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• Traditional VaR measures fail to capture risk in highly volatile scenarios.
• Hedge funds demand accurate techniques for risk management.
• Semi-nonparametric methods and EVT capture risk accurately when volatility is high.
• Gram–Charlier copula incorporates non-linear dependences in portfolio risk assessment.
• Two-step estimation of short Gram–Charlier series simplifies the VaR computation.
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a b s t r a c t

The need to provide accurate value-at-risk (VaR) forecasting measures has triggered
an important literature in econophysics. Although these accurate VaR models and
methodologies are particularly demanded for hedge fund managers, there exist few
articles specifically devoted to implement new techniques in hedge fund returns VaR
forecasting. This article advances in these issues by comparing the performance of risk
measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-
nonparametric (SNP) methodologies based on Gram–Charlier (GC) series and the extreme
value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed
t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches
accurately success on it. We extend these results to the multivariate framework by
providing an explicit formula for the GC copula and its density that encompasses the
Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained
by themetaGCaccurately captures portfolio risk andoutperforms regulatoryVaR estimates
obtained through the meta Gaussian and Student’s t distributions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The literature on hedge funds management has undergone amajor impulse in the last decades (see Agarwal and Naik [1]
for an extensive review). It was not until the collapse of Long Term Capital Management (LTCM) in 1998 and the Nasdaq
crash (2000), however, that hedge fund investors were aware of the need for implementing risk management techniques.
Jorion [2] was the first to apply the value-at-risk (VaR) methodology to hedge fund returns for the special case of LTCM and,
more recently, Gupta and Liang [3] analyzed capital requirements of nearly 1500 hedge funds.
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VaR techniques are based on quantile methods [4], but among them there is not a consensus on the more appropriate
methodology, despite the fact that a wrong choice of VaR model (or an incorrect parameter estimation of the model) might
yield a hedge fund failure, especially in a crisis scenario. Alexander and Sarabia [5] proposed an interesting solution inwhich
quantile estimates are adjusted for model risk, relative to an institutional benchmark, but still traditional VaR techniques
are employed by hedge fundmanagers. Specifically, the former VaRmodels, the so-called parametric VaR, have beenwidely
criticized since they assume that returns follow a normal distribution and this hypothesis involves risk underestimation in
highly volatile scenarios. For this reason, alternative skewed and heavy-tailed distributions [6–8], or volatilitymodels [9–12]
have been proposed.

Hedge fund returns, as well as most asset returns, also exhibit time-varying variances, heavy-tails and skewness, and
thus different authors have investigated into these issues. For example, Refs. [13,14] found that a large proportion of the
hedge fund return volatility can be explained by market-related factors, such as equity market indices, book-to-market,
‘momentum’ or commodity indices. Other authors focused on capturing tail risk by implementing the extreme value theory
(EVT) approach [15] or the semi-nonparametric (SNP) expansions based on the Cornish–Fisher approximation [16]. We
compare the VaR performance of both methodologies, as well as other parametric distributions, in a VaR backtesting
framework [17]. As far as we know, such a comparison has not previously been studied for hedge fund returns. A related
contribution was conducted by Güner et al. [18], which also implemented a two-step backtesting procedure: In the first
step they estimated an ARMA(1, 1)–GARCH(1, 1) model with Student-t distributed innovations and in the second step fitted
an α-stable distribution to the standardized residuals. They concluded that the conditional stable model performs well in
predicting VaR.

The current paper implements a similar backtesting procedure for two different hedge funds (Equity Hedge and Event
Driven strategies) and compares the VaR forecasting performance obtained by the normal distribution (benchmark) to
four natural candidates that account for stock returns heavy tails: The Student’s t , a skewed variant of the Student’s t
distribution [19] (skewed-t hereafter), the EVT approach [20] and the SNP approach based on the Gram–Charlier (GC)
density,which is an expansion around the normal density allowing for skewness and excess kurtosis [21–24]. The theoretical
advantages of the SNP methodology rely on the asymptotic properties of the GC (Type A) series to approximate any
frequency function under certain regularity conditions. For this reason this approach has been applied in different sciences,
e.g. physics [25] or astronomy [26], but it has scarcely been used for financial risk forecasting purposes. Furthermore,
we analyze the non-linear dependence between the two hedge fund indices using the concept of copulas [27]. For this
purpose we derive an explicit formula for GC copula that encompasses the Gaussian copula and incorporates non-linear
dependencies through the Hermite polynomial structure. We compare the VaR performance of this meta GC to alternative
meta distributions, including the meta Gaussian andmeta t , for an equally weighted portfolio. This is the main contribution
of this paper, as well as the application to forecast hedge funds during the recent subprime and sovereign debt crises.

The univariate results show that the both normal- and Student’s t-based VaR forecasts are inadequate for high confidence
levels and/or high volatility periods, although the skewed-t performs better than the Student’s t . On the other hand, GC
and EVT produce accurate VaR forecasts in these contexts. Therefore the risk management and hedging strategies should
implement these methods; particularly the SNP approach that is very flexible to improve VaR measures and is not sensitive
to arbitrary decisions as the threshold choice in the EVT methodology. These results may be extended to the multivariate
framework,where theGC copula and the correspondingmetaGC seem to adequately assess portfolio risk for the traditionally
employed confidence levels.

The rest of the paper is organized as follows: Section 2 reviews theVaRmethodology and the theoreticalmodels. Section 3
shows the backtesting technique and the VaR forecasting performance of the models for the univariate case. Section 4
introduces the GC copula and Section 5 compares portfolio VaR quantified by such a copula to alternativemeta distributions.
Section 6 summarizes the main results of the article.

2. Univariate case

2.1. VaR methodology

Stock returns, and consequently hedge fund returns, usually present a small predictable component in the conditional
mean that has been traditionally modeled according to simple ARMA structures. On the other hand, squared returns
exhibit particular dynamics (conditional heteroskedasticity, volatility clustering and long memory) that have extensively
been studied since Engle [28] and Bollerslev [29] introduced ARCH and GARCH models. In this article, we focus on
VaR performance due to the distributional hypotheses described in next section, and thus our model incorporates a
traditional ARMA(1, 1)–GARCH(1, 1) for conditionalmean and variance, following the commonuse inmost riskmanagement
applications.

