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a b s t r a c t

We present a generic scheme for the declarative debugging of programs that are written
in rewriting-based languages that are equipped with narrowing. Our aim is to provide
an integrated development environment in which it is possible to debug a program and
then correct it automatically. Our methodology is based on the combination (in a single
framework) of a semantics-based diagnoser that identifies those parts of the code that
contain errors and an inductive learner that tries to repair them, once the bugs have
been located in the program. We develop our methodology in several steps. First, we
associate with our programs a semantics that is based on a (continuous) immediate
consequence operator, TR , which models the answers computed by narrowing and is
parametric w.r.t. the evaluation strategy, which can be eager or lazy. Then, we show that,
given the intended specification of a programR, it is possible to check the correctness ofR
by a single step of TR . In order to develop an effective debugging method, we approximate
the computed answers semantics of R and derive a finitely terminating bottom-up abstract
diagnosismethod,which can be used statically. Finally, a bug-correction program synthesis
methodology attempts to correct the erroneous components of the wrong code. We
propose a hybrid, top-down (unfolding-based) as well as bottom-up (induction-based),
correction approach that is driven by a set of evidence examples which are automatically
produced as an outcomeby the diagnoser. The resulting program is proven to be correct and
complete w.r.t. the considered example sets. Our debugging framework does not require
the user to provide error symptoms in advance or to answer difficult questions concerning
program correctness. An implementation of our debugging system has been undertaken
which demonstrates the workability of our approach.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Functional logic languages combine the most important features of functional programming (expressivity of functions
and types, higher-order functions, nested expressions, efficient reduction strategies, sophisticated abstraction facilities)
and logic programming (unification, logical variables, partial data-structures, built-in search). The operational principle of
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integrated languages with a complete semantics is usually based on narrowing [67], which consists of the instantiation of
variables in expressions, followed by a reduction step on the instantiated function call.Narrowing is complete in the sense of
functional programming (computation of normal forms) as well as logic programming (computation of answers). Due to the
huge search space of unrestricted narrowing, steadily improved strategies have been proposed, with innermost narrowing
and needed narrowing being ofmain interest (see [78] for a survey.) Innermost narrowingwas the basis of pioneer functional
logic languages such as SLOG [71], LPG [29,32] and (a subset of) ALF [77], whereas needed narrowing is the core engine of
modern functional logic languages like Curry [83] and Toy [96]. Nevertheless, innermost narrowing has recently regained
much attention as it proves to be very useful for analysing security protocols and access control policies in rewriting-based
languages such as Elan [35,91] and Maude [103,50].

The main purpose of this work is to provide a methodology for developing effective diagnosis and correction tools for
functional logic programs or, more generally, for rewriting-based programs that can be executed by narrowing. Functional
logic programming is now a mature paradigm and as such there exist modern environments that assist in the design,
development and debugging of integrated programs. However, there is no theoretical foundation for integrating diagnosis
and automated correction into a single unified framework. We believe that such an integration can be quite productive and
hence develop useful techniques and new results for the process of automatically synthesizing correct programs.

Debugging programs with the combination of user-defined functions and logic variables is a difficult but important task
which has received considerable interest in recent years, and different debugging techniques have been proposed. Abstract
diagnosis [54,55] is a declarative debugging framework that extends the methodology in [68,117] (which is based on using
the immediate consequence operator to identify bugs in logic programs) to diagnosesw.r.t. computed answers. An important
advantage of this framework is that it is goal-independent and does not require the determination of symptoms in advance.
In [8,9], we generalized the declarative diagnosis methodology of [54,55] to the debugging of wrong as well as missing
answers of functional logic programs. Recently, other related abstractions of term rewriting systems have been proposed
[6,80], which apply to nondeterministic TRSs but do not approximate computed answers.

This paper offers an up-to-date, comprehensive, and uniform presentation of the declarative debugging of functional
logic programs as developed in [8,9]; a short overview can be found in [5].We additionally address the problem ofmodifying
incorrect components of the initial program in order to form an integrated debugging framework in which it is possible to
detect program bugs and correct them automatically, which we first outlined in [4]. The generalization of [55] is far from
trivial since we have to deal with the extra complexity derived frommodeling computed answers while handling (possibly
non-strict and partial) functions, nested calls, and lazy evaluation. In order to achieve this, we develop our framework in a
stepwise manner.

(1) First, we define a (continuous) immediate consequence operator which models computed answers. This provides a
fixpoint characterization of the operational semantics of integrated programs that is parametric w.r.t. the evaluation
strategy, which can be either eager or lazy. Similarly to [75], the possibility of dealing with partial functions and infinite
data structures leads to introducing two notions of equality, which are characterized by two sets of program rules. From
the semantics viewpoint, the resulting construction gets more elaborate but also becomes richer in comparison to the
scheme proposed in [55].

(2) Then we show that, given the intended specification I of a program R, we can check the correctness of R (w.r.t.
computed answers) by a single step of this operator. The specification I may be complete or partial, which is useful
for modular programming. Without loss of generality, we assume in this work that a complete specification is available
which is expressed by another (simpler) program [8,9], but could be alternatively expressed by an assertion language
[53] or by equation sets (in the case when it is finite). The diagnosis is based on the detection of incorrect rules
and uncovered equations, which both have a bottom-up definition (in terms of a single application of the immediate
consequence operator to the program specification). It is worth noting that no fixpoint computation is required since
the semantics does not need to be computed.

The conditions that we impose on the considered programs allow us to define a framework for declarative debugging
which works for both eager (call-by-value) narrowing as well as for lazy (call-by-name) narrowing. We show how our
methodology can be extended to optimal lazy evaluation strategies such as needed narrowing by using Hanus and
Prehofer’s transformation in [84], which compiles pattern matching into ‘‘case expressions’’. Our technique could be
used as a basis for developing abstract debugging tools for different multi-paradigm languages equipped with a form of
narrowing, including e.g., Curry [83], Elan [36], LPG [32,33], Maude [51,102,103], and Toy [96].

(3) In order to provide a practical implementation, we also present an effective debugging methodology that is based on
abstract interpretation. Following an idea inspired by [55,54,42], we use over and under specifications I+ and I− to
correctly over (resp. under)- approximate the intended specification I of the success set. We then use these two sets
respectively for the functions in the premises and the consequences of the immediate consequence operator, and by a
simple static test we can determine whether some of the clauses are wrong. The method is sound in the sense that each
error which is found and repaired by using I+, I− is really a bug w.r.t. I.

(4) Finally, we discuss our methodology for repairing some errors which is based on program specialization by example-
guided unfolding. Informally, our correction procedure works as follows. Starting from an overly general program (that
is, a programwhich proves all the positive examples as well as some negative ones), the algorithm unfolds the program
and deletes program rules until a suitable specialization of the original program is reached which still implies all the



M. Alpuente et al. / Theoretical Computer Science 411 (2010) 4055–4101 4057

positive examples and does not prove any negative one. If the originalwrong programdoes not initially prove all positive
examples, we first invoke a bottom-up procedure, which ‘‘generalizes’’ the program in order to fulfil the applicability
conditions. After introducing the newmethod, we prove its correctness and completeness w.r.t. the considered example
sets.

Our prototype debugging system Buggy has been extended to work with the different instances of the framework
discussed in this paper, which we illustrate by a number of examples. The implementation is endowed with inductive
learning capabilities following our ideas for unfolding-based correction of programs from automatically generated ex-
amples. The positive and negative examples needed for this purpose are automatically derived from the approximations
of the intended program semantics, which are computed by our abstract diagnosis method.
The idea of considering declarative specifications as programs goes back to the origins of declarative programming. In

software development, a specification is often seen as the starting point for the subsequent programdevelopment and as the
criterion for judging the correctness of the final software product. In general, it also happens that some parts of the software
need to be improvedduring the software life cycle, e.g., in order to obtain better performance. Then the old programs (or large
parts of them) can be usefully (and automatically) used as a specification for the new ones. This is not only common practice
in logic programming but also in term-rewriting and functional languages, and a tool for checking the user’s program w.r.t.
suitable specifications is considered important in this context. For example, in QuickCheck [49], formal specifications are
used to describe properties of Haskell programs (which are also written in Haskell) that are automatically tested. Recently,
the convenience of the specification-oriented approach to program development based on prototype refinement has also
been advocated in [23]. Nevertheless, we go one step further because, in our methodology, the intended specification can
be automatically abstracted and used to automatically repair the programs under examination.

Related work
Finding program bugs is a long-standing problem in software construction. Unfortunately, the debugging support is

rather poor for functional languages (see [121,85,100] and references therein), and there are no good general-purpose
semantics-based debuggers available.

In the field of multi-paradigm declarative languages, standard trace debuggers are based on suitably extended box
models which help to display the execution [81,25]. Due to the complexity of the operational semantics of (functional)
logic programs, the information obtained by tracing the execution is difficult to understand. To improve understandability,
a graphic debugger for themulti-paradigm language Curry is providedwithin a graphical environment [82] which visualizes
the evaluation of expressions and is based on tracing. TeaBag [24] is both a tracer and a runtime debugger that is provided
as an accessory of a Curry virtual machine which handles non-deterministic programs. For Mercury, a visual debugging
environment is ViMer [48], which borrows techniques from standard tracers, such as the use of spypoints. In [109], the
functional logic programming languageNUE-Prologwas endowedwith amore declarative, algorithmic debuggerwhich uses
the declarative semantics of the program and works in the style proposed by Shapiro [117]: an oracle (typically the user)
is supposed to provide the debugger with error symptoms, as well as to correctly answer oracle questions driven by proof
trees aimed at locating the actual source of errors. A similar declarative debugger for the functional logic language Escher is
proposed in [94]. Unfortunately, when debugging the real code, the questions are often textually large and may be difficult
to answer. Following the generic schemewhich is based on proof trees of [108], a procedure for the declarative debugging of
wrong answers in higher-order functional logic programs is proposed in [46]. This is a semi-automatic debugging technique
where the debugger tries to locate the node in an execution tree which is ultimately responsible for a visible bug symptom.
A declarative debugger (for wrong answers) based on thismethodologywas developed for the lazy functional logic language
Toy [45] and adapted to Curry in [47]. The methodology in [46,45] includes a formalization of computation trees which is
precise enough to prove the logical correctness of the debugger and also helps to simplify oracle questions. Missing answers
are debugged in [44]. Braßel et al. [41] extended the idea (known as observational debugging [74]) of letting the programmer
see the intermediate data structures that are passed between functions to functional logic languages, resulting in a new kind
of algorithmic debugger. The application of declarative debugging, in Shapiro’s style, to Maude was studied in [43,101].

As far as we know, none of the above-mentioned debuggers integrates both diagnosis and correction capabilities in a
uniform and seamless way. As a matter of fact, program correction has scarcely been studied in the context of declarative
programming. In [117], a theory revision framework for correction purposes has been proposed; however, it requires the
user either to strongly interact with the debugger or to manually correct the code. Automated correction of faulty codes has
been investigated in concurrent logic programming. In [1,2], a framework for the diagnosis and the correction of Moded flat
GHC programs [120] has been developed. This framework exploits strong mode/typing and constraint analysis in order to
locate bugs; then, symbols which are likely sources of error are syntactically replaced by other program symbols so that new
slightly different programs (mutations) are produced. Finally, mutations are newly checked for correctness. This approach
is essentially able to correct near misses (i.e., wrong variable/constant occurrences), but no mistakes involving predicates
or function symbols can be repaired. Moreover, only modes and types are employed to come up with a corrected program;
no finer semantic information is taken into consideration which might improve the quality of the repair. To the best of our
knowledge, our approach is the first attempt to endow a declarative debugger with a repair methodology which is both fully
automatic and semantics-guided.

To summarize, themain advantage of our approach to error debugging is that the debugger itself has a simple and elegant
semantics, and that the programmer only needs to provide the intended interpretation of the erroneous program to debug
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it. A limitation of our approach is that it does not cope with some advanced features such as higher order. This means that a
programmer can use a diagnoser like ours for debugging only the first-order part of the program. Of course, some important
practical problemswell known for declarative diagnosis tools in LP, CLP, and FP also arise in our context, such as the problem
of finding a compact representation of the semantics, whichwe have recently investigated in [6]. In spite of these difficulties,
the prototype works reasonably well in all cases and we believe that it can be very useful for detecting many programming
bugs in practice.

Plan of the paper
After somepreliminaries in Section 2,we present a fixpoint characterization of functional logic computations in Section 3.

This is done by means of a generic, narrowing-based immediate consequence operator Tϕ
R which is parametric w.r.t. the

narrowing strategy ϕ which can be either eager or lazy [9]. Based on Tϕ
R , we then define a fixpoint semantics which

correctly models the answers and values computed by a narrower which uses the narrowing strategy ϕ. In the case of
the eager strategy, it is enough to introduce a flattening transformation which eliminates nesting calls. This allows us to
see the semantics (when it might be convenient) as an ‘‘efficient program’’ where it is still possible to execute goals just by
using standard unification, as in [38]. However, the lazy strategy is more involved and we need to introduce two kinds of
equality in the definition of Tϕ

R: the strict equality ≈ which models the equality on data terms, and the non-strict equality
= which holds even if the arguments are both undefined or partially defined, similarly to [75,105]. We also formulate an
operational semantics and we show the correspondence with the least fixpoint semantics. In Section 4, we introduce the
necessary general notions of incorrect rules and uncoveredness. Section 5 provides an abstract semantics that correctly
approximates the fixpoint semantics of R. The abstract semantics is computed by first removing from R those calls that
may give rise to an infinite narrowing computation, which is done by computing a sort of estimated narrowing dependency
graph for the CTRS R. Using this semantics, our abstract diagnosis methodology is developed in Section 6. Section 7 endows
the diagnosis method with a bug-correction program synthesis methodology which, after diagnosing the buggy program,
tries to correct the erroneous components of the wrong code automatically. A prototype implementation of the method
together with a debugging session is described in Section 8. Section 9 concludes and discusses some lines for future work.
Appendix A describes a flattening procedure for equational goals along with the program transformation which we use
to implement the needed-narrowing strategy. Proofs of all technical results are given in Appendix B. Finally, Appendix C
provides some additional information regarding the debugging session given in Section 8.

2. Preliminaries

Conditional term rewriting systems (CTRSs) provide an adequate computational model for rule-based languages which
allow the definition of functions by means of rules that can be activated by conditions in a set of data. In this paper, we
consider the class of rule-based languages that combine a rule-based syntax for programs with the goal-solving operational
principle of narrowing. This class includes functional logic programs as well as other rewriting-based languages equipped
with the narrowing mechanism such as those mentioned above.

Let us briefly recall some known results about conditional rewrite systems [27,92] and functional logic programming
(see [78,89] for extensive surveys). For simplicity, definitions are given in the one-sorted case. The extension to many-
sorted signatures is straightforward, see [110]. Throughout this paper, V will denote a countably infinite set of variables and
Σ denotes a non-empty, finite set of function symbols, or signature, each of which has a fixed associated arity. The signature
Σ contains a special constant symbol⊥ intended to denote an undefined data value. Throughout the paper, we will use the
following notation: lowercase letters from the end of the alphabet x, y, z, possibly with subindices, denote variables, and
we often write f /n ∈ Σ to denote that f is a function symbol of arity n. τ(Σ ∪ V ) and τ(Σ) denote the non-ground term
algebra and the term algebra built on Σ ∪ V and Σ , respectively. τ(Σ) is usually called the Herbrand universe (HΣ ) over
Σ and it will be denoted by H . A Σ-equation is either a pair of terms s, t ∈ τ(Σ ∪ V ) (denoted s = t), or the constants true
or fail. B denotes the Herbrand base, namely the set of all ground equations that can be built with the elements of H (note
that B disallows predicate symbols other than ‘‘=’’, similarly to [88]). A Herbrand interpretation I is a subset of B. Identity
of syntactic objects is denoted by≡.

Terms are viewed as labelled trees in the usual way. Positions are represented by sequences of natural numbers denoting
an access path in a term, where Λ denotes the empty sequence. O(t) (resp. O(t)) denotes the set of positions (resp.
nonvariable positions) of a term t . t |u is the subterm at the position u of t . t[r]u is the term t with the subterm at the position
u replaced with r . These notions extend to sequences of equations in a natural way. For instance, the nonvariable position
set of a sequence of equations g ≡ (t1 = t ′1, . . . , tn = t ′n) can be defined as follows: O(g) = {i.1.u | i ∈ {1, . . . , n}, u ∈
O(ti)} ∪ {i.2.u | i ∈ {1, . . . , n}, u ∈ O(t ′i )}. By Var(s), we denote the set of variables occurring in the syntactic object s, while
[s] denotes the set of ground instances of s. A fresh variable is a variable that appears nowhere else. We use t̄ as a shorthand
for t1, . . . , tn.

Let Eqn denote the set of possibly existentially quantified finite sets of equations over terms [52]. We write E ≤ E ′ if E ′
logically implies E. Thus, Eqn is a lattice ordered by ≤ with bottom element true and top element fail. The elements of Eqn
are often regarded as (quantified) conjunctions of equations (written as sequences) and treatedmodulo logical equivalence.
An equation set is solved if it is either fail or it has the form ∃y1 . . . ∃ym. {x1 = t1, . . . , xn = tn}, where each xi is a distinct
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variable not occurring in any of the terms ti and each yi occurs in some tj. Any set of equations E can be transformed into an
equivalent one, solve(E), which is solved. In our framework, existential quantifiers do not appear in concrete expressions
like program rules or input equations, but only when we deal with semantic properties and abstract interpretations. A
substitution is a mapping from the set of variables V into the set of terms τ(Σ ∪ V ). We restrict our interest to the set of
idempotent substitutions over τ(Σ ∪ V ), which is denoted by Sub. A substitution θ is more general than σ , denoted by
θ ≤ σ , if σ = θγ for some substitution γ . We write θ |̀s to denote the restriction of the substitution θ to the set of variables
in the syntactic object s. The empty substitution is denoted by ϵ. A renaming is a substitution ρ for which there exists the
inverse ρ−1, such that ρρ−1 = ρ−1ρ = ϵ. There is a natural isomorphism between substitutions θ = {x1/t1, . . . , xn/tn}
and unquantified equation sets in the solved formθ = {x1 = t1, . . . , xn = tn}. A set of equations E is unifiable if there
exists θ such that, for all s = t in E, we have sθ ≡ tθ , and θ is called a unifier of E. We let mgu(E) denote the most
general unifier of the (unquantified) equation set E [98]. When E is not unifiable, by abuse we define mgu(E) = fail. We
write mgu({s1 = t1, . . . , sn = tn}, {s′1 = t ′1, . . . , s

′
n = t ′n}) to denote the most general unifier of the set of equations

{s1 = s′1, t1 = t ′1, . . . , sn = s′n, tn = t ′n}. Given two substitutions θ1 and θ2, we define the parallel composition of θ1 and θ2 as
θ1 ⇑ θ2 = mgu(θ̂1 ∪ θ̂2).

A conditional term rewriting system (CTRS for short) is a pair (Σ, R), where R is a finite set of reduction (or rewrite)
rule schemes of the form (λ → ρ ⇐ C), λ, ρ ∈ τ(Σ ∪ V ) and λ ∉ V . The condition C is a (possibly empty) finite
sequence e1, . . . , en, n ≥ 0, of equations which we handle as a set (conjunction) when we find it convenient. Variables in
C or ρ that do not occur in λ are called extra variables. We will often write just R instead of (Σ, R). If a rewrite rule has
no condition, we write λ→ ρ. A TRS is a CTRS whose rules have no conditions. A goal is a sequence of equations⇐ C , i.e.,
a rule with no head (consequent). We usually leave out the⇐ symbol when we write goals. For CTRS R, r << R denotes
that r is a new variant of a rule in R such that r contains only fresh variables, i.e. contains no variable previously met during
computation (standardized apart). Given a CTRS (Σ, R), we assume that the signature Σ is partitioned into two disjoint
sets Σ = C ⊎ F , where F = {f | (f (t1, . . . , tn)→ r ⇐ C) ∈ R} and C = Σ \ F . Symbols in C are called constructors and
symbols in F are called defined functions. The elements of τ(C ∪ V) are called constructor terms. A constructor substitution
σ = {x1/t1, . . . , xn/tn} is a substitution such that each ti, i = 1, . . . , n is a constructor term. A term is linear if it does not
contain multiple occurrences of the same variable. A CTRS is left-linear if the left-hand sides of all rules are linear terms. A
pattern is a term of the form f (d̄) where f /n ∈ F and d̄ are constructor terms. We say that a CTRS is constructor based (CB)
if the left-hand sides of R are patterns.

