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Introduction

The study of structural systems considering inelastic response was, until very recently,
only possible through the use of commercial packages with subsequent limitations as
research tools. Commercial packages are very rigid since not all of them allow the
addition of independent elements and/or material models as often required in research
activities. At the same time the used solvers in commercial codes are of the black-box
type making its extension to general tasks an impossible goal. The recent development
of high level languages (e.g., Python) facilitates the development of highly efficient
in-house implementations. This project describes a general in-house finite element as-
sembler and solver aimed at studying the non-linear response of dynamic systems. The
code is intended, and has been developed, to be used in the testing of material models,
complex kinematic formulations and/or novel structural systems commonly required
in research activities. The code has been implemented on top of SolidsPy1 and has
been deployed in a GitHub repository2 which allows portability, strict control version
and facilitates it extension in future developments. The repository describes the main
futures of the program together with several application problems in terms of Jupyter
Notebooks which can be downloaded for execution in a local client or run directly in
the repository using a remote virtual server. These Jupyter Notebooks are interactive
computational environments which combine live code, equations, visualizations and
narrative text. The documents provided as appendices are renderized versions of the
Jupyter Notebooks but for proper visualization it is recommended that the reader uses
the on-line version of this document.

NLDYNA is a generalized finite element program for the solution of time-dependent
non-linear problems. The code is able to handle static and dynamic analysis problems
assumed of hyperbolic nature. It is generalized as it can solve user defined problems
in different physical contexts through the implementation of user elements and user
constitutive responses.

In NLDYNA a dynamic problem is splitted into several time increments and each
increment is solved by a Newton-Raphson algorithm. Time stepping is conducted by
an implicit Wilson θ-method. The solution of linear static problems takes place in a
single increment and a single iteration.

1SolidsPy: 2D-Finite Element Analysis with Python. Gómez, Juan and Guaŕın-Zapata, Nicolás
(2018). https://github.com/AppliedMechanics-EAFIT/SolidsPy

2https://github.com/jgomezc1/nldyna
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A model is defined in NLDYNA through 5 easy to write input data files containing:

• (i) Basic problem parameters.

• (ii) Nodal point data.

• (iii) Element data.

• (iv) Loads data.

• (v) Material data.

The model can use elements available in the code’s own library, specific user defined
elements or a combination of both. Similarly, a model can also use NLDYNA’s available
elements in combination with user defined material models.

The code has the following features:

It is multi-physics oriented: The code is a general dynamic Newton-Raphson solver
where the physical context is provided by the user in terms of material and/or element
models.

The implementation has been fully parametrized: It does not have an implicit
space dimensionality and problems with an arbitrary number of degrees of freedom per
node can be solved.

Python based user elements and material models: The implementation of user
elements and user constitutive models is highly simplified in comparisson with commer-
cial codes as it is conducted in a high level language.

Easily coupled with independent scripts: Since the code is fully open and written
in a modular structure it can be coupled with external independent scripts required in
specific analysis and design problems.
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NLDYNA-Nonlinear
Dynamic Analysis.

Introduction

The study of structural systems considering inelastic response was, until very recently, only
possible through the use of commercial packages with subsequent limitations as a
research tool. For instance, commercial packages are very rigid since not all of them allow
the addition of independent elements and/or material models as o�ten required in
research activities. In top of that restriction the used solvers in commercial codes are of the
black-box type making its extension to general tasks an impossible goal. With the recent
development of high level lenguages (like Python) it is now possible to develop very
e��cient in-house implementations. This project describes a general in-house �nite
element assembler and solver aimed at studying the non-linear response of dynamic
systems. The code is intended to be used in the testing of material models and/or complex
kinematic formulations commonly required in research activities. The code has the
following advantages:

It is multiphysics oriented: The code is just a general dynamic Newton-Raphson
solver where the physical context is provided by the user in terms of material and/or
element models.
The implementation has been fully parametrized: It does not have an implicit space
dimensionality and problems with an arbitrary number of degrees of freedom per
node can be solved.
Python based user elements and material models: The implementation of user
elements and user constitutive models is highly simpli�ed in comparisson with
commercial codes as it is connducted in a high level language like Python.
Easily coupled with independent scripts: Since the code is fully open and written in a
modular structure it can be coupled with external independent scripts required in
speci�c analysis and design problems.

Nonlinear dynamic analysis of generalized �nite
element problems

NLDYNA is a generalized �nite element program for the solution of time-dependent non-
linear problems. The code is able to handle static and dynamic analysis problems assumed
of hyperbolic nature. It is generalized as it can solve user de�ned problems in di�ferent
physical contexts through the implementation of user elements and user constitutive
responses.

In NLDYNA a dynamic problem is splitted into several time increments and each
increment is solved by a Newton-Raphson algorithm. Time stepping is conducted by an
implicit Wilson -method. The solution of linear static problems takes place in a single
increment and a single iteration.

θ
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A model is de�ned in NLDYNA through 7 easy to write input data �les containing basic
problem parameters: nodal point data, element data, loads data and general constraints
assignments data. The model can use elements available in the code's library, speci�c user
de�ned elements or a combination of both. Similarly, a model can also use NLDYNA's
available elements in combination with user de�ned material models.

The following sections describe aspects related to the implementation and general use:

General problem formulation: Time stepping scheme (02_Formulation.ipynb) and
overall program algorithms.
Nonlinear Dynamic Analysis program: General description (03_NLDYNA.ipynb) of
input parameters, output requests and general concepts.
User elements subroutines: Example of implementation of a UEL
(04_UEL_subroutine.ipynb) subroutine.
User material subroutines: Example of implementation of a UMAT
(05_UMAT_subroutine.ipynb) subroutine.

The following sections describe simple to follow applied examples:

Example 01: Linear static (06_Example01.ipynb) analysis of a 2D
frame.
Example 02: Linear dynamic (07_Example02.ipynb) analysis of a linear
2D frame.
Example 03: Linear dynamic (08_Example03.ipynb) analysis of a linear
3D frame.
Example 04: Nonlinear static (09_Example04.ipynb) analysis of a
simple 1D mass-spring system.
Example 05: Nonlinear dynamic (10_Example05.ipynb) analyisis of a
2D frame.
Example 06: Design of laterally loaded pile (11_Example06.ipynb).

file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/02_Formulation.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/03_NLDYNA.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/04_UEL_subroutine.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/05_UMAT_subroutine.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/06_Example01.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/07_Example02.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/08_Example03.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/09_Example04.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/10_Example05.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/11_Example06.ipynb
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Time integration
Step by step based methods are general approaches to obtain the system's response to
dynamic loading. In these formulations, both the loading and the response history are
divided into a sequence of time steps. Each step constitutes an independent analysis
where the dynamic problem is solved based in the solution of the previous step. In the
�nite element method the time dependent system of equations is written like:

where ,  and  are standard mass, damping and sti�fness �nite element-like
matrices, while ,  and  are generalized acceleration, velocity and

displacement nodal vectors. These are termed generalized as they are not necessarily
mechanical quantities. Based on this formulation, it's posible to consider the nonlinear

behavior of the system simply by assumming that the assembled properties remain
constant during each step and that the change of those properties only happens from one

step to the next. Hence, nonlinear analysis becomes a sequence of linear analysis of a
changing system (Clough & Penzien, 2003). Consequently, it is convenient to reformulate

the system response in terms of the incremental equation of motion, due to the
assumption that in nonlinear analysis the properties of the system remains constant only

in short increments of time or deformation. 

