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Chapter 1

Introduction

Injection molding is an ideal process for the mass production of parts with
complex shapes. It is one of the most important, common, and economically
relevant polymer processes: more than half of all polymer processing equip-
ment is for injection molding and approximately one third of all the thermo-
plastic material manufacturing is done by using injection molding[32]. The
process, which is cyclic in nature, can be divided into the following steps[26]:

• Melting of plastic

• Injection of the melt into the mold cavity

• Cooling of the mold

• Removal of the article

The material is molten and mixed in the plasticating unit. Then, it is
injected using high pressure into the mold. When the part has cooled and
solidified, it is removed from the mold. The whole injection process with its
different phases can be visualized in Figure 1.1.

In Figure 1.2, a reciprocating injection machine (which is the most com-
mon type of injection machine currently used) is shown with its main parts.

For the sake of study and analysis, the flow inside the mold cavity can be
divided into three characteristic regions according to Figure 1.3:

• The gate region

• The fully developed region

1



Figure 1.1: Injection cycle phases[39].

Clamping unit Plasticating unit

Control panel
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Hydraulic lines
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Figure 1.2: Injection molding machine (schematics)[30].
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Figure 1.3: Mold filling zones [39].

• The front region (fountain flow region)

In the close neighborhood of the flow front, the material spills from the
center of the channel to walls. This phenomenon known as the fountain flow
effect (a term coined by Rose [35]) is the only way to fill the regions near the
walls where a non-slip velocity condition exists. The characteristic velocity
patterns of the fountain flow effect can be seen in Figure 1.4. Figure 1.4(a)
corresponds to a stationary reference frame, whereas in Figure 1.4(b) the
reference system moves with the average velocity of the flow.

The fountain flow effect affects the orientation of the macromolecules and,
therefore, the mechanical and optical properties of injection molded parts [2].
In the case of reinforced materials, it affects the distribution and orientation
of fibers [31, 39, 2]. Besides, since weld lines occur where two flow fronts
impinge, the study of fountain flow effect is important to understand the
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(a) Reference system fixed to the mold
walls.

(b) Reference system that moves with
the average velocity of the flow.

Figure 1.4: Streamlines and vector plots of the velocity fields associated to
the fountain flow effect [31].
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micromorphology of these regions.
Furthermore, in the fountain flow region, material with a high temper-

ature moves from the center of the channel towards the walls of the mold.
Therefore, the fountain flow effect could have an important influence on the
temperature distribution during the filling. Since the existing commercial
simulation software for injection molding uses the Hele-Shaw approximation,
neglecting the velocities in the thickness direction, or rather coarse 3D solu-
tions that do not capture well the details of the front flow kinematics, the
influence of the fountain flow on the development of the temperature field
during filling has not been studied in detail.

In order to simulate all the important phenomena that occur in an in-
jection molding process, fully tridimensional simulations must be developed.
Given the complexity and computational costs associated to that kind of
simulations, most commercial injection molding simulation softwares are not
based in true 3D schemes but in the Hele-Shaw approximation. This ap-
proach is effective in predicting important variables such as the pressure dis-
tribution, clamping force, position the weld lines and air entrapments. How-
ever, since the velocity in the thickness direction is ignored, the Hele-Shaw
approach does not account for the fountain flow effect and its implications.

Although orientation can be used in the extrusion process to improve the
mechanical performance of the product, in an injection molding process it
is usually considered detrimental [41]. Differences in shrinkage are related
to the changes in the orientation of the macromolecules. Figure 1.5 shows
the shrinkage distribution for a polystyrene part. The fountain flow effect
results in an elongational flow at the front that affects the orientation of the
macromolecules (Figure 1.6). Besides, the material that forms the skin of the
part travels from the center and is deposited in the walls during the mold
filling (also by means of the fountain flow effect)[39]. These two phenomena
explain the presence of a maximum in the shrinkage at the wall. In Figure 1.5,
a secondary maximum can be noticed. This secondary maximum in the
shrinkage distribution can be explained by the presence of a maximum in
the shear rate near the wall in the developed flow region (Figure 1.7). Since
this shear tends to align the macromolecules in the direction of the flow, the
secondary maximum is absent when the shrinkage in the thickness direction
is considered.

The purpose of this work is to simulate the fountain flow effect using a
meshless technique (RFM) and, therefore, to explore the possibilities that the
method offers for free surface problems. To the knowledge of the author, the

5
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Figure 1.6: Deformation history of a fluid element as seen in a reference
frame that moves with the average flow velocity[31].
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Figure 1.7: Schematic representation of the flow patterns in an advancing
front between two plates. Notice the maximum in the shear rate upstream,
in the developed flow region[2].

fountain flow effect has not been simulated in the past by means of meshless
techniques.

In this thesis, a steady state was assumed for all simulations. This as-
sumption is common in the literature and can be found for instance in [28, 27].
It originates from the consideration of a reference system that moves with
the average velocity of the flow. For the flow in a slit, a power law model
model with n varying between 0.6 and 1.1 was used to describe the variation
of the viscosity with the shear rate. Another case considered in this thesis
is the fountain flow of a Newtonian fluid in an axisymmetric tube including
the force of gravity.

The organization of the thesis is as follows:
Chapter 2 presents a brief overview of the literature corresponding to the

simulation of the fountain flow effect. In Chapter 3, the Radial Functions
Method is presented using the solution of the Poisson equation as an exam-
ple. Chapter 4 deals with the implementation of the method to simulate the
fountain flow effect; this entails the representation of the motion and con-
tinuity equations, and the appropriate boundary conditions (including the
free boundary) in terms of Radial Basis Functions. The thesis ends with
chapters corresponding to the conclusions derived from the simulations and
a presentation of possible lines of research for future work.
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Chapter 2

Overview of the Literature

The first simulations of the fountain flow effect were developed during the
80’s by different authors [24, 22, 7, 3, 25, 23].