We present the basic model for log returns, rt , in Eqs. (1)–(4) below.
rt = µt + σtzt , (1)
µt = ϕ + φµt−1 + θεt−1 + εt , (2)

zt = εt/σt , zt ∼ G(zt |Ωt−1), (3)

σ 2
t = ω + αε2

t−1 + βσ 2
t−1, (4)
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where µt and σ 2
t denote the conditional mean and conditional variance, respectively, of rt taken on the set of information

available up to time t − 1, denoted as Ωt−1, and zt is a martingale difference conditionally distributed according to certain
density function G(zt |Ωt−1) and satisfying E(zt |Ωt−1) = 0 and E(z2t |Ωt−1) = 1.

2.1.1. Parametric VaR
In the former model, the estimated VaR with a confidence level α is computed as the estimated α-quantile, q̂α(z), of

the assumed G(zt |Ωt−1) distribution. Therefore, the predicted VaR for the variable r at the time horizon t + 1 and with
confidence level α is given in Eq. (5).

VaRα
t+1 = µ̂t+1 + σ̂t+1q̂α(z), (5)

where µ̂t+1 and σ̂t+1 are the predictions for the mean and standard deviation conditioned on the available information at
time t, Ωt , based on the ARMA–GARCH model described in Eqs. (2) and (4).

Note that under the Gaussian assumption q̂α(z) is fixed for a particular α (given the estimates for µ̂t+1 and σ̂t+1) but this
quantile depends on other density parameters if non-Gaussian distributions are considered.

2.1.2. Extreme value theory
VaR can also be computed by the EVT methodology through two different approximations: block maxima and POT. We

implement the latter method following the two-step procedure proposed in Ref. [20].
In the first step, the ARMA(1, 1)–GARCH(1, 1) model is fitted by quasi maximum likelihood (QML) and in the second step

the so-obtained standardized residuals are used to implement the peaks over threshold (POT) methodology using the 10%
of the tail of the distribution as threshold. Thus, q̂α(Z) is given by

q̂α(Z) = u +
β

ξ


1 − α

Nu/n

−ξ

− 1


, (6)

where u is the estimated threshold, Nu is the number of exceedances over the threshold, n is the sample size (thus Nu/n
is a non-parametric estimator of the empirical distribution tail) and β and ξ are the scale and shape parameters of the
generalized Pareto distribution (GPD). The cumulative distribution function (cdf) of the GPD distribution [30–32] is given by

F(x) =


1 − (1 + ξx/β)−1/ξ , ξ ≠ 0,
1 − e−x/β , ξ = 0.

(7)

The weakness of the EVT lies on the threshold selection, which involves a tradeoff between bias and variance in the estima-
tion of the parameters, especially the shape parameter ξ . This parameter may be estimated by bootstrapping or graphical
techniques, but there is not an optimal method to choose the appropriate threshold. According to Ref. [20], we choose 10%
of the data in the tail of the distribution as an accurate threshold.

2.2. Alternative distributions

2.2.1. Parametric distributions
Since the early work of Mandelbrot [33] the normality assumption of stock returns is deemed inappropriate (see

Refs. [34,35] for a revision of the asset returns empirical regularities). However, we implement the standard normal
distribution as a benchmark, whose well-known probability density function (pdf) in given below.

φ(z) =
1

√
2π

e−
z2
2 . (8)

To account for the leptokurtosis implied by the heavy-tails, the Student’s t pdf in Eq. (9) seems to be the more natural
candidate to use.

t(z) =
0


ν+1
2


√

π(ν − 2)0


ν
2

 1 +
z2

n − 2

−
ν+1
2

, (9)

0 being the gamma function and ν the degrees of freedom parameter.
For the sake of capturing asymmetries different skewed versions of the Student’s t have been employed [36–41].

Particularly, we implement the skewed-t pdf in Ref. [36]:

g(z) =


−

2
γ +

1
γ

t(γ z) for x < 0,

2
γ +

1
γ

t


z
γ


for x ≥ 0,

(10)

where γ is the shape parameter, which incorporates the skewness, and t(z) is the Student’s t pdf in Eq. (9).
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2.2.2. Semi-nonparametric approach
We compare the VaR forecasting performance of the parametric distributions (Section 2.2.1), the EVT (Section 2.1.2) and

the SNP approach based on the GC approximation. The validity of GC expansion is due to Charlier [23] and Edgeworth [24]
who proved that, under weak regularity conditions [42], any frequency function, p(z), could be expanded on an (infinite)
series of derivatives of the standard normal density, φ(z), (see Ref. [21, pp. 168–172]) as follows:

p(z) =


1 +

∞
s=1

ksHs(z)


φ(z), (11)

where ks =
1
s!


∞

−∞
Hs(z)φ(z)dz and Hs(z) is the Hermite polynomial (HP) of order s, which can be defined in terms of the

derivatives of φ(z) as,

dsφ(z)
dzs

= (−1)sHs(z)φ(z). (12)

In particular, the first eight HP are:
H1(z) = z, (13)
H2(z) = z2 − 1, (14)
H3(z) = z3 − 3z, (15)
H4(z) = z4 − 6z2 + 3, (16)
H5(z) = z5 − 10z3 + 15z, (17)
H6(z) = z6 − 15z4 + 45z2 − 15, (18)
H7(z) = z7 − 21z5 + 105z3 − 105z, (19)
H8(z) = z8 − 28z6 + 210z4 − 420z2 + 105. (20)

For empirical purposes the asymptotic expansion in Eq. (11) has to be truncated at the n-th term and then the GC density is
defined in Eq. (21),

f (z, d) =


1 +

n
s=1

dsHs(z)


φ(z), (21)

where d ′
= (d1, . . . , dn) ∈ Rn denotes the vector of parameters. It can be proved that d1 and d2 capture mean and

variance, respectively, the odd parameters incorporate skewness and the even parameters the tail behavior. In particular, if
d1 = d2 = 0 then d4 represents the excess kurtosis.

