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ARTICLE INFO ABSTRACT

Keywords: The relevance of cycling as a mode of transportation is increasingly being recognized in many
Cycling cities around the world, and the city of Medellin (Colombia) is no exception. To better under-
Travel distance stand cycling travel behavior in Medellin, we perform a multiple regression to analyze the im-

Travel behavior

: portance of route characteristics in explaining cycling travel distance. We control for socio-
Cycling routes

economic and built environment variables at the origin and destination. Our results reveal that
the effects of the socio-economic and built environment characteristics at the origin and desti-
nation are modest or statistically insignificant in explaining travel distance. However, the vari-
ables that characterize the built and natural environment along the route are significant and
appreciably improve the explanatory power of the baseline econometric model. An analysis of
interacting effects shows that the interaction between the dedicated infrastructure along the
route and the degree of deviation from direct routes has a relevant effect on explaining travel
distance. The findings of this work are useful for designing cycling policy and developing more
usable cycling infrastructure.

1. Introduction

The current global urbanization trends imply major challenges for urban planning. Energy consumption and greenhouse gas
emissions, in addition to equitable access to cities, represent some of the challenges that current urban sustainability agendas are
seeking to address (UN-Habitat, 2013). These challenges are particularly important in developing countries that are facing rapid
urbanization processes, which go from 50% in 2005 to a projected 68% in 2050 (United Nations, 2019).

In an attempt to mitigate these adverse trends, urban transport agendas are including the promotion of cycling due to its widely
recognized societal and environmental benefits (Broach et al., 2012). Thus, an increasing number of cities are seeking to improve
cycling conditions to make this mode of transportation more attractive (Buehler and Dill, 2016; Handy et al., 2014; Rosas-Satizabal
and Rodriguez-Valencia, 2019). Research on this area aims to support pro-bicycle policies by attaining a better understanding of the
travel behavior of cyclists (Heinen et al., 2010; Pucher et al., 2010).

Travel distance is a key factor in the understanding of cyclists’ travel behaviors. According to Heinen et al. (2010) and Pucher and
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Buehler (2008), travel behavior is affected by individual characteristics and by built and natural environmental conditions. However,
most of the studies on this topic consider built and natural environment conditions solely at the origin and destination and very few
studies analyze how these characteristics along the route affect cycling travel behavior (Appleyard, 2016). A recent study on urban
form and urban growth in Latin American cities by Duque et al. (2019) shows that these highly organic and, in many cases, poorly
planned cities show great heterogeneity within their urban extents in terms of land use patterns, street network characteristics,
topography, population distribution, among others. These changing urban textures and structures can imply that the built and natural
environment conditions along a route are considerably different from those of the origin and destination and, therefore, have a
significant impact on the behavior of pedestrians and cyclists (Cervero et al., 2009; Larrafiaga et al., 2016; Oliva et al., 2018).

In this paper, we use cycling routes in Medellin (Colombia), a highly heterogeneous city in terms of both topography and urban
structure, to study how natural and environmental factors of origin, destination, and along the route itself, affect bicycle travel
distance when used for commuting. We use multiple regression models that include interaction effects between selected pairs of
explanatory variables.

In many cities, decision-makers are seeking to improve cycling infrastructure to render cycling a more attractive mode of
transportation. These actions become very challenging in contexts such as those from the global south, where the resources are
limited, and the urban planners need to prioritize the provision of cycling infrastructure to get the maximum impact. A more accurate
estimation of travel distances in developing cities will help policy and planning in at least in three aspects: (1) better allocation of
resources to develop new cycling infrastructure, (2) improve the design and layout of new bike paths within the city, and (3) increase
the usability of such infrastructure.

The rest of the paper is organized as follows. Section 2 presents a review of the literature. Section 3 explains the model structure,
variables, and data used for our analysis. Section 4 shows the results, and finally, Section 5 summarizes and concludes this work.

2. Literature review

Travel distance is a key element in understanding and predicting cyclists’ travel behavior. In the field of accessibility, a better
prediction of travel distance is critical for a more accurate estimation of the number of urban activities that a person can reach from a
given location (lacono et al., 2008). Previous works within the fields of travel mode choice and the route choice identify the in-
dividual, trip, and environmental characteristics as determining factors of cycling travel distance (Appleyard, 2016; Broach et al.,
2012; Heinen et al., 2010). This section will summarize the main findings on these three factors.

The individual characteristics include variables such as age, income, gender, trip purpose, and types of bicycles (private and
public) used as a mode of transport. Larsen et al. (2010) found that cyclists between 25 and 44 years of age travel longer distances
than younger and older people. Garrard et al. (2008) and Larsen et al. (2010) concluded that men travel longer distances than
women. Iacono et al. (2008) reported that cyclists commuting to work are willing to ride longer distances than those cycling for other
purposes. Moreover, empirical studies revealed that private bike users travel longer distances than those using bike-sharing systems
(Campbell et al., 2016). Regarding frequency levels, Heinen et al. (2011) showed that regular bicycle use has a positive effect on
travel distance. Larsen et al. (2010) did not find significant differences in the travel distances of cyclists with and without access to a
motorized mode of transport. Using data from Santiago, Chile, Oliva et al. (2018) found that high-income groups and women are less
likely to commute by bicycle. Additional works by La Paix Puello and Geurs (2015), Fernandez-Heredia et al. (2016), Motoaki and
Daziano (2015), and Oliva et al. (2018), explored the impact of latent variables such as emotions, feelings, and perceptions on cycling
travel distance.

Regarding the built environment at the origin and destination, the literature frequently includes groups of variables related to
density, land use, and infrastructure (Cervero et al., 2018; Oliva et al., 2018; Pucher and Buehler, 2006; Saelens et al., 2003).
Previous studies reported that higher densities, mixed land use, and the presence of dedicated infrastructure are positively associated
with the number of trips taken and the distances traveled by cyclists (Ewing and Cervero, 2010; Handy et al., 2002). Studies focusing
on the effect of density have found that dense street patterns, frequently associated with city centers, favor connectivity and reduce
travel distances (Handy et al., 2002; Moritz, 1998; Pucher and Buehler, 2006). However, Larsen et al. (2010) found that cyclists
starting their trips from locations close to city centers, where environments are dense, travel longer distances than those starting their
trips from less dense environments. Keijer and Rietveld (2000) found that cycling mode share in the Netherlands is higher when
traveling shorter distances in high densities and mixed land uses. There is also some evidence that more mixed land uses favor
proximity and accessibility to jobs and services, increasing cycling rates (Cervero and Duncan, 2003; Litman, 2018; Saelens et al.,
2003). However, Oliva et al. (2018) found that land use mixtures discourage cycling. Kockelman (1997) and Handy et al. (2002)
reported that cycling trips are shorter when they originate from mixed urban environments. Besides, other studies have analyzed the
effect of the infrastructure at the origin and destination on cyclists’ travel behavior (Cervero and Duncan, 2003; Faghih-Imani et al.,
2014; Oliva et al., 2018). Their findings suggest a positive association between the presence of dedicated infrastructure and the
number of cycling trips.

Additional studies extend the previous findings with some evidence about how the built and natural environment characteristics
of the route, such as density, land use, and infrastructure, impact bicycle travel distances (Broach et al., 2012; Cervero et al., 2018;
Larranaga et al., 2016; Menghini et al., 2010). Broach et al. (2012) found that more intersections along cyclists’ routes reduce their
willingness to travel long distances due to the degree of effort involved. Cervero et al. (2018) similarly reported that long-distance
cycling commuters are more sensitive to detours than those traveling shorter distances. Cervero et al. (2018) and Saelens et al. (2003)
reported that bicycle commuting levels are higher in mixed land uses in which cyclists travel short distances to reach their desti-
nations. Moreover, the type of infrastructure that cyclists use along the route determines their level of exposure to vehicle traffic,
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consequently their perceptions and attitudes towards cycling (Cervero et al., 2018; Fitch et al., 2019; Heinen et al., 2010). Broach
et al. (2011) found that satisfaction resulting from the use of dedicated infrastructure is equivalent to reducing the cycling travel
distance for various trips purposes. Furthermore, studies not necessarily focusing on travel distance complement these findings. For
instance, Fitch et al. (2019) found that students would travel more frequently to schools if they had better road environments for
bicycling. Broach et al. (2012) and Cervero et al. (2018) suggest that cyclists prefer routes that limit their exposure to motor vehicle
traffic. Finally, Cervero et al. (2009) on their study in Bogoté, Colombia, found that while road facility designs, like street density,
connectivity, and proximity to bike paths lanes, are associated with physical activity, other attributes of the built environment, such
as density and land use mixtures, are not.

