process one
job at a time, while BPMs can process a number of jobs
simultaneously as a batch. Some operations research ana-
lysts and engineers call these production systems as com-
plex job shops [2], because they are characterized by
different types of work centers consisting of multiple iden-
tical machines with one or more BPMs. An example of
a complex job shop is a wafer fabrication facility, where
integrated circuits are fabricated on silicon wafers using
a variety of chemical and thermal processes [3].

Majority of research on complex job shop scheduling has
been carried out in the semiconductor industry. Gupta and
Sivakumar [4] have classified the research into four catego-
ries based on the solution approaches used: dispatching
rules, analytical methods, heuristics, and artificial intelli-
gence techniques. More specifically, decomposition
methods based on the shifting bottleneck heuristic [5] and
Lagrangian relaxation [6] are the most popular techniques
applied to this kind of manufacturing environment.

The best efforts to implement a solution using de-
composition methods were due to Mason et al. [7],
Mönch and Driessel [8], and Uzsoy and Wang [9]. They
proposed a heuristic called modified shifting bottleneck
to minimize the total weighted tardiness and the maxi-
mum lateness, which was later compared with several

dispatching rules [10], and with the Theory of Con-
straints [11]. Another technique used in complex job
shops is Lagrangian relaxation with dynamic program-
ming by Sun et al. [12] and Kaskavelis and Caramanis
[13] with ∑wjTj as the main objective.

Jm|batch|Cmax has not received due attention in the
literature. Moreover, most of the research in complex job
shop used total weighted tardiness as a performance mea-
sure; however, Pfund et al. [14] developed a desirability
function to solve a multicriteria scheduling problem which
combined different objectives, like Cmax, ∑Cj, and ∑wjTj.
Damodaran and Rojas [15] proposed a mathematical model
for the Jm|batch|Cmax problem. Commercial solvers re-
quire prohibitively long run times to solve these models
for larger problem instances. This paper presents a sim-
ulated annealing approach and highlights its advantages
over using the commercial solvers, both in terms of
solution quality and run time, especially on large prob-
lem instances, through an experimental study.

4 Solution approach: simulated annealing

In order to schedule the jobs on the BPM in a job shop, jobs
are first grouped into batches such that the capacity of the
BPM machine is not violated. The total number of jobs
in the batch cannot exceed D, and the total size of all
the jobs in a batch cannot exceed S. If the BPM is not
the first machine for a job to visit, then the job ready
time should be taken into account. The ready time is
the completion time of the job in the machine preceding
the BPM. The ready time and the processing time of the
batch depend upon the jobs in the batch. The ready

Table 2 Sizes and processing times for the BPM for six jobs with six
machines problem instance

Job 1 2 3 4 5 6

Size 5 1 9 5 7 8

Pj 3 10 9 5 3 10

Table 3 Composition of each batch using FF along with MWKR

Batch 1 2 3 4

Jobs {1, 4} {3} {2, 6} {5}

Total size 10 9 9 7

Pj 5 9 10 3

1 2 3 4 5 6 7 8 9 1 2 3 4

M1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9

M2
1 2 3 4 5 6 7 8 9 1 2 3 4

M3
1 2 3

M4
0 4 8

t
20 24 28 32

10

12 16

Job 1 and Job 2

1boJ3boJ

Job 2

Job 3

Job 2 3boJ1boJ

Fig. 4 Gantt chart for the three-
job and four-machine problem
with machine 1 as BPM
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time and processing time of the batch will be equal to
the longest ready time and processing time of the jobs
in the batch, respectively. Consequently, when forming
batches, the ready times of the jobs should be taken
into account. In order to minimize the number of
batches formed and to improve the utilization of the
BPM, it may be better to form as little batches as
possible, but waiting too long for a job to be ready
can delay the completion time of the entire batch.

Simulated annealing (SA) is a widely used metaheuristic
that enables the search process to escape from a local opti-
mum. This technique was adopted from metallurgy, where
the metal is heated to a very high temperature and then
cooled very slowly to improve its strength. At any given
temperature T, during this process, the energy level is fluc-
tuating, so a cooling schedule should be adopted (i.e., the
temperature is decreased in a regular fashion or decremented
by a certain value that results in a new state). Since SA’s
introduction several decades ago [16, 17], it has been ap-
plied successfully to many scheduling problems including
the classical job shop problem [18] and flexible job shop
problem [19].