A rewrite step is the application of a rewrite rule to an expression. A term s conditionally1 rewrites to a term t , s→R t , if
there exist u ∈ O(s), (λ→ ρ ⇐ s1 = t1, . . . , sn = tn) << R, and a substitution σ such that s|u ≡ λσ , t ≡ s[ρσ ]u, and there
exists a termwi such that siσ →∗R wi and tiσ →∗R wi, where→∗R is the transitive and reflexive closure of→R [76,104]. The
term s|u is said to be a redex of s. When no confusion can arise, we omit the subscript R. When we want to emphasize the
rule and the redex chosen for the rewrite step, wewrite s

r,u
→ t . The length of a rewrite sequenceD : t0 → t1 → t2 → · · · tn

is the number n of rewrite steps occurring in D and is denoted by |D|. A term s is a normal form if there is no term t with
s→R t . A CTRSR is noetherian if there are no infinite sequences of the form t0 →R t1 →R t2 →R · · · . A CTRSR is confluent
if, whenever a term s reduces to two terms t1 and t2, both t1 and t2 reduce to the same common term. The program R is
said to be canonical if the binary one-step rewrite relation→R defined by R is noetherian and confluent [92]. The rewrite
relation on terms can be extended to equations in the natural way, by considering the equality as a standard function symbol
which is modeled by a set of rewrite rules (see Section 2.1).

2.1. Functional logic programming

Functional logic languages are extensions of functional languageswith principles derived from logic programming [57,93,
105,113]. The computationmechanism of functional logic languages is based on narrowing [67,118], a generalization of term
rewritingwhere unification replacesmatching: both the rewrite rule and the term to be rewritten can be instantiated. Under
the narrowing mechanism, functional programs behave like logic programs: narrowing solves equations by computing
solutions with respect to a given CTRS, which is henceforth called the ‘‘program’’.

Definition 1 (Narrowing). Let R be a program and g be a goal. We say that g conditionally narrows into g ′ if there exists a
position u ∈ O(g), a standardized apart variant r ≡ (λ→ ρ ⇐ C) of a rewrite rule in R, and a substitution σ such that σ
is the most general unifier of g|u and λ, and g ′ ≡ (C, g[ρ]u)σ .

Wewrite g u,r,σ
❀ g ′. The relation ❀ is called (unrestricted or ordinary) conditional narrowing. Sometimes, we simply write

g r,σ
❀ g ′, or g σ

❀ g ′.

1 This definition corresponds to the TRSs of Type II (join systems) in the terminology of Bergstra and Klop [92]. As noted in [92],→R is well defined
since all conditions are positive. The conditional rewrite relation→R induced by a CTRS R can be defined inductively as→R=


j≥0 →Rj, where R0 =

∅ and Rj+1 = {lσ → rσ | (l→ r ⇐ s1 = t1, . . . , sn = tn) << R and for all i ∈ {1, . . . , n}, there exists a term wi such that siσ →R∗j
wi and tiσ →R∗j

wi}

[104].
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The extension of a CTRSRwith the rewrite rules for dealingwith the equality is denoted byR+. In the case of unrestricted
narrowing, R+ denotes R ∪ {x = x → true}, x ∈ V . This allows us to treat syntactical unification as a narrowing step, by
using the rule (x = x→ true) to computemgu’s. Then, s = t σ

❀ true holds iff σ = mgu({s = t}).

Definition 2 (Narrowing derivation). Anarrowing derivation for g inR is defined by g θ ∗
❀ g ′ iff∃θ1, . . . , ∃θn. g

θ1
❀ · · ·

θn
❀ g ′

and θ = θ1 . . . θn. We say that the derivation has length n. If n = 0, then θ = ϵ. We use the symbol⊤ as a generic notation
for sequences of the form true, . . . , true. A successful derivation (or refutation) in R is a narrowing derivation g θ ∗

❀ ⊤ in
R+, and θ |̀Var(g) is called a computed answer substitution (cas) for g in R.

The narrowing mechanism is a powerful tool for constructing complete equational unification algorithms for useful
classes of TRSs, including canonical TRSs [90]. Similarly to logic programming, completeness means the ability to compute
representatives of all solutions for one or more equations.

Example 3. Consider the following program R which defines the last element of a list in a logic programming style, by
using the list concatenation function append (list constructors are [ ] (empty list) and [ | ] (non-empty list)):

r1 : last(xs) → y⇐ append(zs, [y]) = xs
r2 : append([ ], xs) → xs
r3 : append([x|xs], ys) → [x|append(xs, ys)]

Given the input goal last(ys) = 0, narrowing is able to compute in R infinitely many answers of the form {ys →
[0]}, {ys → [_|0]}, . . .. For instance, the first answer is computed by the following narrowing derivation (at each step, the
narrowing relation ❀ is labelled with the applied substitution2 and rule, and the reduced subterm is underlined):

last(ys) = 0
r1,{ys/xs}

❀ append(zs, [y]) = xs, y = 0
r2,{zs/[ ]}

❀ ([y] = xs, y = 0)
(x=x→true),{y/0}

❀ ([0] = xs, true)
(x=x→true),{xs/[0]}

❀ ⊤

For more in-depth understanding of the power and subtleties of narrowing, please refer to [23,79].

2.1.1. Narrowing strategies
Since unrestricted narrowing has quite a large search space,3 several strategies to control the selection of redexes have

been developed. A narrowing strategy (or position constraint) is any well-defined criterion which obtains a smaller search
space by permitting narrowing to reduce only some chosen positions. A narrowing strategyϕ can be formalized as amapping
that assigns a subset ϕ(g) of O(g) to every input expression g (e.g. a goal different from ⊤) such that, for all u ∈ ϕ(g), the
goal g is narrowable at position u. An important property of a narrowing strategy ϕ is completeness, meaning that the
narrowing constrained by ϕ is still complete. There is an inherited tradeoff coming from functional programming, between
the benefits of outer evaluation of orthogonal (i.e. left-linear and overlap-free), nonterminating rules and those of inner
or eager evaluation with terminating, non-orthogonal rules. Also, under the eager strategy, programs are required not to
contain extra-variables, that is, each program rule λ → ρ ⇐ C satisfies Var(ρ) ∪ Var(C) ⊂ Var(λ), whereas the weaker
condition Var(ρ) ⊂ Var(λ)∪Var(C) is demanded in lazy programs. A survey of results about the completeness of narrowing
strategies can be found in [22,21,60,61,78]. To simplify our notation, we let Rϕ denote the class of programs that satisfy the
conditions for the completeness of the strategy ϕ. Under these conditions, the narrowing strategies defined below only
compute constructor substitutions.

We need the following notions and notation. An innermost term is a term of the form f (d1, . . . , dk), where f ∈ F and for
all i = 1, . . . , k, di ∈ τ(C ∪ V ). The leftmost-innermost position of g is the leftmost position of g that points to an innermost
subterm. A position p is leftmost-outermost in a set of positions O if there is no p′ ∈ Owith either p′ prefix of p, or p′ = q.i.q′
and p = q.j.q′′ and i < j.

Definition 4 (Narrowing strategies). We let inn(g) (resp. out(g)) denote the narrowing strategy which assigns the position
p of the leftmost-innermost (resp. leftmost-outermost) narrowing redex of g to the goal g .

We formulate a conditional narrower with strategy ϕ, ϕ ∈ {inn, out}, as the smallest relation ❀ϕ satisfying

{u} = ϕ(g) ∧ (λ→ ρ ⇐ C) << R
ϕ
+ ∧ σ = mgu({g |u = λ})

g σ
❀ϕ (C, g[ρ]u)σ

.

For ϕ ∈ {inn, out}, Rϕ
+ = R ∪ Eqϕ , where the set of rules Eqϕ models the equality on terms.

2 Substitutions are restricted to the input variables.
3 Actually, there are three sources of non-determinism in (conditional) narrowing: the choice of the equation within the goal, the choice of the redex

within the equation, and the choice of the rewrite rule.



M. Alpuente et al. / Theoretical Computer Science 411 (2010) 4055–4101 4061

Namely, Eqout is the set of rules that define the validity of equations as a strict equality between termswhich is appropriate
when computations may not terminate [105]:

c ≈ c → true % c/0 ∈ C
c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (x1 ≈ y1) ∧ · · · ∧ (xn ≈ yn) % c/n ∈ C

true ∧ x → x

whereas Eqinn is the standard equality defined by

x = x → true % x ∈ V.

We also assume that equations in g and C have the form s = t whenever we consider ϕ = inn, whereas the equations
have the form s ≈ t when we consider ϕ = out . Note that an input equation like f (a) = g(a) is not an acceptable goal
when ϕ = out . In the following, this difference will bemade explicit by using=ϕ to denote the standard equality= of terms
whenever ϕ = inn, whereas=ϕ is≈ for the case when ϕ is out .

It is known that neither inn nor out are generally complete. For instance, consider R = {f(y, a) → true, f(c, b) →
true, g(b) → c} with input goal f(g(x), x) =ϕ true. Then, innermost narrowing only computes the answer {x/b} for
f(g(x), x) = truewhereas outermost narrowing only computes {x/a} for the considered goal f(g(x), x) ≈ true.

As for canonical TRSs, the completeness of a narrowing strategy is achieved by enforcing the following uniformity
condition [60,61,72,110]: a narrowing strategy ϕ is uniform iff for any goal g and every grounding normalized substitution
σ for g (i.e. a substitution that only contains terms in normal form such that gσ is ground), the subterm of gσ occurring at
any position in ϕ(g) is reducible. Note that in the program R above, the strategy ϕ = out does not satisfy the uniformity
principle since the term g(x) is not reducible when instantiated with the grounding substitution {x/a}.

The uniformity condition for canonical TRSs has been extended to conditional CTRSs in [30] by extending to goals the
rewrite relation→R . Namely, they use the non-deterministic rewriting relation without evaluation of conditions →R first
defined by Bockmayr and Werner in [34], which provides a direct correspondence between conditional narrowing and
conditional rewriting. We write g →R g ′ if there exist a position p ∈ ϕ(g), a rule λ → ρ ⇐ C << R and a substitution
σ such that (i) g|p = λσ , (ii) g ′ = (Cσ , g[ρσ ]p). Then, given a constructor-based program R such that →R is canonical,4
a sufficient condition for uniformity is given by [30,60]: (i) functions in F are completely defined (i.e., the set of normal
ground terms is τ(C)), and (ii) left-hand sides of rules in R are pairwise not strictly subunifiable, i.e., two subterms at the
same position of two left-hand sides are not unifiable by a nontrivial mgu (i.e., a mgu θ such that θθ−1 ≠ ϵ). For instance,
f(y, a) and f(c, b) are strictly subunifiable since the mgu of the first arguments is the nontrivial substitution {y/c}. We
denote by Ru the class of uniform CTRSs that satisfy the conditions (i) and (ii) above. For the case ϕ = out , we also require
left-linearity of R.

Since the not strictly subunifiable requirement is not satisfied by certain programs, [60] contains a method to transform
a program satisfying (i) into a program satisfying (i) and (ii) (see [60] for details).

The following example borrowed from [13] illustrates the transformation of a non-uniform program to a uniform one.

Example 5. Given the following (non-uniform) program R:

f(0, 0) → 0 (R1)
f(s(x), 0) → s(0) (R2)
f(x, s(0)) → 0 (R3)

f(x, s(s(y))) → s(s(0)) (R3)

we can get the following uniform program by applying the transformation procedure of [60]:

f(x, 0) → h(x) h(0) → 0
f(x, s(y)) → g(y) h(s(x)) → s(0)

g(0) → 0
g(s(y)) → s(s(0)),

where g and h are new function symbols not appearing in the signature of the original program.

Innermost narrowing is the foundation of several functional logic programming languages like SLOG [71], LPG [29,32] and
(a subset of) ALF [77]. Also, the multi-paradigm language Maude [51,102] is equipped with a (kind of) innermost narrowing
strategy (called variant narrowing [63,62]) that is part of an equational unification procedure. Moreover, reachability
analyses for programs written in Maude rely on the so-called topmost theories [103], where the innermost strategy is
often advantageous. Recently, the notion of strategic narrowing has been proposed as the main mechanism for the analysis
of security policies in the strategy language Elan, relying on the confluence, termination and sufficient completeness of
the underlying rewrite system [91]. In this context, innermost narrowing, innermost priority narrowing (i.e., innermost
narrowing with a partial ordering on the program rules) and outermost narrowing have proven to be of prime interest [91].

4 In the case of unconditional programs, this boils down to require canonicity of→R .
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Modern functional logic languages like Curry [83] and Toy [96] are based on lazy evaluation principles instead, which
delay the evaluation of function arguments until their values are needed to compute a result. This allows one to deal with
infinite data structures and avoids some unnecessary computations [78]. The strategy of contemporary implementations of
lazy functional logic languages is needed narrowing. Needed narrowing can be easily and efficiently implemented bymeans
of a transformation proposed in [84], which preserves the answers computed by needed narrowing in the original program.
Thanks to the possibility of using this transformation, we do not lose (much) generality by developing our methodology
for the simpler leftmost outermost narrowing; this simplifies reasoning about computations, and consequently proving
semantic properties, e.g. completeness. For the sake of completeness, the transformation of [84] can be found in Appendix
A.

3. The semantic framework

In this section, we develop a compositional, fixpoint semantics Fϕ(R) for program R, which models successful as well
as partial (unfinished) computations and is parametric w.r.t. the evaluation strategy. Then, we provide a subset Oca

ϕ (R)

of the denotation Fϕ(R) that only models the successful computations. The computed answer semantics Oca
ϕ (R) allows

us to formalize the correctness and completeness of a program w.r.t. a given specification, whereas the former, fixpoint
semantics Fϕ(R) is used for the diagnosis. In order to formalize the precise relationship between these two semantics, we
distinguish between two kinds of partial computations (intermediate computations and nonterminating computations) and
we introduce an intermediate, auxiliary semantics F ca

ϕ (R) which models success as well as non-termination. The computer
answer (fixpoint) semanticsF ca

ϕ (R) is instrumental and provides a useful, purely syntactic characterization of the narrowing
computations and can be automatically approximated, as we will show in Section 4.

Let ⌊R⌋ denote the set of ground instances of the rules of R. For canonical R, the standard (Herbrand) semantics of R,
which is given by the ‘‘ground success set’’ (i.e., the set of all ground equations s = t such that s and t have a common
R-normal form), can be reconstructed as the least fixpoint TR↑ω of the following immediate consequence operator TR ,
which is continuous on the complete lattice of Herbrand interpretations ordered by set inclusion [89].

TR(I) = {t = t ∈ B} ∪ {e ∈ B | (λ→ ρ ⇐ C) ∈ ⌊R⌋, {e[ρ]u} ∪ C ⊆ I, u ∈ O(e), e|u = λ}

Informally, TR(I) contains the set of all ground instances of the reflexivity axiom and the set of all ground equations that
can be ‘constructed’ from elements of the Herbrand interpretation I by replacing one occurrence of the right-hand side of
the head of a rule in R by the corresponding left-hand side.

In order to formulate a semantics for functional logic programs that models computed answers, the usual Herbrand base
has to be extended to the set of all (possibly) non-ground equations [65,66].

Definition 6 (V-Herbrand Universe, V -Herbrand ϕ-base). HV denotes the V-Herbrand universe that allows variables in its
elements and is defined as τ(Σ ∪ V )/∼=, where ∼= is the equivalence (renaming) relation induced by the preorder ≤ of
‘‘relative generality’’ between terms. For the sake of simplicity, the elements of HV (equivalence classes) have the same
representation as the elements of τ(Σ ∪ V ) and are also called terms. BV denotes the V-Herbrand ϕ-base, namely, the set
of all (unquantified) equations s =ϕ t modulo renaming, where s, t ∈ HV .

Note that the case when ϕ = inn, all equations in BV have the form t = s, whereas for the lazy strategy, we need to
distinguish between two kinds of equality: the strict equality≈whichmodels the equality on data terms, and the non-strict
equality=which holds even if the arguments are both undefined or partially defined, similarly to [75,105]. That is, equations
have the form t = s or t ≈ s when ϕ = out . Note that the standard Herbrand base B is equal to ⌊BV ⌋. The ordering on HV
induces an ordering on BV , namely s′ =ϕ t ′ ≤ s =ϕ t if s′ ≤ s and t ′ ≤ t . The power set of BV is a complete lattice under
set inclusion. A V -Herbrand ϕ-interpretation I is a subset of BV , which we simply refer to as Herbrand interpretation.

The idea of using syntactic domains for describing program semantics, and in particular the use of non-ground atoms in
the denotation, is inspired in the literature of logic programming (see [38]) where it is commonly used to capture various
observables like computed answers or call patterns in a goal-independent way, so that goals can be simply solved in the
semantics by syntactic unification.

Following [38], we are interested in developing a semantics F ca
ϕ (R) for program R such that the computed answer

substitutions of any (possibly conjunctive) goal g can be derived from F ca
ϕ (R) by unification of the equations in the goal

with the equations in the denotation. We assume that the equations in the denotation are standardized apart. In order for
the term structure to be directly accessible to unification, equations in the goal have to be flattened first, i.e., subterms need
to be unnested.

Definition 7 (Flat goal w.r.t. ϕ). A flat equation is an equation of the form f (d1, . . . , dn) = d or d1 =ϕ d2, where
d, d1, . . . , dn ∈ τ(C ∪ V ). A flat goal is a set of flat equations.

Note that, for the outermost strategy ϕ = out , a flat goal may contain the two kinds of equality, the strict equality
≈, which gives to equality the weak meaning of identity of finite objects as is only defined on finite and completely
determined data structures, and the standard (non-strict) equality =, which is defined even on partially determined or
infinite data structures (see [75,105]). Nevertheless, in a flat goal w.r.t. ϕ = out , the only non-strict equations are of the
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form f (d1, . . . , dn) = x. This allows, for example, the elimination of f (a) = x, whenever f (a) would not have been selected
by narrowing (i.e., when its value is not required to reduce g(f (a))) since standard equality= is the only one which obeys
the reflexivity axiom x = x for all x. This will be apparent below (Section 3.1), when we introduce two different sets of
reflexivity axioms, ℑϕ

R and ΦR . This is novel w.r.t. the standard literature, where the non-strict case is not considered (see
e.g. in [89] the characterization of some equational inference rules such as ordinary narrowing and paramodulation).

Any sequence of equations E can be transformed into a flat one, flatϕ(E), which is equivalent in the following sense:
E is equivalent to the existential quantification of flatϕ(E) w.r.t. the new, auxiliary variables introduced by the flattening
transformation. By abuse of notation, we disregard the existential quantification of these new variables as we only consider
the unification problem flatϕ(E) for the variables in E. The flattening procedures for equation sets which produce flat goals
w.r.t. inn and out , respectively, can be found in [37,75]. For the sake of completeness, we recall them in Appendix A, where
we compact them as two cases of a generic flattening transformation.

It is known that the fixpoint semantics allows for the reconstruction of the top-down, operational semantics and allows
for the (bottom-up) computation of a model that is completely independent of the goal [17,65]. In the following section,
we provide a fixpoint characterization of the operational semantics of integrated programs that is also parametric w.r.t. the
evaluation strategy, which can be either eager or lazy.

As mentioned above, we are going to introduce three different program denotations Fϕ(R), F ca
ϕ (R) and Oca

ϕ (R)
for program R. The fixpoint semantics Fϕ(R) which models successful as well as partial (intermediate as well as
nonterminating) computations is obtained by computing the least fixpoint of an immediate consequences operator Tϕ

R .
A subset of the denotation Fϕ(R) is the computed answer (fixpoint) semantics F ca

ϕ (R), which is obtained from Fϕ(R) by
removing the equations that model intermediate computations (i.e., those equations f (t̄) = s where s ‘‘has not reached
its value’’) and is the only semantics that allows us to execute (nontrivial) goals g by simply unifying flat(g) with the
equations in the denotation and obtain the very same answers as computed by narrowing. The semantics F ca

ϕ (R) is purely
instrumental; also note that it stillmodels nonterminating functions,which are denoted by⊥. Finally, the operational success
set semantics Oca

ϕ (R) just catches successful derivations, that is, it only catches the computed answers. Therefore, we have
Oca

ϕ (R) ⊆ F ca
ϕ (R) ⊆ Fϕ(R).