In this development, the nonlinear behavior is considered in changes in the sti�fness
contribution. Time integration is conducted through a "  Wilson" method.

The system's nonlinear response is obtained considering a generalized Newton-Raphson
iteration scheme, in which the e�fective tangent sti�fness matrix  is calculated at the
time  (the beginning of the time step), and that is used through each iteration of changing

MA(t) + CV (t) + KU(t) = P(t)

M C K

A(t) V (t) U(t)

MΔA + CΔV + KΔU = ΔP

θ

KT

i
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deformation  within that time step. The tangent sti�fness matrix  is updated for
each iteration until  it becomes small enough.

In solving the nonlinear time step, two convergency criteria are considered. The iteration
step is deemed to be completed as soon as both the residual forces and the residual
deformations (  and ) are smaller than the tolerance value stablished by the user.

In the following, it will be exposed a comparison between analytical solution of the linear
response of a single degree of freedom system due to an armonic loading excitation and
the response that is obtained with "The  Wilson" step by step procedure:

Δu KTi

Δui

Δfi Δui

θ
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Contents under Creative Commons BY 4.0 license and code under MIT license. © Julian
Parra 2019. This material is part of the Master of Engineering program by Julian Parra at
Universidad EAFIT.

Input parameters,
Output and General
concepts.
3.1. Input �les

A problem is de�ned in NLDYNA in terms of 7 input data �les written in plain text format.
Input �les associated to di�ferent problems can be found in the examples section of this
REPO.
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3.1.1. General input parameters

The parameters  �le contains global data required for the problem solution.

The problem parameters are:

DeltaT: Time step de�ning the input excitation when performing
dynamic analysis (NLDYNA) or incremental pseudo-time step when
conducting non-linear static analysis (NLSTA). This time step is
di�ferent from the solution time step which is directly computed by
the program.
Total-Time : Total extension of the analysis time window. ( This
parameter may be di�ferent from the total duration of the input
excitation).
Tolerance: Precision employed to control the Newton-Raphson
iterations (dimensionless).
Maximum number of iterations: Maximum number of Newton-
Raphson iterations within a time or deformation increment.
NLSTA: Integer �lag de�ning the analysis type (1 = Perform nonlinear
static analysis).
NLDYNA: Integer �lag de�ning the analysis type(1 = Perform
nonlinear dynamic analysis).

A value of 1 for any of the following set of parameters de�nes if inertial e�fects are active
along the associated degree of freedom during a dynamic analysis step. These parameters
are active only for NLDYNA = 1 .
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Accel-UX: Activate inertial e�fects along the "X" direction.
Accel-UY: Activate inertial e�fects along the "Y" direction.
Accel-UZ: Activate inertial e�fects along the "Z" direction .
Accel-RX: Activate inertial e�fects along the rotational mass along
the "X" direction.
Accel-RY: Activate inertial e�fects along the rotational mass along
the "Y" direction.
Accel-RZ: Activate inertial e�fects along the rotational mass along
the "Z" direction.

This �le also contains two general storage options.

Storage state variables history (1 = Storage)
Storage internal forces history (1 = Storage)
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3.1.2. Material pro�les

Material properties are de�ned in terms of material profiles . Since the code is not
speci�c to any particular physical context the material properties are always user de�ned.
In this context a material profile  is a set of parameters de�ning material behavior
and to be used by the di�ferent elements in the model. Geometric parameters, like those
involved in the de�nition of structural elements are treated as material properties. The
number of parameters may be di�ferent in each independent pro�le.

The sample pro�le shown in the �gure below is de�ned by a 7-parameters set. This speci�c
material pro�le is used by structural elements. (see Example 02 for reference)

The set of parameters required in the de�nition of the material pro�le used in sample
problem 02 (Element type = 2 ) are

and where

A: Cross sectional area.
Iz: Moment of inertia along Z  axis (out of the window).
E: Young's modulus.

: Material's density
: Coe��cient to calculate the element's damping matrix
: Coe��cient to calculate the element's damping matrix

g: Value of gravity

Review the module uelutil.py  for a de�nition of the di�ferent parameters that must
be de�ned for the remaining elements currently available in NLDYNA

Profile = [A, Iz,E, ρ, , , g]αdamp βdamp

ρ

αdamp

βdamp
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3.1.3. Nodal coordinates and boundary conditions

This �les contains nodal coordinates (CX, CY and CZ). At each node the user must also
de�ne if the degrees of freedom (TrasX, TrasY, TrasZ, RotX, RotY and RotZ) are active or
restrained. By default all the degrees of freedom are assumed active (a value of 0) while a
value of -1 de�nes a restrained degree of freedom.

The user must restrain all those degrees of freedom associated to a non existing space
dimension. For instance in a two-dimensional elasticity problem values of -1 must be
assigned to those degrees of freedom associated to TrasZ, RotX, RotY and RotZ (see
examples 02 for reference).
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3.1.4. Elements de�nition �le

This �le contains data required to de�ne the di�ferent elements within the model. The
number of parameters varies depending upon the element type. Each element is de�ned
by a line with the following parameters:

3.1.4.1. Element identi�er: Integer de�ning the element ID.

3.1.4.2. Element type: Integer de�ning the element type. 

The following elements are currently available in NLDYNA:

- Type = 0. Linear - 1D Spring.
- Type = 1. Linear - 2D Simple frame.
- Type = 2. Linear - 2D Full frame.
- Type = 3. Linear - 2D Truss.
- Type = 4. Nonlinear - 4 noded plane strain.
- Type = 5. Nonlinear - 1D Spring.
- Type = 6. Linear - 2D Shear-Rotational spring.
- Type = 7. Linear - 1D Rotational spring.
- Type = 8. Nonlinear - 1D Rotational spring. 
- Type = 9. Nonlinear - 1D soil spring with a bilinear P-Y curve.  
- Type = 10. Linear - 3D Full frame considering shear e�fects

3.1.4.3. Material/Section pro�le for the current element. 

Material/Section pro�le identi�er assigned to the current element.
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3.1.5. Nodal (static) loads

Nodal loads are speci�ed in this �le. If NLSTA = 1 , these loads will be treated as
pseudo-static loads and are applied incrementally from 0 up to its maximum value; if 
NLDYNA = 1 , nodal loads will be treated as permanent loads and will be added to each

time interval. A static load is speci�ed by its nodal ID  and the load magnitude along a
given degree of freedom.