SA starts with an initial solution F(x) and iteratively
improves it. At each iteration, the process moves from
one schedule to another (i.e., it moves from the current
trial solution to an immediate neighbor in the local
neighborhood of this solution). In order to form the
batches, three different heuristics are considered: (1)
modified delay (MD) [20], (2) first fit (FF) [21], and
(3) the modified first fit decreasing (MFFD) heuristic.
The last approach, MFFD, is a modification of a

prominent heuristic used to solve the bin-packing problem,
called first fit decreasing (FFD) heuristic [21]. To obtain an
initial solution for SA, two dispatching rules, most work
remaining (MWKR) and most operations remaining
(MOPNR) [22] were used with MD, FF, and MFFD.

To illustrate how an initial solution is found, consider
the data shown in Table 1. Batching heuristic FFD along
with MWKR is used to find an initial solution. The first
step is to form batches with FFD, which sorts the jobs in
decreasing order by sj (i.e., jobs 2, 3, and 1); then, it
batches jobs 2 and job 1; job 3 is processed individually.
Jobs 2 and 3 cannot be on the same batch as the total
size of the batch would violate the machine capacity of
10. Once the batches are formed for the BPM, the last
step is to obtain a sequence for each machine using
MWKR; the best job sequence for each machine is as
shown in Fig. 4. Note that for the BPM (machine 1),
jobs 1 and 2 should be scheduled at the same time and
job 3 should be processed individually.

Bin b Bin b1

Batch 2{job 3} Batch 4{job 5}

Job 1 Job 4 Job 2 Job 6 Job 3 Job 5

Bin b Bin b1

Batch 2{job 6} Batch 4{job 5}

Job 1 Job 4 Job 2 Job 3 Job 6 Job 5

Batch 1{jobs1&4} Batch 3{jobs2&3}

Batch 1{jobs1&4}

Bin a Bin a1

Batch 3{jobs2&6}

Bin a Bin a1

Bin b Bin b1

Batch 2{job 3} Batch 4{job 5}

Job 1 Job 4 Job 2 Job 6 Job 3 Job 5

Bin b Bin b1

Batch 2{job 6} Batch 4{job 5}

Job 1 Job 4 Job 2 Job 3 Job 6 Job 5

Batch 1{jobs1&4} Batch 3{jobs2&3}

Batch 1{jobs1&4}

Bin a Bin a1

Batch 3{jobs2&6}

Bin a Bin a1

Fig. 5 Example of swapping two jobs

Table 4 Composition of each batch after exchanging job 6 with job 3

Batch 1 2 3 4

Jobs {1, 4} {6} {2, 3} {5}

Total size 10 8 10 7

Pj 5 10 10 3

Table 5 Results for job instances with less than or equal to 100
operations

Instance Run code Cmax % GAP

DR SA CPLEX

ft06 6j06m_1 60 53 53 0 %

la01 10j05m_1 858 666 666 0 %

la02 10j05m_2 838 699 655 6.7 %

la03 10j05m_3 715 602 586 2.7 %

la06 15j05m_1 982 926 926 0 %

la07 15j05m_2 1,052 904 890 1.6 %

la08 15j05m_3 1,014 863 863 0 %

abz5 10j10m_1 1,462 1,279 1,238 3.3 %

ft10 10j10m_2 1,260 988 897 10.1 %

la16 10j10m_3 1,255 1,041 945 10.2 %

ft20 20j05m_1 1,672 1,309 1,194 9.6 %

la11 20j05m_2 1,297 1,222 1,222 0 %

la12 20j05m_3 1,179 1,027 1,027 0 %
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Fig. 6 Results for job instances with less than or equal to 100
operations
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Preliminary experimentation was used to guide the
selection of the parameters of the algorithm. Initially, a
relatively large value of T, cooling rate α, and the

desired number of iterations were specified. The rest
of details are provided in the following pseudo code
for the SA heuristic:

The implementation of step 3 (local search) of the pseudo
code is illustrated with an example with six jobs and six

machines (refer to Fisher and Thompson ft06 job shop
instance for more details [23]). The initial solution required

1. Initialize heuristic parameters (Total iterations, Initial Temperature (T), 0 1). 
2. Obtain an initial solution: 

 Form batches using a heuristic like Modified Delay, FF, or MFFD. 
 Select an initial neighborhood x using heuristics like MWKR or MOPNR. 
 Calculate the initial Cmax or F(x), and set Best F(x)= Cmax. 

3. Obtain a neighboring solution using a local search technique. 
For each machine, do the following: 

If Machine is a BPM  
Classify batches with two or more jobs as bin “a,” and with one job as bin “b.” 
Generate a random number, and depending on the value, 

i. Select a job from bin “a,” and swap it with another job in bin “a+j,” or in bin ”b.” 
(j=1,2...B-1). B= Total bins with two or more jobs. 

