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Abstract

Restricted normal modal logics are here defined by imposing conditions on the modal axioms and rules of normal modal
systems. The conditions are defined in terms of a depth (associated with the modal connective) and a complexity function. It
is proven that the logics obtained are characterized by a subtle adaptation of the possible worlds semantics in which levels
are associated with the worlds. Restricted normal modal logics constitute a general framework allowing the definition of a
huge variety of modal systems, which can have different applications. For instance, they are useful to define epistemic logics
where the logical omniscience problem is partially controlled.
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1 Introduction

The logic K, the basic normal modal logic, is usually defined by extending the classical propositional
logic (CPL), introducing a unary necessitation connective O and adding the axiom (K] and the
necessitation rule (Ned):

O(x— B)— (Do — 0Op), (K)
Fk o implies Fg Oa. (Nec)

The modal systems extending K are called normal modal logics, and they are semantically
characterized by the so-called relational semantics (or possible worlds semantics).

Since about the half of the twentieth century, many logical systems have been proposed in order
to formalize the concepts of knowledge and belief, these formal systems are called epistemic logics.
Now, the most influential epistemic logics are extensions of the normal modal system K, usually
including multiple modal operators (each operator representing the knowledge of an agent) and
modal axioms intended to capture the ‘essential’ properties of the concepts that they formalize[l

The logic K™, considered the minimal logic of knowledge (see [El, Section 7.3]), is a multi-modal
logic including a finite number of modal connectives K1, ..., Ky, each of them ruled by the axiom (K
and the necessitation rule. Each modal connective in K™ represents the knowledge of the respective
agent, then the formula K« is interpreted as ‘agent i knows «’. Under this interpretation, the axiom

!'For an introduction to epistemic logic see IEL Chapter 7].
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688 Restricted normal modal logics

(KD in conjunction with the rule (Ned) leads to the conclusion that any agent i knows all the logical
consequences of his knowledge, which goes in contradiction with the ordinary sense of ‘known’.
This is an important puzzle of epistemic logics based on K and is called the ‘logical omniscience
problem’

Several approaches have been proposed in order to deal with the logical omniscience problem;
most of them are described in ﬂ] and [E]. A new alternative approach is proposed by Manuel Sierra
in [E] and [E]. In [H], Sierra introduces the family of systems SMM-n, where n is a positive integer
number. The system SMM-n is called the multi-modal systems of depth n. The family is inductively
defined in the following way: SMM-1 is just CPL and SMM-(n+1) is obtained by adding to SMM-n
the results of applying (Ned) only once to each formula of SMM-n. In this family, each system has a
different language, which is associated with the deductive capacity of the reasoners whose knowledge
is represented by the modal connectives. The union of the family is denoted by SMM and is called
the restricted multi-modal system. All these systems are semantically characterized by a relational
semantics in which the length of the chains of worlds is limited. These systems are extended in [ﬁ],
obtaining the families of systems LER-n and LDR-n. The system LER-n is called the epistemic logic
with restrictions of depth n, and the union of the family is denoted by LER; these systems can be
viewed as restricted versions of the well-known modal logic S5. In an similar way, the system LDR-n
is called the doxastic logic with restrictions of depth n, and the union of the family is denoted by
LDR; these systems can be viewed as a restricted version of the modal logic KD45. Both families
are semantically characterized by relational semantics with ‘embedded worlds’.

The main motivation of Sierra’s systems is to allow the representation of reasoners of different
types, where the type is associated with the ‘deductive capacity’ of the reasoner. A reasoner of type
1 can deduce any CPL-tautology, but cannot deduce the necessity of any formula, which under a
suitable interpretation means that a reasoner of type 1 is totally unconscious of his knowledge (or of
his beliefs). In contrast, a reasoner of type n+ 1 can deduce the necessity of any formula deducible
by areasoner of type <n, and following the same interpretation, it means that a reasoner of type n+ 1
is conscious of the knowledge (or beliefs) of reasoners of type <n. Considering that reasoners of
type n are also reasoners of type m, for any m <n, a reasoner of type n is conscious of his knowledge
until ‘depth’ n— 1. By capturing these ideas, the logical systems introduced by Sierra allow a partial
control of the problem of logical omniscience. For instance, in LER-4, a reasoner of type 2 cannot do
inferences involving formulas of type 3, while a reasoner of type 3 or 4 can. However, in LER-4 none
of the reasoner can do inferences of formulas with type >4 (such formulas are not even included in
the language of LER-4).

In this article, a wide generalization of Sierra’s proposal is presented, by introducing the family
of ‘restricted normal modal logics’ and the ‘levelled possible worlds semantics’. In contrast with
Sierra’s systems, the systems here defined have no restrictions on the language (the restrictions are
established only on the axioms and rules, but not on the language, which is the same language of
all the normal modal logics), this feature avoids many technical difficulties. Moreover, the family
of restricted normal modal logics covers all the systems that can be defined by an adaptation of
the so-called Lemmon—Scott axiomatic schema, which represents an important generalization of the
systems proposed by Sierra. On the semantical counterpart, the assignation of ‘levels’ to worlds allows
a natural adaptation of the relational semantics in order to be apt to characterize all the restricted
normal modal systems defined here, and this without restricting the language associated with worlds
(in the semantics defined by Sierra in [E] and [E], any world has associated a language, and the levels
of worlds are defined in terms of the ‘depth’ of their associated language).

2For an interesting discussion about the logical omniscience problem see [ﬂ],
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Restricted normal modal logics 689

It is important to emphasize that the intention of this article is not to define and defend a particular
system of epistemic logic, but to provide a general framework allowing the definition of a huge variety
of modal systems that could have different purported applications. However, we briefly describe how
these systems can be used in order to define epistemic logics where the logical omniscience problem
is partially controlled.

This article is structured as follows: in section 2] the logic Ky, c is defined as a restriction of K
where (K) and (Ned) are conditioned in terms of a depth n and a complexity function C. The system
K, c is first defined in a syntactical way and some properties are proven, then, the possible worlds
semantics is modified obtaining a ‘levelled’ version of this semantics, which characterizes K, ¢ (i.e.
K. c is sound and complete with respect to the levelled possible worlds semantics). In SectionB] the
Lemmon-Scott axiomatic schema is adapted and is used to extend K}, ¢ in such a general approach.
Then, it is proven that any extension obtained in this way is characterizable by a levelled possible
worlds semantics where the existence of some ‘embedded worlds’ is assumed. In Section [ it is
described how epistemic logics based on restricted normal modal logics can be defined, and some
properties concerning the logical omniscience problem are pointed out. Some possible future works,
in connection with the ideas presented here, are described in the final remarks in Section 5.