3.1.6. Ground acceleration:

A value of NLDYNA = 1  implies that the program is expected to conduct nonlinear
dynamic analysis requiring as input excitation a ground motion time history. Only the
acceleration history must be speci�ed at this �le. The format of the time history �le is
shown in the �gure below.
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3.1.7. General constraints:

As many automated structural analysis computer programs, NLDYNA admits to use
master-slave general constraints options. Two general types of constraints are de�ned:

Floor diaphragms: This is activated when Type = 0 to n, and MSTND
= 0. For this case, NLDYNA automatically calculates the location of
the master node based on the center of mass of the constraint
nodes.
Rigid constraints: This is activated when Type = -1 and MSTND =
Node ID.

For general rigid constraints, master-slave degrees of freedom should be speci�ed. For
example, in rigid bodies, the most general three-dimensional constraint in which all
degrees of freedom are related to the master node rigid body displacements, TrasX, TrasY,
TrasZ, RotX, RotY, RotZ should be equal to 1.
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3.2. Output

By default, the program returns the following results:

The system's natural periods.
Nodal displacements for each time step.
Internal forces for each element at each time step.
State variables at each time step. (This concept will be explained in section 3.3.1).

In the �gure below, it is shown the displacement history obtained in the solution of
Example 05, see notebook 10 for reference.
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3.3. General concepts

To allow for a truly general multiphysics environment the nonlinear �nite element code 
NLDYNA  uses the concept of User elements . In a user element the physics per se is

directly handle by the user which provides NLDYNA  with the Jacobian matrix, residual
vector and those variables which history are updated in each Newton iteration. Since the
main program is unaware of the speci�c physics of the problem the variables are termed 
State Variables .

3.3.1. State variables

The state variables is the set of problem speci�c variables which are of interest in the
physical problem being solved and those variables whose time history is required for the
computation of the Jacobian matrix and residual vector. During program execution the last
converged value of the state variables vector is passed to the element subroutine where it
is updated depending upon the increment of the problem primary variable.

The concept of State Variables is brie�ly explained in terms of the simple example
corresponding to a type = 5  element corresponding to a Nonlinear - 1D Spring along
the horizontal direction. The constitutive response of the spring is described by a bilinear
isotropic hardening elasto-plastic model (Simo & Hughes, 1991.). In this problem the state
variables are:

 Stress at increment 
 Spring deformation at increment 

 Elastic deformation at increment 
 Plastic defomration at increment 

 Isotropic hardening variable at increment 

In the �gure below, it is shown the Moment-curvature history for one of the rotational
springs used in the solution of Example 05 (see notebook 10 for reference).

svar = [ , , , , ]σi δi δelasi δplasi
αi

:σi i

:δi i

:δelasi i

:δplasi
i

:αi i
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3.3.1. User elements

A user element  subroutine is the set of functions required for the computation of the
element contribution to the problem Jacobian matrix and the corresponding residual
vector. Since this concept is strongly tied to the Newton-Raphson algorithm it is important
that the user reviews Notebook 04 UEL (04_UEL_subroutine.ipynb) and Notebook 05 UMAT
(05_UMAT_subroutine.ipynb).

In [1]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[1]:

file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/04_UEL_subroutine.ipynb
file:///C:/Users/AX201%20GMRS/Dropbox/REPOS/nldyna/notebooks/05_UMAT_subroutine.ipynb
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User element
subroutines
Introduction

In very simple terms a �nite element code, regardless of its physical context, can be viewed
as an assembler of element contributions to a global system of equations complemented
with a solver. If the code is intended for the solution of non-linear problems the assembly
and solution stages can be combined into a Newton-Raphson algorithm. In either case, the
particular physical context of the problem, is enclosed in those subroutines in charge of
computing the element contributions. Following the jargon of a popular multiphysics code
like ABAQUS  these speci�c subroutines in NLDYNA  are also called user 
subroutines .

There are of two types of user subroutines, namely (i) user material subroutines UMATS
and (ii) user element subroutines UELS . We will discuss both here.

In the particular case of stress analysis a �nite element UEL  subroutine computes the
sti�fness matrix and internal (or consistent) nodal loads. The computation of the sti�fness
matrix reduces to the numerical determination of integrals like:

where the term:

is the Material Jacobian or constitutive tensor.

If the integration to compute  is conducted via Gauss quadrature, the material jacobian
must be computed at every integration point. Moreover, in complex constitutive models
the material jacobian is a function of a wide variety of physical parameters therefore the
values of these parameters must also be available at every integration point. The process of
computing  at the integration points is performed by a material user subroutine UMAT.

In this notebook we will discuss the implementation of a user element subroutine where it
will be assumed that the material model is available. The speci�c implementation of the 
UMAT  subroutine will be discussed elsewhere.

K = B d V∫
V

B
T

∂σ

∂ε

C =
∂σ

∂ε

K

C
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User Element Subroutine (UEL)

A so-called user element subroutine  must be coded into NLDYNA  to compute
the contribution of the element to the full �nite element model. In the most general
context a user element is intended to be used in a non-linear dynamic analysis and it is
expected that the user is familiar with time stepping procedures and with the general form
of Newton-Raphson algorithms.

In the current non-linear dynamics context the user subroutine must de�ne the
contribution of the element to the residual vector; the contribution of the element to the
jacobian (sti�fness) matrix and must also form the mass and damping matrix (when
needed), and update all the solution state variables.

At each call to the UEL  subroutine from NLDYNA  the main program provides the
subroutine with values of the element nodal coordinates and all solution-dependent nodal
variables (like displacements in elasticity), at all degrees of freedom associated with the
element as well as values at the beginning of the current increment of the solution 
dependent state variables  associated with the element. Tipically these 
solution dependent state variables  are used in the computation of the

material response.

Subroutine interface (input and output parameters)

The following set of parameters is passed from the main program to the user subroutine:

iele_disp:  (ndarray) Nodal displacements at time t for all the degrees of
freedom of the element.
coord:  (ndarray) Nodal coordinates for the nodal points de�ning the element.
par:  (ndarray) Material parameters for the material pro�le associated to the

element.
svar:  (ndarray) Solution dependent state variables at the beginning of the

increment.

The following set of parameters is returned by the UEL  subroutine to the main program:

kG:  (ndarray) Element contribution to the Jacobian (or sti�fness) matrix.
mG:  (ndarray) Element contribution to the mass matrix (when needed).
cG:  (ndarray) Element contribution to the damping matrix (when needed).
svar:  (ndarray) Updated vector of solution dependent state variables at the end of

the increment.
ilf:  (ndarray) Residual vector.

Bi-lineal plane strain quad element with non-linear constitutive
response

The following example describes the implementation of a user element subroutine
( UEL ) for a bi-lineal 4-noded plane strain cuadrilateral element with a non-linear
constitutive response. The material model (discussed elsewhere) is the plane strain
elastoplastic model with combined non-linear isotropic/kinematic hardening formulated
in Simo and Hughes (1998). The integration algorithm is a return mapping scheme.
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The element data is divided in (i) solution dependent nodal data which in this case
corresponds to the displacements associated to the degrees of freedom for the element
and (ii) solution dependent state variables. This last category includes stresses and strains
at the Gauss points as well as other variables required in a speci�c analysis or in the
computation of history dependent constitutive responses.