3.1. Fixpoint semantics

Nowwe consider a generic immediate consequence operator Tϕ
R which models computed answers w.r.t. ϕ. In non-strict

languages, if the compositional character of meaning has to be preserved in the presence of infinite data structures and
partial functions, then non-normalizable terms, which may occur as subterms within normalizable expressions, also have
to be assigned a denotation. Such a denotation is bound to the class of all partial results of the infinite computation along
with the usual approximation ordering⊑ on them [75,105] or, equivalently, the infinite data structure defined as the least
upper bound of this class. Following [75,105], the constant symbol⊥ ∈ Σ is used to approximate the value of expressions
which would otherwise be undefined.

For any program R, we denote by ΦR the set of identical equations f (x1, . . . , xn) = f (x1, . . . , xn), for each function
symbol f /n ∈ D . We let ℑϕ

R denote the set of the identical equations c(x1, . . . , xn) =ϕ c(x1, . . . , xn) for the constructor
symbols c/n occurring inR only. These functional reflexivity axioms play an important role in defining the fixpoint semantics
of R.

Definition 8 (Immediate consequence operator). Let I be a ϕ-Herbrand interpretation and R ∈ Rϕ . Then,

Tϕ
R(I) = ΦR ∪ ℑ

ϕ
R ∪ { e ∈ BV | (λ→ ρ ⇐ C) << R

ϕ
++, l = r ∈ I, C ′ ⊆ IC,

mgu(flatϕ(C), C ′) = σ ,mgu({λ = r |u}σ) = θ, u ∈ ϕ(r),
e = (l = r[ρ]u)σθ},

where Rinn
++
= R, whereas Rout

++
= Rout

+
∪ {f (x1, . . . , xn) → ⊥ | f /n ∈ F and x1, . . . , xn ∈ V }, and IC

= {l =ϕ r ∈ I |
r is a constructor term}.

In the casewhenϕ = out , the rules f (x1, . . . , xn)→⊥ are necessary to associate a denotationwith all input expressions,
including those that yield non-termination. Note that only equationswith equality symbol= are derived at each application
of the immediate consequences operator.

We are ready to formalize our notion of fixpoint semantics in the fixpoint style. As usual, we consider the chain of
iterations of Tϕ

R starting from bottom, by defining Tϕ
R ↑ 0 = ∅; Tϕ

R ↑ (k + 1) = Tϕ
R(Tϕ

R ↑ k), for k ≥ 0; and
Tϕ

R↑ω =


k≥0 T
ϕ
R ↑ k.

The following proposition is instrumental to define the fixpoint semantics.

Proposition 9. The Tϕ
R operator is continuous on the complete lattice of Herbrand interpretations, ϕ ∈ {inn, out}. The least

fixpoint lfp(Tϕ
R) = Tϕ

R↑ω.

Definition 10 (Fixpoint semantics). The least fixpoint semantics of a program R in Rϕ is defined as Fϕ(R) = lfp(Tϕ
R),

ϕ ∈ {inn, out}.
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Let us now illustrate the fixpoint semantics by some examples.

Example 11. Let ϕ = inn, and consider the following program R that defines the predecessor function pre for natural
numbers that are generated by means of function nat:

pre(s(x)) → x⇐ nat(x) = x
nat(0) → 0
nat(s(x)) → s(nat(x))

Then,

T inn
R ↑ 0 = ∅

T inn
R ↑ 1 = {0 = 0, s(x) = s(x), nat(x) = nat(x), pre(x) = pre(x)}

T inn
R ↑ 2 = T inn

R ↑ 1 ∪ {nat(0) = 0, nat(s(x)) = s(nat(x))}
T inn

R ↑ 3 = T inn
R ↑ 2 ∪ {nat(s(0)) = s(0), nat(s2(x)) = s2(nat(x)), pre(s(0)) = 0}

T inn
R ↑ 4 = T inn

R ↑ 3 ∪ {nat(s2(0)) = s2(0), nat(s3(x)) = s3(nat(x)), pre(s2(0)) = s(0)}
...

T inn
R ↑ω = {0 = 0, s(x) = s(x), nat(x) = nat(x), pre(x) = pre(x), nat(0) = 0, nat(s(0)) = s(0),

nat(s2(0)) = s2(0), . . . , nat(sn(0)) = sn(0), . . . , nat(s(x)) = s(nat(x)), . . . ,
nat(sn(x)) = sn(nat(x)), . . . , pre(s(0)) = 0, pre(s2(0)) = s(0), . . . ,
pre(sn(0)) = sn−1(0), . . .} = Finn(R)

Example 12. Let ϕ = out , and consider the non-terminating5 program R defining the first element of a list, together with
the list from(x) of natural numbers starting from x:

from(x) → [x|from(s(x))]
first([x|y]) → x

Then6:
T out

R ↑ 0 = ∅
T out

R ↑ 1 = {s(x) ≈ s(x), [ ] ≈ [ ], [x|y] ≈ [x|y], from(x) = from(x), first(x) = first(x)}
T out

R ↑ 2 = T out
R ↑ 1 ∪ {first([x|y]) = x, first(x) = ⊥, from(x) = ⊥, from(x) = [x|from(s(x))]}

...
T out

R ↑ω = {s(x) ≈ s(x), [ ] ≈ [ ], [x|y] ≈ [x|y], first(x) = first(x), first(x) = ⊥, first([x|y]) = x,
from(x) = from(x), from(x) = ⊥, from(x) = [x|from(s(x))], from(x) = [x|⊥], . . . ,

from(x) = [x|[s(x)| . . . [sn(x)|from(sn+1(x))]]], from(x) = [x|[s(x)| . . . [sn(x)|⊥]]], . . .}

According to Definition 10, the fixpoint semantics is7:

Fout(R) = {s(x) ≈ s(x), [ ] ≈ [ ], [x|y] ≈ [x|y], first(x) = first(x), first(x) = ⊥, first([x|y]) = x,
from(x) = from(x), from(x) = ⊥, from(x) = [x|from(s(x))], from(x) = [x|⊥], . . . ,
from(x) = [x|[s(x)| . . . [sn(x)|from(sn+1(x))]]], from(x) = [x|[s(x)| . . . [sn(x)|⊥]]], . . .}

By disregarding the equations that denote partial computations,we obtain an intermediate semantics that can be thought
of as an evaluation semantics for functional programs.

Definition 13 (Computed answers fixpoint semantics). We let F ca
ϕ (R) denote the set {e ∈ lfp(Tϕ

R)| the right-hand side of e
does not contain any defined function symbol f /n ∈ F }.

The semantics F ca
ϕ (R) is called computed answers fixpoint semantics because it provides a declarative characterization of

the narrowing computations, where the answers are ‘‘computed in the denotation’’ by syntactic unification. The following
result formalizes the precise relationship between the answer substitutions computed by narrowingw.r.t. ϕ with the⊥-free
substitutions that can be ‘‘extracted’’ from the computed answers (fixpoint) semantics by syntactic unification.

Definition 14 (Closed goal by a set of equations). Let R ∈ Rϕ and g be a (non-trivial) goal for ϕ. Let S be a set of equations.
We say that g is closed by S (with substitution θ ) iff there exists g ′ ≡ e1, . . . , en ⊆ S such that θ = mgu(flatϕ(g), g ′)|̀Var(g).

Note that, in the case when θ is a variable renaming, then g ∈ S.

5 When considering the strict equality ≈ instead of the non-strict equality =, the completeness results for outermost narrowing in [60,61] (when we
are only interested in the computation of finite and total values of expressions) generalize to nonterminating rules with little effort, see [72].
6 In the examples, we use sn(x) as shorthand for s(s(. . . (x))).
7 For the sake of simplicity, we omit equations involving the ‘built-in’ defined function symbols ‘‘≈’’ and ‘‘∧’’, e.g. the equations ([sn(x1)|y1] ≈
[sn(x2)|y2]) = (x1 ≈ x2) ∧ (y1 ≈ y2), for n > 0, etc.
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Theorem 15 (Strong soundness and completeness). LetR ∈ Rϕ and g be a (non-trivial) goal forϕ. Then, θ is a computed answer
for g in R w.r.t. ❀ϕ iff g is closed by F ca

ϕ (R) with substitution θ .

According to Theorem 15, F ca
ϕ (R) can be used to simulate the execution for any (non-trivial) goal g , that is, F ca

ϕ (R) can
be viewed as a (possibly infinite) set of ‘unit’ clauses, and the computed answer substitutions for g in R can be determined
by ‘executing’ flatϕ(g) in the program F ca

ϕ (R) by standard unification, as if the equality symbol were an ordinary predicate.

Example 16. Consider again the nonterminating program of Example 12. Using Definition 13, the computed answers
fixpoint semantics is given by

F ca
out(R) = {s(x) ≈ s(x), [ ] ≈ [ ], [x|y] ≈ [x|y], first(x) = ⊥, first([x|y]) = x, from(x) = ⊥,

from(x) = [x|⊥], . . . , from(x) = [x|[s(x)| . . . [sn(x)|⊥]]], . . .}

with n ∈ ω. Let us now show how the computed answers for a given goal can be distilled from this semantics by unification.
Given the goal g ≡ (first(from(s(x))) ≈ z), outermost narrowing only computes the answer {z/s(x)} in R, which is also
the only substitution that can be computed by unifying the flat goal (from(s(x)) = y, first(y) = w, w ≈ z) in F ca

out(R).

Note that, in our denotation, the proper semantic meaning of an equation l = r is equality only in the case that l and
r are total, i.e., without any occurrence of ⊥. Roughly speaking, ⊥ is used in our methodology as an artifact to allow any
equation g(x1, . . . , xn) = x to ‘‘succeed’’ (when it is executed in the denotation). This is achieved by simply unifying it
with the extra (‘‘fake’’) equation g(x1, . . . , xn) = ⊥. This ensures that every (non-strict) equation with a pure variable in its
right-hand side is solvable, which is necessary for completeness. For instance, consider the following example in [75]. Let
f (t1, . . . , tm) be a term occurring in a rule body or a goal, and assume that f is not strict on the ith argument. By definition,
if ti is a term g(x1, . . . , xn), then the flattening introduces an equation g(x1, . . . , xn) = x in the goal (and replaces ti by x
in f (t1, . . . , tm)). We must allow this equation g(x1, . . . , xn) = x to succeed with an undefined value of x, whenever the
value is not required in other equations since it represents the ith argument of f . Roughly speaking, solving this equation
by means of the rule g(x1, . . . , xn) = ⊥ has the effect to ‘‘undo’’ the flattening, which would otherwise force the evaluation
of the call g(x1, . . . , xn), even though the evaluation was not demanded by f . Moreover, note that such a call g(x1, . . . , xn)
could fail (e.g. if g is undefined), which would be certainly undesired.

In the following, we show the relation between the semantics F ca
ϕ (R) and a novel operational ‘‘computed answer’’

semantics Oca
ϕ (R) that correctly models the behavior of single equations, which we introduce in the following.

3.2. Success set semantics

The operational success set semantics Oca
ϕ (R) of R w.r.t. narrowing strategy ϕ is defined in the style of [18,38] by

considering the answers computed by narrowing for ‘‘most general calls’’.

Definition 17 (Success set semantics). Let R be a program in Rϕ . Then,

Oca
ϕ (R) = ℑ

ϕ
R ∪ {(f (x1, . . . , xn) = xn+1)θ | (f (x1, . . . , xn) =ϕ xn+1)

θ ∗
❀ϕ ⊤where f /n ∈ F ,

and x1, . . . , xn+1 are distinct variables}.

The following auxiliary operator partial(S) is helpful. partial(S) selects those equations of S that do not model successful
computations, i.e., computations that are still incomplete or do not terminate.

Definition 18. Let S be a set of equations and Σ be the considered signature. We define

partial(S) = {λ = ρ ∈ S | ⊥ occurs in ρ, or ρ contains a defined function symbol of Σ}.

By definition, partial(Oca
ϕ (R)) = ∅. The following result summarizes the relation between the operational and fixpoint

computed answer denotations of a program.

Theorem 19. The following relation holds:

Oca
ϕ (R) = Fϕ(R)− partial(Fϕ(R)).

Theorem 19 implies that, in the case when ϕ = inn, Oca
ϕ (R) = F ca

ϕ (R), whereas they only differ in the denotation of the
non-terminating computations in the case when ϕ = out .

Example 20. Consider again the program of Example 16. According to Definition 18, we have that

partial(Fout(R)) = {from(x) = from(x), from(x) = ⊥, from(x) = [x|from(s(x))], . . . ,
from(x) = [x|[s(x)| . . . [sn(x)|from(sn+1(x))]]], from(x) = [x|[s(x)| . . . [sn(x)|⊥]]],
. . . , first(x) = first(x), first(x) = ⊥}.

Now, by Theorem 19, the computed answer semantics is as follows:

Oca
out(R) = {[ ] ≈ [ ], [x|y] ≈ [x|y], s(x) ≈ s(x), first([x|y]) = x}.
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Example 21. Let us consider the program R = {g(x)→ 0, f(0)→ 0, f(s(x))→ f(x)}. According to Definition 10,

Finn(R) = {0 = 0, s(x) = s(x), g(x) = 0, f(0) = 0, f(s(x)) = f(x), . . . , f(sn(x)) = f(x), . . . ,
f(s(0)) = 0, . . . , f(sn(0)) = 0, . . .}.

From Definition 18,

partial(Finn(R)) = {f(s(x)) = f(x), . . . , f(sn(x)) = f(x), . . .}.

Now, by Theorem 19,

Oca
inn(R) = F ca

inn(R) = {0 = 0, s(x) = s(x), g(x) = 0, f(0) = 0, f(s(0)) = 0, . . . , f(sn(0)) = 0, . . .}

In the following section, we use the (greater) fixpoint semantics Fϕ(R) to define the diagnosis methodology, whereas
the smaller, operational semantics Oca

ϕ (R) is used to formalize the notions of correctness and completeness of a program
w.r.t. a given specification.

4. Declarative diagnosis of functional logic programs

The idea behind declarative error diagnosis is to collect information about what the program is intended to do and
compare this with what it actually does. Starting from these premises, a diagnoser can find errors. The information needed
can be found in many different ways. It can be built by asking the user (as an oracle), or by means of a formal specification
(or an older, correct, version of the program), or some combination of both.

Declarative debugging as defined in [117,68] is concerned with model-theoretic properties (the least Herbrand model
in [117] and the set of atomic logical consequences in [68]). In his seminal work [95], Lloyd extended Shapiro’s algorithmic
debugging [117] in order to deal with logic programs with negation and non-standard computation rules, but he considers
only model-theoretic properties. In [55], Comini, Levi and Vitiello extended the definitions given in [117,95,68] to diagnosis
w.r.t. computed answers in order to provide more precise diagnoses. In the following, we extend the diagnosis framework
of [55] in order to deal with functional logic programs.

As operational semantics, we consider the success set semantics. Since we consider two different semantics for the
program R, operational Oca

ϕ (R) and fixpoint Fϕ(R), in the sequel, we also distinguish between two different denotations
(V -Herbrand interpretations) representing the intended meaning of the program: Ica and IF . Both Ica and IF consist of
standard equations as well as strict equations (in the case of the outer strategy). The symbol ⊥ never occurs in Ica. We
also note that the equality symbol = in the denotation does not have the mathematical meaning of equality, in the sense
that equational reasoning does not apply to equations containing the symbol ⊥: otherwise, one would infer the equation
[x|⊥] = [x|[s(x)|⊥]] from the equations from(x) = [x|⊥] and from(x) = [x|[s(x)|⊥]], which is false under the semantics
discussed in this paper. In our framework, the only meaning of the= symbol is given, by extension, in the denotation itself:
all equations in the denotation, and only those, hold. Standard equality properties such as symmetry of the left-hand side
and the right-hand side of equations do not generally hold. This gives the non-strict equality the meaning of a ‘‘reducibility
predicate’’ similar to [119].

While Ica is the reference semantics from a programmer perspective, IF is suitable for the diagnosis [42], as we describe
in the following.

Definition 22 (Correctness and completeness w.r.t. reference semantics). Let Ica be the intended success set semantics forR.

(1) R is partially correct w.r.t. Ica, if Oca
ϕ (R) ⊆ Ica.

(2) R is complete w.r.t. Ica, if Ica ⊆ Oca
ϕ (R).

(3) R is totally correct w.r.t. Ica, if Oca
ϕ (R) = Ica.

If a program contains errors, these are signalled by corresponding symptoms. The ‘‘intended success set semantics’’ allows
us to establish the validity of an atomic equation by a simple ‘‘membership’’ test, in the style of the s-semantics [38,64].

Definition 23 (Incorrectness and incompleteness symptoms). Let Ica be the intended success set semantics for R. An
incorrectness symptom is an equation e such that e ∈ Oca

ϕ (R) and e ∉ Ica. An incompleteness symptom is an equation e
such that e ∈ Ica and e ∉ Oca

ϕ (R).

For the diagnosis, however, we need to consider a ‘‘well-provided’’ intended semantics IF (such that Ica ⊆ IF ), which
models successful as well as ‘‘in progress’’ (partial) computations, and enjoys the semantic properties of the denotation
formalized in Definition 10, that is, IF should correspond to the fixpoint semantics of the correct program and Ica =

IF −partial(IF ).Obviously, for a particular correct programR,F ca
ϕ (R) ⊆ Ica andFϕ(R) ⊆ IF . Nevertheless, in a practical

system, these descriptionswould not be provided by the usermanually, but an approximation is automatically inferred from
a finite set of input equations, e.g. a possibly inefficient (correct) version of the program, or a (executable) specification. The
debugging of programs via specifications is an important topic in automated program development, where the specification
is not only seen as the starting point for the subsequent program development, but also as the criterion for judging the
correctness of the software system.

In case of errors, in order to determine the faulty rules, the following definitions are helpful.
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Definition 24 (Incorrect rule). Let IF be the intended fixpoint semantics for R. If there exists an equation e ∈ Tϕ

{r}(IF ) s.t.
e is not closed by IF , then the rule r ∈ R is incorrect on e.

Therefore, the incorrectness of rule r is signalled by a simple transformation of the intended semantics IF .

Definition 25 (Uncovered equation). Let IF be the intended fixpoint semantics for R. An equation e is uncovered in R if
e ∈ IF and e is not closed by Tϕ

R(IF ).

By the above definition, an equation e is uncovered if it cannot be derived by any program rule using the intended fixpoint
semantics. In particular, we are interested in the equations of Ica ⊆ IF that are uncovered, i.e., e ∈ Ica and e is not closed
by Tϕ

R(IF ).

Proposition 26. If there are no incorrect rules in R w.r.t. the intended fixpoint semantics IF , then R is partially correct w.r.t.
the intended success set semantics Ica.

Assume that IF is finite.8 Proposition 26 shows a simple methodology to prove partial correctness. Completeness is
harder: some incompleteness cannot be detected by comparing the specification of the intended fixpoint semantics IF and
Tϕ

R(IF ). That is, the absence of uncovered equations does not allowus to derive that the program is complete. Let us consider
the following counterexample.

Example 27. Let ϕ = out . Consider program R = {f(x) → a ⇐ f(x) ≈ a} and IF = {a ≈ a, f(x) = f(x), f(x) =
⊥, f(x) = a}. Then, Ica = {a ≈ a, f(x) = a}whereas Oca

out(R) = {a ≈ a} ⊉ Ica; hence, R is not complete.
Now, let us show that there is no incompleteness symptom. First, let us compute flatout(f (x) ≈ a) ≡ {f (x) = y, y ≈ a}.
Since Rout

++
= {f(x)→ a⇐ f(x) ≈ a, f(x)→ ⊥, a ≈ a→ true, x ≈ y→ ⊥}, then T out

R (IF ) = {a ≈ a, f(x) =
f(x), (x ≈ y) = (x ≈ y), f(x) = ⊥, f(x) = a, (x ≈ y) = ⊥}. Therefore, IF ⊆ T out

R (IF ) and there are no uncovered
equations.

The problem is related to the existence of several fixpoints for the TR operator. See [55] for details.
It is worth noting that checking the conditions of Definitions 24 and 25 requires just one application of Tϕ

R to IF , while the
standard detection based on symptoms [117] would require either an external oracle or the construction of the semantics,
and therefore a fixpoint computation.