2 The basic restricted normal modal logic K,, ¢

Let For be the set of formulas of K (which is the same language of any monomodal normal logic,
and will be the language of all monomodal restricted modal logics defined below). We will consider
connectives —,— and O as being the primitive connectives of For. More precisely, fixing a set of
propositional variables V ={p;:i € N}, For is the smaller set X satisfying the following conditions:
(1) VCX; (i) if o €X then —a € X; (iii) if o, B € X then (¢ — B) € X; and (iv) if ¢ € X then Ou € X.
Connectives for conjunction, disjunction, equivalence and possibility are defined in terms of the
primitive connectives in the following way: a A 8 E@—-B) aVBE(—a— B a B=(a—
BIA(B— a); and O & O—a. As it is usual, in some places letters like p,q,r, etc., will be used
instead of letters with subscript (p;) to denote propositional variables, and greek letters will denote
arbitrary formulas in For. Moreover, parenthesis will be omitted where there is no place for confusion.

A function C: For — N will be called a complexity function if it satisfies the following conditionsfi

C(p)=0 for at least one propositional variable p, (C1)
C(—a)=C(a), (C2)
Cla— p)=max{C(a),C(B)}, (C3)
C(O)=C(a)+1. (C4

By the above definitions, it is clear that C(e AB)=C(aVB)=C(a < f)=C(a¢— B) and that
C(Oa)=C(Oa). Note also that complexity functions can assign any value to propositional variables,
whenever it assigns 0 to at least one of them. This property will be useful to restrict the deduction of
the necessitation for some CPL-tautologies, which will be illustrated below.

The logic Ky, c, the basic restricted normal modal logic, is obtained from K by associating a
natural number n with the necessitation connective (such number will be called the depth of the

3At first glance, these conditions may seem odd. However, they are enough (and seems to be minimal) to prove at once the
completeness of all the restricted normal modal systems with respect to the levelled world semantics. After reading Section[3
the relevance of these conditions can be better understood.
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690 Restricted normal modal logics

modal connective) and restricting the axiom (K)) and the necessitation rule, in accordance with a
given complexity function C, in the following way:

O(a— B)— (Da—0P) if C(a— B)<n, Kn,c)
Fk, o and C(a) <n implies kg, - Oa. (Necy,¢)

Note that the definition of K}, ¢ is parameterized in terms of the depth of the modal connective n
and the complexity function C, then different logics can be obtained by only changing the values of
these parameters.

In K;,, ¢, uniform substitution is not valid in generalEl For instance, if n=2, C(p)=1 and C(q) =2,
then kg, . O(pp— p) while Fg, . O(g— ¢). Substitution of equivalents is also not valid in K c.
For instance, -k, . (p — p) <> (¢ — ¢) and g, . O(p— p) while ¥ K».c B(qg— q). However, restricted
versions of these properties are established in Propositions .11 and 24l In such propositions,
the following three notational conventions are used: (i) «[p/B] denotes the result of substituting 8
for every occurrence of the variable p in «; (ii) @[p1/B1,--.,Pm/Bm] designates the simultaneous
substitution of m variables; and (iii) «(8/8) denotes the result of substituting B for some occurrences
of § in .

PROPOSITION 2.1 (Uniform substitution on CPL-theorem instances)
If « is an instance of a CPL-theorem (i.e. if o = B[p1/¥1,--.,Pm/Vm], where B is a CPL-theorem and
all y;, for 1 <i<m, are arbitrary formulas in For), then ¢, . a.

PrOOF. Let the sequence of CPL-formulas pBq,8,...,8; be a proof of B in CPL.
In such a proof there are no restrictions on axioms and rules. Thus, the sequence
Bilp1/vi.--e.pm/Yml. B2lP1/ V15 . Pm/Ym], - Bilpr /Y1, oo Pm/vm]  is @ proof of a=
Blp1/vis---.Pm/Yml in Ky c. u

PropOSITION 2.2 (Uniform substitution restricted by the complexity function)
If bk, - @ and C(B;) < C(p;), for 1 <i<m, then bk, ~a[p1/B1,....Pm/Bm].

PrOOF. Let the sequence of formulas oj,cp,...,0; be a proof of o in Kjc, then
C(ajlp1/Bis---som/Bm]) <C(aj) for any 1<j<l (due to the fact that C(8;))=<C(p;),
for 1<i<m). Consequently, all restrictions on applications of axiom (K, c) and rule
(Nec, c) satisfied in the sequence og,a2,...,c7 are also satisfied in the sequence
a1lp1/Bis--..pm/Bml,2lp1/Bi,--.om/Bm]), ....a1lp1/B1,....pm/Bm], and such a sequence consti-
tutes a proof of «[p1/B1,....pm/Bm]l In K, C. ]

LEMMA 2.3
If bk, 8 < B and C(6 — B) <n then g, .06 < OB.

PrROOF. From kg, .8 <> B, by CPL, it follows that g, . § — B and g, . 8 — §. Taking into account
that C(8— 8)=C(8— B)<n, by and we have that g, . O(8— §), bk, - D8 —
B), Fk, c B(B— 8)— (OB — 06) and kg, . O(§ — B)— (08 — Op). Thus, by CPL, it follows that
Fk, 08 < Op. [ |

PRrOPOSITION 2.4 (Substitution of equivalents restricted by the complexity function)
If g, c o, Fk, o § <> B and C(a — a(3/B)) <n then g, - «(8/B).

4In order to C validate the condition in all the examples, it will be considered hereafter that C(r) =0, for a propositional
variable r that would not explicitly appear in the examples.
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Restricted normal modal logics 691

ProoF. By induction on the structure of «: if « is a propositional variable p, since K, ¢ is a restriction
of K and ¥ p, then ¥k, . p. Consequently, the hypothesis of the proposition is not validated and the
implication is fulfilled. In the inductive step, if « =06 then C(6 — ) < C(a — «(§/B)) <n, and by
Lemma @3) and CPL it follows that g, . 0. The other cases are just like in CPL. u

Restricted versions of many theorems of K can be proven in K, ¢. Some instances are shown in
the following:

PROPOSITION 2.5
If C(x) <n and C(B) <n then:

Fk, c o — B implies g, - Oo— OB, (D)
Fk, o — B implies g, . Ca— OB, (2)
Fk,c O(@AB) < (BaAdp), 3)
Fk, o ClaVp) <« (CavOop), 4
Fk,c (CavOp)— D(aVp), )
Fk, c ClanB)— (Candp). (6)

PROOF. Similar to the demonstrations in K, restrictions of (K, c] and (Nec,, ¢ are validated due to
the assumptions that C(«) <n and C(B8) <n. |

It is important to point out that all items in Proposition Z3lare valid only under the condition that
C(x)<n and C(B) <n, if C(x)>n or C(B)>n, then none of the items are demonstrable (this is a
consequence of Theorem 2.13).