Mavridis [24] et al. were the first to predict the position of the flow
front for Newtonian, power-law and Carreau fluids using a numerical scheme
that was based on FEM to solve the motion and continuity equations and
on an iterative scheme to find the front shape. Their results show that the
kinematics of the flow are basically the same for those fluids, having very
similar streamlines patterns. In order to alleviate the problems related to
the stress singularity, a slip condition was introduced in the contact point
between the wall and the front. Besides, they found that for a power law
fluid with n = 0.5 the front flow has a shape that is very close to a semicircle
(Figure 2.1).

In 1987, Coyle et al. built an experimental setup to study the fountain
flow effect[7]. The setup consisted of a rectangular sleeve and a plunger. The
sleeve moved with constant speed, and the plunger remained stationary. By
means of this experimental set-up, the kinematics of the flow were studied
using tracers. They also simulated the phenomenon using a Galerkin Finite
Element analysis obtaining good agreement with the experimental results.
Given the settings of the experimental set-up, body forces were of importance
and were included in the simulations. The effect of gravity was mainly to
flatten the front.

The fountain flow effect with viscoelastic fluids in transient conditions was
first considered by Mavridis et al. in 1988 [23] showing good agreement with
the birefrigence patterns observed experimentally. The works of Mavridis
show that linear fluid elements in the centerline of the flow, stretched and

8
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deformed attaining a ”V” shape when the element passed through the foun-
tain flow region. Beris [4] used arguments based on the continuity equation
to demonstrate that those V-shaped patterns would exist regardless of the
fluid rheology.

In 1990, Vroonhoven [40] developed an analytical solution for the fountain
flow effect (Newtonian case) using conformal mapping in a complex plane and
solving a Hilbert problem.

In 1995, Sato and Richardson [36] developed simulations for Oldroyd-B
fluids explaining the role of viscoelasticity in the existence of the birefringence
patterns observed by Kamal and Tan [13].

In 2004, Bogaerds simulated the instabilities of the flow front associated
to injection defects characterized by differences in reflectivity of the surface
of molded parts. He also demonstrated that the shape of the front is basically
semiricircular for Weissenberg numbers varying between 0.1 and 2.5 [5].

In 2005, Gramberg addressed the problem of thermally induced instabil-
ities obtaining an analytical solution to model that phenomenon [11].

Another important author with important contributions to the simulation
of the fountain flow effect is Mitsoulis, who developed solutions for pseudo-
plastic, viscoplastic fluids [28] and viscoelastic fluids[27]. Using FEM, Mit-
soulis was able to simulate the fountain flow effect in power law fluids with
n = 0.26 (planar geometry) showing that the assumption that the front flow
is approximately semicircular is not adequate for low values of n.

The simulation of the fountain flow effect is challenging because of two
reasons: first, there is of a stress singularity in the pressure field and therefore
in the stress field that occurs in the point of contact between the front and
the wall[19] (the presence of the singularity can clearly be seen in Figures
2.2 and 2.3); second, being a free surface problem, the position of the flow
front is not known a priori and iterative methods should be used in order to
determine it.

10
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Chapter 3

The Radial Functions Method
(RFM)

The interpolation of scattered data by means of radial basis functions is the
basis required to develop the solution of PDEs (partial differential equations)
by means of radial basis function collocation. Given a set of data (xi,yi),
with i = 1, . . . , N , xi ∈ Rs and yi ∈ R, the interpolation problem consists of
finding a function f (xi) = yi. In the case of radial basis function interpola-
tion, that function is given by the linear combination of the functions φ (rij)
and a set of augmentation polynomials:

f (xi) =
N∑
j=1

αjφ (rij) +
t∑

k=1

βkpk (xi) = yi (3.1)

Where αj and βk are the interpolation coefficients, xj are the centers used
for the interpolation, xi are the collocation points, rij =‖ xi − xj ‖ is the
euclidean norm or distance between the collocation points and the centers,
and {pk}tk=1 is a basis for Pm−1 (the set of polynomials in s variables of degree
equal or less than m− 1). It is important to note that the set of collocation
points need not be the same as the set of centers. However, using the same
set of points is a common practice.

Chen [6]states that, theoretically, in order to have a safe reconstruction,
polynomial terms of at least degree m− 1 should be included. However, sev-
eral authors [30, 21, 18, 20] have implemented the Radial Functions Method
with success without including the polynomial terms at all. Larsson and
Fornberg [18] state that in the case of elliptical PDEs the differences in ac-

12



Gaussian φ (r) = e−cr
2

c > 0

Inverse Multiquadrics φ (r) = (r2 + c2)
−β/2

c > 0 > β
Sobolev Splines φ (r) = KV (r) rv KV is a spherical Bessel func-

tion, v > 0
Linear φ (r) = r m = 1
Cubic φ (r) = r3 m = 2
Thin Plate Spline (TPS) φ (r) = r2a log r 2a = β, β ∈ 2Z, m > β/2
Polyharmonic Splines φ (r) = rβ β ∈ R>0\2Z, m ≥ dβ/2e
Multiquadrics (MQ) φ (r) = (r2 + c2)

β/2
β ∈ R>0\2Z, c > 0, m ≥ dβ/2e

Table 3.1: List of common Radial Basis Functions [14, 6].

curacy and precision when the augmentation polynomials are included are
relatively small. The most common RBFs and the recommended values for
m are presented in Table 3.1.

The interpolation problem is reduced to solving the following equations
system: [

Φ P
PT 0

] [
α
β

]
=

[
Y
0

]
(3.2)

Where,

Φ =


φ(r11) φ(r12) . . . φ(r1N)
φ(r21) φ(r22) . . . φ(r2N)

...
...

. . .
...