Despite the fact that themain advantage of this distribution lies in its flexibility to incorporate different shapes (including
jumps in the probabilistic mass) with a variable number of parameters, most of the empirical studies truncate the expansion
in n = 4 and employ only d3 and d4 to account for skewness and excess kurtosis, respectively. For comparison purposes, we
initially estimate VaR taking into account the GC expansion truncated at the fourth order estimated via method of moments
(MM) andmaximum likelihood (ML). We follow the procedure proposed in Ref. [43] and estimate the density parameters in
two steps. In the first step,we estimate the conditionalmean and variance byQML and obtain the standardized residuals and,
in the second step, we estimate the ds parameters for the standardized residuals by either MM or ML. The former method is
based on the following relations among density parameters and (estimated) moments:

d̂1 = µ̂1, (22)

d̂2 =
1
2
(µ̂2 − 1), (23)

d̂3 =
1
6
(µ̂3 − 3µ̂1), (24)

d̂4 =
1
24

(µ̂4 − 6µ̂2 + 3), (25)

d̂5 =
1

120
(µ̂5 − 10µ̂3 + 15µ̂1), (26)

d̂6 =
1

720
(µ̂6 − 15µ̂4 + 45µ̂2 − 15), (27)

d̂7 =
1

5040
(µ̂7 − 21µ̂5 + 105µ̂3 − 105), (28)

d̂8 =
1

40 320
(µ̂8 − 28µ̂6 + 210µ̂4 − 420µ̂2 + 105), (29)

µ̂s =
1
n

T
t=1 z

s
t , being a consistent estimate of the non-central moment of order s.
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Table 1
Descriptive statistics for hedge fund returns.

Equity Hedge Event Driven

Mean 0.0004 0.0108
Median 0.0351 0.0341
Standard deviation 0.4317 0.3113
Variance 0.1864 0.0969
Excess kurtosis 5.3728 12.1327
Skewness −0.7835 −1.1468
Range 5.5797 5.6929
Minimum −3.0204 −3.1182
Maximum 2.5593 2.5747

Furthermore, we also consider a second GCmodel expanded up to the eighth term that is computed byML (second step).
For this model, we identify the ‘‘optimal’’ truncation order using the Akaike Information Criterion (AIC). Therefore, within
the GC familywe consider three cases: GC4-MM (GCmodel expanded to the 4th term estimated byMM), GC4-ML (GCmodel
expanded to the 4th term estimated by ML) and GC8-ML (GC model expanded to the 8th term estimated by ML).

Most of the financial literature about SNP methodologies is devoted to pricing derivatives [44,45] and only few articles
use the GC expansion for VaR forecasting purposes [46,47]. Furthermore, most authors [48–50] implement positive
transformations of the GC distribution by squaring the weighted sum of HP in Eq. (21), since the truncated GC series
does not necessarily ensure a positive domain for the whole parametric space. Nevertheless, we decided not to implement
these positive transformations since the resulting densities are too complex for backtesting applications and the consistent
estimation (ML or MM) are sufficient conditions to achieve positivity.

3. Empirical application: VaR performance of univariate hedge fund series

3.1. Data

We use daily data from two main hedge funds based on different strategies: Equity Hedge and Event Driven. The
strategy of the former mainly consists of large and short positions in equity. Event driven strategy involves capitalization
on anomalies related to corporate transactions. Data ranged from July 2006 (one year before the date when Bear Stearns
hedge funds reported massive losses triggering the subprime crisis) to first quarter of 2013. Table 1 presents the descriptive
statistics for continuously compounded returns of these series, defined as rt = 100 log(Pt/Pt−1) where Pt represents the
corresponding hedge fund index. The statistics show that the selected hedge fund returns present negative skewness and
high excess kurtosis as is usually found in the related literature.

3.2. In-sample results

Fig. 1 displays the autocorrelation function (ACF) of the return series (upper graphs) and the absolute return series (lower
graphs) using the total sample. The ACF of the return series show that there is a slightly autoregressive structure in the data
and thus either an AR(1) or ARMA(1, 1) structure might be identified. The ACF of the absolute return series reveal a strong
presence of conditional heteroskedasticity in the data that can be adequately captured by a GARCH(1, 1) process.

Next we proceed to select among the three plausible models for conditional mean – white noise, AR(1) and ARMA(1, 1)
– according to accuracy criteria. Table 2 gathers the log-likelihood values of these three models combined with a GARCH(1,
1) for modeling conditional variance and under different distributional hypotheses, either normal, Student’s t or skewed-t .
The results show clear evidence in favor of the autoregressivemodels but it does not strongly support the ARMA(1, 1) versus
the AR(1) model. We choose the ARMA(1, 1) since it has slightly higher log-likelihood values and nests the AR(1).

Table 3 presents theMaximum Likelihood (ML) estimates of the parameters of the ARMA(1, 1)–GARCH(1, 1)model under
the five distributional hypotheses. p-values for testing the significance of every parameter are given in parentheses. These
values show that the GARCH(1, 1) parameters are statistically significant but not all the parameters of the ARMA(1, 1) are
statistically different from zero, especially for Equity Hedge Fund returns. This fact is in line with the ‘small predictable
component of the conditional mean’ stylized fact featured by stock returns. Moreover GARCH(1, 1) processes exhibit
persistent behavior since they are close to the non-stationarity (i.e., α + β is close to one). This fact captures the ‘long
memory’ or the ‘persistence of conditional variance’ usually found in this type of data. Consequently, we decided to use
the ARMA(1, 1)–GARCH(1, 1) model when implementing the backtesting technique to investigate the performance of the
different distributional hypothesis on VaR computation.