5. Abstract semantics

The theory of abstract interpretation [56] provides a formal framework for developing advanced data-flow analysis
tools. Abstract interpretation formalizes the idea of ‘approximate computation’ in which computation is performed with
descriptions of data rather than with the data themselves. The semantics operators are then replaced by abstract operators
that are shown to ‘safely’ approximate the standard ones. In this section, starting from the fixpoint semantics developed in
Section 3, we formalize an abstract semantics that approximates the behavior of the program and is adequate for modular
data-flow analysis, such as the analysis of unsatisfiability of equation sets or any analysis that is based on the program
success set. We assume the framework of abstract interpretation for analysis of equational unsatisfiability as defined in
[15]. In [15], we only dealt with the standard equality, whereas in this paper we consider two different equalities, and thus
we slightly generalize the results in order to apply them in the case of the outer strategy, too.

We recall the basic definitions of the abstract domains and the associated abstract operators (see [8,15,18] for details).
Then, we describe the abstract immediate consequence operator T ♯ϕ

R , which approximates Tϕ
R , and the corresponding

abstract fixpoint semantics, F ♯
ϕ (R) and F ca♯

ϕ (R). An abstract success set semantics O♯ϕ can also be systematically derived
from the concrete one, by replacing the considered narrowing calculus by a corresponding abstract version (see e.g. [15]).
In the following, we denote the abstract analog of a concrete object O by O♯.

The abstract methodology in this section, which was first presented in [9], generalizes the results in [8] by making them
parametric w.r.t. ϕ ∈ {inn, out}.

5.1. Abstract programs and operators

Definition 28 (Description). A description is the association of an abstract domain (D,≤) (a poset) with a concrete domain
(E,≤) (a poset). When E = Eqn or E = Sub, the description is called an equation description or a substitution description,
respectively. The correspondence between the abstract and concrete domain is established through a ‘concretization’
function γ : D → 2E . We say that d approximates e, written d ∝ e, iff e ∈ γ (d). The approximation relation can be
lifted to relations and cross-products as usual [15].

8 In our methodology, finiteness is achieved by considering a finite approximation of IF that is computed by abstract interpretation, as described in
Section 5.
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Abstract substitutions are introduced for the purpose of describing the computed answer substitutions for a given goal.
Abstract equations and abstract substitutions correspond, in our approach, to abstract program denotations and abstract
observable properties, respectively. The domains for equations and substitutions are based on a notion of the abstract
Herbrand universe H

♯

V , which introduces an irreducible symbol ♯ (see [15,18]).

Definition 29 (Abstract Herbrand universe). Let ♯ be an irreducible fresh symbol, where ♯ ∉ Σ ∪ {⊥}. Let H
♯

V = (τ (Σ ∪
{⊥} ∪ V ∪ {♯}),≼) be the domain of terms over the signature augmented by ♯, where the partial order ≼ is defined as
follows:

(a) ∀t ∈ H
♯

V , ♯ ≼ t and t ≼ t and
(b) ∀s1, . . . , sn, s′1, . . . , s

′
n ∈ H

♯

V ,∀f /n ∈ Σ , s′1 ≼ s1 ∧ · · · ∧ s′n ≼ sn ⇒ f (s′1, . . . , s
′
n) ≼ f (s1, . . . , sn).

This order can be extended to (unquantified) equations: s′ = t ′ ≼ s = t iff s′ ≼ s and t ′ ≼ t and to (possibly infinite) sets of
equations S, S ′:

(1) S ′ ≼ S iff ∀e′ ∈ S ′, ∃e ∈ S such that e′ ≼ e. Note that S ′ ≼ {true} ⇒ S ′ ≡ {true}.
(2) S ′ ⊑ S iff (S ′ ≼ S) and (S ≼ S ′ implies S ′ ⊆ S).

Intuitively, S ′ ⊑ S means that either S ′ contains less information than S, or if they have the same information, then S ′
expresses it using fewer elements.

Roughly speaking, the special symbol ♯ introduced in the abstract domains represents any concrete term. From the
viewpoint of logic, ♯ stands for an existentially quantified variable [15,97,99]. Thus, from a programming viewpoint, the
behavior of the symbol ♯ resembles that of an ‘‘anonymous’’ variable in Prolog. Define [[S]] = S ′, where the n-tuple of
occurrences of ♯ in S is replaced by an n-tuple of existentially quantified fresh variables in S ′.

Definition 30 (Abstract substitution). An abstract substitution is a set of the form {x1/t1, . . . , xn/tn} where, for each i =
1, . . . , n, xi is a distinct variable in V not occurring in any of the terms t1, . . . , tn and ti ∈ τ(Σ ∪ V ∪ {♯}). The ordering on
abstract substitutions is given by logical implication: let θ, κ ∈ Sub♯, κ ≼ θ iff [[θ ]] ⇒ [[κ]].

The descriptions for terms, substitutions and equations are as follows.

Definition 31. Let HV = (τ (Σ ∪ {⊥} ∪ V ),≤) and H
♯

V = (τ (Σ ∪ {⊥} ∪ V ∪ {♯}),≼). The term description is ⟨H♯

V , γ , HV ⟩

where γ : H
♯

V → 2HV is defined by γ (t ′) = {t ∈ HV |t ′ ≼ t}.

Here, wewould like to emphasize the differences between the two symbols ♯ and⊥which are related, in our framework,
with the ‘‘lack of information’’. Let ≼̇ be the inverse of ≼, i.e., S ≼̇ S ′ iff S ′ ≼ S. In terms of abstract interpretation, the
symbol ♯ corresponds to the abstract top element ⊤♯ of the poset (H♯

V , ≼̇)–i.e., the one with the biggest concretization—
with γ (⊤♯) = τ(Σ ∪{⊥}∪V ). The abstract bottom element in our framework is⊥♯, with γ (⊥♯) = {⊥}, which will simply
be denoted by⊥. The poset (H♯

V , ≼̇) can be extended to a complete lattice in the usual way, by considering the standard set
union as least upper bound, and the intersection of the instances (over Σ ∪ {⊥}) of the concretization as the greatest lower
bound.

In the rest of the paper, Eqn denotes the set of (possibly infinite,9 existentially quantified) equation sets (in the case when
ϕ = out , we assume that the equations can contain the equality symbols = and ≈) over τ(Σ ∪ {⊥} ∪ V ) and Eqn♯ is the
corresponding set of finite sets of equations over τ(Σ ∪ {⊥} ∪ V ∪ {♯}).

Definition 32. The equation description is ⟨(Eqn♯,⊑), γ , (Eqn,≤)⟩, where γ : Eqn♯
→ 2Eqn is defined by γ (g ′) = {g ∈

Eqn|g ′ ⊑ g and g is unquantified}.
Let Sub be the set of substitutions over τ(Σ ∪ {⊥} ∪ V ) and Sub♯ be the set of substitutions over τ(Σ ∪ {⊥} ∪ V ∪ {♯}).

The substitution description ⟨(Sub♯,≼), γ , (Sub,≤)⟩, where γ : Sub♯
→ 2Sub is defined by γ (κ) = {θ ∈ Sub|κ ≼ θ}.

In order to perform computations over the abstract domains, we have to define the notion of abstract unification. The
abstract most general unifier for our method is very simple and, roughly speaking, it boils down to computing a solved
form of an equation set with (possibly) existentially quantified variables. We define the abstract most general unifier for an
equation set S ′ ∈ Eqn♯ as follows. First, replace all occurrences of ♯ in S ′ by existentially quantified fresh variables. Then,
take a solved form of the resulting quantified equation set and finally replace the existentially quantified variables again by
♯.

Definition 33 (Abstract most general unifier). Let ∃y1 . . . yn.S = solve([[S ′]]), where the equations in S are unquantified, and
κ = {y1/♯, . . . , yn/♯}. Then, mgu♯(S ′) = Sκ .

9 We handle infinite equation sets only when we deal with abstract Herbrand interpretations.
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The fact that ∀θ ∈ unif ([[S]]). mgu♯(S) ≼ θ justifies our use of ‘most general’. The safety of the abstract unification
algorithm has been proven in [15].

Our analysis is based on a form of simplified (abstract) program which always terminates and in which the query can
be executed efficiently. Our notion of abstract program is parametric with respect to a loop-check, i.e. a graph of functional
dependencies built from R which helps to recognize the narrowing derivations that definitely terminate.

Definition 34 (Loop-check). Given a program R, a loop-check for R is a pair (GR, ◦) where GR is a finite graph of terms
and the set-valued function ◦: τ(Σ ∪ V ) → 2τ(Σ∪V ) assigns a set of nodes

◦

t in GR to the term t such that, for any infinite
sequence: g0

θ0
❀ϕ g1

θ1
❀ϕ . . . in R, there exists i ≥ 0, u ∈ O(gi), and ti ∈ τ(Σ ∪ V ), such that ti ∈

◦

g i|u, and ⟨ti, ti⟩ ∈ G+R , where
G+R is the transitive closure of GR . We refer to ⟨ti, ti⟩ as a ‘cycle’ of GR .

A loop-check can be thought of as a sort of ‘oracle’ whose usefulness in proving the termination of narrowing derivations
is stated by the fact that if there is no cycle in GR , then narrowing derivations for R terminate [15]. By choosing appropriate
loop-checks, it is possible to tune the precision of the abstraction.

The following definition introduces a simple form of loop-check which can be seen as a sort of estimated narrowing
dependency graph [11] DGR for the CTRS R which considers functional dependencies directly on R instead of first
transforming it into an unconditional TRS, as is done in the analysis of conditional rewriting termination, e.g. [73,116].
A simpler version of this loop-check for the basic conditional narrowing strategy [90] was proposed in [14,15], and
subsequently refined in [18].

We need some auxiliary definitions. We denote by t ?
= s the fact that t and (a fresh variant) of s are unifiable. Given a

term t , OF (t) denotes the set of positions of t that address a function-rooted subterm of t , and ⌊t⌋ denotes the term which
is obtained by inductively replacing by a fresh variable the subterms of t which are not constructor-rooted, i.e.

⌊t⌋ =

c(⌊t1⌋, . . . , ⌊tk⌋) if t = c(t1, . . . , tk) and c ∈ C
y otherwise, where y is a fresh variable.

Roughly speaking, ⌊t⌋ replaces every outermost, non-constructor-rooted subterm of t by a fresh variable, while keeping
the constructor spine above those subterms. For instance, for f ∈ F , and s, c ∈ C, ⌊c(f (x), s(f (x)))⌋ = c(z1, s(z2)). This
function, first defined in [14], was subsequently split into two functions respectively named CAP (removal of functional
nestings) and REN (linearization by variable renaming) in the DP approach [26].

Definition 35 (Graph of functional dependencies). Let R be a CTRS. The following transformation defines a directed graph
DGR of functional dependencies induced by R. We define t = f (⌊t1⌋, . . . , ⌊tn⌋) if t = f (t1, . . . , tn), and f ∈ F . In order to
build DGR , the algorithm starts with ⟨R,∅⟩ and applies the inference rules (1) and (2) as long as they add new arrows. The
symbol ∪ stands for set union (modulo renaming), i.e., graph arrows are considered equivalent up to renaming:

(1)
r = (λ→ ρ ⇐ C) << R

⟨R, DGR⟩ −→ ⟨R − {r}, DGR ∪ {λ
R
→ t | (t = ρ |u, u ∈ OF (ρ)) or

(t = C |u, u ∈ OF (C)) or
(t = λ|u, u ∈ (OF (λ)− {Λ}))}⟩

(2)
(λ

R
→ r) ∈ DGR ∧ (λ′

R
→ r ′) ∈ DGR ∧ r ?

= λ′

⟨R, DGR⟩ −→ ⟨R, DGR ∪ {r
u
→ λ′}⟩

.

Termination of this calculus is ensured since the number of terms occurring in the rules in R is finite. Roughly speaking,
in Definition 35, for each rule (λ→ ρ ⇐ C) in R and for each defined function call f (t1, . . . , tn) occurring in ρ, in C , or as a
proper subterm10 of λ, rule (1) adds an arrow λ

R
→ f (⌊t1⌋, . . . , ⌊tn⌋) to DGR . Rule (2) adds an arrow r

u
→ λ′ between the

right-hand side r of an arrow λ
R
→ r in DGR and the left-hand side λ′ of each arrow λ′

R
→ r ′ with which r unifies (note that

the arrows λ
R
→ r and λ′

R
→ r ′ can also be the same). A path in the graph contains arrows

R
→ and arrows

u
→.

Now we define a particular instance of function ◦ of Definition 34 as follows: for any term t , define �t as the set of nodes
in DGR such that for every function-rooted subterm t ′ of t , if t̄ ′ unifies with some node λ, with λ

R
→ r in DGR , then λ ∈ �t .

By endowing DGR with �, (DGR,�) is a loop-check for R. This follows from [18,11] because there are three basic patterns
of non-terminating narrowing derivations [11]:

10 Note that the dependencies between the left-hand side l of a rule and the non-constructor subterms of l itself are also considered. This is because in
non-CB programs, these subterms can be brought into the narrowing derivation by instantiation, thus causing an echoing effect that may lead to non-
termination [11]. For instance, in Example 36 below, an infinite narrowing derivation exists for the goal c(fix(x),x)=0 due to the rule fix(fix(x))
→ x, namely: c(fix(x),x)=0 ❀ c(x’,fix(x’))=0 ❀ c(fix(x’’),x’’)=0 ❀ · · · .
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Fig. 1. Estimated graph of (narrowing) functional dependencies.

• the top derivations (e.g. a derivation last(ys) = 0 ❀ (append(zs, [y]) = xs, y = 0) ❀ ([x′|append(xs′, [y])] =
xs, y = 0) ❀ · · · in the program of Example 3),
• the echoing derivations (e.g. the derivation c(fix(x),x)=0 ❀ c(x’,fix(x’))=0 ❀ c(fix(x’’),x’’)=0 ❀ · · · .

in the program of Example 36), and
• the hybrid derivations (e.g. the derivation c(f(x), x) = 0 ❀ c(0, g(x′)) = 0 ❀ c(0, g(x′′)) = 0 ❀ · · · in the TRS
{f(g(x))→ 0, g(x)→ g(x)}).

The top derivations are caught by DGR similarly to the non-terminating basic narrowing derivations of [15,18], while both
echoing and hybrid narrowing derivations can be identified by using the non-vanilla ll-dependency pairs of [11], which
correspond, in our narrowing dependency graph DGR , to the arrows

R
→ from a term on the left-hand side of a rule to its

non-constructor subterms.
The key idea (originally from [14]) to extract in the form of (dependency) pairs the functional dependencies among the

left-hand sides and the right-hand sides of the rules of R, and then unifying the right-hand side of a pair with the left-
hand side of another pair in order to catch infinite (rewriting) chains was later implemented, by means of the REN and CAP
functions, for (unconditional) TRSs in the DP approach [26].

Example 36. Let us consider the following CTRS R:

foo(0, x) → c(x, x)
foo(s(x), x) → fix(x)⇐ fix(s(foo(x, x))) = 0
fix(fix(x)) → x.

We depict the dependency graph induced by R in Fig. 1. There are two cycles in the graph: fix(x2)→∗ fix(x2)→∗ · · ·
and foo(x4, x5)→∗ foo(x4, x5)→∗ · · · .

Let us now describe howwe can abstract a program R in Rϕ . Roughly speaking, the program is abstracted by simplifying
the right-hand side and the condition of each rule. This definition is given inductively on the structure of terms and equations.
The main idea is that terms whose corresponding nodes in GR have a cycle are drastically simplified11 by replacing them
by ♯ (an optimization not considered in this paper could evaluate ordering constraints on the nodes of the graph in order
to neglect some cycles, as is done in the analysis of rewriting termination, e.g. [73]). We use this definition in an iterative
manner. We first abstract a concrete rule r obtaining r♯ (we select a rule with direct recursion if any; otherwise we choose
any rule in the program). Then, we replace r by r♯ in R and recompute the loop-check before proceeding to abstract the
next rule.

Definition 37 (Abstract rule). Let R be a program and let r = (λ→ ρ ⇐ C) ∈ R. Let GR be a loop-check for R. We define
the abstraction of r as follows: r♯

= (λ→ sh(ρ, GR)⇐ sh(C, GR)) where the shell sh(x, GR) of an expression x according
to a loop-check GR is inductively defined as follows:

sh(x, GR) =


x if x ∈ V
f (sh(t1, GR), . . . , sh(tk, GR)) if x ≡ f (t1, . . . , tk) ∧ ∀ t ∈

◦

x, ⟨t, t⟩ ∉ G+R
sh(l, GR) = sh(r, GR) if x ≡ (l = r)
sh(e1, GR), . . . , sh(en, GR) if x ≡ e1, . . . , en
♯ otherwise.

Example 38. Let us consider the following program, built up with pieces of code from previous examples:

add(0, x) → x from(x) → [x|from(s(x))]
add(s(x), y) → s(add(x, y)) first([x|y])) → x
double(x) → add(x, x).

11 Note that the fact that R is CB implies that no subterm on the left-hand side of a rule needs to be replaced by ♯.
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In order to abstract the recursive definitions of add and from, it suffices to consider the rough loop-check (GR, ◦) consisting
of the following arrows {from(x1) → from(x1), add(x2, x3) → add(x2, x3)}, with function ◦ defined as function � of
Definition 35 above. Then, the abstraction of the program R is R♯:

add(0, x) → x from(x) → [x|♯]
add(s(x), y) → s(♯) first([x|y]) → x
double(x) → add(x, x)

We can now formalize the abstract semantics.

5.2. Abstract fixpoint semantics

We define an abstract fixpoint semantics in terms of the least fixpoint of a continuous transformation T ♯ϕ
R based on

abstract unification and the operation of abstraction of a program. The idea is to provide a finitely computable approximation
of the concrete denotation of the program R. In the following, we define the abstract transformation T ♯ϕ

R . Although this
abstract operator is not the best possible approximation, which could be achieved by α ◦ TR ◦ γ according to the theory of
abstract interpretation, it is computed very efficiently and is themost appropriate in our abstract interpretation framework,
where we do not formalize an explicit abstraction function α.

Definition 39 (Abstract Herbrand base, abstract Herbrand interpretation). The abstract Herbrand base of equations B
♯

V is
defined as the set of equations over the abstract Herbrand universe H

♯

V . As in the concrete case, the equations in B
♯

V have
the form t = s when ϕ = inn, whereas equations have the form t = s or t ≈ s whenever ϕ = out . An abstract Herbrand
interpretation is any element of 2B

♯
V .

We can show that the set of abstract Herbrand interpretations is a complete lattice w.r.t.⊆. An abstract trivial equation
is an equation ♯ = x, x = ♯ or ♯ = ♯.

Definition 40 (Abstract immediate consequence operator). Let R be a program in Rϕ , GR be a loop-check for R and R♯ be
the abstraction of R using GR where we also drop any abstract trivial equation from the body of the rules if they exist. Let
I be an abstract Herbrand interpretation. Then,

T ♯ϕ
R (I) = ΦR ∪ ℑ

ϕ
R ∪ { e ∈ B

♯

V | (λ→ ρ ⇐ C) << R
♯ϕ
++, l = r ∈ I, C ′ ⊆ IC,

mgu♯(flatϕ(C), C ′) = σ , mgu♯({λ = (r |u)}σ) = θ,
u ∈ ϕ(r), e = (l = r[ρ]u)σθ}

where R
♯inn
++ = R♯, whereas R

♯out
++ = R

♯out
+ ∪ {f (x1, . . . , xn)→ ⊥ | f /n ∈ F and x1, . . . , xn ∈ V }, and IC

= {l =ϕ r ∈ I |
r is a constructor term}.

Proposition 41. The T ♯ϕ
R operator is continuous on the complete lattice of abstract Herbrand interpretations.

We can define F ♯
ϕ (R) and F ca♯

ϕ (R) in a way similar to the concrete constructions of Fϕ(R) and F ca
ϕ (R), as is done in

Section 3.

Definition 42 (Abstract least fixpoint Semantics). The abstract least fixpoint semantics of a program R is F ♯
ϕ (R) = lfp(T ♯ϕ

R ).
Let F ca♯

ϕ (R) = {l =ϕ r ∈ F ♯
ϕ (R) | r ∈ τ(C ∪ V )}, ϕ ∈ {inn, out}.

The following theorem states that F ♯
ϕ (R) and F ca♯

ϕ (R) are finitely computable.

Theorem 43. There exists a finite positive number k such that F ♯
ϕ (R) = T ♯ϕ

R ↑k, ϕ ∈ {inn, out}.