In this particular analysis the solution dependent state variables  is de�ned
as follows:

Stress tensor: This is one of the primary variables in the analysis.
Total strain tensor: This is one of the primary variables in the analysis.
Elastic strain tensor: Important per se and also required in the computation of the
constitutive response.
Plastic strain tensor: Required in the computation of the constitutive response.
Back stress tensor: Required in the computation of the constitutive response in order
to consider kinematic hardening.
Equivalent plastic strain: Required in the computation of the constitutive response in
order to consider isotropic hardening.
Equivalent Misses stress: Required in the computation of the constitutive response in
order to consider isotropic hardening.

In this 2D problem each tensorial variable contributes with scalar components. Since there
are 5 tensorial quantities and de�ned at 4 Gauss integration points that will make a total of
80 state variables for the element. Also, in the computation of the isotropic hardening
behavior we require the equivalent plastic strain and the corresponding equivalent stress
(Misses stress). Thus, in total there are 88 state variables per element. Therefore the vector
of state variables evolving back and forth bewteen the main program and the user
subroutine has a total of 88 components. This vector is termed svars  in the subroutine.

The subrotine parameters de�ned next.

Parameters 
---------- 
coord    : ndarray 
        Nodal coordinates. 
props    : ndarray 
        Material properties  for the element. 
svars    : ndarray 
        State variables array at all integration point
s. 
du       : ndarray 
        Nodal (incremental) displacements vector.
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The subroutine is conformed by an external loop which conducts Gauss point
computations. Let us focus in one of these computations which occur a�ter the Gauss point
coordinates and weighting factor have been retrieved.

To start these computations the state variables associated to the current Gauss point must
be retrieved from the 88-positions vector svars . This is achieved by the svars
handling subroutine svarshandl . The subroutine returns the stress and the total strain
tensors at the Gauss point, while the remaining state variables at the Gauss point are
stored in a local vector named statev . In this problem this vector will store the elastic
and plastic strain tensors, the back stress tensor and the equivalent plastic strain and
Misses stress. The called to the subroutine is shown below.

svars , statev , stress , strann = svarshandl(0 , svars , 
statev , stress , strann , igp)

The second relevant aspect of the subroutine is the computation of the material jacobian
or constitutive tensor. This tensor is computed by the UMAT  subroutine like

C , stress , statev = umat_PCLK(stress , strann , dstran , 
statev , props , ntens)

Note that the subroutine receives as input the local state variables at the Gauss point 
statev  in addition to the stress and strain tensors and the material properties

associated to the material pro�le. The UMAT  subroutine returns the constitutive tensor 
C  and updated values of stress, strain and state variables.

A�ter accumulation of the sti�fness matrix (and others) at the Gauss point is completed the
last step is to call once again the svars  handling subroutine svarshandl  but now in
the reverse direction, i.e., local updated state variables are stored into the global state
variables vector. This is shown in the following call:

svars , statev , stress , strann = svarshandl(1 , svars , 
statev , stress , strann , igp)

In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import *
from uel_solid import *
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In [2]: def uel4nquad_PLK(coord, props , svars , du): 

   rho = props[6] 
   nstatev = 14 
   ntens  = 4 
   stress = np.zeros([ntens])  
   strann = np.zeros([ntens])  
   dstran = np.zeros([ntens]) 
   statev = np.zeros([nstatev]) 
    
   kl     = np.zeros([8, 8]) 
   ml     = np.zeros([8, 8]) 
   cl     = np.zeros([8, 8]) 
   rhsl   = np.zeros([8]) 
   XW, XP = gpoints2x2() 
    
   ngpts = 4 
   for i in range(0, ngpts): 
       ri  = XP[i, 0] 
       si  = XP[i, 1] 
       alf = XW[i]         
       igp = i*22 
       svars , statev , stress , strann = svarshandl(0 , svars , statev , stress , st
nn , igp) 
        
       ddet, B = stdm4NQ(ri, si, coord) 
       dstran  = np.dot(B,du) 
       strann  = strann + dstran 
       C , stress , statev = umat_PCLK(stress , strann , dstran , statev , props , nt
s) 
       rhsl = rhsl + np.dot(B.T,stress)*alf*ddet                         
       kl = kl + np.dot(np.dot(B.T,C), B)*alf*ddet 
       N  = sha4(ri , si ) 
       ml = ml + rho*np.dot(N.T , N)*alf*ddet 
        
       svars , statev , stress , strann = svarshandl(1 , svars , statev , stress , st
nn , igp) 
          
   return kl, ml, cl, svars, rhsl

Upon execution the subroutine returns the following parameters

kl       : ndarray 
        Element stiffness matrix 
ml       : ndarray 
        Element mass matrix 
svars    : ndarray 
        Updated state variables array for the element 
rhsl     : ndarray 
        Consistent internal loads vector 

To test and execute the subroutine the following block of code emulates the required
entries from the main program to the element subroutine.
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In [3]: nprops = 7
nsvars = 88
ntens  = 4
props   = np.zeros([nprops])
svars   = np.zeros([nsvars])
du = np.zeros([8])
coord =([0.0 , 0.0], [1.0 , 0.0], [1.0 , 1.0], [0.0 , 1.0])
props[0]= 52.0e3
props[1]= 0.33
props[2]= 60.0
props[3]= 37.0
props[4]= 383.3
props[5]= 2040.0
props[6]= 1000.0
kl, ml, cl, svars, rhsl = uel4nquad_PLK(coord, props , svars , du)

Results

In [4]: print(kl)
print(rhsl)

References

Simo, Juan C., and Thomas JR Hughes. Computational inelasticity. Vol. 7. Springer Science
& Business Media, 2006

In [5]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

[[ 32198.14241486  14374.17072092 -22423.70632464   4599.73463069 
  -16099.07120743 -14374.17072092   6324.6351172   -4599.73463069] 
 [ 14374.17072092  32198.14241486  -4599.73463069   6324.6351172 
  -14374.17072092 -16099.07120743   4599.73463069 -22423.70632464] 
 [-22423.70632464  -4599.73463069  32198.14241486 -14374.17072092 
    6324.6351172    4599.73463069 -16099.07120743  14374.17072092] 
 [  4599.73463069   6324.6351172  -14374.17072092  32198.14241486 
   -4599.73463069 -22423.70632464  14374.17072092 -16099.07120743] 
 [-16099.07120743 -14374.17072092   6324.6351172   -4599.73463069 
   32198.14241486  14374.17072092 -22423.70632464   4599.73463069] 
 [-14374.17072092 -16099.07120743   4599.73463069 -22423.70632464 
   14374.17072092  32198.14241486  -4599.73463069   6324.6351172 ] 
 [  6324.6351172    4599.73463069 -16099.07120743  14374.17072092 
  -22423.70632464  -4599.73463069  32198.14241486 -14374.17072092] 
 [ -4599.73463069 -22423.70632464  14374.17072092 -16099.07120743 
    4599.73463069   6324.6351172  -14374.17072092  32198.14241486]] 
[0. 0. 0. 0. 0. 0. 0. 0.] 