Up to here, we have defined K, ¢ in a syntactic fashion. In the following, the well-known ‘relational
semantics’ (or ‘possible worlds semantics’) will be adapted in order to obtain an adequate semantics
for K, c, the new semantics will be called levelled possible worlds semantics.

In the relational semantics, a frame is a structure F = (W, R), where W is a non-empty set (whose
elements are called worlds), and R is a binary relation on W (called the accessibility relation). Amodel
is a structure M =(W,R,V), where (W,R) is a frame and V is a valuation function assigning truth
values (‘false’ represented by 0 and ‘true’ represented by 1) to all formulas of K in each world (i.e.
V:For x W — {0, 1}), validating the following conditions: (i) V(—a,w;) =1 ifand only if V (&, w;) =0;
(i1) V(a — B,w;)=1if and only if V(o;,w;)=0 or V(B,w;)=1; and (iii) V(Oc,w;)=1 if and only if
V(a,wj)=1 for all w; such that w;Rw;. Aformula « is valid in a model M=(W,R,V)if V(a,wj)=1
in all worlds w; € W, and is valid (in general) if it is valid in all models. These notions are adapted in
the following definitions:

DEFINITION 2.6 (L-frame)

An L-frame is a structure F = (W,L,R), where (W,R) is a frame (as defined above), L is a function
L: W — N assigning levels (represented by natural numbers) to worlds, and R is restricted by the
following condition: if w;Rw; then L(w;)=L(wj)+1, for any w;,w; € W.

DEFINITION 2.7 (Lc-model)

An Lc-model is a structure M= (W,L,R,V), where (W,L,R) is an L-frame and V is an Lc-
valuation function V:For x W — {0, 1} which assigns truth values to all formulas of K, ¢ in each
world validating the following conditions:

(1) V(—a,w;)=1if and only if V(a,w;)=0;
(2) V(e— B,w;)=11if and only if V(a,w;)=0or V(B8,w;)=1; and
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692  Restricted normal modal logics

(3) if C(a)<L(w;), then V(Oa,w;)=1 if and only if V(a,wj)=1 for all w; such that
wiRw;.

An Lc-model M =(W,L,R,V) is based on an L-frame F if and only if F is just (W,L,R).

Note that, by the third condition of the previous definition, an L¢-valuation function is not totally
determined by the values assigned to the propositional variables; i.e. given a function f:V x W —
{0,1} (where V is the fixed set of propositional variables), the extension of f to an Lc-valuation
function is not unique (since values assigned by Lc-valuation functions to formulas O« and worlds
w; such that C(«) > L(w;) are not ruled by any condition).

DEFINITION 2.8 (nc-validity)

A formula « is nc-valid in an Lc-model M =(W,L,R,V) (which will be denoted by M =, c«) if
V(a,w;)=1 in all worlds w; € W such that L(w;) =n. Accordingly, « is nc-valid (in general) if « is
nc-valid in all Lc-models (i.e. if M =, c « for every Lc-model M). Moreover, « is nc-valid in an
L-frame F if it is nc-valid in all models based on F.

Soundness and completeness of K, ¢ with respect to the levelled worlds semantics (Theorems2. 13|
and2ZT4) will be proven in a constructive way. The proofs are obtained by first adapting the method
of relational tableaux (described in [El]).

We will call K, c-tableau for a formula « (called the input of the tableau) a diagram composed
of rectangles, with formulas and truth values inside, and directed arrows among some rectangles.
The diagram is build by following an algorithmic procedure described below. In a K, c-tableau,
rectangles represent ‘fragments’ of worlds, arrows represent the accessibility relation and values
under formulas represent the truth values associated with formulas by the Lc-valuation function.
A label w? on the right side of a rectangle indicates that such a rectangle represents the world w;
and that L(w;)=n. A rectangle is called contradictory if any formula inside it receives both truth
values. The aim of depicting a K, c-tableau for a formula « is to obtain a graphical representation
of an attempt to build an Lc-model that falsifies the nc-validity of «, the algorithm to build such a
representation is described in the following steps (considering, without loss of generality, that « only
contains primitive connectives):

(1) Depict a first rectangle with label wij and write the formula « inside with value 0 under its main
connective.

(2) While there are subformulas to which truth values can be assigned and there are no contradictory
rectangles, do the following:

(a) derive truth values of subformulas applying, as far as possible, conditions 1 and 2 for L¢-
valuation functions and write them under the main connective of the respective subformulas.
(b) if new truth values were written in the previous step then:
() if value O (respectively, value 1) is written under a connective O in a rectangle labelled
with wi", the subformula under the scope of O is B and C(B) <m, then write 3
(respectively, V) under the truth value.

(i) for each symbol 3 written in the previous step in a rectangle labelled with wi", depict a
new rectangle labelled with W (where j is a new consecutive number), write inside
the subformula 8 (in the scope of the respective O) and 0 under its main connective,
and draw a directed arrow from w}" to w]’.”_l.

(iii) for each new rectangle and for each symbol V in the rectangles accessing them, write
in the new world the subformula g in the scope of the respective O (marked with V)
and write 1 under its main connective.
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Restricted normal modal logics 693

(c) otherwise (if no new truth values were written in step (a)) then take alternatives if possible;
i.e. if there is a subformula 8 — § with assigned truth value 1, create three copies of the
K, c-tableau and in each copy consider a different possible assignment of truth values to
B and §. Continue the loop for each alternative.

(3) if all alternatives finish with contradictory rectangles, then the Kj, c-tableau for « is closed
and « is nc-valid (because any attempt to build an Lc-model that falsifies the nc-validity of
o leads to contradictions). Otherwise, the K, c-tableau for « is open and alternatives without
contradictory rectangles represent Lc-models that falsify the nc-validity of «.