φ(rN1) φ(rN2) . . . φ(rNN)

 (3.3)

P =


p1(x1) p2(x1) . . . pt(x1)
p1(x2) p2(x2) . . . pt(x2)

...
...

. . .
...

p1(xN) p2(xN) . . . pt(xN)

 (3.4)

αT =
[
α1, α2 . . . αN

]T
(3.5)

βT =
[
β1, β2 . . . βt

]T
(3.6)
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YT =
[
y1, y2 . . . yN

]T
(3.7)

The coefficients α and β can be found using any standard technique for
solving systems of linear equations. Then, for an arbitrary point x inside the
domain, the value of the function y(x), can be estimated as follows:

y(x) ≈
N∑
j=1

αjφ (‖ x− xj ‖) +
t∑

k=1

βkpk (x) (3.8)

Furthermore, the value of a linear differential operator L acting on y can
also be approximated as:

Ly(x) ≈
N∑
j=1

αjLφ (‖ x− xj ‖) +
t∑

k=1

βkLpk (x) (3.9)

Then, the solution of PDEs is the next step. Let us consider two dif-
ferential operators L and B associated to a partial differential equation to
be solved in a domain Ω and a boundary condition to be enforced in Γ,
respectively.

Ly(xi) = fi,∀xi ∈ Ω (3.10)

By(xi) = gi,∀xi ∈ Γ (3.11)

Then, for the points in the interior of the domain and the boundary, both
differential operators can be expressed using radial basis functions:

N∑
j=1

αjLφ (rij) +
t∑

k=1

βkLpk (xi) = fi,∀xi ∈ Ω (3.12)

N∑
j=1

αjBφ (rij) +
t∑

k=1

βkBpk (xi) = gi,∀xi ∈ Γ (3.13)

The resulting system of equations can be represented schematically as
follows [33]:  LΦΩ LPΩ

BΦΓ BPΓ

PT 0

[ α
β

]
=

 f
g
0

 (3.14)
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In order to demonstrate the application of the method with a relatively
simple example, the solution of the Poisson equation

−∇2u (x, y) = f (x, y) (3.15)

that describes the 2D heat transfer by conduction in a plate with an inter-
nal heat generation f(x, y) is considered. Two boundary conditions were
implemented:

• Dirichlet, when the temperatures are known in the boundary(Γ1)

u(x, y) = g(x, y) (3.16)

• Neumann, when the heat flux is known in the boundary (Γ2)

∂u(x, y)

∂n
= q(x, y) (3.17)

Using RFM, the resulting system of equations can be expressed schemat-
ically as: 

∇2ΦΩ ∇2PΩ

ΦΓ1 PΓ1
∂ΦΓ2

∂n

∂PΓ2

∂n

PT 0

[ α
β

]
=


−f
g
q
0

 (3.18)

For this problem, a comparison was made between different radial basis
functions by Ramı́rez et al.[34]. A FEM solution based in triangular elements
and first degree Lagrange polynomials as found in [9] was also developed and
is presented for comparison purposes. The meshing was done using the pro-
gram TRIANGLE[38]. In order to assess the accuracy of the method for
this particular equation, two domains with different geometries were stud-
ied (Figure 3.1). For each domain, known functions u(x, y) were chosen as
solutions of the Poisson equation(Figure 3.2):

• Domain 1

– u(x, y) = sin(πx) cos(π
2
y) + 10

– u(x, y) = sin(2πx) cos(πy) + 10

– u(x, y) = sin(4πx) cos(2πy) + 10

15



• Domain 2

– u(x, y) = sin( π
20
x) + cos(πy

20
) + 10

– u(x, y) = sin( π
10
x) + cos(πy

10
) + 10

– u(x, y) = sin(π
5
x) + cos(πy

5
) + 10

Then, the fountain functions f(x, y) were calculated by applying the
laplacian operator ∇2 to the selected functions u(x, y). Neumann and Dirich-
let boundary conditions were found by calculating the directional derivative
∂u(x,y)
∂n

and by evaluating the functions u(x, y) respectively. By doing so,
complete boundary problems with known analytical solutions were obtained.

These problems were solved by means of the Radial Functions Method
(RFM) and the Finite Element Method (FEM) and compared to the origi-
nal u(x, y) functions which correspond to the analytical solutions. For the
RFM, two functions were used: the thin plate spline (TPS) and the multi-
quadrics (with β = 1). In order to be able to compare the different solutions
quantitatively, the following measurement of the error was defined:

Error =
‖ uanalytical − unumerical ‖

‖ uanalytical ‖
(3.19)

Where uanalytical and unumerical and are vectors containing the values of u cor-
responding to the analytic and numerical solutions for all collocation points,
and ‖ · ‖ is the euclidean norm.

For the TPS, polynomials of the third degree were added. According to
Chen [6], the additional polynomials must have a degree of at least m− 1 in
order to ensure that the resulting system of equations has an unique solution.
When applying this criterion, for the TPSs with a = 3 and a = 4, third and
fourth degree polynomials must be added respectively. However, in this work
all the results were obtained using third degree augmentation polynomials
for the TPSs. Even without including the higher degree terms, the results
obtained by means of the TPS with a = 4 are superior to the ones with
a = 3. In the case of the MQ, the parameter c has a strong influence
on the obtained results. Figure 3.4 shows the influence of c in the error
and the condition number of the matrix. Considering, the influence of c
in the error, the graph has an optimal point. The existence of this point
is well known in the literature[20] and can be explained as follows: in ideal
conditions (exact arithmetic) the accuracy tends to improve as the parameter
c increases; nevertheless, as c gets bigger, the conditioning of the matrix tends

16



to worsen. Since real numbers can only be represented to a certain precision
given by the floating point of the machine, the parameter cannot be increased
indefinitely without losing stability. It is worth mentioning that the optimal
value of the parameter c depends on several factors including the number of
points, the geometry of the domain, the specific differential equation to be
solved, etc. However, there is a wide range of possible values for c which
will produce suitable solutions as has been reported by Li[20]. In the present
work, the parameter c was taken as 10 for the domain 1 and 0.5 for the
domain 2 without attempting its optimization. Regarding the accuracy, it is
observed that better results were obtained by using RFM than by using FEM.
However, a direct comparison is difficult to establish because the execution
times differ considerably between the two implementations, being smaller for
FEM.