Table 3 (Panels B and C) also includes the estimates for the shape parameter (degrees of freedom) and the skew
parameter of the Student’s t distributions. Both parameters are significant, which reflects that the distribution is leptokurtic
and asymmetric. Furthermore, the parameters of the EVT and GC distributions are displayed in Panels D and E, F and G,
respectively. In these cases two-step estimation was implemented (i.e. returns were filtered according to the ARMA(1,
1)–GARCH(1, 1) estimated in the first step by QML). The shape parameter for EVT, ξ , is not significantly different from
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Fig. 1. Autocorrelation functions of hedge fund returns levels and absolute values.

Table 2
Log-likelihood for different conditional mean–variancemodels and
under different distributional assumptions.

Equity Hedge Event Driven

Panel A: Normal

GARCH(1, 1) −946.807 −80.404
AR(1)-GARCH(1, 1) −921.565 −65.201
ARMA(1, 1)–GARCH(1, 1) −921.447 −62.336

Panel B: Student’s t

GARCH(1, 1) −909.326 −31.577
AR(1)-GARCH(1, 1) −881.268 −12.582
ARMA(1, 1)–GARCH(1, 1) −880.946 −9.727

Panel C: Skewed Student’s t

GARCH(1, 1) −891.788 −22.084
AR(1)-GARCH(1, 1) −868.763 −5.132
ARMA(1, 1)–GARCH(1, 1) −868.747 −3.283

zero, which means that, after filtering the returns by an ARMA(1, 1)–GARCH(1, 1) model, the standardized residuals exhibit
medium-tailed distributions (when ξ = 0, the GPD takes the shape of an exponential distribution). Regarding the GC density
parameters, d3 and d4 confirm the presence of (negative) skewness and leptokurtosis. Nevertheless, not all the parameters
of the larger expansion (Panel G) are significantly different from zero. In particular, d3 seems to capture the whole skewness
pattern of the density (i.e. further odd parameters seem to be unnecessary) but the inclusion of other even parameters seem
to be useful to account for extreme values. However, the flexibility of GC densities represents a clear advantage in order to
incorporate different features along the backtesting procedure implemented in Section 3.3.

3.3. Backtesting

To test the validity of the distributional assumptions of stock returns, (normal, Student’s t , skewed-t , GC and EVT) the
historical series, r1, . . . , rm, are compared with the VaRα

t predicted for the day t = {n + 1, . . . ,m} by using a time window
of the n previous days.We consider a timewindow of 500 days for computing every one-step-ahead VaR prediction (the first
in-sample rolling window being July 2004–July 2006) and a total period of 1750 days as the backtesting or out-of-sample
period (July 2006–1st quarter of 2013).

The predicted VaR is compared to the observed return at 99% confidence level. Therefore, when calculating VaR at 99%
we expect that in 1% of the backtesting days, the negative returns exceed VaR predictions. These values are referred to as
‘violations’ or ‘exceptions’. More specifically, if It is the indicator defined in Eq. (30),

It := 1{rt+1>VaRα
t }

, (30)

a ‘violation’ occurs when rt+1 > VaRα
t , and then the indicator function takes value 1. Otherwise, It takes value 0 (whenever

rt+1 ≤ VaRα
t ). Therefore, if the VaR methodology is adequate, it is expected that the violation indicator function values
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Table 3
Estimation of the parameters of an ARMA(1, 1)–GARCH(1, 1).

Equity Hedge Event Driven

Panel A: Normal

ϕ 0.0036 (0.5962) 0.0131 (0.0179)
φ 0.2296 (0.1193) 0.5626 (0.0006)
θ −0.0724 (0.6384) −0.4510 (0.0114)
ω 0.0039 (0.0001) 0.0014 (0.0001)
α 0.1059 (0.0000) 0.0984 (0.0000)
β 0.8722 (0.0000) 0.8861 (0.0000)

Panel B: Student’s t

ϕ 0.0036 (0.5837) 0.0168 (0.0068)
φ 0.2699 (0.0582) 0.5433 (0.0005)
θ −0.1140 (0.4507) −0.4251 (0.0118)
ω 0.0036 (0.0007) 0.0012 (0.0007)
α 0.1115 (0.0000) 0.0939 (0.0000)
β 0.8703 (0.0000) 0.8918 (0.0000)
ν 7.5050 (0.0000) 7.0846 (0.0000)

Panel C: Skewed Student’s t

ϕ 0.0036 (0.6462) 0.0161 (0.0057)
φ 0.1130 (0.5451) 0.4763 (0.0039)
θ 0.0316 (0.8685) −0.3628 (0.0401)
ω 0.0039 (0.0004) 0.0012 (0.0005)
α 0.1093 (0.0000) 0.0898 (0.0000)
β 0.8705 (0.0000) 0.8939 (0.0000)
ν 7.4784 (0.0000) 7.4184 (0.0000)
γ 0.8677 (0.0000) 0.8937 (0.0000)

Panel D: EVT

ξ −0.0268 (0.3260) 0.0503 (0.2388)
β 0.4818 (0.0000) 0.4616 (0.0000)

Panel E: GC4MM

d3 −0.0762 (0.0000) −0.0744 (0.0000)
d4 0.0836 (0.0000) 0.1061 (0.0000)

Panel F: GC4ML

d3 −0.0511 (0.0000) −0.0352 (0.0006)
d4 0.0338 (0.0000) 0.0362 (0.0000)

Panel G: GC8ML

d3 −0.0585 (0.0000) −0.0468 (0.0012)
d4 0.0392 (0.0000) 0.0543 (0.0000)
d5 −0.0059 (0.1295) −0.0064 (0.1281)
d6 0.0036 (0.0596) 0.0076 (0.0027)
d7 −0.0013 (0.0288) −0.0011 (0.0822)
d8 0.0007 (0.0009) 0.0006 (0.0174)

p-values for the t-test in parentheses.

behave as realizations of independent and identically distributed (i.i.d.) Bernoulli experimentswith success probability equal
to 1 − α, i.e.

m
t=1 It ∼ Bin (m, 1 − α). Thus, the null hypothesis that ‘the model adequately estimates VaR’ can be tested

by a straightforward one-sided binomial hypothesis test (see Ref. [51] for different VaR forecasting tests). The alternative
hypothesis suggests that the method underestimates or overestimates the VaR calculation depending on the number of
expected violations.