Following the literature, the natural environment refers to climate and weather patterns, as well as topographic features (Heinen
et al., 2010). Despite very little is known about the impact of climate on cycling travel distance, the weather has been found to
negatively affect cyclists travel behavior (Ferndndez-Heredia et al., 2016; Heinen et al., 2010; Motoaki and Daziano, 2015).
Fernandez-Heredia et al. (2016) studied the intended use of a new bike system by introducing four latent variables, and they found
that external restrictions, such as climate, affect negatively the intent of using the bike system. Motoaki and Daziano (2015) found
that rain and snow deter cyclists’ decisions with lower skills more than those with better cycling skills. However, Cervero and Duncan
(2003) found that the weather has an insignificant effect on cycling. Regarding topographic features, Broach et al. (2012), Menghini
et al. (2010), and Cervero et al. (2018) found that cyclists avoid steep terrain when engaged in long-distance commuting. Fernandez-
Heredia et al. (2016) and Motoaki and Daziano (2015) concluded that physical determinants, such as distance and topography, also
negatively affect the decisions to cycle. Particularly, Motoaki and Daziano (2015) evaluated the interaction effect between the
cyclists' physical condition and the topography, finding that the more fit the cyclist the less bothersome a steeper route.

The analysis of how the built and natural environment affects cycling travel distance has mostly focused on the conditions at the
origin and destination. Only a few studies have emphasized on how the environmental characteristics along the route affect cycling
travel distance. Also, despite the numerous studies in the global south, neither the cycling commuting distance nor the relationship
between the built environment variables along the route and the travel distance have been explored. Moreover, with few exceptions,
interaction effects between variables have been rarely evaluated in previous studies. The heterogeneity of urban forms and topo-
graphies encountered on cyclists’ routes, as well as how cyclists perceive these routes, may affect the cyclists’ decisions to travel a
certain distance. Additionally, those effects may vary in contexts beyond those of the global north, where most studies on this issue
have been conducted. This suggests that the distance traveled by cyclists may be determined by these factors differently, especially by
those along the route, in contexts such as Medellin, Colombia. Moreover, some of the factors explaining the cycling travel distance
may have quadratic forms or interaction between them, which consequently should be accounted for.

This paper aims to contribute to the existing literature in three different directions. First, regarding explanatory variables, this
study examines how natural and built environment factors related to origins and destinations, and especially along the routes may
affect cycling travel distances when used for commuting. Second, context contribution. Our case study uses cyclist routes traveled
within Medellin (Colombia) to give new insights on the relationship between the built environment and cyclists’ travel distance in the
global south. Third, the methodological contribution. We use multiple linear regression models, taking advantage of this method to
explore several interactions as well as the non-linear effects of certain variables.

3. Methods
3.1. The model

Following the literature review and the previous findings, we propose the multiple regression model illustrated by Eq. (1) to
estimate the impact of the individual, trip, and built and natural environment characteristics on cycling travel distances:

d;j = B, + B,SE + B,BE; + 3,BE; + 3, BE;; + 5NEj; + ¢, [€))

where dj; is the travel distance between origin i and destination j; SE is a vector of individual and trip characteristics; BE; and BE; are
vectors of built environment characteristics related to origin i and destination j; BE;; is a vector of built environment characteristics
related to the route taken by a cyclist from origin i and destination j; NE; is a vector of natural environment characteristics related to
a given route; f3¢ is the intercept parameter; f1, B2, B3, B4 are the slope parameters in the relationship between d;; and every variable
included in the vectors (SE, BE;, BE;, BE;;, NE;), which are estimated by ordinary least squares (OLS) method; and ¢ is the error term
which is assumed to be normally distributed with zero mean and variance o°.

In addition to the variables included in the vectors, which are expressed in linear form, we take advantage of the regression
analysis method to analyze some quadratic forms and the interaction effects between certain variables. Quadratic forms are used in
applied economics to capture decreasing or increasing marginal effects. Interaction effects include the simultaneous effects of two or
more independent variables on the dependent variable. When significant, the interaction between two independent variables implies
that the effect of one variable, changes depending on the level of change of the other variable (Wooldridge, 2013). When added to a
regression model quadratic forms and interaction effects can considerably expand the understanding of the relationships among the
variables in the model and allow more hypotheses to be tested (Wooldridge, 2013). These quadratic forms and interaction effects will
be described in Section 3.4. Metrics.

There are also some concerns about the potential endogeneity in the relationship between residential self-selection on travel
behavior (Cao et al., 2009, 2006; Guan et al., 2019). On the one hand, residential location, from which the measurements of the built
environment variables at the origin are obtained, affect travel distance. On the other hand, people inclined to cycling tend to live in
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certain locations. However, this issue is uncertain in spatially and socio-economically segregated contexts in which the residential
self-selection is highly determined by other factors. For instance, the urban extent of each Colombian city is stratified, from one (low)
to six (high), according to the housing characteristics and quality of the neighborhood. Even though this stratification is based on
principles of solidarity, it has a direct impact on the location of activities and the population in cities (Duque et al., 2015; Samper
Escobar, 2010). Consequently, rather than depending on the residential built environment characteristics or the closeness to the
center(s) of activities, people’s decisions on where to live are highly influenced by the socioeconomic stratum. Therefore, unlike cities
in more developed countries, the potential endogeneity tends to be less problematic in developing countries.

3.2. The study area

Medellin is used as a case study in this paper. It is the second largest Colombian city with close to 2.5 million inhabitants. The city
is located in the western region of Colombia (see Fig. 1) where the Andean mountains reach altitudes of 1,500 m to 2,500 m above sea
level. The average relative humidity level is 67%, which is less than the average of other cities located within humid subtropical
zones, and temperatures fluctuate from 17 to 28 °C with an annual average of 22 °C.

Three aspects render Medellin a case for which determinants of travel distance for cycling may differ from previous studies. The
first relates to the presence of diverse urban environments, ranging from planned neighborhoods to informal settlements. While
previous studies examine more uniform urban street networks, the streets of Medellin negotiate with the steep topography, giving rise
to organically shaped street patterns (Samper Escobar, 2010). The second relates to levels of socioeconomic inequality confirmed by a
Gini index of 0.46 (DANE, 2018) and by a spatially segregated pattern that divides the city into two halves. The southern side, where
high-income populations reside, hosts a broad combination of urban activities. The northern side, mostly occupied by the lowest
income strata, is positioned on the outskirts of the city far from the main city services and activities (Duque et al., 2015). Third, the
city is characterized by variable topography, with gradients of 0% to 6% found in the flattest areas and with those of more than 20%
found in hilly areas. Fig. 2 shows the urban perimeter of Medellin city within the Valle de Aburra Metropolitan Area in addtition to
the topography surrounding it.

Over the last decade, cycling has become a priority in tackling the challenges of air quality in Medellin (Area Metropolitana Valle
de Aburrd, 2017). Currently, bicycle trips represent 1% of the modal share, and the city hopes to increase this level to 10% of all trips
by 2030 (Area Metropolitana del Valle de Aburra, 2015). Moreover, even though the city includes close to 120 km of cycling paths
and supports a bike-sharing system, the scarcity of dedicated infrastructure is a key factor preventing people from commuting by
bicycle in Medellin (Arbelaez, 2015). Therefore, the construction of new dedicated infrastructure and the expansion of the Encicla
bike-sharing system have been accelerated over the past few years.

3.3. The data

We used cyclists’ trip data taken from a survey conducted in Medellin in 2017 ([dataset] Ospina et al., 2018). The survey,
distributed online, by telephone and in person, was designed to record cyclists’ routes from public and private bicycle commuters.
The questionnaires included three sections: The first section discriminated bicycle users from those using other modes of transpor-
tation. The second section, which targeted current cyclists, focused on their basic individual sociodemographic characteristics. The
third section recorded the origins, destinations, and routes of the participants’ most recent cycling trips.