ExAMPLE 2.9

The K3 c-tableau for § = O0—(p — —q) — —(Op — —Og) (which by the definition of A is equivalent
to O(p Ag)— (OpAOg)), in two different instants of its construction and considering that C(p) =
C(g)=1, is depicted below:

* before taking alternatives the diagram obtained is:

U=(p = =) = =(Ep — -Og)
1 00 1 Wo
v

« after taking alternatives the following diagrams are obtained:
Alternative 1:

O=(p = —¢) = ~(Ep — —Ogq)

1 000 101 |wo

v 3 v
pi-~(p—-a)iq| ,
0i11001:1|*1

Alternative 2:

O=(p = =g) = ~(0Op = =Oq)|

1 000 110 [wWo

v 3 3
pinlp—=-a)| | |ai~(p— )|
0i11001(*% |oi11001/|"

Alternative 3:

O=(p = =g) = ~(0p = -Og)|

1 001 110 |wo

v v 3

o

i—(p— —q)ip 1
1110011

q
0

Note that in all alternatives there are contradictions (marked by underlines), thus the K> c-tableau
for § is closed and § is 2¢-valid.
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694  Restricted normal modal logics

If we consider C(p) = C(g) =2 (instead of C(p) = C(q) = 1), then none of the symbols 3 and V can be
written in the K> c-tableau for § (since in this case, C(—(p — —¢))=C(p)=C(q) =2 £ L(wp) =2),
and no new rectangles can be depicted. In this case, all the three alternatives consist of a single
rectangle (the rectangle depicted before taking alternatives), each of them assigning different possible
values to Op and —Ogq. Each of these alternatives represents an Lc-model falsifying the 2¢-validity
of .

DEFINITION 2.10 (Chain)
In a K, c-tableau, a chain of length m is a sequence of rectangles wg,wq’_l so.., W™ such that w; is
connected to w;41 (0<i<m) by a directed arrow.

Due to the fact that w;Rw; only if L(w;)=L(w;)+1, it is clear that the longest chain in a Kj, c-
tableau for any formula « is of length n. Depending on the complexity of o we also have that:

PropPOSITION 2.11
If C(«) <n the longest chain in the K}, c-tableau for « is of length n—1.

PrOOF. If C(a) <n the greatest number of connectives O in « is n—1 (due to condition (C4) in
the definition of complexity function), and these are the only connectives that can generate new
rectangles in the K, c-tableau for «. |

LEMMA 2.12
If @ is nc-valid and C(«) <n then « is (n— 1)¢-valid.

PROOF. Let o be an nc-valid formula, then the K, c-tableau 7 for « is closed. By Proposition 2217}
the longest chain in 7 is of length n— 1, then the least level of a world in the diagram is 1. By
decreasing in 1 the level of each world in 7 it is obtained a closed K;,_| c-tableau 7~ for «, therefore
a is (n—1)¢-valid. Symbols 3 and V in 7 are justified due to the fact that C(a) <n implies that
C(B) <n—1 for any subformula g of « in the scope of a 0. ]

THEOREM 2.13 (Soundness of K, ¢)
If g, - « then o is nc-valid.

PrROOF. The nc-validity of CPL-axioms and the preservation of the nc-validity for the modus ponens
rule are direct consequences of conditions 1 and 2 for L¢-valuation functions (Definition2.7). Then,

it is enough to prove that (K, c) is nc-valid and that (Nec,, c) preserves nc-validity:

. is nc-valid: the K;, c-tableau for any valid instance of is closed, which is shown
in the following diagram (condition C(e — B) <n implies that n> 1):

O(a — B8) = (Ha — 0OB)

1 01 00 |wo

% % 3
Bia— Bla| .,
0i010:11"

. preserves nc-validity: let @ be nc-valid and C(a)<n. Suppose, by way of
contradiction, that O« is not nc-valid. Thus, there exists an Lo-model M =(W,L,R, V) with
a world w; € W such that L(w;)=n and V(Oa,w;)=0. Due to condition 3 for Lc-valuation
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Restricted normal modal logics 695

functions (Definition 7)), there exists a world w; €W such that L(wj)=n—1, w;Rw; and
V(a,wj)=0. Consequently, « is not (n— 1)¢-valid, which contradicts Lemma 2. 12

THEOREM 2.14 (Completeness of K, ¢)
If a is nc-valid then g, - o.

PROOF. Let o be an nc-valid formula, thus the K, c-tableau 7 for « is closed. A proof for « in Kj; ¢,
based on T, is constructed by performing the following steps:

e))

2)

3)

taking into account that any rectangle w?" in a K, c-tableau has the following general format:

61 . 5l m
1 1

B
0

associate with wi" a characteristic formula y; =BV =81 V...V =§; (some rectangles w/" have
inside only the formula 8, in such cases x;=pf; a particular case is xo which is just «). By
conditions of classical valuations, for any subformula y of y; receiving an initiaﬁ or derived
truth value (but not an alternative truth value) in w}" we have the following cases:

(a) if y has associated truth value 0 in wi", then y — x; is an instance of a CPL-tautology.
(b) if y has associated truth value 1 in w?", then =y — ; is an instance of a CPL-tautology.

Since T is closed, for any alternative of 7" a contradictory rectangle wi" exists. Let y be a
formula receiving both truth values in w}", by the previous item, y — x; and =y — x; are
instances of CPL-tautologies, thus y; is a CPL-tautology. By the completeness of CPL, y; is
an instance of a CPL-theorem, therefore g, . xi.

If in 7 we have that w;"RwJ’."fl, no alternatives were taken in W,m and kg, . xj, then g, - xi:
the formula x; =BV =81 V...V —§; is equivalent (by CPL) to (61 A...AS;)— B. By condition
3 of Definition 27 each of the formulas 8,y1,...,y; has to have complexity less than L(w;),
therefore less than n, thus by we have that g, . O((81 A...A8;)— B). By applying
and modus ponens it follows that b, - O(81 A... A8;)— OB, which is equivalent by
Proposition 23] (item B) and CPL to (i) Fg, . O V=08 V... v —=08;. Taking into account that
OB has to be a subformula of x; receiving value 0 in w!", by item 1, we have that 08 — x; is
an instance of a CPL-tautology, thus (ii) g, - 88 — x;. In a similar way, taking into account
that formulas Oy, ..., Oy, have to be subformulas of x; receiving value 1 in wl’.”, we have that
(i) Fk, c =Ov1 = Xi»---» K, c 7Oy — xi. From (i), (ii) and (iii) it follows that kg, . x;.
When alternatives for a formula ¢ — ¢ in a rectangle w}" are taken, values assigned to ¢ and
Y are considered initial values, thus the following formulas are defined: x;(i)=x; V¢ V¢ (for
the alternative where ¢ and ¥ receive value 0); x;(ii) = x; V¢ V=9 (for the alternative where ¢
receives value 0 and ¥ receives value 1); and yx;(iii) = x; V —¢ V = (for the alternative where ¢
and ¢ receive value 1). By departing from the formulas proven in the previous item, and iterating
the procedure described in the previous paragraph, it follows that g, . xi(i), -k, - xi(ii) and
Fk, ¢ xi(iii). Which, in conjunction with g, . —=(¢ — ¥) — x;,leadsto bk, . xi (due to the fact
that (—=(¢ = ¥) = xi) > (G VeV IIAKY @V =) A(Xi V=@V =) — x;) is an instance
of a CPL-tautology).