From a semantics viewpoint, given a program R, the fixpoint semantics Fϕ(R) (resp. F ca
ϕ (R)) is approximated by the

corresponding abstract fixpoint semantics F ♯
ϕ (R) (resp. F ca♯

ϕ (R)). That is, we can compute an abstract approximation of
the concrete semantics in a finite number of steps. The correctness of the abstract fixpoint semantics with respect to the
concrete semantics is proved by the following theorem.

Theorem 44. F ♯
ϕ (R) ∝ Fϕ(R), F ca♯

ϕ (R) ∝ F ca
ϕ (R), and Oca♯

ϕ (R) ∝ Oca
ϕ (R).

The semantics F ca♯
ϕ (R) collects goal-independent information about success patterns of a given program. The relation

between the abstract fixpoint and the concrete operational semantics (success set) is given by the following theorem.
Roughly speaking, given a goal g , we obtain a description of the set of the computed answers of g by abstract unification of
the equations in flatϕ(g) with equations in the approximated semantics F ca♯

ϕ (R).

Definition 45 (Abstract closure of a goal). Let R ∈ Rϕ and g be a (non-trivial) goal for ϕ. Let S be a set of equations.
We say that g is abstractly closed by S (with substitution θ ) iff there exist g ′ ≡ (e1, . . . , en) ⊆ S such that θ =
mgu♯(flatϕ(g), g ′)|̀Var(g).
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Theorem 46 (Completeness). Let R be a program in Rϕ and g be a (non-trivial) goal. If θ is a computed answer substitution for
g in R w.r.t. ϕ, then g is abstractly closed by F ca♯

ϕ (R) with substitution θ ′ and (θ ′ ≼ θ)|̀Var(g).
Example 47. Consider again the program of Example 38. Then, the corresponding abstract fixpoint semantics is the finite
set:

F
♯
out (R) =
{0 ≈ 0, s(x) ≈ s(x), [ ] ≈ [ ], [x|y] ≈ [x|y], (x ≈ y) = (x ≈ y), double(x) = double(x),
first(x) = first(x), add(x, y) = add(x, y), from(x) = from(x), and(x, y) = and(x, y)} ∪

{([x|y] ≈ [x|y]) = ⊥, (x ≈ y) = ⊥, and(x, y) = ⊥, from(x) = ⊥, first(x) = ⊥, add(x, y) = ⊥,
double(x) = ⊥, } ∪

{([x|y] ≈ [x|y]) = ♯, (0 ≈ 0) = true, (s(x) ≈ s(y)) = ♯, ([x|y] ≈ [x|y]) = and(♯, ♯), and(true, x) = x,
from(x) = [x|♯], first([x|y]) = x, add(0, x) = x, double(x) = add(x, x), add(s(x), y) = s(♯),
double(0) = 0, double(s(x)) = s(♯)}

which approximates the program success set:
{0 ≈ 0, s(x) ≈ s(x), [ ] ≈ [ ], [x|y] ≈ [x|y], and(true, x) = x, first([x|y]) = x, (0 ≈ 0) = true,
(s(0) ≈ s(0)) = true, . . . , (sn(0) ≈ sn(0)) = true, . . . , add(0, x) = x, add(s(0), x) = s(x), . . . ,
add(sn(0), x) = sn(x), . . . , double(0) = 0, double(s(0)) = s2(0), . . . , double(sn(0)) = s2∗n(0), . . .}.

Given a goal g ≡ first([double(x)|from(x)]) ≈ y, outermost narrowing computes the infinite set of substitutions
{{x/0, y/0}, {x/s(0), y/s2(0)}, . . . , {x/sn(0), y/s2∗n(0)}, . . .}. Now, the abstract substitutions computed by abstract
unification in F

ca♯
out (R) of the equations of the flattened goal flatout(g) = (double(x) = z1, from(x) = z2, first([z1|z2]) =

z3, z3 ≈ y) are {{x/0, y/0}, { x/s(x1), y/s(♯)}, {x/x′, y/⊥}}, which approximate the computed answers of g .

Note that the two symbols ♯ and ⊥ may appear simultaneously in the semantics F
♯
out(R) but are handled differently,

according to their interpretation. The ‘‘default value’’⊥ is handled by the rule f (x1, . . . , xn) = ⊥ as a special data constructor
(constant) symbol, as in [31]. On the other hand, the symbol ♯ is handled as an anonymous variable that abstractly unifies
with any term. Ifwe handled⊥ as an existentially quantified variable and let it unifywith every term, the resulting semantics
would not correctly model computed answers due to the rules f (x1, . . . , xn) = ⊥.

6. Abstract diagnosis

An efficient debugger can be based on the notion of over-approximation and under-approximation for the intended
fixpoint semantics that we have introduced. The basic idea is to consider two finite sets to verify partial correctness: I+

which over-approximates the intended fixpoint semantics IF (that is, IF ∈ γ (I+)) and I− which under-approximates IF .
In particular, we restrict our interest to under-approximations which are a subset of IF (that is, IF ⊇ I−). We then use
these sets I+ and I− as shown below, where the immediate consequence operator Tϕ

R (w.r.t. the programR) is applied once
to I− to check incorrectness w.r.t. (I+, I−), and the abstract immediate consequence operator T ♯ϕ

R is applied to I+ to check
incompleteness w.r.t. (I+, I−).
Definition 48 (Correct approximation). We say that a pair (I+, I−) of abstract Herbrand interpretations is a correct
approximation of the interpretation I ⊆ BV , if I−, I+ respectively are an under-approximation and an over-approximation
of I.
Definition 49 (Abstract correctness and completeness). Let (I+, I−) be a correct approximation of the intended semantics
IF . Then,
(1) the rule r is abstractly incorrect on e w.r.t. (I+, I−) if e ∈ Tϕ

{r}(I
−) and, for all I ∈ γ (I+), e is not closed by I;

(2) R is abstractly incomplete on e w.r.t. (I+, I−) if e ∈ I− and, for all I ∈ γ (T ♯ϕ
R (I+)), e is not closed by I.

Roughly speaking, Definition 49 states that, on the one hand, a rule r is abstractly incorrect w.r.t. the correct
approximation (I+, I−), whenever there exists an equation e obtained by applying rule r to some equation of the under-
approximation I− such that (the flattened version of) e does not unify with some equations in I, for every concretization I
of the over-approximation I+. On the other hand, abstract incompleteness of a program R is witnessed by an equation e,
when e belongs to the under-approximation I−, and (the flattened version of) e does not unify with some equations in I,
for every concretization I of the abstract Herbrand interpretation obtained by applying abstract program rules to I+.

Following the abstract diagnosis approach for the debugging of computed answers [54], we do refer to thewhole program
R whenwe define our abstract incompleteness criterion of Definition 49. However, it is straightforward to particularize this
criterion (together with all related notions defined in this paper) for identifying incomplete function definitions in the style
of [95,44]. This can be done by just considering the root symbol f of the left-hand side of any equation e on which R is
abstractly incomplete: if R is abstractly incomplete on e w.r.t. (I+, I−), then f ’s definition (the set of rules f (d̄)→ t ⇐ C
defining f in R) can be considered to be abstractly incomplete w.r.t. (I+, I−).

The following results hold. These propositions correct and also simplify the results in [8,9]. They establish the correctness
of the abstract debugging.
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Theorem 50. Let (I+, I−) be a correct approximation of the intended semantics IF . If r is abstractly incorrect w.r.t. (I+, I−)
on e, then r is incorrect on e.

Theorem 51. Let (I+, I−) be a correct approximation of the intended semantics IF . IfR is abstractly incomplete w.r.t. (I+, I−)
on e, then e is uncovered in R.

Hence, the use of γ in Definition 49 does not prevent us from having a finite debugging methodology. Below, we show
how we can efficiently and safely implement the tests on a particular kind of computed approximation by simply checking
whether the considered equation abstractly unifies with some element of I+ (Proposition 50) or T ♯ϕ

R (I+) (Proposition 56),
and then performing an easy, finite test on the abstractmgu.

First, we need the following auxiliary result, which formalizes a useful relation between the elements of I and those in
I+ and is the key for the implementation of our methodology.

Definition 52 (Correct approximation). Let (I+, I−) be a correct approximation of IF and let e ∈ BV . We say that e is
abstractly covered by (I+, I−) if there exists g ′ ⊆ I+ s.t. mgu♯(flatϕ(e), g ′)|̀Var(e) ≠ fail.

In our methodology, an executable specification RSpec is given as a means to correctly provide the intended semantics.
Then, given program RSpec , we formulate a method to compute suitable over- and under-approximations.

Definition 53 (Computed approximation). Let RSpec be a program. We define the computed approximation (cI+, cI−) as
follows: cI+ = lfp(T ♯ϕ

RSpec
) and cI− = Tϕ

RSpec
↑ i, for some i ≥ 0.

That is,we consider the abstract fixpoint semantics ofRSpec as over-approximation,whereaswe take the setwhich results
from a finite number of iterations of the Tϕ

RSpec
function (the concrete operator) as under-approximation. This provides a

simple, albeit useful, debugging scheme which is satisfactory in practice.
The following lemma is the key for our abstract diagnosis methodology.

Lemma 54. Let (cI+, cI−) be a computed approximation of the intended semantics IF . Then, (cI+, cI−) is a correct
approximation of IF .

The following theorems formalize the abstract tests and are the main results of this section.

Theorem 55. Let (cI+, cI−) be a computed approximation of IF . If there exists an equation e such that, e ∈ Tϕ

{r}(cI
−) and e is

not abstractly closed by cI+, then the rule r ∈ R is incorrect on e.

Theorem 56. Let (cI+, cI−) be a computed approximation of IF . If there exists an equation e such that e ∈ cI− and e is not
abstractly closed by T ♯ϕ

R (cI+), then e is uncovered in R.

The diagnosis w.r.t. approximate properties is always effective because the abstract specifications are finite. If no error
is found, we say that R is abstractly correct and complete w.r.t. (cI+, cI−). As one can expect, the results may be weaker
than those that can be achieved on the concrete domain just because of the approximation: the fact that R is abstractly
correct and complete w.r.t. (cI+, cI−) does not generally imply the total correctness of R w.r.t. I. The method is sound in
the sense that each error which is found by using I+, I− is really a bugw.r.t. I. This is in contrast with the abstract diagnosis
methodologies of [7,55,54], which work as follows: when the diagnoser finds that the program is correct, then it is certainly
free of errors, whereas if an (abstract) error is reported, then it can be either a (concrete) error or not.

Let us illustrate this method by means of an example.

Example 57. Let us consider the following (wrong) Fibonacci program R:

fib(0) → 0 add(0, x) → x
fib(x) → fibaux(0, 0, x) add(s(x), y) → s(add(x, y))
fibaux(x, y, 0) → x
fibaux(x, y, s(z)) → fibaux(y, add(x, y), z).

The specification is given by the following program RSpec :

fib(0) → s(0) add(0, x) → x
fib(s(0)) → s(0) add(s(x), y) → s(add(x, y))
fib(s(s(x))) → add(fib(s(x)), fib(x)).

Let ϕ = inn; then R
♯

Spec is

fib(0) → s(0) add(0, x) → x
fib(s(0)) → s(0) add(s(x), y) → s(♯)
fib(s(s(x))) → add(♯, ♯).

After two iterations of the T inn
RSpec

operator, we get the following under-approximation:
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cI− = {0 = 0, s(x) = s(x), add(x, y) = add(x, y), fib(x) = fib(x), add(0, x) = x,
add(s(x), y) = s(add(x, y)), fib(0) = s(0), fib(s(0)) = s(0), add(s(0), y) = s(y),
fib(s2(x)) = add(fib(s(x)), fib(x)), add(s2(x), y) = s2(add(x, y)),
fib(s2(0)) = add(s(0), fib(0)), fib(s2(0)) = add(fib(s(0)), s(0)),
fib(s3(x)))) = add(add(fib(s(x)), fib(x)), fib(s(x)))}.

The over-approximation cI+ is given by the following set of equations (after three iterations of the T ♯inn
RSpec

operator, we get
the fixpoint):

cI+ = F
♯

inn(RSpec) = lfp(T ♯inn
RSpec

) = {0 = 0, s(x) = s(x), add(x, y) = add(x, y), fib(x) = fib(x),
add(0, x) = x, add(s(x), y) = s(♯), fib(0) = s(0), fib(s(0)) = s(0),
fib(s2(x)) = add(♯, ♯), fib(s2(x)) = ♯, fib(s2(x)) = s(♯)}

Now, consider the equation fib(x) = fib(x) of cI−. By applying T{r} to this equation (with r ≡ fib(0) = 0), we get
the equation e ≡ fib(0) = 0, which is not closed by cI+. This proves that r is incorrect on e.

We can also demonstrate the incompleteness of R, by showing that the equation fib(0) = s(0) ∈ I− is not closed by
T ♯inn

R (I+).
The (wrong) abstract program R♯ is

fib(0) → 0 add(0, x) → x
fib(x) → fibaux(0, 0, x) add(s(x), y) → s(♯)
fibaux(x, y, 0) → x
fibaux(x, y, s(z)) → ♯.

Then, the equation fib(0) = s(0) of I− is not closed by T ♯inn
R (I+):

T ♯inn
R (I+) = {0 = 0, s(x) = s(x), fib(x) = fib(x), fibaux(x, y, z) = fibaux(x, y, z), add(0, x) = x,

add(x, y) = add(x, y), add(s(x), y) = s(♯), add(s(x), y) = ♯, fib(x) = fibaux(0, 0, x),
fib(s2(x)) = s(♯), fibaux(x, y, 0) = x, fibaux(x, y, s(z)) = ♯}.

The following section presents a bug-correction technique that attempts to modify the erroneous components of the
original code in order to correct the program. Then, we show how this mechanism can be combined within our diagnosis
method in order to form a practical debugging system.

7. Program correction

Inductive logic programming (ILP) is the field of machine learning concerned with learning logic programs from positive
and negative examples, generally in the form of ground literals [107]. A challenging subfield of ILP is known as inductive
theory revision,which is close to program debugging under the competent programmer assumption of [117]. In other words,
the initial program is assumed to be written with the intention of being correct and, if it is not, then a close variant of it is.
The debugging technique we have developed attempts to find such a variant.

More formally, in our ILP approach to debugging, an initial hypothesis R is provided, under the constraint that the
final hypothesis Rc should be as close a variation thereof as possible, in the sense that only the bugs of R should be
detected, located and repaired, in order to produce Rc . Therefore, we make the assumption that each component of the
program appears there for some reason. This implies that if a piece of code is found to be incorrect, we cannot just throw
it away; rather, we have just to repair it while keeping the part of the code that is right. However, our approach has an
important difference w.r.t. [117] and similar work in that we do not require the user to interact with the debugger by
either providing example evidences, answering correctness questions, establishing equivalence classes among the rules, or
manually correcting code.

The automatic search for a new rule in an induction process can be performed either bottom-up (i.e., from an overly
specific rule to amore general one) or top-down (i.e. fromanoverly general rule to amore specific one).Wemainly follow the
top-down approach known as example-guided unfolding [40], which uses unfolding as a specialization operator, focusing on
discriminating positive from negative examples. Unfortunately, it is known that the deduction process alone (i.e., unfolding)
does not generally suffice for coming up with the corrected program, and inductive generalization techniques are necessary
[59,111,112,70]. Therefore, we integrate our unfolding-based methodology with a bottom-up learner following a hybrid,
top-down as well as bottom-up approach, which is able to infer program corrections that are hard, or even impossible, to
obtain just by using deduction. The resulting blend of top-down and bottom-up synthesis is conceptually cleaner thanmore
sophisticated, purely top-down or bottom-up ones and combines the advantages of both techniques.

7.1. Formalization of the program correction problem

We consider a program R ∈ Ru along with an intended specification I such that R′ ⊆ R is a set of wrong rules w.r.t. I,
which have been detected by means of the abstract diagnosis of Section 6.
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Moreover, let Ep and En be two disjoint sets of ground equations modeling the pursued as well as the unpursued
computational behavior ofR (see Definitions 59 and 60 below). Equations in Ep (respectively, En) are called positive examples
(respectively, negative examples). Given an example set E, we say that R entails E using the strategy ϕ ∈ {inn, out} (in
symbols, R ⊢ϕ E) iff each e ∈ E is proven in R using the strategy ϕ (i.e., e is reduced to true by using the rules of R). Dually,
R disproves E using ϕ ∈ {inn, out} (in symbols, R ⊬ϕ E) iff no e ∈ E can be proven in R using ϕ.

The correction problem amounts to determining a set of rules X such that

Rc
= (R \R′) ∪X, Rc

⊢ϕ Ep and Rc
⊬ϕ En.

ProgramRc will be called corrected program (w.r.t. Ep and En).Wewill callR− = R\R′ the diminished program. Roughly
speaking, a corrected program Rc is a program that entails the set of all the positive examples and disproves the set of all
the negative examples.

7.2. Program correction by example-guided unfolding

An incorrect rule of a program R generally entails a subset of Ep (that is, equations that belong to the intended success
set semantics Ica) and a subset of En (that is, equations in Oca

ϕ (R) that do not belong to Ica). In other words, an incorrect
rule is used to prove both positive and negative examples. In order to fix this erroneous behavior, we need to find a way of
guessing a set of correct rules that entails all equations in Ep and no equation in En. For example, let Ep contain even(0) =
true, even(s2(0)) = true, even(s4(0)) = true, . . . and let En contain even(s(0)) = true, even(s3(0)) =
true, even(s5(0)) = true, . . .. Then, {even(0) = true, even(s2(x)) = even(x)}would be a corrected program.

Example-guided unfolding [3,40] is commonly applied to specialize the incorrect program R in order to exclude the
negative exampleswithout excluding the positive ones [40]. The basic idea of themethod is as follows.We first specialize the
programR by unfolding function calls on the right-hand sides of the rules yielding a close variantR′ ofR. Then, we remove
from R′ those rules that allow us to derive negative examples. We will show that such rules can be safely deleted from the
program without harming its behavior on the positive examples. The main insight for the method, formerly introduced in
[39], is the following:

• unfolding tends to specialize (and shorten) the example rewrite sequences;
• if a negative example is proved by means of a rewrite sequence in which a rule r occurs and r is not used elsewhere for

deriving a positive example, then the program can be ‘‘repaired’’ by deleting r .

Let us consider the following example.

Example 58. Let R be the program consisting of the following rules R = {f(x) → g(x), g(a) → a, g(b) → a}. Let
the intended success set specification Ica = {f(a) = a, g(a) = a, g(b) = a}. Hence, according to our abstract diagnosis
method described in Section 5, the rule r : f(x)→ g(x) is incorrect. Now, let us choose the following example setsmodeling
the correct and the wrong program behavior: Ep

= {f(a) = a}, and En
= {f(b) = a}. Since r is used to prove both positive

and negative examples, unfolding is applied in order to specialize the example rewrite sequences. Unfolding r upon g(x)
w.r.t. the rules g(a)→ a and g(b)→ a replaces r with the following set of rules: X = {f(a)→ a, f(b)→ a}.

Observe that the second rule only occurs in the rewrite sequence of the negative example (either with ϕ = inn or
ϕ = out). Consequently, we can delete the rule f(b)→ a from (R \ {r}) ∪X since it does not affect the positive example
reduction, and thus achieve a corrected program:

Rc
= {f(a)→ a, g(a)→ a, g(b)→ a}.

In the remainder of this section,we adapt thismethod to our debugging setting. First of all, we provide a simple technique,
which exploits the outcomes of the abstract analysis performed during the diagnosis process, to automatically generate the
example sets Ep and En. Then, we formalize the unfolding-based correction methodology we outlined above.

7.2.1. Generation of the example sets
When a negative example is entailed by the current version of the program, there is at least one rule which is responsible

for the incorrect proof. In order to develop ourmethod, let us suppose that—as a first step—we simply eliminate the incorrect
rules fromR. By doing so,wewould immediately get a partially correct programR− sinceR− does not contain any incorrect
rule. However, it might be incomplete w.r.t. the intended semantics as there can be ground equations which are proven
using the specification12 I, but not using R−. Such equations are sensible positive examples since the computed corrected
program has to entail them. Hence, we define the following set.

Definition 59 (Positive example set). The set of positive examples Ep is defined as follows:

Ep
= {f (t) = d ∈ cI− | R− ⊬ϕ f (t) = d, f (t) ∈ τ(Σ), d ∈ τ(C), f is a defined symbol of R}.

12 Here we consider the specification of the intended (fixpoint) semantics to be provided by means of a program I.
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Similarly, we let En define the set of equations that allow the debugger to prove that some rule r of R is incorrect w.r.t. I
using ϕ. Hence, we define the set En.