In general, the function with the best performance in terms of the absolute
errors was the MQ. Using the TPS with a parameter a = 4, good results
were also obtained. However, even if better solutions can be obtained by
using the MQ, the TPS continues to be the most practical option because no
adjustable parameter is needed. The results show that the implementation
of RFM with the MQ is a very interesting option but more investigation is
required regarding the optimization of the characteristic parameter c.

The radial basis function collocation method has been used to simu-
late diverse polymer processes including non-linearities caused by the non-
Newtonian behavior of polymer melts and different rheological models such
as the power law, Carreau and Giesekus (viscoelastic model). In this re-
gard, it is important to note the work of Estrada [8] and López[21] who
have worked in the solution of the equations of motion and energy obtain-
ing suitable simulations for different polymer processing problems: the flow
through extrusion dies, the flow through a slit rheometer, calendering, and
the thermal imbalance in the runners of injection molds.
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Figure 3.1: Geometry of the domains. The dark spots represent boundaries
with the Dirichlet condition. In the remaining boundaries, von Neumann
conditions were imposed.
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Figure 3.3: Errors as a function of the number of points for the different
Poisson equation problems solved in domain 1 (a, b, c) and domain 2 (d, e,
f). 20



0 5 10 15 20 25 30
10

10

10
12

10
14

10
16

10
18

10
20

10
22

10
24

Parameter cParameter c

Parameter c

C
o
n

d
it

io
n

 n
u

m
b

e
r

Parameter cParameter c
C

Parameter c of the MQ

(a) Parameter c vs. Condition number

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

E
rr

o
r

Parameter c of the MQ

(b) Parameter c vs. Error

Figure 3.4: Influence of the parameter c on the error and the condition
number of the matrix (domain 2, 612 collocation points, u(x, y) = sin(π

5
x) +

cos(πy
5

) + 10).

21



Chapter 4

Implementation and Results

4.1 Newtonian Case in a Slit

4.1.1 Modeling

The problem that is considered is the modeling and simulation of the foun-
tain flow in a planar slit. This kind of flow is typical in injection molded
parts with high aspect ratios between the width and the thickness, allowing
the reduction of the domain to a 2D geometry. The coordinate system, ge-
ometry of the domain and the corresponding boundary conditions are shown
in Figure 4.1. In this case, there is no velocity or gradients in the z direction.
Assuming that the fluid is incompressible, the equation of continuity can be
simplified as follows (equation 4.1):

∂uxi
∂x

+
∂uyi
∂y

= 0 (4.1)

Since inertia terms and body forces are negligible in the injection molding
process, and considering only the Newtonian, isothermal case, the motion
equations can be written as (equations 4.2 and 4.3):

0 = −∂pi
∂x

+ µ∇2uxi (4.2)

0 = −∂pi
∂y

+ µ∇2uyi (4.3)
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Figure 4.1: Boundary conditions for the simulation of the fountain flow effect.
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Non-slip conditions (ū = 0) are assumed in both walls. At the inlet a
parabolic velocity profile (corresponding to a developed pressure flow) is as-
sumed. In the flow front, the boundary conditions are given by the vanishing
tangential stresses (equation 4.4) [28]

(¯̄σ · n̄) · t̄ = 0 (4.4)

and the normal stress must satisfy a force equilibrium given by equation
4.5 [29].

(¯̄σ · n̄) · n̄ = −2Rcγ − p0 (4.5)

Where, t̄ and n̄ are the tangential and normal vectors to the surface, ¯̄σ
is the total stress tensor, 2Rc is the mean surface curvature, γ is the surface
tension, and p0 is the reference pressure in the cavity.

In injection molding, the superficial tension is negligible when compared
to the viscous forces[15]. Besides, without loss of generality, the reference
pressure can be set to zero obtaining equation 4.6 which can also be found
in references [28, 37].

(¯̄σ · n̄) · n̄ = 0 (4.6)

If a reference system that moves at the average velocity of the flow is
considered, there is no flow through the front surface (equation 4.7) [28].

ū? · n̄ = 0 (4.7)

Where ū? is the velocity vector in the comoving reference system for each
of the flow front points. This kinematic boundary condition was not enforced
via collocation, but attained as a result of an iterative process devised to find
the shape of the flow front.

4.1.2 Numerical Implementation

The numerical implementation is based on the Radial Functions Method
(RFM). The primary variables in this problem when solving the balance
equations are the pressure and velocity components. These variables can be
approximated using the Radial Functions Method as follows (equations 4.8,
4.9, 4.10):
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uxi =
N∑
j=1

φu (rij)λj (4.8)

uyi =
N∑
j=1

φu (rij) ξj (4.9)

pi =

Np∑
j=1

φp (rij) βj (4.10)

Using the RFM notation, the continuity and motion equations can be
approximated according to equations 4.11, 4.12, 4.13 [21, 30].

N∑
j=1

[
∂φu (rij)

∂r

∂rij
∂x

]
λj +

N∑
j=1

[
∂φu (rij)

∂r

∂rij
∂y

]
ξj = 0 (4.11)

0 = −
Np∑
j=1

[
∂φp
∂r

∂rij
∂x

]
βj +

N∑
j=1

[
µ∇2φu (rij)

]
λj (4.12)

0 = −
Np∑
j=1

[
∂φp
∂r

∂rij
∂y

]
βj +

N∑
j=1

[
µ∇2φu (rij)

]
ξj (4.13)

Where N and Np are the number of centers corresponding to the velocity
and pressure fields, respectively. In references [21, 30] there is a detailed
account of the implementation of the RFM for non-Newtonian and non-
isothermal cases.