SFormulas receiving initial truth values in w{" are just 8,81, ...,4;.
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696 Restricted normal modal logics
The proof of g, .« is then constructed by iterating the procedures described above until
reaching g, . Xo-
]

3 Extending K,, ¢ in a monomodal fashion

It is well known that the modal system K can be extended with an arbitrary finite number of axioms,
yielding the so-called family of ‘normal modal logics’. Moreover, there are correspondences among
modal axioms extending K and properties of the accessibility relation of the frames where such
axioms are valid. Some of these correspondences are:

Axiom Property of the accessibility relation

(D): Oa — $a, R is serial: Vw3w/'(WwRw');

(T): Da — «a, R is reflexive: Yw(wRw);

(4): Do — OO, R is transitive: Vw,w’, w”((WRwW AwW'RwW")— wRw'");
(B): a — O, R is symmetric: Vw,w' (wRW — w'Rw);

3): Ca— OOa, R is Euclidean: Yw,w’,w” ((WRW AwRW")— w'Rw").

In a similar way, K, ¢ can be extended by adding restricted versions of the axioms above:

Do — Ca if C(a)+1<n, (Dan,c)
Oa — «a if C(a)+1<n, (Tn,0)
Oa — 00« if C(a)+2<n, 4n,0)
o— 0Ca if C(a)+2=<n, Bn,c)
Oa— OCa if C(a)+2<n. 5n,c0)

Following the conventional naming of normal modal systems, if (Xj),...,(X;,) are labels of
restricted versions of modal axioms, all based in the same depth n and complexity function C,
then K, cXj...X;, will be the name of the restricted normal modal system obtained by adding to
K. c the axioms (X1),...,(X;) (subscript n, C is avoided from labels X; in the name of the system
in order to simplify notation). For instance, K, ¢T4 will denote the extension of K, ¢ with axioms
and Frd).

In order to establish correspondences among these axioms and properties of the accessibility
relation of L-frames, we will first present some definitions (where M =(W,L,R,V) is an arbitrary
Lc-model):

DErINITION 3.1 (Embedded world)

A world w; is embedded in depth d into a world w; in M (w;,w; € W and d eN), which will be
denoted by w; 4wy, if and only if L(w;) —L(w;)=d and V(a,w;) =V (e, w;) for any formula & such
that C(a) < L(w;).

In the tableaux for restricted normal modal logics, w; C;w; will be graphically represented by
drawing w; inside of w;. The depth of the embedded can be easily deduced from its graphical
representation, due to the fact that the labels of the rectangles include the levels of the worlds that
they represent. For instance, the following diagram illustrates that w; Cgw;j C. wy, considering that
L(wj)=1I:
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Restricted normal modal logics 697

[+d+e
Wk

I+d
[ w
L ]

DEFINITION 3.2 (Accessibility in m steps)

A world w; accesses a world w; in m steps, which will be denoted by w;R™wj, if there exist worlds
Wit 1, Wit2, ..., Witm in W such that wiRwy | for i<k <i+m and wij,, =wj. When m=0, the
expression w,-ROWj means just that w; =wj.

DEFINITION 3.3 (L-accessibility in m steps)
A world w; L-accesses a world wj in m steps, which will be denoted by w;R}'wj, if and only if:

* L(w;)—L(wj)=m and w;R"wj; or

* L(w;)—L(wj)>m and there exist wy € W such that wy Cyw;, where d=(L(w;)—L(wj))—m,
and wiR™wj; or

* L(w;)—L(wj) <m and there exist wi € W such that wy Cywj;, where d =m—(L(w;)—L(wy)),
and w;R"wy.

In the tableaux, w;R}'w; will be represented in the following way (figures (a), (b) and (c) correspond,
respectively, to the cases where L(w;) — L(wj)=m, L(w;) —L(wj) >m and L(w;) — L(w;j) <m):

[ [
w; D wf;d w; w;

I—d—1
W41

I—d—m y 4 l—m—+d
j j Dw,’;m Wi

(@) (b) (©

Now we can define the following properties on the accessibility relation of L-frames:

e Ris n-serial if Vw(1 <L(w) <n— 3w’ (WRW')),

* R is n-reflexive if Vw(l <L(w)<n— wRiw),

o Ris n-transitive if Yw,w',w” (2 <L(W) <n AWRW AW RW") — wRiw”),
* R is n-symmetric if Yw,w'((2 <L(w) <n AwWRwW') — w/Riw),

* Ris n-Euclidean if Yw,w',w" (2 <L(W) <n AWRW AwRw'")— w/Riw”).

Correspondences among axioms (D, c)—{@a.c) and properties of the accessibility relation of
L-frames, similar to the described above for axioms (D)—(5), can be established (we will prove
such correspondences in a more general framework below).

A K, cX1...Xp-tableau (where (X1)...(X,;) are axioms in (D)—(5)) for a formula « is built by
following the algorithm described above to construct K, c-tableaux, and depicting obligatory arrows
and embedded worlds in each iteration (in accordance with the correspondences among axioms and
conditions on the accessibility relation). In order to illustrate this, the K, cT-tableau for Op—
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698 Restricted normal modal logics

O-0-p is depicted in the next diagram (assuming that C(p) =0):

e

Op »O-0O-p 1t
D 2
1 00 1 |wo
v 3 1 |wr
M
-O-pip ¥
01 i1 [P fws
v ¢ [10]ws

This K, ¢T-tableau shows that Op — O—=0O=p is 2¢-valid in all n-reflexive frames.

Soundness and completeness of extensions of K, ¢, with different combinations of axioms, can
be proven in a constructive way; similarly as for normal modal logics. However, in the procedure
to obtain a proof of a formula « based on a closed K, cXj...X;;-tableau for it, in order to prove
completeness, it is necessary to take into account axioms (X1), ..., (X;;), and the construction of the
proof becomes more complicated depending on the number of axioms added. Due to this fact, we will
prove soundness and completeness of an infinite family of extensions of K}, ¢ at once, by adapting the
(non constructive) method of proof used by Lemmon and Scott in [E] (this method is also described

, Chapter 4], and our adaptation follows this description very closely).