Out[5]:



17/6/2020 05_UMAT_subroutine

file:///C:/Users/AX201 GMRS/Dropbox/REPOS/nldyna/notebooks/05_UMAT_subroutine.html 1/5

Contents under Creative Commons BY 4.0 license and code under MIT license. © Julian
Parra 2019. This material is part of the Master of Engineering program by Julian Parra at
Universidad EAFIT.

User material
subroutines
Introduction

This notebook discusses the implementation of user material subroutine UMAT . The
particular subroutine corresponds to the classical metal plasticity model in a -  - theory
formulation. The subroutine is for plane strain idealizations and it considers non-linear
combined isotropic/kinematic hardening.

The formulation of the model is detailed in Simo and Hughes (1998). The user subroutine
corresponds to the return mapping integration algorithm. An extended version of the
model (considering damage and thermal e�fects) together with the integration algorithm
is formulated in Gomez and Basaran (2004).

J 2

Subroutine interface (input and output parameters)

The following set of parameters is passed from the main program to the user subroutine:

stress:  (ndarray) Stress tensor at the current integration point at the beginning
of the increment.
strann:  (ndarray) Total strains tensor at the current integration point.
dstran:  (ndarray) Incremental strains at the current integration point
statev:  (ndarray) Sate variables array at the current integration point at the

beginning of the increment.
props:  (ndarray) SMaterial properties for the element
ntens:  (int) Number of components for the stress and strain tensors..

The following set of parameters is returned by the UEL  subroutine to the main program:

C:  (ndarray) Constitutive tensor.
stress:  (ndarray) Updated stress tensor at the current integration point.
statev:  (ndarray) Sate variables array at the current integration point at the end

of the increment.
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In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import *
from uel_solid import *
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In [2]: def umat_PCLK(stress , strann , dstran , statev , props , ntens): 
   """Return mapping integration algorithm for J2-flow theory
      rate independent plasticity under plane strain conditions
      combined isotropic kinematic hardenig (see Simo, Juan C., and
      Thomas JR Hughes. Computational inelasticity. Vol. 7.
      Springer Science & Business Media, 2006).
   
   statev     : nd array
              Sate variables array at the current integration point
              at the beginning of the increment.
              4 components of the elastic strain tensor
              4 components of the plastic strain tensor
              4 components of the back stress tensor
              1 equivalent plastic strain
              1 equivalent stress
   """ 
    
   toler = 1.0e-7 
   istop = 1 
    
   eelas   = np.zeros([4]) 
   eplas   = np.zeros([4]) 
   xback   = np.zeros([4]) 
   flow    = np.zeros([4]) 
   eqplas = 0.0 
   smises = 0.0 

   statev , eelas , eplas , xback , eqplas , smises = stv_handl( 0 , statev , eelas , 
plas , xback , eqplas , smises , ntens) 
    
   Emod       = props[0] 
   enu        = props[1] 
   eg2=Emod/(1.0+enu) 
   eg = eg2/2.0     
   sig0    = props[2] 
   sigsat  = props[3] 
   hrdrate = props[4] 
   hmod    = props[5] 
       
   C = elas_tensor(enu , Emod)    
   stress = stress + np.dot(C , dstran) 
   shydro =(stress[0]+stress[1]+stress[2])/3.0 
   eelas  = eelas + dstran 
   sdev = deviator(stress) 
   stsrel = sdev - xback 
   smises = vmises(stsrel) 
    
   fbar = np.sqrt(2.0/3.0)*smises     
   syiel0 , syieldk , ehardi , ehardk = uhardnlin(sig0 , sigsat , hrdrate , hmod , eq
as) 
   syield   = syiel0 
   syieldk0 = syieldk 
    
   if fbar > (1.0+toler)*syiel0: 
       flow = stsrel/fbar        
       gam_par , eqplas , syieldk , istop = local_NR(syield, syieldk0 , ehardi , ehar
, hmod , sig0 , sigsat , hrdrate , eqplas , fbar , eg) 
       for k in range(3): 
           xback[k]  = xback[k] + np.sqrt(2.0/3.0)*(syieldk-syieldk0)*flow[k] 
           eplas[k]  = eplas[k] + gam_par*flow[k] 
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           eelas[k]  = eelas[k] - eplas[k] 
           stress[k] = flow[k]*syield + xback[k] + shydro 
       xback[3] = xback[3] + np.sqrt(2.0/3.0)*(syieldk-syieldk0)*flow[3] 
       eplas[3]  = eplas[3] + 2.0*gam_par*flow[3] 
       eelas[3]  = eelas[3] - eplas[3] 
       stress[3] = flow[3]*syield + xback[3] 
       eqplas = eqplas+np.sqrt(2.0/3.0)*gam_par 
       C = np.zeros((4 , 4)) 
       C = plas_tensor(gam_par , fbar , flow , ehardk , ehardi , enu , Emod)        
#
# Store updated values of state variables
# 
   statev , eelas , eplas , xback , eqplas , smises = stv_handl( 1 , statev , eelas , 
plas , xback , eqplas , smises , ntens) 
       
   if istop == 0: 
       print('local plasticty algorithm did not converged') 
       print('After' , iter , 'iterations') 
       print('Last value of the consistency parameter' , gam_par)     
            
   return C , stress , statev

To test and execute the subroutine the following block of code emulates the required
entries from the element subroutine to the material subroutine.

In [3]: nstatev = 14
ntens  = 4
statev = np.zeros([nstatev])
stress = np.zeros([ntens])  
strann = np.zeros([ntens])  
dstran = np.zeros([ntens])
nprops = 7
props   = np.zeros([nprops]) 

dstran[0] =-0.0001/3.0
dstran[1] = 0.0001 

props[0]= 52.0e3
props[1]= 0.33
props[2]= 60.0
props[3]= 37.0
props[4]= 383.3
props[5]= 2040.0
props[6]= 1000.0 

C , stress , statev = umat_PCLK(stress , strann , dstran , statev , props , ntens)

Results

In [4]: print(C)
print(stress)
print(statev)

[[77045.55506413 37947.81070323 37947.81070323     0.        ] 
 [37947.81070323 77045.55506413 37947.81070323     0.        ] 
 [37947.81070323 37947.81070323 77045.55506413     0.        ] 
 [    0.             0.             0.         19548.87218045]] 
[1.2265959  6.43962848 2.52985405 0.        ] 
[-3.33333333e-05  1.00000000e-04  0.00000000e+00  0.00000000e+00 
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00 
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00 
  0.00000000e+00  4.69896407e+00] 
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In [5]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[5]:
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Linear 2D frame under
horizontal static loads
(NLSTA).
This problem describes the static analysis of a linear two-dimensional frame under point
loads. The analysis is performed in a single step.