The Dirichlet boundary conditions for the velocity field (in the walls and
entry) can also be represented using radial basis functions as (equations 4.14
and 4.15):

N∑
j=1

λjφu (rij) = uax ; i ∈ ΓDu (4.14)

N∑
j=1

ξjφu (rij) = uay ; i ∈ ΓDu (4.15)
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In a similar fashion, equations corresponding to the vanishing stresses in
the flow front can be expanded and approximated using radial basis functions
(equations 4.19 and 4.22) :

(¯̄σ · n̄) · n̄ = σxxnx
2 + 2σxynxny + σyyny

2 (4.16)

0 =

[
−2µ

∂ux
∂x

+ p

]
nx

2−2µ

[
∂uy
∂x

+
∂ux
∂y

]
nxny +

[
−2µ

∂uy
∂y

+ p

]
ny

2 (4.17)

0 = −2µ

[
∂ux
∂x

n2
x + nxny

(
∂uy
∂x

+
∂ux
∂y

)
+
∂uy
∂y

n2
y

]
+ p

(
n2
x + n2

y

)
(4.18)

0 =
(
n2
x + n2

y

) Np∑
j=1

βjφp (rij)−
N∑
j=1

2λjµ
∂φu (rij)

∂r

(
∂rij
∂x

n2
x +

∂rij
∂y

nxny

)

−
N∑
j=1

2ξjµ
∂φu (rij)

∂r

(
∂rij
∂y

n2
y +

∂rij
∂x

nxny

)
(4.19)

(¯̄σ · n̄) · t̄ = σxxnxtx + σxynytx + σyxnxty + σyynyty (4.20)

0 = −µ
[
2
∂ux
∂x

nxtx + (nytx + nxty)

(
∂uy
∂x

+
∂ux
∂y

)
+ 2

∂uy
∂y

nyty

]
+p (nxtx + nyty)

(4.21)

0 =
N∑
j=1

λjµ
∂φu (rij)

∂r

[
2
∂rij
∂x

nxtx +
∂rij
∂y

(nytx + nxty)

]

+
N∑
j=1

ξjµ
∂φu (rij)

∂r

[
2
∂rij
∂y

nyty +
∂rij
∂x

(nytx + nxty)

] (4.22)

Since the form of the flow front is not known a priori, an iterative approach
was implemented to determine it according to equation 4.23 [28].

ynew = yw +

x∫
B/2

uy − Us
ux

dx (4.23)
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Where ynew is the new position of the flow front, B is the slit width, Us is
the velocity in y of the stagnation point (located at the tip of the flow front),
yw is the position (y coordinate) of the contact point with the wall, uy and
ux are the velocities in the flow front. When the final position of the front
is attained and the kinematic condition fulfilled, Us is equal to the average
velocity of the flow and equation 4.23 corresponds to the streamline found
by integrating the velocity of a particle that impinges in the contact point
between the front and the wall. The initial shape of the front is assumed to
be a semicircle.

4.1.3 Results

The parameters of the simulation are the following:

• Slit width (B): 2 mm

• Maximum velocity at the inlet: 1 m/s

• Viscosity: 100 Pa.s

• Domain length(without including the front): 2 mm

The collocation points for this simulation are shown in figure 4.2. Figure
4.4 shows the velocity field in a stationary and a moving reference system as
vector plots. When the moving reference system is considered, the velocity
vectors at the flow front are tangential to the surface according to the con-
dition stated in equation 4.7. Figure 4.1.3 shows the obtained pressure and
the velocity fields as contour plots. According to the obtained pressure dis-
tribution, the presence of a singularity in the contact point between the front
and the wall is evident. The existence of this singularity point in the model
is well documented in the literature [28]. At the entrance, a linear fall of the
pressure is observed, which corresponds to the expected behavior in a devel-
oped pressure flow. At the tip of the flow front, the pressure drops to a value
slightly below zero as has already been noticed by other researchers [28, 10].
In the literature, the change in the advancing front location is commonly
described by using a dimensionless front line location, defined according to
equation 4.24.

χ =
δycl
B/2

(4.24)
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Figure 4.2: Fountain flow in a slit (Newtonian case). Domain and collocation
points.

δycl = ycl − yw (4.25)

Where ycl is the difference between the y coordinate of the point of the
front located at the centerline, and the point in contact with the wall. In
this thesis, the obtained value for χ of was 0.91 whereas, in the past, other
researchers have obtained values ranging from 0.90 to 0.94(table 4.1). Figure
4.6 shows the difference between the initially assumed shape of the front, and
the final shape.

The streamlines obtained in this work are similar to the ones obtained
by other authors. For instance, Figure 4.5 shows the comparison between
the streamlines obtained by Huilgol [12] and the streamlines obtained in this
thesis.
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Figure 4.3: Newtonian case, pressure and velocity fields.
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Figure 4.4: Newtonian case, velocity fields for: (a) A reference system that
moves with the flow front,(b) A stationary reference system.
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Researcher Geometry Frame of reference χ
Mavridis et al. Planar Moving-steady 0.90
Coyle et al. Planar Moving-steady 0.93
Behrens et al. Planar Moving-steady 0.94
Behrens et al. Planar Fixed-Transient 0.91
Bogaerds et al. Planar Moving-steady 0.92
Mitsouils Planar Moving-steady 0.90
This work Planar Moving-steady 0.91

Mavridis et al. Axisymmetric Moving-steady 0.83
Behrens et al. Axisymmetric Moving-steady 0.82
Behrens et al. Axisymmetric Fixed-Transient 0.86
Behrens et al. Axisymmetric Exp. Result 0.83±0.04
Mitsouils Axisymmetric Moving-steady 0.84

Table 4.1: Values of χ for a Newtonian fluid according to different authors
[28].
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Figure 4.5: Newtonian case, comparison between the streamlines obtained
by Huilgol (red)[12] and the streamlines obtained in this work (blue).
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Figure 4.6: Newtonian case, difference between the initial and the final shape
of the flow front.