Table 4 displays the number of exceptions and the p-value for the binomial test (in parentheses) for the seven
models (ARMA–GARCH-normal, ARMA–GARCH-t , ARMA–GARCH-skewed-t , ARMA–GARCH-EVT, ARMA–GARCH-GC4-MM,
ARMA–GARCH-GC4-ML, ARMA–GARCH-GC8-ML) at 99% confidence level and for the two hedge fund returns. These results
show that normal and Student’s t significantly under predict the VaR for both series, whilst the method based on skewed-t
is also rejected for the Equity Hedge strategy. Nonetheless, the EVT approach, and GC models perform well for capturing
risk in both hedge funds since these methods focus on modeling the extreme values. These results are consistent with the
evidence usually found in stock returns VaR performance and extend it to hedge fund returns calculation [52]. Furthermore,
we also find that the larger SNP expansions do not seem to improve the forecasting performance of GC densities and that
the MM estimation procedures do not provide more accurate VaR forecasts compared to ML methods.

Finally, the hedge fund returns and their corresponding forecasted VaR at 99% confidence is plotted in Fig. 2for both
strategies. It is clear that the normal (red line) is the distribution that produces the less conservative VaR measures (lower
values) and the EVT (dark blue line) and GC (light blue line) the ones that involve higher VaR predictions.
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Table 4
Backtesting for hedge fund returns.

VaR 99% Expected number of exceptions = 17 Data: July 2006–first
quarter of 2013

1750 days Equity Hedge Event Driven

ARMA–GARCH-normal 38 (0.0000) 38 (0.0000)
ARMA–GARCH-t 25 (0.0398) 29 (0.0047)
ARMA–GARCH-skewed-t 9 (0.0256) 17 (0.5640)
ARMA–GARCH-EVT 17 (0.5640) 20 (0.2628)
ARMA–GARCH-GC4-MM 11 (0.0836) 14 (0.2796)
ARMA–GARCH-GC4-ML 17 (0.5640) 21 (0.1935)
ARMA–GARCH-GC8-ML 16 (0.4672) 21 (0.1935)

p-values for the binomial test are in parentheses. EVT considers a 10% threshold.

A. Equity Hedge.

B. Event Driven.

Fig. 2. VaR at 99% in the backtesting period under different specifications. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

In the next two sections we model the possible non-linear dependences between the two hedge funds by using the
concept of copulas. We extend the SNP approach to the multivariate case by introducing a novel expression for the GC
copula and comparing its performance on capturing VaR to other meta distributions.

4. Multivariate case

Measuring the risk of hedge fund or portfolio positions requires the consideration of non-linear dependence among
asset returns. For this purpose the use of copulas represents a useful tool since it allows defining an enormous variety of
multivariate distributions by linking variables with different marginal distributions. Consistently with the SNP approach,
we derive an analytical expression for the GC copula and its density based on the multivariate GC density provided by
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Perote [53]. The density of this GC copula can be straightforwardly obtained from the density of the Gaussian copula but
incorporates non-linear dependence depending on the Hermite polynomial parameter structure. In what follows we revise
the basic concepts of copulas and apply them to obtain the GC copula and other related meta distributions. For the sake of
simplicity, but without loss of generality, we focus on the bivariate case and only the third and fourth Hermite polynomials
are considered.

4.1. Copula basics

A bivariate copula is a function C : [0, 1] [0, 1] → [0, 1] such that (i) C (u1, u2) is increasing in both u1 and u2, (ii)
C (u1, 0) = C (0, u2) = 0, C (u1, 1) = u1 and C (1, u2) = u2, (iii) C (u2, v2) − C (u2, v1) − C (u1, v2) + C (u1, v1) ≥

0 ∀ u1, u2, v1, v2 ∈ [0, 1] with u1 ≤ u2 and v1 ≤ v2.
Sklar’s theorem [54] states that if F (x1, x2) is a multivariate distribution function with marginals F1(x1) and F2(x2) then

there exists a copula C such that

F (x1, x2) = C (F1 (x1) , F2 (x2)) . (31)

If margins are continuous, then the copula is unique. The Sklar’s Theorem can be rewritten as

C (u1, u2) = F

F−1
1 (u1) , F−1

2 (u2)

, (32)

where F−1
i (ui) with i ∈ {1, 2} is the inverse of Fi, and ui are standard uniform variates. From (32) a copula can be extracted

from a joint distribution function F and continuous margins Fi.

4.2. GC copula

Let X = (x1x2) be a random vector with GC joint distribution function, FGC, and GC margins F1 (x1) and F2 (x2), where
xi = F−1

i (ui) with i = 1, 2, then the GC copula can be obtained as

CGC (u1, u2) = FGC F−1
1 (u1) , F−1

2 (u2)

. (33)

Thus, the GC copula is given by (see the proof in Appendix A):

CGC (u1, u2) = Φ

F−1
1 (u1) , F−1

2 (u2)

− Φ


F−1
2 (u2)


φ

F−1
1 (u1)


q̃1

F−1
1 (u1)


− Φ


F−1
1 (u1)


φ

F−1
2 (u2)


q̃2

F−1
2 (u2)


, (34)

where q̃i (xi) =
d3i√
3
H2 (xi) +

d4i√
4
H3 (xi) , ∀i = 1, 2, Φ is the multivariate normal cdf, Φ is the univariate normal cdf and φ is

univariate normal pdf.