The survey involved 810 cyclists of different socioeconomic backgrounds and living in different areas of the city. Of the survey
respondents, 70% are men and 30% are women, and the average age is 29 (all cyclists included). Cyclists commute by bicycle 4.15
times per week on average. In terms of income groups, 17% of the cyclists are low-income residents, 61% are middle-income
residents, and 22% are high-income residents. Fig. 3 presents the spatial distribution of the 810 routes taken through the city.

Regarding the routes taken by cyclists, the average one-way commuting distance traveled by bicycle is 4.17 km, which is similar
to the distance of 4.20 km estimated by the Medellin Origin and Destination Survey (2012). On average, the routes taken by cyclists
are characterized by 45% on dedicated infrastructure, 49% on major streets, and 5.7% on minor streets. Besides, on average, 13
intersections are passed per kilometer (4.12 of them with traffic signals). Finally, the average positive slope is 2.28% (elevation
gained/distance). Annex 1 presents the descriptive statistics for the variables as well as the respondent’s age, income, and gender
distribution.

3.4. Metrics

Each route derived from [dataset] Ospina et al. (2018) was geocoded using street network information taken from Open Street
Maps (OSM). Due to the metrics associated with each route, the geocoding process involved a careful revision of geometric properties
and attributes associated with each link of a route, e.g., directionality and connectivity and attributes such as speed, the number of
lanes, and the presence of bike paths. As some of the metrics are calculated within a buffer along a given route, the revision of the
street network also involved accounting for street segments positioned within buffers. It is important to note that in a few cases we
had to deviate from the common practices in the literature when producing the metrics for our paper. The contribution of empirical
evidence from cities in developing countries comes with many challenges including data availability. Therefore, for each case, we
seek to make the best use of the official information and each variable was approved for inclusion if and only if the resulting spatial
patterns make sense to the eyes of a team with a deep knowledge of the city of Medellin.

The first metric calculated from each geocoded route is the geometric distance along the road network (our endogenous variable)
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Fig. 1. (Left) Medellin metropolitan area location in Colombia.

in kilometers. Fig. 4 presents the distance decay curve resulting from [dataset] Ospina et al. (2018), which indicates that 50% of
cyclists are willing to travel up to 4 km, and only 5% would ride farther than 8 km. Fig. 5 presents the spatial distributions of trip
origins, whose values are proportional to travel distances. We also found that the southwestern side of the central business district
(CBD) generates the most trips.

Moreover, we verified the possible spatial autocorrelation problems by using the Local Moran’s I (Ii), which is a local indicator
revealing the significance of the spatial clustering of similar (or dissimilar) values around one observation. Using the local indicator
rather than the global indicator is advantageous in that this approach allows identifying the concentrations of similar values: high
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Fig. 2. Medellin location in the Aburra Valley Metropolitan Area. Medellin’s urban perimeter in purple.

values close to high values (high-high) and low values close to low values (low-low). The approach allows identifying dissimilar
locations as well: high values close to low values (high-low) and low values close to high values (low-high) (Anselin, 1995; Moreno and
Vaya, 2000). Fig. 6 presents the four cluster categories obtained according to the Local Moran’s I statistic. The high-high cluster is the
most representative in our case which indicates that origin locations related to longer trips are concentrated in the northern, western,
and southwestern areas of the city. While this clustering may imply an autocorrelation problem, we assume that the distance traveled
by a cyclist is not influenced by the distance traveled by his or her neighbors, as could be the case for the number of cycling trips.

We then calculated variables belonging to each explanatory dimension of the model (individual, trip, and built and natural



J.P. Ospina, et al. Transportation Research Part D 86 (2020) 102423

%

BT

. Legend
)

}"D MDE_urban perimeter 5

1 ,— Cyclists' routes S = 2
W!w, IS f
0 05 < 2 3 Kilometers (

[ EEEEa.

Fig. 3. Spatial distribution of the 810 routes taken through the city. Medellin’s urban perimeter in purple.

environment characteristics). For individual and trip characteristics dimension (SE), we considered variables identified from the
literature on transportation (Orttizar and Willumsen, 2011), especially those affecting cycling travel distances such as age, income,
gender, trip purpose, the availability of other modes, and the type of bicycles (private and public) used as a mode of transport. In
addition to these variables, we also included the use of other modes in combination with cycling and the use of cycling to return
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Fig. 4. Distance decay curve relating travel distance to the cumulative proportion of cyclists.

home, factors typically associated with cycling transportation analysis. According to Orttizar and Willumsen (2011), the variables of
qualitative nature such as age, income, gender, among others, usually show non-linear behavior when included in linear regression
models. In this context, there exist two alternatives to incorporate non-linear variables into a model: first, transforming the variables
(for instance raising to a power or taking logarithm), second, using dummy or categorical variables. Although distinguishing between
age classes could have been an option, we chose the first alternative, which is aligned with Cervero et al. (2018). Supported by
previous findings, we expect to have a positive effect of age until a certain stage of the lifecycle, which, following Cervero et al.
(2018), is susceptible to decline as people get older. Consequently, to capture such an effect, the age variable is expressed in both
linear and quadratic forms. In this direction, we expect to have a positive effect of age in its linear form and a negative correlation of
age squared. Moreover, based upon Oliva et al. (2018) previous findings, we expect that women and high-income populations ride
shorter distances than men and low-income populations respectively. Following Iacono et al. (2008), we expect that those going to
study, cycle shorter distances that those going to work or to both purposes. Additionally, based on Campbell et al. (2016), we expect
that private bike users cycle longer distances than those using public bikes. Finally, as previous findings are uncertain about the effect
of those having access to other modes as well as those using their bikes as a complementary mode, we expect them to ride shorter
distances. Table 1 describes the variables of this subdimension and their anticipated associations with travel distance.

The literature on built environment characteristics of trip origins (BEi) and destinations (BEj) have focused on three subdimen-
sions: density, land use, and bicycle infrastructure (Ewing and Cervero, 2010; Handy et al., 2002; Saelens et al., 2003). With respect
to density, this one can be expressed in terms of population and employment density, street density, or intersection density (Cervero
et al., 2018; Rodriguez and Joo, 2004). In this work, we measured street and intersection density levels within a buffer of 600 m from
the trip destinations'. We also measured Euclidian distances from origin locations (i) to the CBD. Following Pucher and Buehler
(2006), Moritz (1998), and Handy et al. (2002) we expect density to have a negative correlation with travel distance. Table 2
describes the variables of this subdimension and their anticipated associations with travel distance.

Regarding land use, the second subdimension of the built environment, usually relates to the mixture of land use, which can be
analyzed in terms of the number of restaurants, retail stores, offices, and other commercial amenities present at trip origins and
destinations (Faghih-Imani et al., 2014; Krizek and Johnson, 2006). Different indexes such as the land use diversity index and entropy
index are also used to analyze the levels of land use mixture (Cervero et al., 2018; Cervero and Kockelman, 1997). Although the
literature uses such variables to study the land use, in our case, the official information is very limited considering the high rates of
informality in labor and business activities. Bernal (2009) found that the informal labor market in Colombia, defined as not reported
and not covered by the official regulation, is between 60% and 75%. According to Cardenas and Rozo (2009) and Hamann-Salcedo
and Mejia (2012) the informality of the business market is between 45% and 60%, which makes it difficult to count with accurate

! prior studies have used buffers of 100 m to 1600 m from the start point of a trip (Cervero, 1996; Cervero and Duncan, 2003; Rodriguez and Joo,
2004). We apply a buffer of 600 m, as 95% of cyclists travel more than 1.2 km.
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Fig. 5. Spatial distribution of trip origins. Point sizes are proportional to travel distances. Medellin’s urban perimeter in black.

information from official sources. Consequently, in the present study, we use the urban development plan (POT) to calculate the
levels of the land use mixture within a 600 m radius around origins and destinations. The POT in Medellin reports land uses at the
block level. Despite land use categories include commercial, industrial, institutional, residential, green areas, etc., the official
available information consists of a map, at the block level, with the following categories of land uses: high, medium and low mixture.
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Fig. 6. Map of average trip length cluster categories obtained according to Local Moran’s I statistic. Medellin’s urban perimeter in black.