4.2 Non-Newtonian Case in a Slit

4.2.1 Modeling and Numerical Implementation

In the non-Newtonian case, extra-terms appear in the motion equation as
a result of the variation of the viscosity with the shear rate. Therefore,
neglecting the inertia terms, the equations of motion for x and y can be
written as (equations 4.26 and 4.27) [21, 30]:

0 = −∂pi
∂x

+ ηi∇2uxi + 2
∂ηi
∂x

∂uxi
∂x

+
∂ηi
∂y

(
∂uxi
∂y

+
∂uyi
∂x

)
(4.26)

0 = −∂pi
∂y

+ ηi∇2uyi + 2
∂ηi
∂y

∂uyi
∂y

+
∂ηi
∂x

(
∂uyi
∂x

+
∂uxi
∂y

)
(4.27)

and approximated using radial basis functions as (equations 4.28 and 4.29)

0 =
N∑
j=1

[
−ηi∇2φu (rij)−

∂φu (rij)

∂r

(
2
∂ηi
∂x

∂rij
∂x

+
∂ηi
∂y

∂rij
∂y

)]
λj

+
N∑
j=1

[
−∂φu (rij)

∂r

∂ηi
∂y

∂rij
∂y

]
ξj +

Np∑
j=1

[
∂φp (rij)

∂r

∂rij
∂x

]
βj

(4.28)
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0 =
N∑
j=1

[
−ηi∇2φu (rij)−

∂φu (rij)

∂r

(
2
∂ηi
∂y

∂rij
∂y

+
∂ηi
∂x

∂rij
∂x

)]
ξj

+
N∑
j=1

[
−∂φu (rij)

∂r

∂ηi
∂x

∂rij
∂y

]
λj +

Np∑
j=1

[
∂φp (rij)

∂r

∂rij
∂y

]
βj

(4.29)

In order to calculate the derivatives of the viscosity, two approaches have
been used. In the first, the derivatives are calculated simply by applying
RFM on the viscosity field itself (equation 4.31):

ηi =
N∑
j=1

φη (rij)ωj (4.30)

∂ηi
∂x

=
N∑
j=1

∂φη (rij)

∂r

∂r

∂x
ωj (4.31)

In the second approach, the spatial derivative of the viscosity is expressed
in terms of the derivative of the shear rate using the chain rule (equation
4.32):

∂η

∂x
=

∂η

∂|γ̇|
∂|γ̇|
∂x

(4.32)

The derivative of the shear rate can the be approximated using radial func-
tions (equation 4.33):

∂|γ̇|i
∂x

=
N∑
j=1

∂φγ̇ (rij)

∂r

∂r

∂x
ςj (4.33)

The derivative of the viscosity in y can be approximated similarly. For
the power law constitutive equation, the viscosity is equal to infinity when
the shear rate is zero. For this reason, the shear rate field is better bounded
and, therefore, the second approach is preferred and used in this work.

The viscosity is a function of the shear rate and therefore of the velocity
field. Hence, the viscosity field is initially unknown and must be found using
an iterative approach. Initially the viscosity is assumed to be constant in the
domain (Newtonian fluid). Then the velocity field is calculated according to
equations 4.11, 4.28 and 4.29. This information is used to recalculate the
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viscosity by using equations 4.32 and 4.33. This process is repeated until
convergence is attained. In this work, the viscosity is assumed to vary with
the shear rate according to a power law relationship (equation 4.34). The
Carreau model, which is more realistic, has also been implemented. However,
since the power-law constitutive equation is popular in the literature, it is
used for comparison purposes.

η = k|γ̇|n−1 (4.34)

In order to improve the accuracy of the solution, a numerical scheme
based in double collocation with phantom points was implemented. The
double collocation consists in enforcing not only the boundary conditions
but also the continuity and motion equations in the boundary points. In
order to obtain a square matrix, it is necessary to increase the number of
centers by adding phantom points outside the domain near the boundaries.
The details about the implementation of this numerical technique can be
found in [21].

4.2.2 Results

For this set of simulations, the power law parameter k was set as 1000Pa ·sn,
and the boundary condition at the inlet corresponds to the velocity profile
of a pressure driven flow in a slit for a power law fluid (equation 4.35), where
uave is the average velocity of the flow and was set at 0.666m/s.

uy = uave

(
1 + 2n

1 + n

)[
1−

∣∣∣∣2xB
∣∣∣∣ 1n+1

]
(4.35)

Mavridis[24], the first author to simulate the fountain flow effect for a
power law fluid, found that for 1.0 ≥ n ≥ 0.5, the kinematics were remarkably
similar to the Newtonian case. Furthermore, as n decreases, the flow front
tends to move forwards by a small amount and is almost semicircular for
n = 0.5. These general trends were also observed in the simulations of the
present work, where the fountain flow was simulated between 1.1 ≥ n ≥ 0.6.
Figure 4.7 shows the streamlines for the case where n = 0.6, demonstrating
that the pattern formed by the the streamlines is similar to the Newtonian
case. Figures 4.8 and 4.9 show the dimensionless center line position and the
shape of the front for different values of n and a good agreement with the
results of Mavridis (see Figure 2.1).