Input and output �les for this problem are available in the examples folder of this REPO
(notebooks\Examples).
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Element type for columns and beams: 2
Columns cross section 0.50 m x 0.50 m
Beams cross section 0.40 m x 0.40 m
Material pro�le for all elements is concrete with elastic modulus of
2000000 tonf/m² and speci�c weight of 2.4 tonf/m³

Internal forces, together with a simple verti�cation of static global equilibrium are
available in the �le:

*notebooks\Examples\Ex_01\Output.xls*
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In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import * 

# Execute analysis
displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
01/01_INPUT/")

Results

The displacement response along the horizontal direction for node 3 is shown below.

In [2]: fig   = NodalDispPLT(displacement[6,:], T, ninc, ylabel = "Displacement")

The code can also display the structure under study for veri�cation purposes.

---------------------- 
Number of nodes: 12 
Number of elements: 15 
Number of equations: 27 
Number of equations after constraints: 27 
---------------------- 
Natural periods of the system :  Not computed,static system solution 
---------------------- 
Time step for solution: 0.002 sec 
Number of time increments: 500 
---------------------- 
Duration for system solution: 0:00:00.931524 
Duration for the system's solution: 0:00:00.932524 
Duration for post processing: 0:00:00 
---------------------- 
Analysis terminated successfully! 
---------------------- 
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In [3]: model = GrafModel(elements, nodes)

In [4]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[4]:
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Linear dynamic
analysis of a 2D-
frame.
The two-dimensional frame shown in the �gure is subjected to a base acceleration
corresponding to a record from El Centro earthquake. The base acceleration is imposed
along the horizontal direction. The analysis is intended to obtain the natural frequencies of
the system and to �nd the time history of the response. The analysis conisders mass
contribution only along the horizontal direction.

Input and output �les for this problem are available in the examples folder of this REPO
(notebooks\Examples).
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Ground acceleration signal: El Centro earthquake record (California,
1940).
Time step for the excitation: 0.02 sec
Total time for the solution: 15.0 sec
Value of gravity: 9.806 m/s²
Element type for columns and beams: 2
Columns cross sections 0.50 m x 0.50 m
Beams cross sections 0.40 m x 0.40 m
Material pro�le for all elements is concret with an elastic modulus of
2000000 tonf/m² and speci�c weight of 2.4 tonf/m³

-Diagrams for axial and shear forces and bending moments for a selected
time increment are written to the following �le:

*notebooks\Examples\Ex_02\Output.xls*
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In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import * 

# Execute analysis
displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
02/01_INPUT/")

Results

Notice that in this analysis the time step initially speci�ed for the analysis  is
too large for convergence thus forcing nldyna to adjust the time step.

The horizontal displacement time history at nodal point 3 is shown below:

Δt = 0.02s

***** Time step and seismo signal has been updated ***** 
***** Warning: Total time of seismo signal is greater than solution total time ***** 
---------------------- 
Number of nodes: 12 
Number of elements: 15 
Number of equations: 27 
Number of equations after constraints: 27 
---------------------- 
Natural periods of the system :  [0.14946052 0.04736539 0.02562026 0.02327047 0.0208596
2 0.01848281 
0.01794195 0.01734948 0.01609275 0.01542371 0.01420094 0.01410994 
0.01373219 0.01351975 0.01271046 0.01013722 0.00932614 0.00811226 
0.00664932 0.00644066 0.0059378  0.00561157 0.00502667 0.00502665 
0.00424963 0.00363439 0.00363439] 
---------------------- 
Time step for solution: 0.0033333333333333335 sec 
Number of time increments: 6000 
---------------------- 
Finished initial conditions....: 0 
Duration for system solution: 0:00:13.663503 
Duration for the system's solution: 0:00:13.665530 
Duration for post processing: 0:00:00 
---------------------- 
Analysis terminated successfully! 
---------------------- 
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In [2]: fig = NodalDispPLT(displacement[6 ,:], T, ninc, ylabel = "Displacement")

In [3]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[3]:
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Dynamic analysis of a
three-dimensional
frame with rigid
diaphragm

Multiple point constrainsts ase those tipically required in the simulation of rigid
diaphragms are allowed in NLDYNA . Its implementation to conduct dynamic analysis
with rigid �loors and other general constraints are explained in Notebook 03. These
constraints are imposed using slaves degrees of freedom connected to a master nodel
(corresponding to the center of gravity in rigid diaphragms). The implementation used
here is that propossed by Wilson (1995).

This notebook describes the dynamic
analysis (time history) of a three
dimensional building model. The
building is a �xed-base 3-story frame
under ground acceleration. Rigid
diaphragms are used to represent sti�f
concrete slabs at each �loor.

The 3-D frame elements used in the
model correspond to type 10  in the 
NLDYNA  library. These elements are

based on the Timoshenko beam theory
considering shear strain e�fects. Results
are provided in terms of the
displacements time history at point
located in the third �loor of the building.

The general parameters used in the
analysis are de�ned next:

Ground motion: acceleration time history corresponding to the
California 1940 El Centro record.
Time step of the input excitation: 
Total analysis tie: 
Element type as de�ned in NLDYNA: Timoshenko beams eltype = 
10 .

Columns cross sections 0.50 m x 0.50 m
Beams cross sections 0.50 m x 0.60 m.
Material pro�le for all elements is concrete with 
tonf/m² ad  tonf/m³.

Δt = 0.02s.

T = 20.0s.

E = 2000000

γ = 2.4
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The building together wit a plan view of the typical �loor are shown below.

Units for this example are [tonf-m]**.

Input and output �les for this problem are available in the examples folder of this REPO
(notebooks\Examples).
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In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import * 