Since this was the only official available information, we opted to calculate the percentage of land use belonging to the high mixture
category as the closest measure to the habitually used diversity of land use. Based on previous findings by Handy et al. (2002), Oliva
et al. (2018), and Kockelman (1997), we expect that high land use mixture affects negatively the cycling travel distance. Table 2
describes the variables of this subdimension and their anticipated associations with travel distance.

The third built environment subdimension relates to the type of infrastructure present in the vicinity of origins and destinations.
Studies usually refer to the length of bicycle paths, the density of bike-sharing stations, the lengths of major (arterials and highways)
and minor (local streets and collectors) roads as determinants of cycling trips (Cervero and Duncan, 2003; Faghih-Imani et al., 2014;
Oliva et al., 2018; Pucher et al., 2010). Although the evidence on how these variables affect travel distance remains unclear, we
expect the presence of dedicated infrastructure, a higher density of bike stations, and lower levels of stress to encourage cyclists to

10
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Descriptions of individual and travel variables and of their anticipated relationships to travel distance. Data source: [dataset] Ospina et al. (2018).

Subdimension Variable Description Expected correlation
Individual age Age (number of years) Positive. Cycling travel distance increases with age.
age2 Age squared. Negative. From a certain age onwards the cycling travel
distance begins to decrease.
gender Gender. Two categories: Women, Men. (Binary, Negative. Women ride shorter distances than men.
Women = 1)
Hinc, Minc, Linc Income. Three categories: High, middle, low. Low income  Negative. High and middle-income populations ride
is used as the basis of the regression model. (Binary. shorter distances than low-income populations.
Yes = 1; No = 0).
Trip study, work, The trip purpose when using a bike as a mode of transport. ~ Negative. Cyclists commuting to school ride shorter
bothpurp Three categories: study, work, both. Work is used as the distances than those commuting to work. Positive for both
basis of the regression model. (Binary. Yes = 1; No = 0).  purposes. Those cycling for both purposes travel longer
distances than those who only cycle to work.
pubbike, pribike, Cycling is regularly used as a mode of transport. Three Negative. Public bike users ride shorter distances than
bothbike categories: public, private, both. Private bikes are used as  those using private bikes alone. Negative for both types of
the basis for the regression model. (Binary. Yes = 1; bikes. Those using both types of bikes travel shorter
No = 0). distances than those using private bikes.
frecweek The number of times per week the same cycling trip is Positive. Higher frequency cycling improves the physical
traveled. condition and allows for traveling longer distances.
dispo_tp, dispo_pv,  Availability of other modes. Three categories: public Negative. People with other modes of transport available
dispo_none transport, private vehicle (including cars and (public transport or auto) travel shorter distances by bike.
motorcycles), and none. The adoption of none of these is
the basis used for the regression model. (Binary. Yes = 1;
No = 0).
intermodal Use of a complementary mode of transport besides cycling  Negative. Cycling as a complementary mode of transport
(Binary. Yes = 1, No = 0). involves riding shorter distances.
retour Returning by bike to the point of origin (Binary. Yes = 1;  Positive. People who ride both ways are in better physical
No = 0). condition to travel longer distances.
Table 2

Built environments related to origin and destination variables by subdimension (density, land use, and infrastructure) and expected relationships
with travel distance. Data source: [dataset] Ospina et al. (2018).

Subdimension Variable Description Expected correlation
Origin and destination density  o_i_dens Origin and destination intersection density (intersections Negative. High-density levels shorten
d_i_dens per square kilometer within a buffer of 600 m from the trip  distances traveled.
destination).
o_km_dens Origin and destination street density (street length per Negative. High-density levels shorten
d_km_dens square kilometer within a buffer of 600 m from the trip distances traveled.
destination).
o_cbd Distance from origins to the CBD. Positive. The closer a trip starts to a CBD, the
shorter the distance.
Origin and destination land o_pLU_Hmix The proportion of land use dedicated to mixed-use withina  Negative in both cases (origin and
use d_pLU_Hmix 600 m buffer from the trip destination. destination). Mixed land use shorten distances
traveled.
Origin and destination o_LCycle Length of cycling paths (in kilometers) within a 600 m Positive. More dedicated infrastructure favor
infrastructure d_LCycle buffer from the trip origin and destination. distances traveled.

o_bikest_index
d_bikest_index
o_Hls, d_Hls

o_Lls, d_Lls

The number of stations divided by a 600 m buffer area.

High levels of stress. Length of major roads (in kilometers)
within a 600 m buffer from the trip destination.
Low levels of stress. Length of minor roads (in kilometers)
within a 600 m buffer from the trip destination.

Positive. A high density of bike stations favors
the distance traveled.

Negative. Higher levels of stress discourage
cyclists from traveling long distances.
Positive. Lower levels of stress encourage
cyclists to travel long distances.

travel longer distances. We measured all of the variables within a 600 m buffer around origins and destinations. The lengths of bicycle
paths were estimated from the number of kilometers of dedicated cycling infrastructure separated from or running alongside the
vehicle network. We calculated the density of bike-sharing stations as the number of stations divided by the 600 m buffer area.
Finally, following Cervero et al. (2018) and Faghih-Imani et al. (2014), we defined the lengths of major and minor roads as proxies for
the levels of stress that vehicles place on cyclists. The variables of this subdimension and their anticipated associations with travel
distance are presented in Table 2.

The built environment along a given route (BEij) is the third explanatory dimension included in our model. As is the case for built
environments at origins and destinations, BEij also includes the subdimensions of density, land use, and infrastructure (Broach et al.,
2012; Cervero et al., 2018). In the literature, the density along the route is also expressed in terms of population and employment
density, street density, or intersection density (Broach et al., 2012; Cervero et al., 2018; Menghini et al., 2010). Despite intersections
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Table 3
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Built and natural environment relations to route variables by subdimension (density, land use, infrastructure, and slope) and their expected re-
lationships with travel distance. Data source: [dataset] Ospina et al. (2018).

Subdimension Variable Description Expected correlation
Route density r_i_tflights The ratio between the number of traffic signals and the = Negative. More traffic signals imply more stops and thus more
total number of intersections along a route. effort required to travel long distances.
r_detour The ratio between real and Euclidean distances from Negative. More detours imply more effort required to travel
origins (i) to destinations (j). long distances.
r_detour2 Quadratic form of r_detour Negative. The increasing marginal effect has a maximum and
at some point, the function curve starts to decrease
Route land use rpLU Hmix  The proportion of land use dedicated to mixed-use land  Negative. Mixed land use shorten the distance traveled.
within a 100 m buffer from trip destinations.
Route infrastructure  r_LCycle Lengths of cycle paths (in kilometers) along routes. Positive. More dedicated infrastructure favors the distance
traveled.
r_Hls High levels of stress. Lengths of major roads (in Negative. Higher levels of stress discourage cyclists from
kilometers) along routes. traveling long distances.
r Lls Low levels of stress. Lengths of minor roads (in Positive. Lower levels of stress encourage cyclists to travel long
kilometers) along routes. distances.
Route slopes g_elevat The sum of every gain in elevation made throughout a  Negative. Considerable elevation gained implies more effort
cycling trip. required to ride long distances.
g_elevat2 Quadratic form of g elevat Negative. The increasing marginal effect has a maximum and

Interaction effects r_LCycle_det

The interaction term between the detour and the length

at some point, the function curve starts to decrease
Uncertain

of cycling infrastructure

require cyclists to stop, this is not always the case and heavily depends on whether or not there is a traffic light on the intersection.
Consequently, we calculated the intersection density as the ratio between the number of traffic lights and the total number of
intersections along a route. To avoid endogeneity problems, we did not standardize these values to the length of the route
(Wooldridge, 2011). Following Broach et al. (2012) we expect that the variables associated with density have a negative impact on
travel distance. We also calculated detours as the ratio between the real distance and the Euclidean distance from the origin to the
destination which, following Cervero et al. (2018), we expect to negatively affect travel distance. Table 3 describes the variables of
this subdimension and their expected associations with travel distance.