33



−1.5 −1 −0.5 0 0.5 1 1.5
x 10−3

0

0.5

1

1.5

x 10−3

2

2.5

Streamlines n=0.6

x[m]

y[
m

]

Figure 4.7: Streamlines for a power-law parameter of n = 0.6.
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Recently (2010), Mitsoulis[28] was able to simulate fountain flow effect in
steady state for lower values of n (the minimum value of his simulations was
n = 0.26 for a slit), and concluded that the flow front continues to advance
but no longer ressembles a semicircle.

0.6 0.8 1 1.2
0.9

0.92

0.94

0.96

0.98

n (power law index)

χ

Figure 4.8: Dimensionless centerline location as a function of the power law
parameter n.

In order to validate the results, the motion and continuity equations were
solved by means of finite elements 1 using COMSOL 4.0. For the comparison,
the front shape was not iterated and was considered to be a semicircle. An
attempt to solve a similar problem with iteration of the front using the same
commercial software has been attempted by Al-Zain [1] with limited success,
since the iteration of the front did not lead to the fulfillment of the kinematic
condition ū? · n̄ = 0 and therefore the fountain flow effect could not be fully
captured. For the case where the front was assumed to be a semicircle and
no iteration of its shape was attempted, there was good agreement between
the solutions obtained by both methods. Figures 4.11 to 4.16 show the
comparison between the velocity and pressure fields obtained by FEM and
RFM for tree sections of the domain (Figure 4.10).

In Figures 4.13(b) and 4.16(b), given the symmetry of the problem, the
x velocity should be zero. Although the absolute values of the velocities

1The author acknowledges the help of Jorge Iván Villegas of the ICIPC in the devel-
opment of the COMSOL simulations.

35



−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

x[mm]

y[
m

m
]

n=0.6
n=0.7
n=0.8
n=0.9
n=1.0
n=1.1
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obtained by using FEM are smaller than the ones obtained using RFM, both
of them are several orders of magnitude smaller that the average velocity of
the flow.

Front

Section x

Section y

Figure 4.10: Sections taken for the comparison between the solution obtained
using RFM and FEM (COMSOL).

4.3 Newtonian-Axisymmetric Case with Body

Forces

4.3.1 Modeling and Numerical Implementation

Al-Zain and Osswald [1]designed and built and experimental setup for the
simulation of the fountain flow effect in order to study its influence in the
fiber distribution and orientation in injection molded parts (Figures 4.17 and
4.18). The device consists of a transparent sleeve filled with silicon oil and a
stationary plunger. A cluster of fibers is positioned inside the sleeve near the
plunger at the beginning of the experiment. As the sleeve moves downwards,
a fountain flow develops near the free surface. In this way, the trajectory of
the fibers as they move through the front region can be observed and studied.

In this experimental setup, the existence of bodyforces due to gravity
cannot be ignored. Given the axial symmetry of the setup, considering a
steady state and assuming negligible inertia forces (the Reynolds numbers
are low given the high viscosity of the silicone oil and the low velocity of the
walls), the continuity and motion equations can be simplified as (equations
4.36, 4.37, 4.38):
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Figure 4.11: Comparison between the pressures and velocities obtained by
FEM (COMSOL) and RFM for the flow front and n = 0.6.
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Figure 4.12: Comparison between the pressures and velocities obtained by
FEM (COMSOL) and RFM for section X and n = 0.6.
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Figure 4.13: Comparison between the pressures and velocities obtained by
FEM (COMSOL) and RFM for section Y and n = 0.6.
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Figure 4.14: Comparison between the pressures and velocities obtained by
FEM (COMSOL) and RFM for the flow front and n = 1.
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Figure 4.15: Comparison between the pressures and velocities obtained by
FEM (COMSOL) and RFM for section X and n = 1.
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Figure 4.16: Comparison between the pressures and velocities obtained by
FEM (COMSOL) and RFM for section Y and n = 1.
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Figure 4.17: Experimental setup designed to study the movement of fibers
in a fountain flow velocity field[1].

Figure 4.18: Fiber motion in a fountain flow velocity field[1].
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∂uR
∂R

+
uR
R

+
∂uz
∂z

= 0 (4.36)

0 = − ∂p
∂R

+ µ

[
∂2uR
∂R2

+
1

R

∂uR
∂R
− uR
R2

+
∂2uR
∂z2

]
(4.37)

0 = −∂p
∂z

+ µ

[
∂2uz
∂R2

+
1

R

∂uz
∂R

+
∂2uz
∂z2

]
+ ρgz (4.38)

Where the upper case R is used to notate the coordinate in the radius,
in order to avoid the confusion with the euclidean distance between the col-
location points and the centers which is represented by the lowercase r.

These equations can be expressed in RBF notation (equations 4.39, 4.40,
4.41):

N∑
j=1

[
∂φu (rij)

∂r

∂r

∂R
+
φu (rij)

R

]
λj +

N∑
j=1

[
∂φu (rij)

∂r

∂r

∂z

]
ξj = 0 (4.39)

0 = −
Np∑
j=1

[
∂φp (rij)

∂r

∂r

∂R

]
βj+

N∑
j=1

[
∇2φu (rij) +

1

R

∂φu (rij)

∂r

∂r

∂R
− φu (rij)

R2

]
µλj

(4.40)

0 = −
Np∑
j=1

[
∂φp (rij)

∂r

∂r

∂z

]
βj +

N∑
j=1

[
∇2φu (rij) +

1

R

∂φu (rij)

∂r

∂r

∂R

]
µξj + ρgz

(4.41)
In this particular experimental setup the body forces (gravity) cannot

be neglected and remain in the motion equation in z. For this particular
set of simulations, the condition of symmetry with respect to the z axis is
considered, and is given by equations 4.42, 4.43 and 4.44.

uR = 0 (4.42)

∂uz
∂R

= 0 (4.43)
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∂p

∂R
= 0 (4.44)