 If  the capacity of BPM is violated, 
 go to the next bin, and repeat the previous step; 
 else, 
  go to next step. 
 end 
 Continue the job swapping process until the last batch or bin in the sequence 
has been reached. 

ii. Assign k = random number, and h = random number. 
Generate a random number, and depending on the value, 

 Remove a bin from position k, and insert it in position h.  
 Swap a bin from position k, and replace it with a bin in position h. 
 Exchange a bin in position k, with a bin in the adjacent position (k+1).  

            End 
            If Machine is not a BPM 
               Set k = random number, and h = random number 

Generate a random number, and depending on the value, 
 Remove a job from position k, and insert it in position h.  
 Swap a job from position k, and replace it with a job in position h. 
 Exchange a job in position k, with a job in the adjacent position (h+1).  

            End 
4. Calculate the makespan of the neighboring solution F(x’). 
5. Compare F(x’) to the current solution. 

If  F(x’) < F(x) 
    Replace current neighborhood (x) by the new neighborhood (x’), x = x’. 
    Set F(x) = F(x’). 
Else, 

       = F(x’) - Best F(x). 
       calculate probability of acceptance p=e(- /T). 
       If  p > random number 
              Accept the move, F(x) = F(x’). 
       Else 
              Reject the move. 
              Check for another neighboring solution. 
       End 

End 
6. Update counters and parameters (T= *T). 
7. Repeat steps 3-6 until stopping criteria is met. 
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to start the algorithm is constructed as follows: (1) the jobs
are scheduled using MWKR; (2) then, batches are formed
using FF. For this example, machine 1 is the BPM, S is equal
to 10, and D is equal to 3. Table 2 shows the size for each
job and the processing times for the BPM. Before batching,
the initial job sequence for machine 1 is jobs 4, 1, 3, 6, 2,
and 5. By applying FF along with MWKR, four batches
were formed (see Table 3), with a Cmax of 69. This
makespan was reduced by ten units (Cmax=59) when job
6 from batch 3 and job 3 from batch 2 were swapped in
machine 1 (see Fig. 5 and Table 4).

5 Computational experiments

To test the efficacy of SA, several benchmark job shop
instances were chosen from the OR Library [23]. The in-
stances available were for the classical job shop problem
with unit-capacity machines. For this study, the BPM ca-
pacities (S and D) were assumed to be equal to 10 and 3,
respectively. The job sizes were sampled from a discrete
uniform (DU) random variable, sj∼DU[1, S]. The instances
were renamed as njkm_c, where n is number of jobs, k is

number of machines, and c is the instance number. For
example, 6j06m_1 means that this is the first problem in-
stance (c=1) with six jobs (n=6) and six machines (k=6).

SA was implemented using Matlab 7.0, and the experi-
ments were conducted on a Core Duo PC, clocked at
1.86 GHz with 1 GB of RAM. Each problem instance was
run three times based on which machine (machine 1, 2, or 3)
was considered as a BPM. The results of SA in terms of
solution quality and run time were compared against four
dispatching rules and the CPLEX mathematical model pro-
posed by Damodaran and Rojas [15]. The dispatching rules
were shortest processing time, critical ratio, MWKR, and
MOPNR [24]. Given that the branch and bound approach
used by CPLEX may take a prohibitively long computation-
al time to report the optimum solution, the run time was
restricted initially to 1,800 s for each instance. However, for
instances with more than 150 operations [15 jobs×10 ma-
chines], it was necessary to modify the specified run time.
CPLEX was allowed to run until it reported a feasible
solution. Some instances took approximately 28,800 s
(8 h) to find a solution. However, on two problem instances,
CPLEX did not report a feasible solution even after running
for 8 h.

The parameters of SA, after fine tuning in the experimen-
tation phase, were set to the following values: total number
of iterations=60, initial temperature=100, and α=0.05. To
develop this algorithm, two dispatching rules (MWKR and

Table 6 Results for job instances with greater than 100 and less than
300 operations

Instance Run code Cmax % GAP

DR SA CPLEX

la21 15j10m_1 1,427 1,183 1,148 3.0 %

la22 15j10m_2 1,360 1,035 953 8.6 %

la23 15j10m_3 1,469 1,109 1,032 7.5 %

la26 20j10m_1 1,752 1,399 1,444 −3.1 %

la27 20j10m_2 1,791 1,422 1,497 −5.0 %

swv01 20j10m_3 2,436 1,887 1,636 15.3 %

la36 15j15m_1 1,677 1,388 1,369 1.4 %

la37 15j15m_2 2,098 1,593 1,470 8.4 %

la38 15j15m_3 1,698 1,417 1,287 10.1 %
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Fig. 7 Results for job instances with greater than 100 and less than
300 operations