Regarding land use encountered along routes, as in Cervero et al. (2018), we applied buffers along routes to calculate the pro-
portion of land dedicated to mixed uses. However, in our case we applied 100 m buffers (rather than 50 m buffers) to better suit the
average block size in Medellin. In the same direction as the mixture of this variable at the origin and destination, we expect it to be
negatively correlated with cycling travel distance. Table 3 describes this subdimension variable and its expected association with
travel distance.

The type of infrastructure that cyclists use along the route, the third BEij subdimension, includes variables such as the length of
bicycle paths, the density of bike-sharing stations, the lengths of major (arterials and highways) and minor (local streets and col-
lectors) roads (Broach et al., 2012; Cervero et al., 2018; Menghini et al., 2010). The types of roads are also measured in several studies
as the level of stress, which is related to the level of vehicle traffic to which the cyclists are exposed (Caviedes and Figliozzi, 2018;
Cervero et al., 2018). As we did with the origins and destinations, we measured the lengths of bicycle paths to evaluate the avail-
ability of dedicated cycling infrastructure. We also estimated the level of stress as the length of different types of roads positioned
alongside cycling routes. Both variables are treated in absolute terms to avoid having our endogenous variable, distance, present in
the right-hand side of the equation (Wooldridge, 2011). Aligned with previous findings from Broach et al. (2012), Fitch et al. (2019),
and Cervero et al. (2018), we expect to have a positive association between the presence of dedicated cycling infrastructure, as well as
the low-stress roads, and the distance traveled by cyclists. Table 3 describes the variables of this subdimension and their expected
associations with travel distance.

The natural environment (NE;) encountered along a route is the last explanatory dimension included in our model. According to
the literature review, it includes the weather and climate patterns, as well as the topography. Nevertheless, in this study we only
consider the topography, as in our area of study (Medellin-Colombia), seasonal temperatures vary minimally throughout the year (the
annual average temperature is 22.5 °C with temperatures fluctuating from 17 °C to 28 °C) and rainy seasons are more characterized by
intense rain in a short period. Regarding the topography, studies such as Broach et al. (2012), Menghini et al. (2010), and Cervero
et al. (2018), calculated the slope as the average ratio of the height difference between the start and endpoints of every link of a route
divided by the distance between them. However, in this study, we use the cumulative elevation gain instead of the normalized
elevation gain. The reason why we used the cumulative elevation gain is that we want to avoid the endogeneity that the normalized
version of this variable would generate by having the travel distance on both sides of the Eq. (1) (Wooldridge, 2011). This cumulative
elevation gain is commonly used in the sports literature and considers the sum of every gain in elevation (in meters) made throughout
a cycling trip (Hayes and Norman, 1994; Scarf, 2007). Table 3 describes the variables of this subdimension and their expected
association with travel distance.

Orttizar and Willumsen (2011) consider that it might not be realistic nor necessary to assess all possible interaction effects in a
model, therefore, our selection is based on the literature review, as well as on the particularities related to our context. For instance,
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Motoaki and Daziano (2015) analyzed the interaction between the slope and the cyclists’ physical condition. Moreover, although
Broach et al. (2012), Menghini et al. (2010), and Cervero et al. (2018) did not explore interactive effects, they found that the
deviation from direct routes, the presence of cycling infrastructure along the route, and steep terrains affect the cyclists’ travel
distance. In addition to the literature review, we were interested in evaluating some new hypothesis closely related to our urban
contexts in Latin America. In this direction, particularities of our context include the spatial and socioeconomic segregation, the
irregular and diverse shapes of the street network, as well as the topographical variations within the city. Consequently, we believe
that all these factors could affect travel distance individually or by interacting with other variables. After testing several interaction
effects, we only kept those that resulted statistically significant. In this direction, in our case, it might seem evident that travel
distance gets longer as the detour and the elevation increase. However, we expect that at some point, the distance function curve
starts to decrease as the detour increases and the elevation gets higher. Therefore, to capture such effect, as suggested by Wooldridge
(2013), we included the detour squared (r_detour2) and the elevation squared (g elevat2) in addition to their linear forms, for which
we expect to have a negative effect on travel distance. Additionally, we were interested in analyzing whether the detour taken by
cyclists was a consequence of cyclists’ desire of reaching paths with dedicated cycling infrastructure. Consequently, we included the
interaction effect between the detour and the length of cycling infrastructure (r LCycle_det) in Eq. (1). Table 3 describes the variables
of quadratic and interaction variables and their expected association with travel distance.

4. Results

Travel distance, our dependent variable, enters the regression model in log form to compress the long tail usually present in this
variable (Péez et al., 2012). This leads to the formation of a log-linear model where each explanatory variable presents marginal rates
with respect to the natural log of distance (Cameron and Trivedi, 2005). In a log-linear model, 100*f is interpreted as the expected
percentage change in distance for a unit increase in X (Benoit, 2011). For instance, for 8; = 0.06 associated with attribute X;, a 1-unit
change in X; (approximately) corresponds to an expected increase of 6% in travel distance.

To obtain robust OLS estimators, we verified the potential presence of multicollinearity and heteroskedasticity. On one hand, a
strong linear relationship between independent variables (multicollinearity) can lead to considerable variances in OLS slope esti-
mators, biasing test statistics and confidence intervals (Wooldridge, 2013). Therefore, we verified the variation inflation factor (VIF)
for every alternative of the model. The mean VIF value is < 10 for the full model, indicating that multicollinearity is not a concern
(Belsley et al., 1980). In this process, we find that variables such as street density and intersection density along the route are highly
correlated and cannot be included together in the same specification. In the same way, street density and levels of stress at the origin and
destination are highly correlated. This multicollinearity can be attributed to the fact that these variables capture the same type of
information: density in the first case and the length of infrastructure for the second. We estimated a regression model for each
variable and found the results to be very similar. We therefore only present model results for the intersection density of a route and
levels of stress experienced at origins and destinations. Alternative results can be obtained from the first author upon request.

We also tested for the potential presence of heteroskedasticity. When an OLS model exhibits heteroskedasticity, the usual standard
errors and test statistics for estimators are no longer applicable (Wooldridge, 2013). The presence of heteroskedasticity was con-
firmed after running a Breusch-Pagan test (Cameron and Trivedi, 2005). In our case, this heteroskedasticity may be attributed to the
overlapping of origin locations (or destination locations), producing subsets of observations of an equal attribute value. For instance,
two trips starting from the same origin (i.e., a bike-sharing station) presented the same built environment attributes at the starting
point. To overcome this, we estimated the robust standard error clustered at the commune level, which is an administrative unit for
the city (Medellin is divided into 16 communes). As a result, we obtained heteroskedastic, consistent, and valid standard errors for
the OLS estimators even though the functional form of this heteroskedasticity is unknown (Cameron and Trivedi, 2005). In other
words, formal modeling of heteroskedastic structures was not required (Cameron and Trivedi, 2005; White, 1980). In this section, we
present robust standard errors clustered at the commune level for every alternative model.

We performed a hierarchical regression analysis to determine whether the variables related to the route, beyond socio-economic
and the origin and destination dimensions, improved the explanatory power of cycling travel distance predictions. Hierarchical
regressions are useful for evaluating the contributions of predictors above and beyond previously entered ones as a means of sta-
tistical control and of measuring incremental validity (Lewis, 2007). In addition, the present analysis allows for the use of predictors
over multiple steps by adding single variables or by adding combinations of variables to the model. Our model includes three
collections of variables corresponding to each of the dimensions examined: (1) the socioeconomic dimension (SE), (2) the built
environment at the origin and destination (BE; and BE)), and (3) the built and natural environment along the route (BE; and NE;) The
order in which such dimensions are entered is determined by the research problem (Lewis, 2007). As we used 3 blocks of variables, 6
potential order combinations were explored. As it is common in this type of econometric exercises, we only considered for discussion
those variables exhibiting constant statistical significance across all model combinations. The variables included in our model are
based upon a literature review. Consequently, the estimations include those variables that resulted statistically significant as well as
those that did not. The significance, or not, of a variable is a result per se, which might be aligned with or opposed to previous
findings. Consequently, non-significant variables cannot be removed from the final results.