The following is a restricted version of the so-called ‘Lemmon-Scott axiomatic schema’
(superscripts i, j, k and [ represents natural numbers and stand for the number of iterated operators
of the same kind):

G;"”’Ck’l:O"Djotﬁ ok oly if C(a)+max{i+j,k+1} <n.
Note that (D,,.(] are all instances of G, ’] k, l. = 0’1’0 L. ; _GO’]’O 0. 34, ngéz’o;
Bn’C:GS’%l’l and 5n G1 011 The schema of condmons on the acces51b111ty relation R
corresponding to G, j Klis:

CyJ¥wo, i, wa(max{iH, k-+1} < L(wg) <n A

W()Riwl /\WORkW2) — E|W3(W1R£W3 /\W2R2W3)).

It can be easily proven that the properties defined above on the accessibility relation of L-frames are

equivalent, respectively, to COI{O ! CS’I{’O’O, Cg’i’z’o, Cg,g,l,l nd Crllg L1

Considering that L(wg)=m, the schema C;’jik’l

. l/ \
\ /

m max{i+j,k+1}
w3

is graphically represented by the following

Depending on the values of j and /, the existence of embedded worlds is necessary. For instance, the

0

property of L-transitivity, which corresponds to Cg ’ é’z’ ,is valid if 2 <L(wg) <n, wo=wy, wp =w3,

woR?w», there exists a world w4 such that wa € wy and waR'ws (i.e. W1R£W3).
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Restricted normal modal logics 699

Now, we will proceed to prove soundness and completeness for any extension of K, ¢ obtained

by adding a finite number of instances of G, ’J bl

LEMMA 3.4

If B is an instance of G, ’J kit

, then B is nc-valid in all L-frames in which the accessibility relation

satisfies the condition C ’J k l

PROOF. Let B be an instance of G ’]Ck L je p=0i0ja — OkOla (for some fixed iy, k and [) and

C(B)=C(a)+max{i+j,k+1} <n. Suppose that § is not nc-valid in some L-frame F=(W,L,R)
which satisfies condition C ’jik’ Then, there exists an Lc-model M =(W,L,R,V), based on F,
in which B is not nc-valid. Consequently, there exists a world wge W, with L(wg)=n, such
that V(O'Da, wg)=1 and V(Dk<>la wg)=0. By conditions of Lc-valuation functions, there exist
worlds wq, wzeW such that woR w1, woR¥wo, V(D a, wi)=1and V(Ola, wy)=0. Since F satisfies
condition C, J there exists a world w3 € W such that W]R]LW3 and sz w3. Taking into account

that C(D]a)<C(,8)—l <n—i, it follows from V(Va,w)=1, wlR/ w3 and the conditions of Lc¢-
valuation functions that V(«,w3)=1. In a similar way, it follows from V(<> o,wp)=0and WQRLW3
that V(a,w3)=0, leading to a contradiction. Consequently, 8 has to be nc-valid in any L-frame
satisfying condition C,’ ’J Kl ]

In order to simplify notation, hereafter we will write G* to denote some specific instance of G, ’J kit

and C* to denote the corresponding condition on the accessibility relation. Different instances of G*
and C* will be distinguished by subscripts.
Soundness of K, cG7...Gy, is then a direct consequence of Lemma 3.4}

THEOREM 3.5 (Soundness of K, ¢G7...Gy,)
If « is a theorem of Kn,CGT ...G} then « is nc-valid in all L-frames in which the accessibility relation
jointly satisfies the corresponding conditions C}...Cy,.

Before proving completeness some definitions and lemmas are in order.

DEFINITION 3.6 (mc-maximal consistent extension)

Aset X of formulas in For is an mc-maximal consistent extension of a restricted normal modal system
S if:

(1) 8’ € X (where S’ is the set of theorems of S;i.e. 8’ ={a:Fsa});
(2) X is S-consistent (i.e. there is no formula « such that X g« and X g —a); and
(3) for every formula « in For, if C(a) <mthenx € X or ~x €X.

Moreover, an mc-maximal consistent extension X is strict if for any formula 8 € For such that
C(B)>m we have that 8 € X if and only if Fg 8.

LEmMA 3.7 (Lindenbaum lemma)
Let S be a restricted normal modal system. For each S-consistent set of formulas X there exists at
least one mc-maximal consistent extension of S containing X, for any m e N.

PROOF. A maximal consistent extension of § containing X can be obtained by the standard
Lindenbaum’s construction, such an extension is mc-maximal for any m € N. |
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700 Restricted normal modal logics

LeEmma 3.8

Let S be a restricted normal modal system. If X is an S-consistent set of formulas in For such that
C(a) <m for any o € X, then there exists at least one strict mc-maximal consistent extension of S
containing X.

ProoF. By Lemma[37] there exists at least one m¢-maximal consistent extension X’ of S containing
X.Thus, X" =X"\{B | C(B) > m A¥/s B} is astrict mc-maximal consistent extension of S containing X .
|

LEMMA 3.9 -
Let § be an extension of K, ¢ with a finite number of instances of G;’J’C’ (.e., S:Kn’cG’f...G;),
then there exists at least one strict mc-maximal consistent extension of S for any m e N.

PrROOF. Any extension of K with a finite number of instances of the Lemmon—Scott axiomatic schema
is consistent (see [EI]), then any extension S of K, ¢ with a finite number of instances of G;J Ck s also
consistent (since these systems prove less axioms that their non-restricted versions). Consequently,
by Lemma B.8] (taking X =), S has at least one strict mc-maximal consistent extension for any

meN. | |

LeEmMA 3.10
IfS =Kn,cGT...G; and X is a strict mc-maximal consistent extension of S, then X is not a strict
lc-maximal consistent extension of S for any [ #m.