These conditions can then be expressed in RFM notation as follows (equa-
tions 4.45, 4.46 and 4.47):

N∑
j=1

φu (rij)λj = 0 (4.45)

N∑
j=1

∂φu (rij)

∂r

∂r

∂R
ξj = 0 (4.46)

Np∑
j=1

∂φp (rij)

∂r

∂r

∂R
βj = 0 (4.47)

4.3.2 Results

For these simulations, the height of the silicon oil column is assumed to be
equal to 3D, where D = 95.25mm is the diameter of the sleeve. Two simu-
lations were developed: in the first, the entire column is simulated including
the non slip condition at the plunger; in the second, the domain has a length
of 1.5D. For the second one, the assumption is that the flow will be com-
pletely developed in a length of 1.5D and that the plunger does not affect the
velocity and pressure fields in the upper part of the column. In the last case,
the velocity profile at the entry of the domain is assumed to be parabolic
(which is the case in a developed, laminar, pressure flow in a tube). In both
cases, the velocity of the wall is equal to −0.05m/s and the viscosity of the
oil is taken as 3Pa.s. The assumption of a developed flow for z = 1.5D was
validated as a result of the first simulation and agrees with the observations
of other researchers [7]. At the beginning, the front is assumed to be flat,
and the final form is obtained via iteration. The results corresponding to the
pressure and velocity fields are shown in Figures 4.19, 4.20 and 4.21.

Mitsoulis[28] simulated the fountain flow effect for a Newtonian Fluid in
an axisymmetric geometry without gravity obtaining a value of χ = 0.84.
Using RFM and including the gravity, the values of χ were 0.67 and 0.64
for the first and second simulations. Therefore, it is concluded that gravity
affects the shape of the flow front flattening it, which has been also noticed
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by other researchers[7]. Besides, the singularity in the pressure field that
could be easily observed in the case of the slit flow without body forces is
not so easy to visualize and tends to be less prominent as the body forces
tend to be of more importance for the resulting pressure field that the viscous
forces. Although the results of these simulations agree qualitatively with the
patterns of fiber motions observed experimentally [1], since the velocity was
not accurately controlled in the setup of Al-Zain, no quantitative comparison
was made between the simulations and the experimental results. Addition-
ally, in the modeling of the problem, the superficial tension and inertia were
neglected. This is the standard practice in the modeling of the injection
molding process because typically the Reynolds numbers and the inverse of
the capillary numbers are very low (several orders of magnitude smaller than
one). However, in this particular experimental setup, these two factors could
influence the results and should be included in future works.
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Figure 4.19: Axisymmetric Newtonian case with body forces. Arrow plots of
the velocity field (L=3D).
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Figure 4.20: Axisymmetric Newtonian case with body forces. Velocity and
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Figure 4.21: Axisymmetric Newtonian case with body forces. Velocity and
pressure fields (L=1.5D).

4.4 Fountain Flow Effect on Fiber Matrix Sep-

aration during Manufacturing of Short

Fiber Filled Injection Parts

In 2010, Kurth coupled the results (velocity field corresponding to the Newto-
nian case) of this thesis with a mechanistic model to simulate the movement
of short fibers near the flow front region. The fibers were modeled as beads
connected by springs (Figure 4.22). The details of the numerical implemen-
tation and results can be found in [17, 16].

For the simulations, initially the fibers were set near the inlet forming a
cluster and having a random orientation. Then, the position of these fibers
as they moved through the fountain flow region was recorded as shown in
Figure 4.23.

In all the simulations of the fiber movements, fiber free regions developed
at the mold surface. The reason for this was that fibers tend to interact with
each other (friction effects, lubrication effects or mechanical interlock) and
due to those interactions, they are restricted from reaching the flow front.
Therefore, they tend to stay in the core of the piece.
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Figure 4.22: Modeling of a single fiber as set of beads connected by
springs[16].
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Figure 4.23: Fiber motion in the fountain flow region[16].
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Chapter 5

Conclusions

• The fountain flow effect was successfully simulated using the radial
functions method for the Newtonian and Power-Law cases. In both
cases, the results of the simulations are in good agreement with the
literature. To the knowledge of the author, this phenomenon has not
been previously simulated by using a meshless technique. For power
law parameters in the range of 1.1 ≥ n ≥ 0.6, the front flow shape is
nearly semicircular and the kinematics of the fountain flow effect are
only slightly affected by the shear thinning behavior: the changes in
the stream line plots of the velocity field are relatively small.

• In the work of Kurth [17], the data obtained in this thesis has been
successfully coupled with mechanistic fiber to simulate the movement
of fibers in an injection molding process. The existence of fiber-free
regions in the surface of injection molded pieces has been explained as
a result of the fiber-fiber interaction in a fountain-flow velocity field.

• Regarding the axis-symmetric case with gravity, the body forces affect
the form of the flow front flattening it. Besides, the singularity in the
pressure field tends to be less noticeable and is masked by the influence
of gravity in the pressure field.
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Chapter 6

Future Work

In order to adequately asses the importance of the fountain flow effect in injec-
tion molding, non-steady simulations including the filling of complete pieces
should be developed. As has already been mentioned in the conclusions, the
data of this work has been used in collaboration with other researchers to
explain the phenomenon of fiber matrix separation in injection molded parts.
In order to continue with this line of work, the formation of the skin due to
the solidification of the polymer as it contacts the wall should be included in
the simulations.

In this work, only the power law model with relatively high values of n
was used to describe the variation of viscosity with the shear rate. In future
works, the inclusion of models capable of describing the viscoelastic behavior
of polymers should be implemented.

In the case of the mock-up setup designed to study the motion of fibers in
the fountain flow velocity field (axisymmetric case with body forces), future
works should include the superficial tension and the inertia terms of the
equation of motion in the simulations.
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