Table 4 presents one of the order combinations, which includes the built and natural environment along the route (BE; and NEj)
across all three alternative models. Annex 2 shows an alternative combination where BE;; and NE;; are also present across all three
alternative models”. The first alternative model shown in Table 4 relates to the built and natural environment along the route (BE;
and NEj) and is presented in the left column of Table 4. The second alternative, shown in the middle column of Table 4, adds the built
environment of the origin and destination (BE; and BE)). Finally, the third alternative model presented in the right column includes

13



J.P. Ospina, et al. Transportation Research Part D 86 (2020) 102423

Table 4
Regression model estimation results. Dependent variable: natural logarithm of the distance.
VARIABLE Model including BE; + NEj Model including BE; + BE; + BE; + NE; Model including SE + BE; + BE; + BE; + NE;
Est.Coeff t-Stat Est.Coeff t-Stat Est.Coeff t-Stat
age 0.00588 0.67
age2 —8.89%e-05 —0.83
gender —0.0441* -1.83
Hinc 0.0561 1.26
Minc 0.0677* 2.05
study 0.0642 1.27
bothpurp 0.111* 2.11
pubbike —0.124%** —5.05
bothbike —0.00717 —0.38
frecweek —0.0126%* —-2.75
dispo_tp 0.0410 0.84
dispo_pv —0.0271 -1.27
intermodal —0.0287 —0.88
retour 0.0233 0.39
o_i_dens 0.000198 0.45 —1.75e-05 —0.05
o_cbd 0.0923*** 3.21 0.0945%** 3.5
o_pLU_Hmix —0.107 —-0.89 —0.100 —0.92
o_LCycle —0.101** —-2.93 —0.0764** —-2.78
o_bikest_index —0.00208 -0.1 —0.00314 -0.15
o_Lls 0.0106* 1.86 0.0118* 1.95
d_i_dens 0.000982 0.97 0.000532 0.58
d_pLU_Hmix 0.363*** 2.98 0.371%** 3.35
d_LCycle —-0.0279 -0.9 —0.0178 —-0.75
d_bikest_index —0.0102 —-0.92 —0.00700 —-0.57
d_Lls —0.000320 -0.03 0.00448 0.43
ratio_itf_ri —0.00817** —-2.87 —0.08 —0.000191 -0.1
r_detour 3.12 3.95 3.94
r_detour2 —2.76 —3.22 -3.1
r_pLU_Hmix 1.01 211 2.03
r_LCycle 7.66 6.91 7.03
r_Leycle_det —3.65 —3.85 —3.89
r Lls 5.08 3.41 3.97
g_elevat 10.76*** 9.72 8.97 8.702%** 10.27
g_elevat2 —16.10%** -6.29 —5.65 —12.52%** —6.54
Constant —0.6390432 -1.13 —3.28 —1.663*** —3.47
Observations 810 810 810
R-squared 0.523 0.676 0.697
Adj. R-squared 0.518 0.668 0.684
Log-Likelihood: = —399 —242 -215
AIC 818 526 499
VIF 19.6 10.0 9.2

¥k p < 0.01, ** p < 0.05 *p < 0.1.

the socioeconomic dimension (SE).

When comparing the results of the three alternative specifications provided in Table 4, the better fit corresponds to the full model,
which presents the highest log-likelihood and lowest Akaike information criterium AIC values (Anselin, 1988; Korner-Nievergelt
et al., 2015). Besides, the full model provides an Adjusted R-square value of 0.697 versus values of 0.523 and 0.676 generated by the
first and second alternative models, respectively. The results of the three alternative models show evidence for the importance of
considering built environment attributes along a route to improve the explanatory power of cycling travel distance predictions.

5. Discussion

This section discusses the outputs of the three alternative models. The effects of the socioeconomic (SE) dimension on cyclist
travel distances are first discussed, which is followed by effects of the built environment at the origin and destination (BE; and BE;)
and then by effects of the built and natural environment along a route (BE; and NEj). Each dimension is discussed in terms of its
predictive significance, its relation to prior expectations and findings, and interpretations of predictors f§ in terms of percentage
changes in distance. Recall that we consider in the analysis only those variables that exhibit consistent significance behavior across
the permutations of alternative models included in Table 4 and Annex 2.

2We recall that alternative results can be obtained from the author upon request.
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The full model shows that three variables are significant within the socioeconomic (SE) dimension: bothpurp, pubbike, and frec-
week. First, as expected, the results suggest that people using their bicycles for both purposes (bothpurp) travel 11.1% longer distances
than those only cycling to work (the basis of this categorical variable). This result is consistent with Heinen et al. (2011) who found
that cycling for several purposes has a positive effect on the distance traveled to work. In our context, this may be understood in two
ways: (1) cyclists commuting for both purposes (work, study) are in better physical condition, and (2) work and study locations are
not necessarily positioned close to one another. Second, aligned with prior expectations and consistent with previous findings from
Campbell et al. (2016), public bike users (pubbike) travel 12.4% shorter distances than those using private bikes, which is the base
category. This may be due to the concentration of most bike share stations in certain areas of the city, especially in the center, which
shortens distances between stations. Finally, contrary to prior hypotheses and previous findings from Heinen et al. (2011), our model
shows that regular commuters prefer to ride shorter distances. In this case, a one-unit increase in the frequency of cycling per week
(frecweek) is associated with a 12.6 m (i.e., 1.26% of 1 km) reduction in travel distance.

Regarding the built environment at the origin and destination (BE;, BE;), our estimations suggest that cyclists are sensitive to the
distance from the origin to the CBD (o_cbd), the length of cycling paths (o_LCycle) and the length of minor roads (o Lls) around the
origin, as well as to the proportion of mixed land use at the destination (d pLU_Hmix). Even though previous studies have reported on
the effects of these variables on the generation (or attraction) of trips (Cervero and Duncan, 2003; Faghih-Imani et al., 2014), the
effect on distance has been less studied. First, our results suggest that starting a trip one kilometer further from the CBD implies a
9.45% (94.5 m) increase in cyclist travel distances. This is in line with previous findings from Cervero and Kockelman (1997), Pucher
et al. (2010), and Saelens et al. (2003) showing that travel distance declines when a trip starts close to a CBD. This may be attri-
butable to the fact that cyclists living close to a CBD are also located close to city services and activities and consequently have no
need to commute farther away. Second, the proportion of mixed land use at the destination (d pLU_Hmix) is also positively associated
with travel distance. Contrary to our hypothesis, the results suggest that an increase of one unit in the proportion of mixed-use
produces a 37.1% increase (371 m) in travel distance. Mixed land use destinations supply job opportunities, services, and urban
activities, consequently, it may be attractive even to those needing to travel long distances to access them. From a cycling public
policy perspective, both results suggest that mixed land use is attractive at the origin and destination, though it is preferable to
promote mixed land use in areas closer to the city center to limit the need for cyclists to travel long distances. Third, the length of
cycling paths around the origin (o0_LCycle) is negatively associated to travel distance. Our results indicate that an increase of 1 km in
the length of cycle paths close to the origin would reduce the cyclist travel distance in 7.64% (76.4 m), which is opposed to prior
expectations. According to Fig. 6, most of the longer trips started from the northern, western, and southwestern, where the dedicated
cycling infrastructure is still very scarce, which is consequent with our o LCycle result. Finally, the result of the length of minor roads
(0_Lls) is coherent with our prior expectations meaning that an increase of one unit in the length of slow streets around the origin
would produce a 1.18% (11.8 m) increase in cyclist travel distance. Aligned with the o_LCycle result, this suggests that origin locations
associated with longer trips are mostly surrounded by low-stress roads while those related to shorter trips are mostly surrounded by
dedicated cycling infrastructure. From a public policy perspective, dedicated cycling infrastructure close to origin locations is as
important as low-stress roads to limit cyclists’ exposure to traffic and motivate people to cycle even for long-distance trips.