# Execute analysis
displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
03/01_INPUT/")

***** Time step and seismo signal has been updated ***** 
***** Warning: Total time of seismo signal is greater than solution total time ***** 
---------------------- 
Number of nodes: 16 
Number of elements: 24 
Number of equations: 72 
Number of equations after constraints: 54 
---------------------- 
Natural periods of the system :  [0.35223163+0.00000000e+00j 0.35223163+0.00000000e+00j
0.2204523 +0.00000000e+00j 0.1163864 +4.27099245e-17j 
0.1163864 -4.27099245e-17j 0.08686012+0.00000000e+00j 
0.08650117+0.00000000e+00j 0.07220895+0.00000000e+00j 
0.07220895+0.00000000e+00j 0.07155991+0.00000000e+00j 
0.06157273+0.00000000e+00j 0.05716461+0.00000000e+00j 
0.04636163+0.00000000e+00j 0.04405392+0.00000000e+00j 
0.04405392+0.00000000e+00j 0.0388679 +0.00000000e+00j 
0.0388679 +0.00000000e+00j 0.0370321 +0.00000000e+00j 
0.0370321 +0.00000000e+00j 0.03609697+0.00000000e+00j 
0.03609697+0.00000000e+00j 0.03583761+0.00000000e+00j 
0.03583761+0.00000000e+00j 0.0352326 +0.00000000e+00j 
0.03516515+0.00000000e+00j 0.03391587+0.00000000e+00j 
0.03391587+0.00000000e+00j 0.03240249+0.00000000e+00j 
0.03240249+0.00000000e+00j 0.031811  +0.00000000e+00j 
0.031811  +0.00000000e+00j 0.0303654 +0.00000000e+00j 
0.0303654 +0.00000000e+00j 0.02997751+0.00000000e+00j 
0.0298653 +0.00000000e+00j 0.02871485+0.00000000e+00j 
0.02869704+0.00000000e+00j 0.02869704+0.00000000e+00j 
0.02850893+0.00000000e+00j 0.02740397+0.00000000e+00j 
0.02709122+0.00000000e+00j 0.02554989+0.00000000e+00j 
0.02544222+0.00000000e+00j 0.02544222+0.00000000e+00j 
0.02508893+0.00000000e+00j 0.02508893+0.00000000e+00j 
0.0231168 +0.00000000e+00j 0.02261329+0.00000000e+00j 
0.02219773+0.00000000e+00j 0.02074471+0.00000000e+00j 
0.02074471+0.00000000e+00j 0.01929411+0.00000000e+00j 
0.01286052+0.00000000e+00j 0.01265509+0.00000000e+00j 
0.01265509+0.00000000e+00j 0.01245955+0.00000000e+00j 
0.01154935+0.00000000e+00j 0.01154935+0.00000000e+00j 
0.01145907+0.00000000e+00j 0.01145907+0.00000000e+00j 
0.01139858+0.00000000e+00j 0.01139858+0.00000000e+00j 
0.01131002+0.00000000e+00j 0.01131002+0.00000000e+00j 
0.01026239+0.00000000e+00j 0.01026239+0.00000000e+00j 
0.01018211+0.00000000e+00j 0.01018211+0.00000000e+00j 
0.00927072+0.00000000e+00j 0.0092024 +0.00000000e+00j 
0.0092024 +0.00000000e+00j 0.00913557+0.00000000e+00j] 
---------------------- 
Time step for solution: 0.006666666666666667 sec 
Number of time increments: 3000 
---------------------- 
Finished initial conditions....: 0 
Duration for system solution: 0:00:31.860763 
Duration for the system's solution: 0:00:31.862759 
Duration for post processing: 0:00:00.387988 
---------------------- 
Analysis terminated successfully! 
---------------------- 



17/6/2020 08_Example03

file:///C:/Users/AX201 GMRS/Dropbox/REPOS/nldyna/notebooks/08_Example03.html 5/5

Results

The time history of displacements at a nodal point located in the roof can be obtained as
follows.

In [2]: fig = NodalDispPLT(displacement[0,:], T, ninc, ylabel = "Displacement")

References

Wilson, Edward L. Three Dimensional Static and Dynamic Analysis Of Structures.
Computers & Structures Inc, 1995.

The following cell just changes the Notebook format

In [3]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[3]:
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One-dimensional non-
linear spring
elements.
Simple spring elements are commonly used for the assemblage of complex structural
systems like in the modelling of drilled sha�ts, plastic hinges in framed structures and base
isolated buildings. This example describes the non-linear static analysis of a simple
assemblage of spring elements. A pseudo-static load of total magnitude  is
applied to the center node.

The constitutive model for the non-linear spring is the one formulated in Simo and Hughes
(2006) corresponding to a rate independent plasticity model with linear isotropic
hardening. The model is shown in the �gure below.

The sti�fness coe��cient for the spring is given in terms of a cross-section, Young's modulus
and length.

Input and output �les for this problem are available in the examples folder of this REPO
(notebooks\Examples).

100kgf

= [ ]Kloc
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−AE

L

AE
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The following 1D spring assembly was analyzed. Static nodal force was applied at nodes 1
as it is shown at the �gure. For this example it was used [kgf-m] as consistent units for the
analysis.

Element type: 5
Cross sectioal area, : 0.25 m²
Young modulus, : 100000 kgf/m²
Yield stress, : 150 kgf/m²
Strain hardening parameter, : 10000 kgf/m²

A

E

σy

K
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In [5]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import * 

# Execute analysis
displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
04/01_INPUT/")

Results

The following �gure shows the displacement time history for the loaded node.

In [6]: fig = NodalDispPLT(displacement[0,:], T, ninc, ylabel = "Displacement")

The observed slope change occurs at the time increment where the inelastic behavior
takes place (3.6 s). The particular bi-lineal shape of the dispalcement response is controlled
by the bi-lineal constitutive behavior of the nonlinear sprinmgs. The associated stress-
strain curve for element 0  is shown next.

---------------------- 
Number of nodes: 3 
Number of elements: 2 
Number of equations: 1 
Number of equations after constraints: 1 
---------------------- 
Natural periods of the system :  Not computed,static system solution 
---------------------- 
Time step for solution: 0.1 sec 
Number of time increments: 50 
---------------------- 
Convergency reached after  1  iterations at increment  36  ( 3.6 sec) 
Duration for system solution: 0:00:00.024943 
Duration for the system's solution: 0:00:00.024943 
Duration for post processing: 0:00:00 
---------------------- 
Analysis terminated successfully! 
---------------------- 



17/6/2020 09_Example04

file:///C:/Users/AX201 GMRS/Dropbox/REPOS/nldyna/notebooks/09_Example04.html 5/5

In [7]: histe = PlasModel(MvarsGen, Element = 0, xlabel = "Strain", ylabel = "Stress")

It is observed that inelastic response appears when the stress in the spring reaches the
prescribed value of 150 kgf/m².

References

Simo, Juan C., and Thomas JR Hughes. Computational inelasticity. Vol. 7. Springer Science
& Business Media, 2006

In [8]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[8]:
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Two-dimensional base
isolated frame.
This example discusses a simple base isolated two-dimensional frame under ground
motion acceleration. The base isolation system is represented by non-linear rotational
springs located between the column edges and the foundation system. The base
acceleration is a Ricker pulse (see �gure) applied along the horizontal direction.

The constitutive model for the non-linear spring is the one formulated in Simo and Hughes
(2006) corresponding to a rate independent plasticity model with linear isotropic
hardening. The non-inear springs at the base in this particular case provide rotational
sti�fness at the base of the �rst �loor columns. This rotational sti�fness is de�ned like:

where:

 = Material's young modulus.
 = Column's base moment of inertia along "Z" axis.
 = Column's lenght.

Input and output �les for this problem are available in the examples folder of this REPO
(notebooks\Examples).
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Units for this example are [kgf-m].

The main problem parameters are described next.

Ground acceleration signal: Ricker pulse
Ricker's central time, Tc = 1.5 sec
Ricker's central frequency, fc = 1.5 Hz
Maximum acceleration value: 1.0 g
Time step for the input excitation: 0.002 sec
Size if the analysis time window: 15.0 sec
Element type for frame elements: 2
Element type for nonlinear 1D rotational springs: 8
Cross section for all the elements: 0.60 m x 0.60 m
Material pro�le for the frame elements withelastic modulus of
500000 kgf/m² and speci�c weight of 2000 kgf/m³
Material pro�le for the rotational springs with an elastic modulus, 
= 100000 kgf/m², yield strees,  = 2000 kgf/m² and isotropic
hardening parameter,  = 15000 tonf/m².