4.3. The density of the GC copula density and the ML estimation

The density of a copula C (u1, u2) can be obtained as

c (u1, u2) =
∂2C (u1, u2)

∂u1∂u2
. (35)

Similarly, if f (x1, x2) is the pdf of the random vector X = (x1x2)′, with marginal pdfs f1 (x1) and f2 (x2), then the density of
the copula is

c (u1, u2) =
f

F−1
1 (u1) , F−1

2 (u2)


f1

F−1
1 (u1)


f2

F−1
2 (u2)

 , (36)

since f

F−1
1 (u1) , F−1

2 (u2)


= c (u1, u2) f1

F−1
1 (u1)


f2

F−1
2 (u2)


, known as the canonical representation. Thus, the

expression for the density of the GC copula is (see the proof in Appendix B):

cGC (u1, u2) =
cGa (u1, u2) + q1


F−1 (u1)


+ q2


F−1 (u2)


1 + q1


F−1 (u1)

 
1 + q2


F−1 (u2)

 , (37)

where cGa is the Gaussian copula density, F−1 is the inverse of the standard GC distribution function, and qi (xi) =

d3iH3 (xi) + d4iH4 (xi) , ∀i = 1, 2.
The estimation of the vector of parameters of the copula, θ, has traditionally been estimated by ML techniques. For such

purpose the log-likelihood function may be defined as

ln L

θ, Û1, . . . , Ûn


=

n
t=1

ln cθ

Ût


, (38)
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where cθ denotes the copula density and Ût a pseudo-observation from the copula. Thus, the log-likelihood function for the
density of the GC copula is given by (see Appendix B):

ln L

θ; Ŷ1, Ŷ2


=

n
t=1

ln {φ (Y1t , Y2t) + φ (Y1t) φ (Y2t) [q1 (Y1t) + q2 (Y2t)]}

−

n
t=1

ln (1 + q1 (Y1t)) −

n
t=1

ln (1 + q2 (Y2t)) −

n
t=1

ln (φ (Y1t)) −

n
t=1

ln (φ (Y2t)) , (39)

where Y1 = F−1 (u1) and Y2 = F−1 (u2), and φ denotes the multivariate density of a normal distribution.

4.4. Fitting the GC copula

TheML estimation of the copula parameters are based on pseudo-sample observations, since copula data are not directly
observed. This procedure [55] is divided in two steps:

First, margins are estimated from the sample {xt}Tt=1 via the empirical distribution function

F̂T

xj


=
1

T + 1

T
t=1

I{xt≤xj,T }, (40)

where I{.} denotes the indicator function and thus F̂T

xj

is the frequency of observations below or equal to xj. The term T +1

ensures that data from the pseudo-sample lies in the interior of the unit square.
Second, the pseudo-sample of observations from the copula is generated

Ût = (U1t ,U2t)
′
=


F̂1 (x1t) , F̂2 (x2t)

′

. (41)

Once the pseudo-sample is obtained, expression (38) ismaximized (numerically) in order to estimate the copula parameters.

4.5. Simulation of the GC meta distribution

The Sklar’s Theorem is a useful tool to define multivariate distributions with arbitrary copulas and margins. The well-
known Limodel [56] is a particular case of the Gaussian copulawith exponential margins traditionally used tomodel default
times in companies. This model implements the so-called Gaussian meta distribution. Similarly, we introduce the GC meta
distribution whose simulation algorithm is described below:
(1) Generate X ∼ FGC

d=2 (0, P).
(i) Perform a Cholesky decomposition to obtain P1/2.
(ii) Generate Z = (Z1, Z2)′ of GC variates, where zi ∼ GC (0, 1, d3i, d4i) , i = 1, 2.
(iii) Set X = µ + P1/2Z .

(2) Return U = (F1 (X1) , F2 (X2))
′, where F1 and F2 are GC margins. Then the random vector U has CGC

P distribution.
(3) Return R = G−1 (U). Then R is a GC meta distribution, in other words, a random vector with F1 and F2 margins and

multivariate distribution CGC
P (G1 (X1) ,G2 (X2)).

5. Empirical application: VaR quantification using the GC meta distribution

This section develops an application of the GC copula to compute the VaR of a portfolio composed of the two hedge fund
returns previously analyzed in Section 3. We compare the VaR performance of the meta distribution based on this copula to
other meta distributions. For this purpose we proceed as follows:

First, the daily hedge fund index returns described in Table 1 are standardized and the parameters of the GC, Gaussian
and Student t copulas are estimated, as well as the marginal distribution which fits the data the best. Table 5 displays the
estimated parameters for the copulas and their log-likelihood values. The correlation coefficient (ρ) is very similar for the
three specifications but the parameters of the GC (d3i and d4i, ∀i = 1, 2) induce non-linear dependence. For this reason
these parameters (d4i) are negative and the Student’s t seems to be the best fitted copula according to the log-likelihood
value. Table 6 shows the parameters estimated for the three marginal distributions (normal, Cauchy and Student’s t) and
their loglikelihood values. Note that both the Cauchy and the normal are limited cases of the Student’s t as the degrees of
freedom (ν) tend to one and infinity, respectively. Thus the Student’s t marginal distribution is chosen in terms of accuracy.

Second, bivariate series, Rt = (R1tR2t)
′, of size T are simulated from the algorithm detailed in Section 4.5, where

T is the length of the hedge fund index returns, then we construct different meta distributions and compare their VaR
performance. Particularly, we combine the three copulas in Table 5 (Gaussian, GC and Student t) with the best marginal
in Table 6 (Student’s t). We denote these meta distributions as M1, M2 and M3, respectively. Furthermore, we include the
multivariate normal (meta Gaussianwith normalmargins orM4) and themultivariate GC (meta GCwith GCmargins orM5).
The information about models M1–M5 is summarized in Table 7.
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Table 5
Fitted copulas.

Copula Loglikelihood value Parameters estimated

Gaussian 865.3603 ρ = 0.7393
Gram–Charlier 916.3513 ρ = 0.7209, d31 = 0.0196, d41 = −0.0108,

d32 = 0.0132, d42 = −0.0104
Student t 954.2817 ρ = 0.7490, ν = 3.7443

Table 6
Fitted marginal densities.

Distribution Equity Hedge Event Driven
Loglikelihood Parameters Loglikelihood Parameters

Normal −3121.165 µ = 0.0000, σ = 0.9998 −3121.165 µ = 0.0000, σ = 0.9998
Cauchy −3114.102 Location = 0.0985,

scale = 0.4606
−2992.852 Location = 0.0970,

scale = 0.4399
Student’s t −2930.764 ν = 3.2971 −2808.314 ν = 3.0928

Table 7
Meta distributions analyzed.