Regarding the natural environment encountered along a route (NEj), our results confirm our hypothesis on the existence of a
quadratic relationship between the cumulative elevation gained (g elevat) and travel distance. Since fg eieva; is positive and Bg ereyacz is
negative, there is an increasing marginal effect until a certain value of g elevat (turning point) is reached, at which the partial effect on
travel distance becomes zero (Wooldridge, 2013). After that turning point, the effect of g elevat on travel distance becomes negative.
The partial effect of g elevat can be determined by deriving the entire estimated function from the regression model:

% = (ii((lé:li:‘jt))) = 6geleval + 2% ﬁgelevalZ * Eelevat (2)

The turning point, from positive to negative partial effects, is calculated by equalizing the previous expression to zero and by
clearing g elevat as shown in the following expression:

B,
= glovat 8702 _ 0348km = 348m

2% Bgelevatz 2 % (—12.52)

¥
gelevat

The result denotes that with 348 m of gained elevation, the effect of g elevat is null and becomes negative after this point. For the
first part of the parabolic shape, contrary to the findings of Broach et al. (2012) and Menghini et al. (2010), our estimations suggest
that cyclists do not necessarily avoid steep terrain. For the second part, the results suggest that the effect of g elevat may become
negative at some point, but it is difficult to believe that this occurs after 348 m of climbing. Consequently, as < 1% of our cyclists
reach elevations of greater than 348 m, the right side of the quadratic function can be ignored for practical purposes (Wooldridge,
2013). Medellin’s topography is hilly, and consequently, cyclists traveling long distances are more likely to negotiate with the slopes.
However, their willingness to cycle on steep terrains may have a limit.

With regard to the built environment of the route dimension (BEy), all of the variables are statistically significant except for the
intersection ratio (ratio_ itf ri) and the proportion of mixed land use along the route (r pLU Hmix). Concerning the type of infra-
structure that cyclists use along a route, the length of minor roads (. Lls) is positively associated with travel distance consistent with
our prior hypothesis. Aligned with previous findings from Broach et al. (2012) and Cervero et al. (2018), our results show that cyclists
are sensitive to high traffic volumes and prefer to limit their exposure to traffic by using low-speed roads. An increase in one unit in
the length of low-speed roads would produce a 12.7% increase (127 m) in travel distance. One may assume that cyclists seek out this
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Table 5
Partial effect of r_detour on log travel distance d(Ln(d))/d(r_detour).
r_LCycle r_detour = 1.0 r_detour = 1.330 r detour = 1.774 r_detour = 2.094 r_detour = 2.69 r_detour = 3.113
0.00 0.92 0.64 0.27 0.00 -0.51 -0.86
1.53 0.71 0.43 0.06 —-0.21 -0.72 -1.07
3.00 0.51 0.23 —-0.15 —-0.41 —-0.92 —-1.28
4.00 0.37 0.09 —-0.28 —-0.55 —-1.06 —1.41
5.61 0.15 -0.13 -0.51 -0.77 —1.28 —1.64

type of road despite increasing travel distances. However, we tested for possible interaction effects between the detour ratio (r_detour)
and the lengths of minor roads (r_Lls), they were not significant.

Moreover, our results reveal a quadratic effect of the detour ratio (r_detour) and simultaneously an interaction effect between
r_detour and the length of cycling paths (r LCycle). Consequently, as suggested by Wooldridge (2013), the results for both variables are
analyzed as a whole. The interaction between r_detour and r_LCycle for cyclist travel distances is analyzed in two directions, each of
which is related to their partial effects on travel distance. On the one hand, the partial effect of . detour on the log travel distance (In
(d)) is determined by Eq. (3) below when deriving the model estimation from r. detour:

iiEy % = Prdetour t 6rLCycle*rdetour2 * Ficyle + 2 % (ﬁrdemurz) * Fdetour

3

dy  d(n(d))
— = ——= =1.765 — 0.138 % r, — 2% (0422) * 1,
dx d (rdemur) LCycle ( ) detour

According to this expression, the partial effect of r_detour on the log travel distance (d(In(d))/d(r.detour)) depends on r LCycle and
r_detour variables. Since B, gerour a0d Braerour2 Predictors are both significant with opposing signs, this result denotes a parabolic shape of
this effect. To provide an adequate interpretation of this simultaneous effect, we fixed the value of one variable while assigning
different values to the other and vice versa. Table 5 shows the partial effects of r_detour on travel distance while assigning different
reasonable r LCycle and r.detour values (between the minimum value and 75-quartile including the mean).

As indicated in Table 5, for a given value of r_detour, its partial effect on travel distance (d(Ln(d))/d(r_detour)) declines while the
length of cycle paths is increased. Besides, for a given cycle path length (r LCycle), the partial effect of r detour declines while its value
increases. In other words, each parabolic shape depends on both values simultaneously, as shown in Fig. 7. These curves indicate that
the turning point value of the parabolic shape decreases while increasing the lengths of route cycle paths (r LCycle). These curves are
built by using the exponential of the model estimation Y = e@, varying r. LCycle and r detour, and fixing all the remaining variables

9.0

Distance (km)

r_detour

—e—r cydle=0 —e—r_cycle =153 r_cycle =3.0 —e=r_cycle =40 —e—r_cycle =561

Fig. 7. (Left) Travel Distance (d) estimation based on r_LCycle variations.
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Table 6
Partial effect of r_ LCycle on log travel distance d(In(d))/d(r_ LCycle).

r_detour
1.0 1.330 1.774 2.094 2.69 3.113
d(In(d)) 0.23 0.19 0.13 0.08 0.00 —0.06

d(rrcycle)

on the mean values.

On the other hand, when analyzing the partial effect of r LCycle on the log travel distance (d(In(d))/d(r_LCycle)), we found that
the effect depends on the value of r detour, as shown in the following Eq. (4):

dy _ d(n(d) _

= ﬁ + ﬁ * ¥y,
dx d (rLCycle) rLCycle rdetour etour

(€))

d—y = M = 0.371 — 0.138 * Fyerour
dx d(rLCycle)

By assigning different values to rdetour, we obtain the (d(In(d))/d(r_LCycle)) values shown in Table 6, which correspond to the
slopes of each straight line shown on Fig. 8.

As is shown in the Table 6 and as confirmed by Fig. 8, while r. detour increases, the slope of the straight line (d(In(d))/d(r_LCycle))
decreases until it reaches a value of zero for r detour = 2.69. This point coincides with the point at which all parabolic curves
converge, after which point the partial effect of r LCycle on travel distance becomes negative.

When combining both directions of analysis to determine the combined effect of r detour and r_ LCycle on cyclist travel distances,
one main conclusion arises: even though it may imply traveling longer distances, cyclists are willing to deviate from direct routes to
minimize their exposure to traffic by searching for dedicated infrastructure. However, when the detour becomes too long (greater

9.0

Distance (km)

2.0
1.0
0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0
r_Lcycle (km)
—e—_detour = 1.0—e—r_detour=1.33 —o—_detour=1.78 r_detour = 2.09 r_detour = 2.69 ——_detour=3.11

Fig. 8. (Right) Travel Distance (d) estimation based on r_detour variations.
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than 2.69 according to our results), cyclists do not want to deviate any further. This is consistent with Cervero et al. (2018) who found
that taking more detours implies increased traveling distances, which demotivates people from traveling by bicycle. This is also
coherent with Cabral et al. (2019) findings that suggested that cyclists prefer a network of dedicated and direct cycling facilities.

From a public policy perspective, our results suggest that dedicated cycling infrastructure has an impact depending on the detour
value: it is stronger for shorter detours (more direct routes) and becomes less strong as the length of the detour increases. In other
words, decision-makers should invest in more direct routes and provide cycling dedicated infrastructure to maximize their impact and
increase the levels of cycling.

6. Conclusion

This paper contributed to the existing literature in three directions. First, regarding the explanatory variables, this paper reveals
the importance of built and natural characteristics along the road in explaining cycling travel distances while controlling for so-
cioeconomic and built environments measures at origins and destinations. Second, the context contribution, our results for Medellin
show no significant effects of cyclists’ demographics on travel distance, which contradicts the existing literature, but our findings on
the relationships between the built and natural environment and travel behavior are in line with existing literature. Third, the
methodological contribution, beyond supporting previous findings and highlighting the importance of route characteristics, this
paper shows the relevance of including the interaction and quadratic effects of some variables to achieve a more robust model.