Definition 60 (Negative example set). The set of negative examples En is defined as follows:

En
= {f (t) = d ∈ Tϕ

{r}(cI
−) | r is incorrect on f (t) = d for some r ∈ R, f (t) ∈ τ(Σ), d ∈ τ(C),

f is a defined symbol of R}.

Given a computable approximation (cI+, cI−) of the intended fixpoint semantics IF , the set Ep can be computed by
exploiting Theorem 56, which provides a computable, abstract test for detecting uncovered equations w.r.t. (cI+, cI−),
while the set En is generated by using the computable, abstract diagnosis test for rule incorrectness w.r.t. (cI+, cI−) of
Theorem 55.

Note that since programR and specification Imight use different auxiliary functions, we only consider ground examples
of the form f (t) = d where f (t) is a ground pattern calling a function defined in R and d is a ground constructor term.13
In this way, the inductive process becomes independent of the extra functions contained in I since we start synthesizing
directly from the data structures that occur in d and the functions defined in R.

It is also worth noting that if we wanted to increase the number of examples, we could consider equations which may
contain variables. In this case, we could instantiate such equationswith ground constructors (typically provided by the user)
in order to get a larger number of positive/negative ground examples. Actually, the prototypical implementationwe present
in Section 8 allows us to perform such an instantiation process.

Example 61. Consider the wrong program R, and the corresponding specification I:

odd(s(x)) → odd(x) odd(s(x)) → true⇐ even(x) = true
odd(0) → true even(s(s(x))) → even(x)

even(0) → true.

Consider the following computed approximation (cI+, cI−) of I (using the narrowing strategy inn), with cI− = T inn
I ↑ 2.

cI+ = {odd(s(0)) = true, odd(s3(♯)) = true, odd(x) = odd(x),

even(0) = true, even(s2(♯)) = ♯, even(x) = even(x),
s(x) = s(x), 0 = 0, true = true}

cI− = {odd(s(0)) = true, odd(s3(0)) = true, odd(x) = odd(x), even(0) = true,

even(s2(0)) = true, even(x) = even(x), even(s2(x)) = even(x),

even(s4(x)) = even(x), s(x) = s(x), 0 = 0, true = true}.

By applying Theorem 55, we discover that all the rules in R are incorrect on some equations in T inn
R (cI−). Specifically,

odd(0)→ true is incorrect on odd(0) = true and odd(s(x))→ odd(x) is incorrect on odd(s(x)) = odd(x). Therefore,
the diminished program R− becomes

R− = R \ {odd(0)→ true, odd(s(x))→ odd(x)} = ∅.

Consequently, by Definitions 59 and 60, we obtain the following example sets: Ep
= {odd(s(0)) = true, odd(s3(0)) =

true} and En
= {odd(0) = true}.

7.2.2. Unfolding operators
In the functional logic setting, a naturalway to specialize programs is to use a formof narrowing-driven unfolding, i.e., the

expansion, by means of narrowing, of program subexpressions using the corresponding definitions (see [19] for a complete
description). A complete characterization of unfoldingw.r.t. computed answers in functional logic languageswith eager/lazy
semantics can be found in [16]. Following [40], we use the unfolding operator for program correction.

Roughly speaking, unfolding a program R w.r.t. a rule r yields a new specialized version of R in which the rule r is
replaced by new rules obtained from r by performing a narrowing step on the right-hand side of r . Typically, unfolding is
non-deterministic since several subterms on the right-hand side of a rule may be narrowable. In our framework, we will
take advantage of a deterministic version of unfolding, namely the leftmost-innermost unfolding, in which only the leftmost-
innermost narrowing redex of the right-hand side is reduced according to the inn narrowing strategy. Thus, on the one hand,
we are able to shrink the narrowing search space and consequently provide a faster correction algorithm; on the other hand,
this will allow us to prove the soundness of our repair methodology for the class of uniform programs Ru.

13 For terminating CTRSs, we can consider examples whose right-hand sides are not constructor terms by normalizing the right-hand side of the positive
examples w.r.t. I (resp. R for the negative examples) using ϕ.
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Definition 62 (Unfolding operators). Let R be a program.

(i) Let r1, r2 << R such that r1 ≡ (λ1 → ρ1 ⇐ C1) and r2 ≡ (λ2 → ρ2 ⇐ C2). The rule unfolding of r1 w.r.t. r2 is defined
as follows:

Ur2(r1) = {λ1σ → ρ ′ ⇐ C ′ | (ρ1 = y, C1)
σ ,r2,u
❀ inn (ρ ′ = y, C ′), u ∈ O(ρ1)},

where y is a fresh variable.
(ii) Let r << R. The program unfolding of r w.r.t. R is as follows:

UR(r) =


R ∪


r ′∈R

Ur ′(r)


\ {r}.

Note that the absence of narrowable positions in the rule r to be unfolded yields no specialization of r . We just get the
removal of r from R. In the sequel, we use the following notion of ‘‘unfoldable rule’’.

Definition 63 (Unfoldable rule). Let R be a program and r be a rule in R. The rule r is unfoldablew.r.t. R ifUR(r) ≠ R \ {r}.

Definition 64. LetR ∈ Rinn be a program. The unfolding succession S(R) ≡ R0, R1, . . . of programR is defined as follows:

R0 = R

Ri+1 = URi(r), where r ∈ Ri is unfoldable.

As proved in [16], each program Ri, i = 0, 1, . . . has the same ground as well as nonground semantics provided that
Ri ∈ Rinn. This guarantees that if a given example e is proven in R ≡ R0, then e is also proven in Ri, for any i = 1, 2, . . ..
Moreover, we can show that the successful rewrite sequence used to prove a given example e in R is longer than the
one used to prove e in R′, where R′ is obtained by applying the unfolding operator to R. This result is formally stated
by Proposition 66. The following definition is auxiliary.

Definition 65. Let e be an equation. A rewrite sequence for e w.r.t. R, DR(e) : e ≡ e1
r1,p1
→ e2

r2,p2
→ · · · en−1

rn−1,pn−1
→ en, is

leftmost innermost, whenever each ei|pi , i = 1, . . . , n− 1, is the leftmost innermost redex in ei. Besides, the setOR(DR(e)) =
{r1, r2, . . . , rn} is called the set of occurring rules of DR(e). A leftmost innermost rewrite sequence for an equation ew.r.t. R
is called successful, if it is of the form e ≡ e1

r1,p1
→ e2

r2,p2
→ . . . en−1

rn−1,pn−1
→ en ≡ true, and its corresponding rule application

sequence is ⟨r1, . . . , rn−1⟩.

Successful leftmost innermost rewrite sequences are also called proofs. In the following, we denote by |DR(e)| the length of
a leftmost innermost rewrite sequence DR(e).

In order to select the rules for specialization, we need the following auxiliary definition. Given the program R, a
discriminable rule of R is a rule that is unfoldable w.r.t. R and that occurs in the proof of, at least, one positive example.

The following result essentially states that the length of the proofs for the considered examples is shortened by innermost
unfolding.

Proposition 66. Let R ∈ Rinn, R′ = Ur(R), r ∈ R be a discriminable rule, and e be an equation. Then, we have

(1) if e→∗ true in R, then also e→∗ true in R′;
(2) if r ∈ OR(DR(e)), then |DR′(e)| < |DR(e)|;
(3) if e→∗ true in R′, then also e→∗ true in R.

7.2.3. The top-down correction algorithm
We formulate a basic algorithm that specializes programs w.r.t. positive and negative examples by applying the rule

unfolding transformation together with rule removal. The (backbone of the) procedure for program correction is described
in Algorithm 1. The procedure is inspired by [3], which is known to produce a correct specialization when the program is
overly general (with some extra outfit which is needed to specialize recursive definitions [40]); that is, it allows us to prove
all positive examples and some incorrect ones.

Definition 67 (Overly general program). Let R be a program and Ep be a set of positive examples. Then, R is overly general
w.r.t. Ep iff R ⊢ϕ Ep.

Note that the definition above allows the case where R contains no incorrect rules as it is only aimed at ensuring
soundness. However, in order to achieve effectiveness of the transformation, at least one negative example is required to
drive the example-guided correction procedure, which essentially generates a sequence of program transformations ending
up in a corrected program.

Using the unfolding operator, it is possible to generate a succession of ‘‘specialized’’ programs in the following way.
Algorithm 1 works in two phases: the unfolding phase and the deletion phase. Roughly speaking, we first perform unfolding
upon (arbitrarily selected) discriminable rules until we get a specialized version Ri of the program R where each negative
example can be proven by applying at least one rule not occurring in the proof of any positive examples (unfolding phase).
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Then, those rules that only contribute to the proofs of the negative examples can be safely removed without compromising
the proofs of the positive examples (deletion phase). The program, which we obtain after the deletion phase, is a corrected
program.

More formally, the key idea of the algorithm is to apply unfolding until we get a specialized program Ri such that the
following property holds:

∀ en ∈ En, ∃ r ∈ OR(DRi(e
n)) such that ∀ ep ∈ Ep, r ∉ OR(DRi(e

p)).

Then, the deletion phase removes all the rules that are only used to prove the negative examples.
Let us illustrate the algorithm with the following example.

Example 68. Consider the wrong program R, and the specification I of Example 61:

odd(s(x)) → odd(x) odd(s(x)) → true⇐ even(x) = true
odd(0) → true even(s(s(x))) → even(x)

even(0) → true

As shown in Example 61, the following sets of examples can be computed, for ϕ = inn:

Ep
= {odd(s3(0)) = true, odd(s(0)) = true}

En
= {odd(0) = true}.

Since the rule odd(0)→ true is used to prove positive as well as negative examples, we enter the main loop of the top-
down correction algorithm. Then, by unfolding the discriminable rule odd(s(x))→ odd(x), we get the following unfolded
program R1

odd(0) → true
odd(s(0)) → true

odd(s(s(x))) → odd(x).

Now, in every negative example proof w.r.t. R1, there appears at least one rule that does not occur in the proofs of any
positive example; thus, the unfolding phase ends and we enter the deletion phase, which ‘‘purifies’’ R1 by removing the
rule odd(0)→ true that only occurs in the proof of a negative example. Therefore, as outcome, we obtain the program

odd(s(0)) → true
odd(s(s(x))) → odd(x)

which is a corrected program w.r.t. the considered Ep and En.

Example 68 not only shows us how the algorithmworks but also allows us to clarify the differences between the preliminary
correction algorithm in [9] and the one presented in this paper. The algorithm in [9] only unfolds incorrect rules, whereas
the new correction procedure does consider any discriminable rule for unfolding, which is generally needed in order to
achieve the correction. In fact, the previous approach would not work in Example 68, as it would try to unfold the incorrect
rule odd(0)→ true, which is not discriminable.

Algorithm 1 The top-down correction algorithm.
1: function TD-Corrector(R, cI+, cI−)
2: (Ep, En)←GenerateExampleSets(R, cI+, cI−)
3: if R ⊬ϕ Ep then Halt
4: end if
5: i← 0 ◃ Unfolding phase
6: R0 ← R
7: while ∃ en ∈ En, ep ∈ Ep, r ∈ R (r ∈ OR(DRi(e

n)) ∧ r ∈ OR(DRi(e
p))) do

8: Select a discriminable rule r ∈ OR(DRi(e
p)) of Ri, for some ep ∈ Ep

9: Ri+1 ← URi(r)
10: i← i+ 1
11: end while
12: for all en ∈ En do ◃ Deletion phase
13: Ri+1 ← Ri \ {r}, where r ∈ OR(DRi(e

n)) ∧ ∀ep ∈ Ep (r ∉ OR(DRi(e
p)))

14: i← i+ 1
15: end for
16: Rc

← Ri
17: return Rc

18: end function
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7.2.4. Correctness of the algorithm
We prove the soundness of our repair methodology for the class of uniform programs Ru [60]. As we recalled in

Section 2.1, completeness of the inn as well as the out narrowing strategy is guaranteed for this class of programs.
Additionally, the semantics of uniform programs is preserved by leftmost-innermost unfolding transformations in the sense
that any equation e is provable in the original program iff e is provable in the unfolded program (see Corollary 96 in Appendix
B). These two facts are crucial in our proof scheme and allow us to prove that the repaired programs we obtain can be safely
used with both the inn and the out narrowing strategy without losing completeness of the chosen evaluation strategy.

We proceed as follows.

(i) First, we show that, if R is overly general w.r.t. Ep, the unfolding phase produces a specialized version R′ of R (still
overly general w.r.t. Ep) such that, for each negative example, there is a rule occurring in the corresponding proof that
is not used in the proof of any positive example.

(ii) Next, we show that the deletion phase yields a corrected version of R such that R ⊢ϕ Ep and R ⊬ϕ En.

The following proposition proves our claim (i): by a suitable finite number of applications of the unfolding operator to
a given program, we get a specialized program such that, the proofs of negative examples contain at least one rule that is
never applied for proving any positive example. A condition is necessary for proving this result: no negative/positive couple
of the considered examples can have the same application rule sequence, as shown in the following counterexample.

Example 69. Consider the program R

r1 : f(x)→ g(x)
r2 : g(x)→ 0

with example sets Ep
= {f(a) = 0}, En

= {f(b) = 0}. Then, f(a) = 0 and f(b) = 0 are proven by using the same rule
application sequence (i.e., ⟨r1, r2⟩). By applying the top-down algorithm, we unfold rule f(x)→ g(x), which produces the
outcome R1 = {f(x)→ 0, g(x)→ 0}.

Note that R1 cannot be repaired by deleting rules since removing the wrong rule f(x)→ 0would cause the loss of Ep.

Proposition 70. Let R ∈ Rinn. Let Ep (resp. En) be a set of positive (resp. negative) examples. If there are no ep ∈ Ep and en ∈ En

that can be proven in R by using the same rule application sequence, then, for each unfolding succession S(R), there exists k such
that ∀en ∈ En, ∃r ∈ OR(DRk(e

n)) s.t. r is not discriminable.

We note that Proposition 70 holds for every unfolding succession of the original program; this implies that the rule to be
unfolded at each unfolding step can be arbitrarily selected, provided that it is discriminable. Moreover, the termination of
the unfolding phase is granted by the finite number k of applications of the unfolding operator needed to obtain the program
Rk.

After the unfolding phase, the proof of every negative example contains a rule of Rk not occurring in the proof of any
positive example, thus we can safely remove this rule without jeopardizing completeness (claim (ii)). In other words, the
deletion phase purges Rk of those rules that are only needed to reduce negative examples and yields a program which is
correct w.r.t. both positive and negative examples.

Theorem 71 (Correctness). Let R ∈ Ru. Let IF be the intended fixpoint semantics of R, and (cI+, cI−) be a computed
approximation of IF . Then, if Ep and En are two sets of examples generated w.r.t. (cI+, cI−) such that R ⊢ϕ Ep, ϕ ∈ {inn, out},
and there are no ep ∈ Ep and en ∈ En which can be proven in R by using the same rule application sequence, then the execution
of TD-Corrector(R, cI+, cI−) yields a corrected program Rc w.r.t. Ep and En.

As in other approaches for example-guided program correction, derived programsmight need to be newly diagnosed for
correctness at the end of the correction process. This is because correctness of R w.r.t. Ep and En does not generally imply
that the program is correct w.r.t. the intended semantics unless the considered sets Ep and En cover all counterexamples
that might be derived from any pair (cI+, cI−).

7.3. Improving the correction algorithm: a hybrid approach

In the following, we propose a bottom-up correction methodology that we smoothly combine with the top-down
approach of Section 7.2 in order to correct programs that do not fulfil the applicability condition (over-generality). The
methodology consists in applying a bottom-up pre-processing to ‘‘generalize’’ the initial wrong program, before proceeding
to the usual top-down correction. In other words, we extend the original program with new synthesized rules so that the
entire example set Ep succeeds w.r.t. the generalized program, and hence the top-down corrector can be effectively applied.

7.3.1. Bottom-up generation of overly general (wrong) programs
Our generalization method directly employs the bottom-up technique for the inductive learning of functional logic

programs developed by Ferri, Hernández and Ramírez [87,70]which is able to produce an intensional description (expressed
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by a functional logic program) of a set of ground examples. The technique is also able to introduce functions, defined as a
background theory, in the inferred intensional description (see [87,70] for details). In the following, we recall the definitions
of restricted generalization and inverse narrowing, which are the heart of the bottom-up procedure of [87,70]. The former
allows one to generalize program rules, the latter is needed to introduce defined symbols on the right-hand sides of the
synthesized rules.

Definition 72 (Generalization operator). The rule r ′ ≡ (s′ → t ′ ⇐ C ′) is a restricted generalization of r ≡ (s → t ⇐ C)
if there exists a substitution θ such that (i) θ(r ′) ≡ r; (ii) Var(t ′) ⊆ Var(s′). The generalization operator RG(r) is defined as
follows: RG(r) = {r ′|r ′ is a restricted generalization of r}.

Roughly speaking, the notion of inverse narrowing is inspired in Muggleton’s inverse resolution operator [106], which
essentially reverses the classical deductive inference process in order to generate valid premises (typically, in the form of
logic programs) from known consequences (i.e. examples). The inverse narrowing operator of [87,70] is defined as follows.

Definition 73 (Inverse narrowing operator). The rule r ≡ s→ t ⇐ C inversely narrows into r ′ ≡ sθ → t ′ ⇐ C ′ (in symbols

r
u,r ′′,θ
←↪ r ′) iff there exist a position u ∈ O(t) and a rule r ′′ ≡ λ→ ρ ⇐ C ′′ such that (i) θ = mgu(t|u, ρ); (ii) t ′ = (t[λ]u)θ ;

(iii) C ′ = (C ′′, C)θ .
The inverse narrowing operator INV(r, r ′′) is given by

INV(r, r ′′) = {r̄ | r
u,r ′′,θ
←↪ r ′ and r̄ is computed by instantiating the extra-variables on the

right-hand side of r ′ with variables on the left-hand side of r}.

Following the terminology of [87,70], inverse narrowing takes as an input a pair of rules: the sender (or applied) rule r ′′
and the receiver (or transformed) rule r . After computing r ′ by an inverse narrowing step over r by using r ′′, a new rule r̄
is obtained by instantiating the extra-variables on the right-hand side of r ′ with variables on the left-hand side of r . This
instantiation is done in such away that every possible combination is performed, while avoiding to instantiate two different
extra variables to the same variable name. If the new rule has more extra variables than the number of variables on the left-
hand side, then the rule is rejected. We note that FLIP is based on an incremental algorithm [70] which provides a number
of optimality criteria and good heuristics that allow one to select the best programs w.r.t. the considered examples without
the need to compute all possible instantiations in advance.

Example 74. By applying the inverse narrowing operator between rules

r1 ≡ add(x, y)→ s(x)⇐ y = s(0) r2 ≡ add(x′, 0)→ x′,

we get

INV(r1, r2) = {add(x, y)→ add(s(x), 0)⇐ y = s(0), add(x, y)→ s(add(x, 0))⇐ y = s(0)}.

The extra instantiation of the variables on the right-hand sides of the synthesized rules is necessary since inverse
narrowing may introduce extra-variables, which are not allowed.

Example 75. Let us consider the rule r1 ≡ f(x, y)→ c and rule r2 ≡ g(x′)→ c. The result of an inverse narrowing step
on r1w.r.t. r2 is the rule r3 ≡ f(x, y) = g(x′) which contains the extra-variable x′. The operator INV then instantiates the
extra-variable x′ to variables appearing on the left-hand side of r3. Hence, INV(r1, r2) = {f(x, y) = g(x), f(x, y) = g(y)}.

The following definitions are helpful for discerning the overspecialized program rules.DefR(f ) is the set of rules inR that
defines the function f . This might be computed by constructing a functional dependency graph of the program R and by
statically analyzing it. Given a set E of positive examples, Resf (E) denotes the restriction of E to the set of f -rooted examples
(that is, examples of the form f (t̄) = d). We say that a function definition DefR(f ) is overspecializedw.r.t. the set of positive
examples Ep, if there exists e ∈ Resf (Ep) which is not entailed by DefR(f ). An incorrect rule belonging to an overspecialized
function definition is called an overspecialized rule.

The generalization algorithm works as follows. In its initial phase, it discovers all the function definitions that are
overspecialized w.r.t. the set of positive examples Ep, by computing the subset of f -rooted examples not provable inR (and,
hence, not provable by the corresponding function definition). Then, overspecialized rules are deleted from R. Now, by
applying generalization and inverse narrowing operators, we try to reconstruct the missing part of the code. More formally,
we synthesize a functional logic programA such thatR∪A\{r ∈ R | r is overspecialized} allows us to prove the entire Ep.
At the end, we get an overly general program to which the top-down corrector can be applied for repairing (incorrectness)
bugs on the derived overly general faulty rules.