Table 7 Results for job instances with 300 operations

Instance Run code Cmax % GAP

DR SA CPLEX

abz7 20j15m_1 893 800 862 −7.2 %

abz8 20j15m_2 1003 796 868 −8.3 %

swv06 20j15m_3 2,709 2,165 2,536 −14.6 %

la31 30j10m_1 2,215 1,889 2,102 −10.1 %

la32 30j10m_2 2,421 1,946 2,180 −10.7 %

la33 30j10m_3 2,139 1,765 1,913 −7.7 %

Table 8 Results for job instances with more than 300 (up to 500)
operations

Instance Run code Cmax % GAP

DR SA CPLEX

yn1 20j20m_1 1,229 1,092 1,131 −3.4 %

yn2 20j20m_2 1,232 1,077 979 10.0 %

yn3 20j20m_3 1,268 1,083 1,364 −20.6 %

swv11 50j10m_1 5,324 4,373 4,661 −6.2 %

swv12 50j10m_2 5,167 4,505 5,387 −16.4 %

swv13 50j10m_3 5,767 4,623 5,250 −11.9 %
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MOPNR) with three batch forming heuristics (MD, FF,
MFFD) were combined and used as the initial solution.
Through this combination, six approaches of the simulated
annealing algorithm were developed. The best solution
(CmaxSA) of these approaches was recorded, and the per-
centage difference in solution (or gap) between SA and the
solution from commercial solver (Cmax

CPLEX) was comput-
ed as shown in Eq. (1).

%Gap ¼ CSA
max � CCPLEX

max

CCPLEX
max

� 100% ð1Þ

Tables 5 through 8 and Figs. 6 through 9 compare the
results obtained from SA with CPLEX and with the best
Cmax from DRs for various problem instances. DR does not
perform well when it is compared with SA and CPLEX;
moreover, CPLEX was better than SA on several instances
with less than 100 operations (see Table 5 and Fig. 6).
However, SA and CPLEX reported the optimum for some
of the instances. The original instance code and the run code
used in this research are shown along the x-axis in each
figure. The Cmax is shown along the y-axis. In the tables,
the original code [23], run code, makespan, and the percent
gap are shown. The optimum solutions are shown with bold
font.

SA outperformed CPLEX on a couple of instances when
the total number of operations was between 100 and 300
(see Table 6 and Fig. 7). SA outperformed CPLEX on all

instances with 300 to 500 operations (see Tables 7 and 8,
and Figs. 8 and 9).

Figure 10 summarizes the average gap in comparing SA
with CPLEX. CPLEX performs well when the total number
of operations is less than 300 operations. SA outperforms
CPLEX when there are more than 300 operations.

Table 9 and Fig. 11 compare the run time required by DR,
SA, and CPLEX. The DR finds the solution in the shortest
period of time. The average run time required by SA is far
less compared to CPLEX, which makes it more attractive
for practitioners to implement. The DR solution is inferior
compared to SA on all the instances.

6 Conclusions

This study has extended the class of job shop scheduling
problems typically researched (i.e., only discrete processing
machines are considered) by considering both discrete ma-
chines and BPMs. The classical job shop problem is a well-
known NP-hard problem. Consequently, the problem stud-
ied in this research is also NP-hard. A new network repre-
sentation of the problem under study was proposed.
However, the size of the network exploded in size with the
increase in the number of machines and jobs, and the
shifting bottleneck heuristic required prohibitively long run
times to solve the problems. In an effort to develop a more
practical solution approach, simulated annealing was con-
sidered. The effectiveness of the proposed approach was
evaluated against four dispatching rules and CPLEX, a
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Table 9 Results for average run time between DR, SA, and CPLEX

Total operations Avg. run time (s)

DR SA CPLEX

Operations≤100 0.42 94.23 2,545.79

100<operations<300 0.53 1,264.69 5,877.70

Operations=300 0.77 4,462.96 12,979.14

Operations>300 1.17 18,196.67 25,557.37
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commercial solver used to solve a mathematical formulation
of the problem under study. The experimental study
conducted clearly shows that the dispatching rules are not
capable of reporting good-quality solutions, although they
are quick to find a solution. Commercial solvers require
prohibitively long run times to report feasible solutions for
large-sized problem instances. SA outperformed CPLEX in
computation time for all the problem instances and in Cmax
values for 300 to 500 operation problem instances.

It is typical to observe a large number of operations even
in a small job shop. As the experimental study suggests, our
approach will help practitioners to schedule their resources
more effectively than using dispatching rules (which is also
the current practice at the facility where this study stemmed
from). The program files written in Matlab are converted
into executable files for the company to use. The data are
fed in as a text file, and the output is written to a text file.

This research work can be extended to study other due
date-related objectives in the job shop setting. In addition,
other dispatching rules used in scheduling job shops can
also be explored to see if it helps to improve the makespan.
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