Moreover, natural and built environment features along the routes play significant roles in explaining cycling travel distances in
Medellin. First, cyclists do not necessarily avoid steep terrain when traveling a certain distance, which is probably because they are
already used to cycling on hilly areas or perhaps because they have no other alternative. However, even when cyclists are exposed to
hilly urban topography, their willingness to cycle on slopes has a limit. Second, cyclists make use of low-stress roads, probably to
reduce their exposure to high traffic volumes. Third, the interaction effect between the dedicated infrastructure along a route and the
degree of deviation from direct routes plays a particularly relevant role in explaining travel distance. Even though they have to
deviate from direct routes, cyclists find routes with dedicated cycling infrastructure very valuable. However, the impact of dedicated
infrastructure is stronger for shorter detours (more direct routes) and decreases as a detour increases the travel distance.
Consequently, policy directions to promote bicycle commuting should include the design of direct routes with a dedicated infra-
structure as well as routes drawn along low-speed roads.

Moreover, regarding the built environment features associated with origins and destinations, mixed land use does not always
contribute to reducing travel distances. On the one hand, living closer to a CBD reduces the need for long cycling trips due to
proximity to city services and activities. On the other hand, mixed land use destinations are attractive even for those having to travel
long distances to access them. From a public policy perspective, as cyclists value destinations with land use diversity, it would be
better to promote such amenities in areas closer to city centers to limit the need to travel longer distances. Besides, concerning the
type of infrastructure surrounding the origin locations, dedicated cycling infrastructure is as important as low-stress roads to limit
cyclists’ exposure to traffic and motivate people to cycle even for long-distance trips.

Furthermore, our results for Medellin show no significant effects of cyclists’ demographics on travel distance. These results
indicate that once individuals decide to commute by bicycle (a decision for which, according to the extensive literature on travel
behavior, demographic characteristics do matter), their demographic characteristics make no difference concerning travel distance.
This finding implies that any intervention intended to improve dedicated cycling infrastructure should have a similar effect on all
current users.

Our research contributes to the planning and design of dedicated cycling facilities based on travel distance, which we found to be
very sensitive to dedicated infrastructure, detours, and the combination of land use. These recommendations will be essential for
route design that maximizes the use of cycling infrastructure. Moreover, our research findings can be used in further studies seeking
to understand cyclists’ accessibility to urban opportunities based upon the variations on distance thresholds, which depend on the
dimensions studied in this paper. Additionally, the results of this study can support the design of cycling networks while considering
the impact of dedicated cycling infrastructure, low-stress roads, detour limitations and the mixture of urban land uses.
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Annex 1. Descriptive statistics

Dimension Variable Descriptive statistics
Mean Std.Dey. Min Max
SE age 29.23 10.64 16.00 72.00
age2 967.8 818.2 256.00 5184.00
gender 0.31 0.46 0.00 1.00
Hinc 0.21 0.41 0.00 1.00
Minc 0.61 0.49 0.00 1.00
study 0.36 0.48 0.00 1.00
bothpurp 0.32 0.47 0.00 1.00
pubbike 0.26 0.44 0.00 1.00
bothbike 0.29 0.45 0.00 1.00
frecweek 4.16 1.73 0.50 6.00
dispo_tp 0.87 0.33 0.00 1.00
dispo_pv 0.32 0.47 0.00 1.00
intermodal 0.22 0.41 0.00 1.00
retour 0.93 0.25 0.00 1.00
BE; + BE; o_i_dens 182.68 49.71 8.84 445.63
o_cbd 3.21 1.42 0.26 7.67
o_pLU_Hmix 0.28 0.20 0.00 0.84
o_LCycle 1.03 1.07 0.00 4.66
o_bikest_index 0.98 1.14 0.00 6.19
o_Lls 10.41 3.70 1.00 22.00
d_i_dens 177.38 36.55 61.01 275.87
d_pLU_Hmix 0.42 0.22 0.00 0.88
d_LCycle 1.30 0.91 0.00 4.98
d_bikest_index 0.98 1.14 0.00 6.19
d_Lls 6.99 2.75 2.00 17.00
BE;; + NEj; ratio_itf ri 16.11 9.26 0.00 49.00
r_detour 1.35 0.22 1.00 3.11
r_detour2 1.86 0.67 1.00 9.69
r_pLU_Hmix 0.40 0.16 0.00 0.82
r_LCycle 1.67 1.39 0.00 7.72
r_Leycle_det 2.27 1.97 0.00 10.38
rLls 0.22 0.30 0.00 2.19
g_elevat 0.03 0.04 0.00 0.55
g_elevat2 0.00 0.01 0.00 0.30

225

200

Frequency

[16,20]  [20,24]  [2428]  [28,32]  [32,36]  [3640]  [40,44]  [44,48]  [4852]  [52,56]  [56,60]  [60,64]  [64,68]  [68,72]
Range of age (years)

Fig. 9. Distribution of respondents' age.
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Fig. 10. Distribution of respondents' income strata.

Female
31%

Fig. 11. Distribution of respondents' gender.

Fig. 9 shows the distribution of respondent's age. According to this distribution, 87% of respondents are younger than 40 years, while
the remaining respondents are included in the range of age between 40 and 72 years. Fig. 10 presents the distribution of respondent’s
income strata, where the lowest (1st) and highest (6th) strata were the least represented (3% in each case), while the 3rd and the 4th
strata were the most represented in our sampling framework (31% and 30% respectively). Also, the 2nd and 3rd income strata had a
representation of 14% and 18%. Finally, according to Fig. 11, our sample was composed of 69% men and 31% women.

Annex 2. Regression - Alternative combination

VARIABLE Model including BE;; + NE; Model including BE; + BE; + BE; + NE; Model including SE + BE; + BE; + BE; + NE;
Est.Coeff t-Stat Est.Coeff t-Stat Est.Coeff t-Stat

age 0.0043 0.55 0.00588 0.67

age2 —7.18E-05 —0.82 —8.89e-05 —0.83

gender —0.0471 —-1.25 —0.0441* —1.83

Hinc 0.0152 0.18 0.0561 1.26

Minc 0.0335 0.56 0.0677* 2.05

study 0.0636 1.09 0.0642 1.27
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bothpurp 0.122%* 2.15 0.111%* 2.11
pubbike —0.298%** -9.8 —0.124%** —-5.05
bothbike —0.0857** —-2.22 —0.00717 —0.38
frecweek —0.00875* —-1.82 —0.0126%* —2.75
dispo_tp 0.0537 1.21 0.0410 0.84
dispo_pv —0.0167 —0.62 —0.0271 -1.27
intermodal —0.0702%* —2.54 —0.0287 —0.88
retour 0.0266 0.45 0.0233 0.39
o_i_dens —1.75e-05 —0.05
o_cbd 0.0945%** 3.5
o_pLU_Hmix —0.100 —0.92
o_LCycle —0.0764** —2.78
o_bikest_index —0.00314 -0.15
o_Lls 0.0118* 1.95
d_i_dens 0.000532 0.58
d_pLU_Hmix 0.371%%* 3.35
d_LCycle —0.0178 —-0.75
d_bikest_index —0.00700 —0.57
d_Lls 0.00448 0.43
ratio_itf_ri —0.00817** —-2.87 —0.00622%* —-2.67 —0.000191 -0.1
r_detour 1.729%** 3.12 1.490%** 3.17 1.765%** 3.94
r_detour2 —0.463** —-2.76 —0.401** —-2.93 —0.422%** -31
r_pLU_Hmix 0.230 1.01 0.168 0.74 0.207* 2.03
r_LCycle 0.313%** 7.66 0.322%** 6.68 0.371%%* 7.03
r_Leycle_det —0.102%** -3.65 —0.0968** —2.69 —0.138%*** -3.89
r Lls 0.161%** 5.08 0.132%** 3.65 0.127%%* 3.97
g_elevat 10.76%** 9.72 9.767%** 10.23 8.702%** 10.27
g_elevat2 —16.10%** -6.29 —14.60%** -6.77 —6.54
Constant —0.6390432 -1.13 —0.504 -1 —3.47
Observations 810 810 810

R-squared 0.523 0.582 0.697

Adj. R-squared 0.518 0.570 0.684

Log-Likelihood: —399 —346 -215

AIC 818 739 499

VIF 19.6 12.24 9.2

#%p < 0.01, **p < 0.05,*p < 0.1.
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