Following [70], the bottom-up synthesis algorithm first generates a set PH (Program Hypothesis set), which consists of
programs that contain exactly one rewrite rule and that are associated with the restricted generalizations of Ep, that is,
PH = {{r} | r ∈ RG(s→ t), s = t ∈ Ep

}. Then, it enters a loop in which, by means of INV and RG operators, new programs
in PH are produced. The algorithm leaves the loop when an ‘‘optimal’’ solution, which entails Ep entirely, has been found in
PH , or a maximal number of iterations is reached. In the latter case no solution might be found.
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Algorithm 2 Bottom-up Synthesis Algorithm.
1: function BU-Generalize(R, Ep)
2: S ← {R′ | R′ = DefR(f ), f ∈ F }
3: Raux ← R
4: for all overspecialized R′ in S do
5: if r ∈ R′ ∧ r is incorrect then Raux ← Raux \ {r}
6: end if
7: end for
8: PH ← {{r} | r ∈ RG(s→ t), s = t ∈ Ep

}

9: it ← 0
10: while ¬(SelectBest(PH) ⊢ Ep

∧ SelectBest(PH) > Opt) ∧ it < itmax do
11: select the best R′ ∈ PH and R′′ ∈ PH ∪ {R−}w.r.t. the optimality criterion
12: select the best r ′ ∈ R′ and r ′′ ∈ R′′ w.r.t. the optimality criterion
13: for all r ∈ INV(r ′, r ′′) do
14: for all rg ∈ RG(r) do
15: PH ← PH ∪ {R′ ∪R′′ \ {r ′} ∪ {rg}}
16: end for
17: end for
18: it ← it + 1
19: end while
20: A = SelectBest(PH)
21: if A ⊢ Ep

∧A > Opt then
22: Rgen ← Raux ∪A
23: else output(’No solution found’)
24: end if
25: end function

Due to the huge search space that this method involves, some heuristics must be implemented to guide the search.
Minimumdescription length (MDL)14 and covering factor15 criteria could be taken into consideration so that inverse narrowing
steps are only performed among the best programs and rules w.r.t. these criteria. Moreover, by means of MDL and covering
factor, only themost concise programs are selected during the induction process. The notion of optimalityw.r.t. programs and
equations could be defined as a linear combination of these two criteria [87]. Algorithm 2 sketches a high-level procedure
for the bottom-up synthesis which is based on [70,87]. We refer to [70,87] for an in-depth formalization of the bottom-up
algorithm.

It is worth noting that the induction process is guided by search heuristics which generally (but not always) allow one to
come up with the desired solution. This implies that the bottom-up generalization algorithmmight not generate a solution,
that is, a suitable generalization of the wrong program that can be fixed using our top-down methodology. In this case, no
correction can be inferred and thus the debugging process will simply remove the incorrect rules from the wrong program
under examination.

In our last example, we only pinpoint the relevant outcomes for the sake of clarity.

Example 76. Consider the following (wrong) program and the specification:

R = { playdice(x)→ dd(winface(x)), dd(0)→ 0, dd(s(x))→ dd(x),
winface(s(x))→ s(winface(x)), winface(0)→ 0 }

I = { playdice(x)→ dd(winface(x)), dd(x)→ sum(x, x),
sum(x, 0)→ x, sum(x, s(y))→ s(sum(x, y)),
winface(s(0))→ s(0), winface(s(s(0)))→ s(s(0)) }.

Program rules that are signalled as incorrect by the diagnosis system are underlined. The example generation procedure
described in Section 7.2.1 can produce the following example sets:

Ep
= { playdice(s2(0)) = s4(0), playdice(s(0)) = s2(0), dd(s4(0)) = s8(0),

dd(s3(0)) = s6(0), dd(s2(0)) = s4(0), dd(s(0)) = s2(0)
dd(0) = 0, winface(s2(0)) = s2(0), winface(s(0)) = s(0) }.

14 For MDL we use the definition of [86] which works well in practice: length(e) = 1 + nv/2 + nf , where nv and nf are the number of variables and
function symbols on the right-hand side of e; here constants are regarded as 0-ary functions.
15 CovF(E) = card({e ∈ E | R ⊢ e})/card(E).
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The analysis for dd and winface determines that dd is overspecialized. The generalization algorithm removes the rule
dd(s(x)) → dd(x). Note that rule dd(s(0)) → s2(0) inversely narrows to rule rdd ≡ dd(s(0)) → s2(dd(0)) by using
rule dd(0) → 0. The following restricted generalizations of rule rdd are computed: dd(s(0)) → s2(dd(0)), dd(s(x)) →
s2(dd(0)), dd(s(x)) → s2(dd(x)). Now, when the third rule is added to the program, all the examples in Ep are covered.
In other words, the program

R′ ≡ R ∪ {dd(s(x))→ s2(dd(x))} \ {dd(s(x))→ dd(x)}

is overly general w.r.t. Ep. Thus, the top-down corrector can be applied to R′ to repair the remaining wrong rules:

{winface(s(x))→ s(winface(x)), winface(0)→ 0}.

8. Implementation

The basic methodology presented so far has been implemented in the prototypical system Buggy [8,10], which is written
in SICStus Prolog and available at

http://users.dsic.upv.es/grupos/elp/buggy/buggy.html.

The complete implementation consists of about 600 clauses (2500 lines of code). The systemdescription can be found in [10].
Here, we just point out the main issues involved in such an endeavor.

Buggy includes a (conditional) functional logic languagewhich supports leftmost innermost narrowing [71], (innermost)
basic narrowing [89] (a better strategy which does not require functions to be completely defined [37,89]), leftmost
outermost narrowing [60] and needed narrowing [22]. The module that computes the abstract program is an improvement
of the implementation reported in [8], which iteratively recomputes the loop check after abstracting each single rule. The
debugger requires the user to fix some parameters, such as the narrowing strategy and the number n of iterations for
approximating the success set. Then, the errors are automatically found by the debugger. In order to debug programs under
the needed narrowing strategy, we follow the transformational approach based on [84]. That is, functional nestings on the
left-hand sides of the (inductively sequential) rules are removed by replacing them by a ‘‘case distinction’’ on the right-
hand side of the rules (see Appendix A). Then, the translated program is executed by using the leftmost outermost strategy,
which is strongly equivalent (i.e. equivalent w.r.t. computed answers) to needed narrowing on the translated programs, as
mentioned in Section 2.

Once bugs have been detected, the user can choose either to indicate the corrections to be made on the wrong rules
manually or to automatically repair the program by using the correction methodology of Section 7. In the latter case, the
positive and negative example sets are produced according to a parameterwhich is provided by the user to improve example
generation. More specifically, our debugging system requires the user to enter a list of ground constructors which are used
to instantiate the non-ground equations belonging to the under- and over-approximation in order to increase the number
of ground examples. In general, the larger the list of ground constructors, the bigger the cardinality of the example sets.

Then, an automatic repair is obtained by running an implementation of the top-down correction method based on
example-guided unfolding (see Section 7.2). In the case when wrong programs are not overly general, a pure top-down
technique is not applicable. Therefore, our correction methodology initially generates a set of positive examples which are
not covered by the wrong program. Then, such examples are passed to the inductive functional logic system FLIP [69] in
order to synthesize an overly general program to which our top-downmethodology can be directly applied, as explained in
Section 7.3. Because our methodology is based on abstract interpretation, it may happen that we end up with the original
specification as corrected program. Nevertheless, our experimental evaluation demonstrates that this pathological behavior
never shows up in practical examples. The alternative, if no other correction is possible, may be simply to remove the
incorrect rules from the original wrong program and deliver the diminished program R−, which is partially correct—albeit
not complete—w.r.t. the intended specification.

In the current Buggy implementation, the intended semantics is entered as a program (that is, an executable
specification), although this is just an implementation decision aimed at easing the experimentation and by nomeans should
be considered to be a drawback of the theoretical framework. Of course, the user can reuse pieces of code that have already
been checked, and this code is simply trusted. Trusting can be done at the level of functions or modules, either statically (by
means of annotations) or dynamically (by means of flags). Assisting the user in the task of (manually) entering the (under-
and over)-approximations I− and I+ is a possible extension that has not been implemented yet.We are also trying to define
an incremental version of our debugger in which coarse, easy-to-compute approximations of the intended semantics can be
made more precise at runtime according to the level of detail we want to obtain. Other improvements that we have already
implemented are used to filter out unintended (completeness resp. correctness) errors derived from the fact that one of the
programs (I resp. R) lacks some of the rules defining the auxiliary functions of the other program.

Our prototype is equippedwith a graphical front-end (see Fig. 2),whichhas beendesigned to simplify the user interaction.
To this respect, all the operations supported by our system (program and specification loading, narrowing strategy selection,
diagnosis as well as correction options) can be easily accessed via intuitive widgets (panels, menus, buttons, etc.). Moreover,
the graphical interface provides a smooth integration of the FLIP system with our debugger (e.g. FLIP outcomes can be

http://users.dsic.upv.es/grupos/elp/buggy/buggy.html
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Fig. 2. Program/specification loading and parameter setting.

produced and directly loaded into the debugger). To better understand how our system works and collaborates with FLIP,
Section 8.1 presents a complete debugging session of the wrong program of Example 76.

We have tested our debugging and correction methodologies over several benchmarks which are available at
http://users.dsic.upv.es/grupos/elp/buggy/buggy.html. In order to systematize the generation of the benchmarks, we have
slightly modified correct programs with the aim of obtaining wrong program mutations. Specifically, we have introduced
bugs in program rules that affect recursive as well as non-recursive definitions. We were able to successfully diagnose and
repair the faulty mutations, achieving, in many cases, a correction both w.r.t. the example sets and the intended program
semantics. We have noticed that small example sets generally suffice to get a satisfactory correction. In particular, all
experiments required less than 20 positive examples and less than 10 negative examples. Our benchmarks include programs
that work with several domains such as natural numbers, lists and finite domains. For instance, we have testedmutations of
append for the concatenation of two input lists; last, which returns the last element of a list; knapsack, which returns
a set of elements of the input list whose weight sum is equal to an input integer value; fibonacci, which computes the
Fibonacci numbers; fact, which computes the factorial of a positive number; and sort, which uses the insertion sort for
ordering an input list of integers. By using the intended semantics, we were able to find the errors that were inserted in the
program, for all these programs. The final programs have passed the tests of correctness and completeness.

8.1. A debugging session

We show how Buggy and FLIP can be coupled to diagnose and correct the errors of the program

R = {playdice(x)→ dd(winface(x)), dd(0)→ 0, dd(s(x))→ dd(x),
winface(s(x))→ s(winface(x)), winface(0)→ 0}

w.r.t. the specification

I = {playdice(x)→ dd(winface(x)), dd(x)→ sum(x, x),
sum(x, 0)→ x, sum(x, s(y))→ s(sum(x, y)),
winface(s(0))→ s(0), winface(s(s(0)))→ s(s(0))}.

Overall, the two systems interact in this example as follows. First, the Buggy system discovers that the program R to be
debugged is not overly general and hence it produces a set of examples which are used by FLIP to generate an overly general
version R′ of the wrong program R. Then, Buggy analyzes R′ and yields the final corrected programw.r.t. the specification
I by applying the example-guided unfolding technique of Section 7.2.

The debugging session starts by invoking the Buggy system on the specification I and the program R (see Fig. 2). The
user is required to initialize the following parameters before running the debugger.

http://users.dsic.upv.es/grupos/elp/buggy/buggy.html
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Fig. 3. Debug output for the nonoverly general program R.

Narrowing strategy: it identifies the operational mechanism with which both the program and the specification are eval-
uated.

Number of iterations: it establishes the number of iterations of the immediate consequence operator which are used to
compute the under-approximation of the intended semantics.

List of constructors: it is used to build ground (positive as well as negative) examples from non-ground equations gener-
ated by the debugger.

Correction flag: it is used to switch from the manual correction to the automatic, unfolding-based correction.

In the considered debugging example, such parameters are set to the values shown in Fig. 2. Fig. 3 illustrates the outcome
of the execution of the debugger on the input presented in Fig. 2. In this case, the debugger detects that

• some program rules of R are wrong w.r.t. the specification I.
• R is not overly general (specifically, the definition of function dd of program R is too specific), and hence it generates

the input needed by the FLIP system to generalize the program.

Overly specific definitions can be generalized by directly invoking FLIP from our graphical environment on the input data
produced by Buggy. In this particular case, we were able to generalize the definition of function dd (see Fig. 4) and produce
the following overly general version of the original program R:

playdice(x)→ dd(winface(x))
dd(s(x))→ s(s(dd(x)))

dd(0)→ 0
winface(s(x))→ s(winface(x))

winface(0)→ 0

Now, the overly general program can be automatically repaired by using the unfolding-based procedure encoded into
Buggy. The final outcome is illustrated in Fig. 5.

It is worth noting that our graphical environment hides several technical details as well as intermediate results which
are typically not needed by the final user. However, for a more in-depth analysis of the debugging process, it is possible to
inspect the log file produced by our tool. For instance, the log file records the computed under- and over-approximations,
and the sets of positive and negative examples generated during the correction phase. Part of the log file referring to the
debugging of the overly general version of R is given in Appendix C.
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Fig. 4. Generalization of function dd produced by the FLIP system.

Fig. 5. Correction of the overly general version of program R.

9. Conclusions and future work

The main purpose of this work is to provide a methodology for developing effective debugging and correction tools for
functional logic programs or, more generally, for rule-based programs that are executed by narrowing. We have presented
a generic debugging scheme that supports program diagnosis w.r.t. the set of computed answers. Our method is based on
a fixpoint semantics for functional logic programs that models the set of computed answers in a bottom-up manner and
is parametric w.r.t. the narrowing strategy. The proposed methodology does not require the user to provide a symptom (a
known bug in the program) to start. Rather, our diagnoser discovers whether there is one such bug and then tries to correct
it automatically, without asking the user to either provide further evidences or answer difficult questions about program
semantics. As mentioned in Section 4, it is also true that the program specification which is required by our method could
be similarly used as an oracle in algorithmic debugging which would become more automatic. Even though, an important
advantage of our method is the fact that we develop a finite methodology which is also goal independent, in contrast to
algorithmic debugging.

Our approach and the algorithmic debugging approach can be considered complementary. The main advantage of our
approach is that once the specification of the correct behavior has been given, the detection of bugs becomes almost fully
automatic and can be easily integrated with the correction methodology. The algorithmic debugging approach relies on
the existence of an oracle (typically the user) that must interact with the system and drives the debugging diagnosis by
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indicating the error symptoms. An advantage is that this does not require a full specification of the program, not even for a
specific module. On the other hand, it is less automatic and strongly relies on the users’ programming skills. This approach
is top-down goal dependent, so it heavily relies on the user inputs and follows the operational semantics. Our approach
does not consider any specific goal and provides a finitely terminating dataflow analysis for detection of program bugs. The
information collected during the debugging process can then be used as an input to the program corrector. In summary,
since the two approaches have different advantages and drawbacks, we could think of a useful integration of the two in
declarative programming environments in the future.

9.1. Some final remarks on the debugging framework

The debugging methodology that we consider in this paper can be very useful for a programmer who wants to debug a
programw.r.t. a preliminary versionwhichwaswrittenwith no concern for efficiency. Our technique can also be appreciated
by a programmer who wants to better understand the behavior of her program under different semantics. Actually, call-
by-value functional programming and lazy functional programming are often considered separate paradigms as it is often
not possible to carry programs that are designed in one paradigm over the other (e.g. the evaluation order has critical
consequences for the terminationbehavior of programs) [114]. This iswhywe consider the support of a formof parametricity
w.r.t. the evaluation strategy to be very interesting since it allows us to provide a common framework in which both eager
and lazy programs can be developed and program correctness can be checked without burdening the programmer with
operational details concerning the evaluation strategy, which is common to traditional program tracing. Moreover, both
innermost and outermost narrowing have recently regained much attention as they have proven to be very useful for
analysing security properties in rewriting-based languages such as Elan [91] and Maude [103]. These strategies are of great
interest in the field of security analysis, because policy application can not only be specified in a precise, clean and expressive
way but also dynamically enforced efficiently and effectively, by using strategies that control rule application [91].

However, note that we cannot prove our results in a parametric way for a generic rule-based language with fixpoint
semantics and computed answer semantics based on narrowing since most of the results may depend on the considered
narrowing strategy and advanced language features. For instance, we have not considered in our basic diagnosis
methodology sophisticated language features such as Maude’s sorts and algebraic laws. The extension to deal with non-
deterministic, non-strict, higher order functional logic languages is also an issue in its own right, which should be dealt with
separately, and is beyond the scope of this paper (an extension of the abstract diagnosis methodology to the case of the first
order, non-confluent functional logic programs with call-time choice behavior has been recently investigated in [28]).

9.2. Ongoing and future work

We have discussed some successful experiments that have been performed with a prototypical implementation of our
debugging system which is publicly available. This is the first step in creating an integrated development environment in
which it is possible to diagnose errors in a program, and in the case the program is wrong, to automatically generate the
correct program. To the best of our knowledge, this is the first attempt to generally integrate semantics-based program
debugging and synthesis for rule-based languages fitted with a narrowing mechanism. However, our method should be
viewed as a basis for the development of more sophisticated tools for the debugging of narrowing-based languages, for
which there is still much work to be done.

Actually, we do believe that it is possible to derive several optimizations to improve precision as well as scalability
of the considered debugging method. As for precision, an example of our ongoing work towards such an endeavour is
presented in [12], where we developed an extension of the known untyped generalization algorithm modulo equational
axioms. Moreover, we are currently studying new heuristics to drive the generalization process in order to improve the
accuracy of the bottom-up synthesis. To keep the performance of the debugging process acceptable even when we consider
large programs, we are exploring static analysis [58] as well as program slicing [115] techniques with the aim of isolating
the minimal fragment of the wrong code which has to be fixed.

As future work, we are also considering to formalize specifications by means of assertions, that is, logical constraints
defining the correct program behavior, following the style of [53]. This approach has twomain advantages: on the one hand,
it allows (even partial) specifications to be modeled in a very concise way; on the other hand, it might be coupled with an
implementation of the inductive framework for the program synthesis of [59], which allows one to infer programs (and
hence corrections) from equational axiomatizations. Indeed, we believe that handling assertions simply requires the choice
of a more concrete semantics, modeling call patterns in addition to computed answers.
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Appendix A. The flattening transformations

A.1. Flattening of equations

In this section, we recall the flattening transformations for equational goals of [37,75], which we unify as two cases of a
single, generic flattening transformation.

Following [75], we present terms as applications of a data context (i.e., a constructor termwith some holes) to operation-
headed terms (i.e., terms with defined function symbols at the outermost level). Namely, t is represented as e[t1, . . . , tn],
where e is the external part of t containing constructor symbols only (if any) and t1, . . . , tn are the outermost operation-
headed subterms of t . In particular, if t is an operation-headed term, then it can be obtained as the application of [ ] (the
empty context) to t itself. The following definition is auxiliary.

Definition 77 (Pre-flattening). The function flatϕ−(s) for an expression s is defined inductively as follows:

flatϕ−(e1), . . . , flat
ϕ
−(en) if s ≡ e1, . . . , en

flatϕ−(t1 = z1), . . . , flat
ϕ
−(tn = zn), if s ≡ e[t1, . . . , tn] =ϕ e′[t ′1, . . . , t

′
m]where

flatϕ−(t ′1 = y1), . . . , flat
ϕ
−(t ′m = ym), z1, . . . , zn, y1, . . . , ym, w are fresh variables

e[z1, . . . , zn] =ϕ w, e′[y1, . . . , ym] =ϕ w

flatϕ−(t1,1 = z1,1), . . . , flat
ϕ
−(t1,m1 = z1,m1), if s ≡ f (e1[t1,1, . . . , t1,m1 ], . . . , en[tn,1, . . . , tn,mn ]) = x

. . . , flatϕ−(tn,1 = zn,1), . . . , where z1,1, . . . , z1,m1 , . . . , zn,1, . . . , zn,mn
flatϕ−(tn,mn = zn,mn), f (e1[z1,1, . . . , z1,m1 ], are fresh variables
. . . , en[zn,1, . . . , zn,mn ]) = x

Example 79 below illustrates the different outputs of the flattening transformation depending on ϕ, which (recursively)
appear in the case when the input equation is e[t1, . . . , tn] =ϕ e′[t ′1, . . . , t

′
m] (second case of the definition).