-Diagrams for axial and shear forces and bending moments for a selected
time increment are written to the following �le:

*notebooks\Examples\Ex_02\Output.xls*
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In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import * 

# Execute analysis
displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
05/01_INPUT/")

Results

In a previous analysis the �rst 3 natural modes of the non-isolated building were found to
be: 2.942 sec, 1.125 sec, 0.891 sec.

The natural periods of the isolated building are found to be: 3.956 sec, 1.218 sec, 0.923 sec.

On the other hand, the analysis shows that the rotational spring (element 0 ) exhibits
plastic behavior during the dynamic excitation.

---------------------- 
Number of nodes: 6 
Number of elements: 5 
Number of equations: 8 
Number of equations after constraints: 8 
---------------------- 
Natural periods of the system :  [3.95578795 1.21821887 0.98266225 0.60780604 0.5827598
6 0.43858917 
0.43434444 0.39161916] 
---------------------- 
Time step for solution: 0.002 sec 
Number of time increments: 7500 
---------------------- 
Finished initial conditions....: 0 
Convergency reached after  1  iterations at increment  699  ( 1.398 sec) 
Convergency reached after  1  iterations at increment  890  ( 1.78 sec) 
Convergency reached after  1  iterations at increment  1085  ( 2.17 sec) 
Convergency reached after  1  iterations at increment  1235  ( 2.47 sec) 
Convergency reached after  1  iterations at increment  1991  ( 3.982 sec) 
Convergency reached after  1  iterations at increment  2571  ( 5.142 sec) 
Duration for system solution: 0:00:06.188326 
Duration for the system's solution: 0:00:06.189336 
Duration for post processing: 0:00:00 
---------------------- 
Analysis terminated successfully! 
---------------------- 
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In [2]: fig = NodalDispPLT(displacement[0,:], T, ninc, ylabel = "Rotation")

Due to the inelastic response of the rotational spring the system now oscillates around a
permanent deformed con�guration. The Moment-curvature history for the rotational
spring is shown below.

In [3]: histe = PlasModel(MvarsGen, Element = 0, xlabel = "Curvature", ylabel = "Moment")

References

Simo, Juan C., and Thomas JR Hughes. Computational inelasticity. Vol. 7. Springer Science
& Business Media, 2006

In [4]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[4]:
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Contents under Creative Commons BY 4.0 license and code under MIT license. © Julian
Parra 2019. This material is part of the Master of Engineering program by Julian Parra at
Universidad EAFIT.

Response of a laterally-
loaded pile
foundation.

The following example discusses
the design of a laterally-loaded pile
foundation. The fundamental
problem is that of �nding the
required length of a 2.20m diameter
pile under an externally applied
lateral load and bending moment.
The mechanical properties of the
soil deposit are given in table 01.
The analysis is conducted for the
maximum lateral load and bending
moment under service conditions.

Units for this example are [tonf-m].

Input and output �les for this
problem are available in the
examples folder of this REPO
(notebooks\Examples).

The main problem parameters are described next.
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Mechanical properties.

The following set of parameters de�nes the soil deposit at the site:

 Depth.
 Lateral soil sti�fness at a depth .
 Maximum stress in the soil at a depth .

Soil sti�fness is represented by a bilinear -  curve according to the
variation with depth of .

Y :

:Kh Y

:σult Y

P Y

Kh
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Structural idealization for the pile

Concrete
drilled
shaft

Element type: 2
Pile cross sectional diameter: 2.20 m
Material pro�le for the pile is concrete with an elastic modulus of
2527000 tonf/m² and unit weight of 2.4 tonf/m³

Soil springs

Element type: 9
Material pro�le for the springs according to the variation with depth
of :Kh
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The pile response was computed for a pile length of 7.0m .

Identi�ers for nodal points, elements and other problem dimensions are shown below:

The springs located at the 0.0m  and 7.0m  level employ 50%  of the total sti�fness as
per table 02.
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In [1]: %matplotlib inline         
import matplotlib.pyplot as plt
import numpy as np
import sympy as sym
from os import sys
sys.path.append("../source/")
from STRUCTURE import Struct_DYN
from postprocesor import * 

# Execute analysis
displacement,folder,IBC,nodes,elements,ninc,T,MvarsGen,ILFGen = Struct_DYN("Examples/E
06/01_INPUT/")

Results

The evolution of the soil response in terms of the -  curves for the springs undergoing
plastic behavior is shown next. The plasti�ed springs are identi�ed by elements 8 , 9  and
14 .

P Y

---------------------- 
Number of nodes: 16 
Number of elements: 15 
Number of equations: 23 
Number of equations after constraints: 23 
---------------------- 
Natural periods of the system :  Not computed,static system solution 
---------------------- 
Time step for solution: 0.01 sec 
Number of time increments: 500 
---------------------- 
Convergency reached after  1  iterations at increment  334  ( 3.34 sec) 
Convergency reached after  1  iterations at increment  462  ( 4.62 sec) 
Convergency reached after  1  iterations at increment  481  ( 4.81 sec) 
Duration for system solution: 0:00:00.767947 
Duration for the system's solution: 0:00:00.768939 
Duration for post processing: 0:00:00 
---------------------- 
Analysis terminated successfully! 
---------------------- 
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In [2]: histe = PlasModel(MvarsGen, Element = 7, xlabel = "Y", ylabel = "P")
histe = PlasModel(MvarsGen, Element = 8, xlabel = "Y", ylabel = "P")
histe = PlasModel(MvarsGen, Element = 9, xlabel = "Y", ylabel = "P")
histe = PlasModel(MvarsGen, Element = 14, xlabel = "Y", ylabel = "P")
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As expected the spring elements with low rigidity exhibit plastic response (elements 7, 8
and 9) since these elements are associated to materials with low capacity to sustain lateral
loads. Typically the soil at large depths exhibits a larger sti�fness. Although element 7 did
not experience inelastic response its maximum strain was close the plastic limit of the
material .

On the other hand, element 14, corresponding to the spring associated to the soil layer
with larger sti�fness along the pile length undergoes plastic behavior since the found
strains are larger than the plastic limit.

The predicted displacement time history along the horizontal direction for the node at the
top of the pile is shown in the �gure below:

Yp0

In [3]: fig   = NodalDispPLT(displacement[0,:], T, ninc, ylabel = "Displacement")

Internal forces, together with a simple displacement diagram are available in the �le:
*...\01_NoteBooks\Examples\Ex_05\Output.xls*

In [4]: from IPython.core.display import HTML
def css_styling(): 
   styles = open('./nb_style.css', 'r').read() 
   return HTML(styles)
css_styling()

In [ ]:  

Out[4]:


	tesis
	apendix
	01_Introduction
	02_Formulation
	03_NLDYNA
	04_UEL_subroutine
	05_UMAT_subroutine
	06_Example01
	07_Example02
	08_Example03
	09_Example04
	10_Example05
	11_Example06