Meta distribution Copula Marginal distribution

M1-Meta Gauss (marginals t) Gaussian, ρ = 0.7393 Student’s t (ν1 = 3.2971, ν2 = 3.0928)
M2-Meta t (marginals t) Gram–Charlier, ρ = 0.7209, d31 = 0.0196,

d41 = −0.0108, d32 = 0.0132, d42 = −0.0104
Student’s t (ν1 = 3.2971, ν2 = 3.0928)

M3-Meta GC (marginals t) t, ρ = 0.7490, ν = 3.7443 Student’s t (ν1 = 3.2993, ν2 = 3.0915)
M4-Meta Gauss (marginals normal) Gaussian, ρ = 0.7393 Standard normal
M5-Meta GC (marginals GC) Gram–Charlier, ρ = 0.7209, d31 = 0.0196,

d41 = −0.0108, d32 = 0.0132, d42 = −0.0104
Standard GC

Table 8
Descriptive statistics for hedge fund returns.

Portfolio Standardized portfolio

Mean 0.0056 0.0000
Median 0.0374 0.0813
Standard deviation 0.3504 0.9416
Variance 0.1228 0.8865
Excess kurtosis 8.8094 9.5089
Skewness −1.0459 −1.0829
Range 5.6337 15.6006
Minimum −3.0693 −8.5246
Maximum 2.5644 7.0760

Third, we form a portfolio Rpt = w1R1t +w2R2t , where 0 ≤ wi ≤ 1 ∀i = 1, 2 and w1 +w2 = 1. Particularly, we consider
an equally weighted portfolio, i.e. w1 = w2 = 0.5. Table 8 gathers the main descriptive statistics for the formed portfolio.

The portfolio VaR for the confidence level α, VaRα , is calculated as the α-quantile of Rp. This procedure is repeated M
times (M large) and the mean and standard error are computed according to the Eqs. (42) and (43), respectively.

VaRα =
1
M

M
i=1

VaRα,i, (42)

σ(VaRα) =

 1
M − 1

M
i=1


VaRα,i − VaRα

2
. (43)

The VaR of eachmeta distribution is comparedwith the empirical VaR, calculated as the quantile from the original (hedge
fund) standardized returns. The results are shown in Table 9.

The average VaR values estimated by M5 are relatively close to the empirical VaR when α is equal to 0.05 and 0.01;
however, the result is far from the empirical VaR when α = 0.001. In the latter case, the VaR estimated by M2 is closer to
the empirical VaR. M4 performs poorly, which is a Meta Gauss copula with normal margin distributions. Therefore the GC
copula seems to provide accurate VaR measures for the traditionally employed confidence levels.
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Table 9
VaR performance of meta distributions.

Model A
0.05 0.01 0.001

Empirical (EW) −1.5274 −2.8924 −5.7409
M1-Meta Gauss (marginals t) −1.3193 (0.0659) −2.4610 (0.2051) −4.9737 (1.0749)
M2-Meta t (marginals t) −1.3057 (0.0675) −2.5042 (0.2241) −5.2359 (1.1460)
M3-Meta GC (marginals t) −1.3059 (0.0638) −2.4504 (0.2019) −4.8635 (0.9913)
M4-Meta Gauss (marginals normal) −1.5312 (0.0471) −2.1592 (0.0833) −2.8076 (0.1800)
M5-Meta GC (marginals GC) −1.6533 (0.0762) −2.7067 (0.1259) −4.1470 (1.3305)

Standard deviation in parenthesis.

6. Conclusions

Traditional VaR measures, based on the normal distribution, have been criticized because of their inability to adequately
capture market risk, particularly for high confidence levels. For this purpose, the use of alternative thick-tailed and skewed
distributions has been proposed. However, still there is not a consensus about the more appropriate methodology for VaR
forecasting. On the other hand, hedging strategies require accurate VaR measures to quantify potential losses and avoid
disasters as the LTCM bankruptcy. In this article, we investigate on these issues by comparing the relative performance of
three parametric models (normal, Student’s t and skewed-t), the EVT approach and a SNP model (GC).

Our results confirm the strongly rejection of both the normal- and the Student’s-based VaRmeasures for high confidence
levels and volatile scenarios [24]. The skewed-t is an alternative to capture skewness although might not be the best option
when leptokurtosis is severe due to the high occurrence of outliers. The EVT and the GC densities involve accurate market
risk measures since the former focus on extreme values and the latter is very flexible to adapt different scenarios with a
variable number of parameters. These results are consistent with other articles that have implemented SNP [47,57] and
EVT [58,59] methodologies for other asset returns, but this is the first evidence for hedge fund returns.

The EVT, however, is very sensitive to the threshold selection [59] and thus our study particularly focuses on and
recommends the SNP approach.Within the SNP framework we analyze the performance of distributions based on GC series,
unlike other related contributions that implement the Cornish–Fisher [15], Laguerre [60] or Positive Edgeworth–Sargan
expansions [47]. Furthermore, the article compares the VaR forecasting performance of the GC series traditionally expanded
to the fourth term for option prices purposes [44,45] to larger expansions proposed to quantify portfolio risk [34]. Our results
support the use of shorter expansions for risk forecasting since simpler models seem to provide better (or at least as good
as) outcomes. This result reinforces the fact that the best good in-sample fit does not guarantee the best out-of-sample
performance [61], we also explore the advantages of using different estimation techniques for estimating GC densities: MM
versus ML. Unlike [43], we find that efficient ML techniques seem to outperform MM when forecasting risk of hedge fund
strategies.