PROOF. Let X’ be an arbitrary strict /c-maximal consistent extension of S. By condition (CT)) in the
definition of complexity function, there exists a propositional variable p such that C(p) =0. Then, for
any k €N, we have that 0%p and =O¥p are not nc-valid and C(0Fp) = C(=O%p) = k. By Theorem[3.3}
it follows that ¥g 0" p, ¥ —=0"p, ¥ 0"+ 1p and ¥g —0" 1 p. If it is supposed that [ # m, there are
two options: (i) if / <m, then O"p ¢ X’ and —O0™p ¢ X', while O"p € X or =O0"p € X; consequently
X #X’; and (ii) if m </, then O"tlpe¢X and —O"Flp¢ X, while O"FTlpeX’ or mO"TlpeX’;
therefore X #X’. In both cases X #X’. [ |

PROPOSITION 3.11
IfS :Kn,CGT ...G}, X is a strict mc-maximal consistent extension of S and «, 8 are formulas in For
such that C(a) <m and C(B) <m, then:

(1) if gy then y € X (independently of the value of C(y));
(2) anBeXifandonly if e €X and B €X;

3) avpBeXifandonlyifeeX or feX;

4) ifaeX and ¢ —> B X then B X.

ProOF. Similar to the classical case. ||

DEFINITION 3.12 (Denecessitation)
Let X be a set of formulas in For, the denecessitation with complexity m of X is the set Den,, c(X)=
{a |OaeX A C(a) <m}.

By applying denecessitation i times to a set X it is obtained the set Denfn cX)={a |DiaeX A
Cla)<m—i}.

DEFINITION 3.13 (Canonical Lc-model)
Given a restricted normal modal system S, the canonical Lc-model of S is the L¢c-model M=
(W,L,R,V) where:
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Restricted normal modal logics 701

(1) W ={w|wis a strict mc-maximal consistent extension of S, for some m € N};

(2) L(w)=m if and only if w is a strict m¢c-maximal consistent extension of S (by Lemma 310 L
is well defined);

(3) wiRwj if and only if L(w;)=m, m=L(w;)+1 and Den,, c(w;) Swj; and

(4) for each formula « € For and each world w, V(a,w)=1 if and only if ¢ ew (if « ¢w then
V(a,w)=0, independently if —« belongs or not to w).

The L-frame F = (W, L,R) will be called the canonical L-frame of S.

By the definitions above, in the canonical Lc-model of a restricted normal modal system § we
have that wR'w" if and only if L(w)=L(w')+i and Den!, ~(w)Cw'.

LEmMMA 3.14 .
Let o be a formula in For and S be an extension of K}, ¢ with a finite number of instances of G;’J Ck ’l,
then g« if and only if « is nc-valid in the canonical Lc-model of S.

PrROOF. Let M =(W,L,R,V) be the canonical Lc-model of S. Suppose that Fg«, then o € X for
any strict n¢-maximal consistent extension of S (by Proposition[3.11] item[I). Consequently, for any
world w € W such that L(w)=n we have that @ ew, then V(a,w)=1; i.e. « is nc-valid in M.

In the other direction, suppose that /g «, then {—a} is S-consistent. If C(«) > n, then « ¢ w for any
w e W such that L(w)=n, and by Lemma [3.9] there exists at least one w’ € W such that L(w')=n,
consequently V(a,w')=0 and « is not nc-valid in M. If C(a) <n, by Lemma there exists a
strict nc-maximal consistent extension of S containing {—«}. Such an extension is a world w in
the canonical Lc-model of S, L(w)=n and V(«,w)=0. Hence, « is not nc-valid in the canonical
Lc-model of S. |

DEFINITION 3.15
A restricted normal modal system S is canonical with respect to a class of L-frames F if and only if
the canonical L-frame of S belongs to F.

LEmMA 3.16
Let S be any consistent restricted normal modal system containing K, ¢ G*, for some G*. Then, the
accessibility relation of the canonical L-frame of S satisfies condition C*.

PrOOF. Let F=(W,L,R) be.the canonical L-frame of S. Suppose that wg,wi,wr € W, L(wg)=m,
max{i+j,k+1} <m<n, wyR'w and woRsz; then L(w;)=m—i and L(wp)=m —k. Consider the
following set:

X={o|Daew AC(e)<m—max{i+j,k+1}}U
{B10'8ewy AC(B) <m—max{i+j,k+1}}.

We will first prove that X is S-consistent: suppose that X is S-inconsistent, then we have that there are
formulas ay,...,aq,B81,..., B4 €X such that Fg—(a A...Aag ABIA...ABp). By defining o =a A
...Aagand B=B1 A...A B, we have that =g —(a A B), which is equivalent to =g o — — 8. Moreover,
by the definition of X, C(a,) <m—(i+j) (for 1 <u<g) and C(B,) <m—(k+1) (for 1 <v <h), then
C(a) <m—(i+j)and C(8) <m— (k+1). Taking into account that Da, ewy, C(May,) <m—iand wj
is an (m — i)c-maximal consistent extension of S, by PropositionB.11](item D) Doy A AT ag €Wy,
then by Proposition 23 (item B) o € wy. By a similar argument 0/ 8 € w.

Now, since o ew;, woR'w; and C(DVa)<m—i then OV € wy. Taking into account that
C(a) <m—max{i+j,k+1I}, then C(O' Vo — OFOla) <m<n and O'0Va — Ok Oly is an instance
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702  Restricted normal modal logics

of G*. By Proposition 31T (item B it follows that 0¥ >l € wg. Thus, due to the presupposition that
woR w>, we have that Gla € wy. Moreover, since 5o — —f, by applying Proposition (item
D) ! times it follows that g 'a — O!=B. Then, by Proposition B (item B), &!—=8 €ws. Since
C(O!=B)=C(—0!'B)<m—k and g O'=B — =0 B, by Proposition B11l(item) it is obtained that
-0/ ew,, leading to a contradiction (since w» is S-consistent, and in the previous paragraph it was
obtained that O/ 8 e w»). Consequently, X has to be S-consistent.

Provided that X is S-consistent, by Lemma[3.8]there exists a strict zc-maximal consistent extension
of X, where z=m —max{i+j,k+1}. Let w, be such an extension. Now, we will proceed by cases:

(1) If i+j=k+1: let w3 =wy, by definition of X and the accessibility relation of F, wiRws3 and
W2R1W3, then wy R]Lw_o, and szlLW3 (if j =0 then wx =w1, and if / =0 then w,. =w»). Therefore,
F satisfies condition C*.

(2) Ifi+j>k+1: in this case we have the following options:

(@) I>0: let w3=w, and wg=wr\|{y |C(y)>m—i—j+IAFsy}. By definition, wy is
embedded in depth (i+j)—(k+1) into wy. Then, by definition of X and the accessibility
relation of F, wiR w3 (if j=0 then ws=w1) and wsR'w3. Consequently, WIR/LW3 and
szlLW3. Then, F satisfies condition C*.