The article also goes one step further into the multivariate case by providing a direct expression for the GC copula
and its density based on the multivariate GC distribution in Ref. [53]. This expression allows us to directly obtaining the
GC copula from the Gaussian copula, which is a particular case, and introduces non-linear dependence by means of the
Hermite polynomial structures.We compare the VaR performance of differentmeta distributions based on GC, Gaussian and
Student’s t copulas by computing portfolio VaR at different confidence levels (95%, 99% and 99.9%) for an equally weighted
portfolio formed by the two hedge fund returns. Our results show that the portfolio VaR estimated by the multivariate GC
(meta GC) is close to the empirical VaR and seems to outperform other multivariate specifications when α = 0.01, the
regulatory VaR for market risk. However, for a VaR beyond the 99% confidence level, the result obtained by themeta t works
better. For all these reasons we recommend the use of SNP distributions for risk managing purposes.
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Appendix A. GC copula

Let Eq. (A.1) be the standardized multivariate GC density introduced in Ref. [53]. Without loss of generality we consider
the bivariate case and expansions including only the third and fourth Hermite polynomials for both dimensions.

f (x1, x2) = φ (x1, x2) + [q1 (x1) + q2 (x2)]φ (x1) φ (x2) , (A.1)

where φ is the standardmultivariate normal density with correlation coefficient ρ, φ denotes the univariate normal density
in Eq. (8) and qi (xi) = d3iH3 (xi) + d4iH4 (xi) , ∀i = 1, 2. The marginal distributions of this density are univariate GC
distributed and thus such distribution inherits the good performance of the SNP approach in Section 2.2.2. and allows for
non-linear between x1 and x2.
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The corresponding multivariate GC cdf can be easily obtained by integration:

F (x1, x2) =

 x1

−∞

 x2

−∞

{φ (s, t) dtds + (q1 (s) + q2(t)) φ(s)φ (t)} dtds

= Φ (x1, x2) +

 x1

−∞

q1 (s) φ(s)ds
 x2

−∞

φ (t) dt +

 x1

−∞

φ(s)ds
 x2

−∞

q2(t)φ(t)dt

= Φ (x1, x2) + Φ (x2)
 x1

−∞

[d31H3 (s) + d41H4(s)]φ(s) + Φ (x1)
 x2

−∞

[d32H3 (t) + d42H4(t)]φ(t)

= Φ (x1, x2) + Φ (x2)

−

d31
√
3
H2 (x1) φ (x1) −

d41
√
4
H3 (x1) φ (x1)


+ Φ (x1)


−

d32
√
3
H2 (x2) φ (x2) −

d42
√
4
H3 (x2) φ (x2)


= Φ (x1, x2) − Φ (x2) φ (x1) q̃1 (x1) − Φ (x1) φ (x2) q̃2 (x2) (A.2)

where q̃i (xi) =
d3i√
3
H2 (xi) +

d4i√
4
H3 (xi) ∀i = 1, 2 and Φ stands for the univariate normal cdf. Note that to solve the integral

we applied a well-known Hermite polynomial property: x

−∞

Hj(s)φ(s)ds = −
1
√
j
Hj−1(x)φ(x). (A.3)

Thus, the GC copula with GC margins F1 (x1) and F2 (x2) can be straightforwardly extracted by the Sklar’s theorem—see
Eq. (32):

CGC (u1, u2) = Φ

F−1
1 (u1) , F−1

2 (u2)

− Φ


F−1
2 (u2)


φ

F−1
1 (u1)


q̃

F−1
1 (u1)


− Φ


F−1
1 (u1)


φ

F−1
2 (u2)


q̃

F−1
2 (u2)


. (A.4)

Appendix B. GC copula density and its log-likelihood function

The density of the GC copula provided in Appendix A, cGC, can be obtained in terms of the density of the Gaussian
copula, cGa, as a direct application of the canonical representation theorem. Particularly, the multivariate normal pdf and
the multivariate GC pdf can be expressed as in Eqs. (B.1) and (B.2), respectively:

φ

Φ−1 (u1) , Φ−1 (u2)


= cGa (u1, u2) φ


Φ−1 (u1)


φ

Φ−1 (u2)


(B.1)

f

F−1 (u1) , F−1 (u2)


= φ


F−1 (u1)


φ

F−1 (u2)


+

q

F−1 (u1)


+ q


F−1 (u2)


× φ


F−1 (u1)


φ

F−1 (u2)


. (B.2)

By substituting (B.1) in (B.2) and dividing by f1

F−1 (u1)


f2

F−1 (u2)


we directly obtain the density of the GC copula:

cGC (u1, u2) =


cGa (u1, u2) + q1


F−1 (u1)


+ q2


F−1 (u2)


φ

F−1 (u1)


φ

F−1 (u2)


f1

F−1 (u1)


f2

F−1 (u2)


=

cGa (u1, u2) + q1

F−1 (u1)


+ q2


F−1 (u2)


1 + q1


F−1 (u1)

 
1 + q2


F−1 (u2)

 , (B.3)

since the terms of the univariate Gaussian pdfs cancel out. Therefore the log-likelihood function for a couple of observations
is

ln cGC (u1, u2) = ln cGa (u1, u2) + q1 (Y1) + q2 (Y2) − ln [1 + q1 (Y1)] − ln [1 + q2 (Y2)] ,
provided that Y1 = F−1 (u1) and Y2 = F−1 (u2).

For a whole sample of n observations the log-likelihood becomes:

ln L

θ; Ŷ1, Ŷ2


=

n
i=1


ln cGa(u1,u2) + q1 (Y1i) + q2 (Y2i)


−

n
i=1

ln [1 + q1 (Y1i)] −

n
i=1

ln [1 + q2 (Y2i)] .

By replacing Gaussian copula, cGa(u1,u2)
=

φ(Y1i,Y2i)
φ(Y1i)φ(Y2i)

and after straightforward manipulation:

ln L

θ; Ŷ1, Ŷ2


=

n
i=1

{lnφ (Y1i, Y2i) + φ (Y1i) φ (Y2i) [q1 (Y1i) + q2 (Y2i)]}

−

n
i=1

lnφ (Y1i) −

n
i=1

φ (Y2i) −

n
i=1

ln [1 + q1 (Y1i)] −

n
i=1

ln [1 + q2 (Y2i)] . (B.4)
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