(b) [=0: let w3 =wy (if j =0 then w3 also equals w1) and wq =w,. By definition of X, wy is
embedded in depth (i+/) —k into w. Then, by definition of the accessibility relation of F,
wiR wy. Consequently, wlR’LW3 and W2R2W3. Then F satisfies condition C*.

(3) If k+1>i+j: similar to case 2.

Now, we have all the elements to prove the completeness of Kn,CGT .G

TueOREM 3.17 (Completeness of Ky, ¢G7...Gy,)
If & is nc-valid in all L-frames in which the accessibility relation jointly satisfies conditions C}...Cp,
then « is a theorem of K, cG7...Gy,.

PROOF. Let S be the system K, cG7 ...Gy,. Suppose that ¥ «, then « is not nc-valid in the canonical
Lc-model of S (by Lemma [B.14) and the canonical L-frame of § satisfies conditions C7...Cy, (by
Lemma[3.T6). Therefore, o is not nc-valid in all L-frames in which the accessibility relation jointly
satisfies conditions C7...Cy,. |

4 Defining epistemic logics based on restricted normal modal logics

Epistemic logics are defined as multi-modal logics based on normal modal logics, each modal
connective representing the knowledge of an agent. In this context, as it is mentioned in the
Introduction in Section 1, the system K™ is considered the minimal logic of knowledge. This system
includes a finite number of modal connectives K7, ..., Ky, each of them ruled by the axiom (KJ) and
the necessitation rule. K™ is semantically characterized by multi-agent models, which are structures
M=(W,Pq,...,Pp,V), where W and V are defined like in models for mono-modal logics and
Pq,..., Py, are binary relations used to interpret the respective modal connectives. In epistemic terms,
the relation P; represents the ‘plausibility” with respect to the agent i; i.e. if wP;w’ this means that
for agent i in ‘state’ w the state w’ is ‘plausible’ (for details see [Lll, Chapter 7]).

220z Jequisidag 0z uo Jasn Ausienun 114v3 AQ 6€22101/L89/v/¥Z/eo14e/woo60]/woo dno olwepeoe//:sdjy woly papeojumod



Restricted normal modal logics 703

In an similar way, the system Kr’f ¢ could be defined as the restricted multi-modal system containing
a finite number of modal connectives K1, ..., K, each of them ruled by the axiom and the rule
(Nec,.c). Then, levelled multi-agent models could be defined as structures M = (W, L, Py,..., Py, V),
where W and L are defined as in Definition 272 Py, ..., P,, are binary relations on W, subject to the
condition that if w;P;w; then L(w;)=L(wj;)+1; and condition 3 in Definition[2.7]have to be adapted
in the obvious way (if C(a) <L(w;), then V(K;a,w;)=1 if and only if V(e,w;)=1 for all w; such
that w;P;w;). Similarly to the case of K", the soundness and completeness of K mc with respect to
levelled multi-agent models are corollanes of soundness and completeness of K, ¢ with respect to
Lc-models (Theorems 2. 13 and P.14).

Some interesting properties of KZ’C are the following:

* Depending on n and C, it is possible to have that FI—Km o and Necl(F)J%Km Kio, where
Neci(T')={K;y :y €T'} (for instance, if ' ={pVq,—q},a=p,n=1and C(p)= C(q)— 1). This
property shows how the logical omniscience problem can be partially controlled in K" . Note
that this control depends on the parameters n and C. For instance, if n>0 and C is such that
C(p)=0 for any propositional variable p, then ¥ K¢ K« for any CPL-tautology . However, if
n=1and C is such that C(p)=C(g)=1,and C (r) 0 for any propositional variable r different
of p and ¢, then J%Km Ki(((pvg)A—qg)—p) and ((pV g)A—q)— p is a CPL-tautology (the
same situation happens with any CPL-tautology involving p or g).

* Condition (CI), in the definition of complexity function, allows to assign different complexities
to different propositional variables, this property can be used to represent the fact that to ‘know’
some atomic propositions can be more difficult than to ‘know’ other atomic propositions. For
instance, to know that ‘7,919 is an odd number’ is easier than to know that “7,919 is a prime
number’, and both propositions can be represented by atomic formulas.

* Itispossible that, for some formulas & and 8, we have that - K < B, K" Kio and ¥ k. Ki iB
(for instance, if a =p—p, B=qg—¢q, n=1, C(p)=0 and C(q)_ 1). ThlS roperty could be
useful to deal with the problem of accessibility of knowledge described in [[4].

InK ,’1” ¢» C can be viewed as a function that assigns ‘knowledge complexity’ to propositions; i.e. for
each formula «, the function C assigns a complexity or difficulty of ‘knowledge’ the fact represented
by «, independently of what ‘knowledge’ means. The parameter n can consequently be interpreted
as the ‘knowledge depth’ of the agents, in the sense that agents only can know propositions with
complexity <n. Under these interpretations, in KmC it is assumed that all agents have the same
knowledge depth. More interesting epistemic logics could be defined if parameters n and C are
independently associated with each modal connective, in this way groups of agents with different
knowledge capacities could be more adequately formalized.

Moreover, an infinity of restricted normal multi-modal logics could be defined by adding to
K’" different instances of G, ik, l, and some of the systems obtained could capture the notion
of knowledge in a more reallstlc way, in accordance with different philosophical or technical
assumptions. The theorems proved in Section[3assure the soundness and completeness, with respect
to the corresponding classes of levelled multi-agent models, of any multi-modal logic defined in
this way.

5 Final remarks

The logical framework here introduced is general enough to allow the construction of a huge variety
of modal logics, each of them with different purported applications. In Section[d] we sketch a way
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in which restricted normal multi-modal logics can be used to define epistemic logics, but the full
definition of particular systems of epistemic logic based on these ideas is a task to be addressed in
future works.

Moreover, by analysing the proofs of soundness and completeness for K;, ¢ (Theorems 213 and
2.14), it seems to be possible to relax the conditions in the definition of complexity function for
this specific system, but some technical details have to be addressed. By proving soundness and
completeness for specific extension of K, ¢, in the same constructive way followed in the proofs of
Theorems 213 and Z-T4] it could be possible to extend the class of complexity functions for these
systems, in this way opening the possibility of defining even more restricted normal modal systems
and extending its possible applications. In each application, the interpretation of the parameters n
and C can be totally different.

As a final remark, in view of the multiple applications that modal logic has in computer science
and other fields, it is also important to investigate if this new approach could be advantageous for
some of these applications. In this context, a detailed study of the algorithmic decision procedures
for these logics (based on tableaux, like those described above, or perhaps other methods) and their
respective computational complexities are of great importance.
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