By means of flattening, complex unification is broken down into several simple ones. However, some equations that
result from the transformation above are trivial and do not contribute to the semantics of our framework. Hence, they can
simply be removed after applying the most general unifier to the remaining equations. We formalize this idea as follows.

An equation x = y, with x, y ∈ V is called a trivial equation. Note that equations x ≈ y are not trivial. Given a set of
equations g , we define split(g) = (g1, g2) as the function that splits g into two disjoint sets g = g1


g2 such that all

equations in g2 are trivial and no equation in g1 is trivial. Now, we are ready to complete the definition of the flattening
transformation.

Definition 78 (Flattening with strategy ϕ). The function flatϕ(s) for an expression s is defined as follows. Let g = flatϕ−(s) be
the pre-flattening of s, and split(g) = (g1, g2). Then, we let flatϕ(s) = g1mgu(g2).

Modifying a set of equations by flattening results in a flat equation set that cannot be flattened any further. The conversion
to flat form subsumes the axioms of transitivity and f -substitutivity (i.e., they become ‘built-in’).

Example 79. Consider the function from of Example 16. Let g ≡ (first([first([0])]) = first([0, 1])) and ϕ = inn.
Then, the pre-flattening of g is g0 ≡ flat inn

−
(g) = (first([0]) = y, first([y]) = w, first([0, 1]) = z, w = z), and

split(g0) ≡ ({first([0]) = y, first([y]) = w, first([0, 1]) = z}, { w = z}). Hence,

flatinn(g) ≡ (first([0]) = y, first([y]) = w, first([0, 1]) = w).

Now, consider a different goal g ′ ≡ (first(from(s(x))) ≈ z) and ϕ = out . Then, the pre-flattening of g ′ is g ′0 ≡
flatout
−

(g ′) = (from(s(x)) = y, first(y) = w, w ≈ z), and split(g ′0) ≡ ({from(s(x)) = y, first(y) = w, w ≈ z}, { }).
Hence flatout(g ′) = g ′0.

Note that the equality symbols= and≈may appear simultaneously, but are handled differently since equations x ≈ y
are not trivial.

A.2. A transformation preserving needed narrowing computations

Needed narrowing [22] is a complete lazy narrowing strategy that is optimal w.r.t. the length of the derivations and the
number of computed solutions in inductively sequential (IS) programs, that is, programs in which all their defined functions
have a definitional tree. Roughly speaking, a definitional tree for a function symbol f is a tree whose leaves (rule nodes)
contain all (and only) the rules used to define f , and whose inner nodes (branch nodes) contain information to guide the
(optimal) pattern matching during the evaluation of expressions. Each inner node contains a pattern and a variable position
in this pattern (the inductive position), which is further refined in the patterns of its immediate children by using different
constructor symbols. The pattern of the root node is simply f (x̄), where x̄ is a tuple of different variables. Informally, inductive
sequentiality amounts to the existence of discriminating left-hand sides, i.e., typical functional programs. For a precise
definition of this class of programs and the needed narrowing strategy based on the notion of a definitional tree, see [20].
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Needed narrowing can be easily and efficiently implemented by translating definitional trees into ‘‘case expressions’’ as
proposed in [84], which also proves that there is a strong equivalence (i.e. equivalence w.r.t. computed answers) of needed
narrowing derivations in the original program and leftmost-outermost narrowing derivations in the transformed program.
A similar transformation is presented in [122], where inductively sequential programs are translated to the uniform form,
which has only flat rules with pairwise non-subunifiable left-hand sides, where the strong equivalence between needed
narrowing and leftmost-outermost narrowing derivations also holds. Uniform programs have been further studied in [13].

The following example illustrates the transformation into case expressions of [84]. Roughly speaking, each inductively
sequential function f is transformed into a new function (which is also called f ) defined by exactly one rewrite rule, whose
left-hand side is the term f (x̄), with x̄ a tuple of distinct variables, and where the corresponding right-hand side is a ‘‘case
construct’’ representing the definitional tree.

Example 80. Consider the following inductively sequential program for addition anddoubling of natural numbers in Peano’s
notation:

add(0, x) → x double(0) → 0
add(s(x), y) → s(add(x, y)) double(s(x)) → s(s(double(x)))

The rules in this program can be represented by the following definitional trees:

branch(add(x, y), 1, rule(add(0, x)→ x), rule(add(s(x), y)→ s(add(x, y)))).
branch(double(x), 1, rule(double(0)→ 0), rule(double(s(x))→ s(s(double(x))))).

The transformed rules with (desugared) case expressions are as follows:

add(x, y) → case1(x, 0, y, s(x1), s(add(x1, y)))
case1(0, 0, z, _, _) → z

case1(s(x), _, _, s(x), z) → z
double(x) → case2(x, 0, 0, s(x1), s(s(double(x1))))

case2(0, 0, z, _, _) → z
case2(s(x), _, _, s(x), z) → z

Note that different case functions (which we distinguish by using different subindices) are needed for case expressions
with different patterns. Also, note that the transformation produces rewrite rules with extra variables on their right-hand
sides. The idea behind the transformation is that, after the pattern matching has been compiled into case expressions,
definitional trees are no longer necessary to guide the reduction steps (they are simply driven by the case distinction on
the right-hand sides of the rules). Hence, via this transformation, we do not lose (much) generality by developing our
methodology for the simpler leftmost outermost narrowing; this simplifies reasoning about computations, and consequently
proving semantic properties, e.g. strong completeness. There is only a slight detail here: Hanus & Prehofer do not consider
conditional rules explicitly but this is not a substantial characterization for our discussion (it can be amended through the
usual encoding of conditions by means of the predefined function ‘‘if’’ [21]).

Appendix B. Proofs

B.1. Proofs of Section 3

Let us first recall some basic definitions which are instrumental for the proofs.
A pre-fixpoint of Tϕ

R is any I such that Tϕ
R(I) ⊆ I. If Tϕ

R(I) = I, then I is called a fixpoint of Tϕ
R .

Definition 81. We now define the powers of operator Tϕ
R as follows:

Tϕ
R ↑ 0(I) = I,

Tϕ
R ↑ (n+ 1)(I) = Tϕ

R(Tϕ
R ↑ n(I)),

Tϕ
R ↑ ω(I) =

∞
n=0

Tϕ
R ↑ n(I).

Informally, Tϕ
R ↑ n(I) is the result of the n-fold iteration of Tϕ

R starting at I. Note that we abbreviate Tϕ
R ↑ n = Tϕ

R ↑ n(∅).
The following result is necessary to demonstrate the continuity of Tϕ

R .

Lemma 82. Let I1 ⊆ I2 ⊆ · · · be any infinite sequence of equation sets and let C be a finite set of equations. Then,

C ⊆


∞
n=1

In

C

iff (∃i.i ≥ 1)(C ⊆ (Ii)
C).



M. Alpuente et al. / Theoretical Computer Science 411 (2010) 4055–4101 4089

Proof. Let I1 ⊆ I2 ⊆ . . . be an infinite sequence of equation sets and let C ⊆ (∪∞n=1In)
C . Since C is a finite set of equations,

then C = {e1, e2, . . . , en}, where the right-hand side of each ei is a constructor term. For all i, 1 ≤ i ≤ n, ei ∈ (∪∞n=1In) since
(∪∞n=1In)

C
⊆ (∪∞n=1In). Hence, there exits ji ≥ 1 such that ei ∈ Iji . Let k = max{j1, j2, . . . , jn} and since I1 ⊆ I2 ⊆ . . .,

then Iji ⊆ Ik for 1 ≤ i ≤ n; therefore, {e1, e2, . . . , en} ⊆ Ik, i.e., C ⊆ Ik. Finally, by the condition that the right-hand side
of each equation of C is a constructor term, we conclude that C ⊆ (Ik)

C .
Conversely, assume there exists k ≥ 1 such that C ⊆ (Ik)

C ; hence, the right-hand sides of the equations of C are
constructor terms. Since (Ik)

C
⊆ Ik, then C ⊆ Ik. Therefore, C ⊆ ∪∞n=1In, and the desired result follows. �

Proposition 9. The operator Tϕ
R is continuous on the lattice of Herbrand interpretations, ϕ ∈ {inn, out}. The least fixpoint of Tϕ

R

is lfp(Tϕ
R) = Tϕ

R ↑ ω.

Proof. Let us prove that, for any infinite sequence I1 ⊆ I2 ⊆ . . .

Tϕ
R(∪∞n=1In) = ∪

∞

n=1T
ϕ
R(In).

If e ∈ Tϕ
R(∪∞n=1In) by definition of Tϕ

R is equivalent to

e ∈ ΦR ∪ ℑ
ϕ
R ∪ {e

′
∈ BV | (λ = ρ ⇐ C) << R

ϕ
++, {l = r} ⊆ ∪∞n=1In, C ′ ⊆ (∪∞n=1In)

C,
mgu(flatϕ(C), C ′) = σ , mgu({λ = r|u}σ) = θ, u ∈ ϕ(r),
e′ = (l = r[ρ]u)σθ}.

iff there exists i, 1 ≤ i ≤ n such that, by definition of ∪∞n=1In, and by Lemma 82, there exists j, 1 ≤ j ≤ n such that

e ∈ ΦR ∪ ℑ
ϕ
R ∪ {e

′
∈ BV | (λ = ρ ⇐ C) << R

ϕ
++, {l = r} ⊆ Ii, C ′ ⊆ (Ij)

C,
mgu(flatϕ(C), C ′) = σ , mgu({λ = r|u}σ) = θ, u ∈ ϕ(r),
e′ = (l = r[ρ]u)σθ}.

iff for all k, k ≥ i, k ≥ j

e ∈ ΦR ∪ ℑ
ϕ
R ∪ {e

′
∈ BV | (λ = ρ ⇐ C) << R

ϕ
++, {l = r} ⊆ Ik, C ′ ⊆ (Ik)

C,
mgu(flatϕ(C), C ′) = σ , mgu({λ = r|u}σ) = θ, u ∈ ϕ(r),
e′ = (l = r[ρ]u)σθ}.

iff there exists k, 1 ≤ k ≤ n, such that e ∈ Tϕ
R(Ik).

iff e ∈ ∪∞n=1T
ϕ
R(In).

Thus, since Tϕ
R is continuous, by Kleene’s theorem there exists the least fixpoint lfp(Tϕ

R) = Tϕ
R ↑ ω. �

Lemma 83. Let R ∈ Rϕ . If l =ϕ t ∈ Tϕ
R ↑ k, then l is a pattern or l is a constructor term.

Proof. The proof is by induction on the number k of iterations.
If k = 1 and l =ϕ r ∈ Tϕ

R ↑ 1, then the equation l =ϕ r is a reflexive axiom and the proof is done.
Let us consider the inductive case. Let l =ϕ r ∈ Tϕ

R ↑ k which generates the new equation l′ =ϕ r ′ ∈ Tϕ
R ↑ (k + 1)

and l =ϕ r fulfills the inductive hypothesis (hence l is a pattern). Then, by definition of Tϕ
R ↑ (k + 1), there exists a set of

equations l = r ∈ Tϕ
R ↑ k, C ′ ⊆ (Tϕ

R ↑ k)C and a rule (λ→ ρ ⇐ C) << R
ϕ
++ such that there exist σ = mgu(flatϕ(C), C ′),

β = mgu({λ = r|u}σ) and u ∈ ϕ(r) which satisfy (l′ = r ′) ≡ ((l = r[ρ]u)σβ) ∈ Tϕ
R ↑ (k+ 1).

By definition of IC and the inductive hypothesis, the equations of C ′ have the form d′l =ϕ d′p or f ′(d′1, . . . , d
′
n) = d′n+1

where d′1, . . . , d
′
n, d
′

n+1, d
′

l, d
′
p are constructor terms. Similarly, by Definition 78 (flattening), the equations of flatϕ(C) have

the form f (d1, . . . , dn) = x or dl =ϕ y, where d1, . . . , dn, dl are constructor terms and x, y are variables. If ϕ = inn, then the
equation dl = y is non-trivial, since dl is not variable. If ϕ = out , then the equation dl ≈ y only unifies with an equation of
the form s ≈ t where s, t are constructor terms. Now, if d′l =ϕ d′p ∈ (Tϕ

R ↑ k)C then, by definition of Tϕ
R ↑ i, d′l is not variable.

Therefore, we conclude that σ is a constructor substitution. Now, we consider the cases for ϕ = inn, out separately.

(i) ϕ = inn. If l = r ∈ T inn
R ↑ k and u ∈ inn(r), then r|u is the innermost redex of r , which unifies with the left-hand side of

a program rule (which is also a pattern because R is CB). Therefore, β is a constructor substitution and hence l′ = lσβ
is a pattern.

(ii) ϕ = out . If l = r ∈ T out
R ↑ k and u ∈ out(r), then r|u is the outermost redex of r , which unifies with the left-hand side of

a program rule (which is a linear pattern because R is CB and left linear). Therefore, β|̀Var(r) is a constructor substitution
and hence l′ = lσβ is a pattern as well. �

Lemma 84 ([18]). Let R ∈ Rϕ and g1, g2 be a goal.
(g1, g2)

θ
❀∗ ϕ⊤ iff g1

σ1
❀∗ ϕ⊤, g2

σ2
❀∗ ϕ⊤ and θ = σ1 ⇑ σ2, for ϕ ∈ {inn, out}.

Lemma 85. Let g be a set of equations. g θ
❀∗ ϕ⊤ iff flatϕ(g) θ ′

❀∗ ϕ⊤ and θ = θ ′�Var(g), for ϕ = {inn, out}.

Proof (Sketch). The proof for the case ϕ = inn can be found in [19]. The key idea for the proof is the following property
of non-productive substitutions: for all (g1, g2)

θ
❀∗ϕ(g ′1, g2θ) such that no position of g2 has been reduced by narrowing,

ϕ(g2θ) ⊆ ϕ(g2). This property trivially holds for ϕ = inn, out in programs of R ∈ Rϕ , since in this class both strategies
compute only constructor substitutions. Thus, for the case when ϕ = out , the proof is perfectly analogous. �
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In the following, the notation g ❀n
ϕ g ′ is used to represent a narrowing derivation from g to g ′ which respects ϕ and

whose length is n.

Lemma 86. Let R ∈ Rϕ , ϕ ∈ {inn, out}, f be a defined function of R and x a tuple of pairwise distinct variables. Then, for each
f (x̄)θ = t ∉ Tϕ

R ↑ (k− 1), we have

(f (x̄)θ = t) ∈ Tϕ
R ↑ k iff f (x̄) = y θ,m

❀ϕ t = y

where⊥ does not occur in t and m ≥ k.

Proof. (=⇒): For all (f (x̄)θ = t) ∈ Tϕ
R ↑ k, such that⊥ does not occur in t , we show that there exists a narrowing derivation

of lengthm ≥ k in R such that f (x̄) = y θ,m
❀ϕ t = y. The proof is by induction on the number k of iterations.

If k = 1, then (f (x̄) = f (x̄)) ∈ Tϕ
R ↑ 1. Thus, for the reflexive closure of the narrowing relation, we get f (x̄) =

y ϵ,1
❀ϕ f (x̄) = y.
Let us consider the inductive case. We assume that the lemma holds for k and prove that it holds for k+ 1. Consider the

equations in Tϕ
R ↑ k which generate new equations in Tϕ

R ↑ (k+ 1).
Let (f (x̄)θ = tk) ∈ Tϕ

R ↑ k be one of such equations, which generates an equation such that (f (x̄)θ ′ = t(k+1)) ∈ Tϕ
R ↑

(k+ 1) and (f (x̄)θ ′ = t(k+1)) /∈ Tϕ
R ↑ k. Then, by definition of Tϕ

R ↑ (k+ 1), there exists a set of equations {f (x̄)θ = tk} ∪ C ′
with {f (x̄)θ = tk} ⊆ Tϕ

R ↑ k, C ′ ⊆ (Tϕ
R ↑ k)C and a rule (λ→ ρ ⇐ C) << R

ϕ
++ such that there exist σ = mgu(flatϕ(C), C ′),

β = mgu({λ = tk|u}σ) and u ∈ ϕ(tk) which satisfy (f (x̄)θ ′ = tk+1) ≡ ((f (x̄)θ = tk[ρ]u)σβ) where θ ′ = θσβ .
Since rule (λ → ρ ⇐ C) is a variant of a rule in R

ϕ
++ (so it contains only new variable symbols) and σ depends

on the variables in flatϕ(C) and C ′, it follows that Var(σ ) ∩ Var(tk) = ∅, then tk = tkσ from which it derives that
β = mgu({λ = tk|u}σ) = mgu(λσ = tk|u) and tk+1 = (tk[ρ]u)σβ = (tk[ρσ ]u)β .

Since (f (x̄)θ = tk) ∈ Tϕ
R ↑ k, by the inductive hypothesis, there exists a narrowing derivation following strategy ϕ such

that f (x̄) = y θ,m
❀ϕ tk = y with m ≥ k. Let us consider the subsequent narrowing step. Then, there exist u ∈ ϕ(tk) i.e.,

u ∈ ϕ(tkσ) and a rule r ≡ (λσ → ρσ ⇐ Cσ) << R
ϕ
++ s.t. mgu(λσ = tk|uσ) = β . By hypothesis, ⊥ does not occur in

tk, tk+1, hence r << R
ϕ
+ and thus a narrowing stepwhich uses strategyϕ can be proven and derives the goal Cσβ, (tk+1 = y),

with tk+1 = (tk[ρ]u)σβ .

f (x̄) = y θ,m
❀ϕ tk = y σβ,m+1

❀ϕ Cσβ, (tk+1 = y).

Since C ′ ⊆ (Tϕ
R ↑ k)C

⊆ (Tϕ
R ↑ k) and the left-hand sides of equations in Tϕ

R ↑ k are patterns or constructor terms
(Lemma83), then, by the inductive hypothesis, we have that, for all fs(d̄) = ds (resp. dm =ϕ d′m) of C

′, there exists a derivation

of length n such that fs(x̄) = y θ,n
❀ϕ ds = y {y/ds}❀ϕ ⊤ (resp. dm =ϕ d′m

ϵ,∗
❀ϕ ⊤). In general, for every equation e ∈ C ′σ , we

derive that e ϵ,∗
❀ϕ ⊤ (since σ is constructor), that is, C ′σ ϵ,∗

❀ϕ ⊤, and then flatϕ(C)σ
ϵ,∗
❀ϕ ⊤. Since flatϕ(C) preserves the

computed answers under the narrowing strategy ϕ, by Lemma 85, then Cσ
ϵ,∗
❀ϕ ⊤. Since narrowing strategy ϕ is correct

and complete w.r.t. the computed answers and β|̀Var(tk) is a constructor substitution, then Cσβ
ϵ,∗
❀ϕ ⊤. In conclusion,

f (x̄) = y θ,m
❀ϕ tk = y σβ,m+1

❀ϕ Cσβ, (tk+1 = y) ϵ,∗
❀ϕ . tk+1 = y.

Weconclude that there exists a derivation of lengthm′ ≥ k for narrowing strategyϕ w.r.t.R such that f (x̄) = y θ ′,m′
❀ϕ t =

ywhere θ ′ = θσβ .
(⇐=): For the opposite direction, we prove the more general result that, for all derivations of the form D : f (x̄) =
y θ,n

❀ϕ C, t = y s.t. C β,m
❀ϕ ⊤, there exists 1 ≤ k ≤ n+m s.t. (f (x̄)θ = t)β ∈ Tϕ

R ↑ k.
The proof is by induction on the length n of D .
Let n = 1, then by the reflexive closure of the narrowing relation f (x̄) = y ϵ

❀ϕ f (x̄) = y and by Definition 8
(f (x̄) = f (x̄)) ∈ Tϕ

R ↑ 1.
Let us consider that the statement of the lemma holds for all derivations of length m < n and then prove that it holds

for n.
We consider a derivation of length n, D : f (x̄) = y θ,n

❀ϕ C, t = y such that C β,m
❀ϕ ⊤.

For ϕ ∈ {inn, out}, it is immediate to see that D has one of the following two forms.
The first form is

f (x̄) = y θ ′,n−1
❀ϕ t ′ = y β

❀ϕ t = y,

where every rule condition eventually introduced within the derivation is solved before the final narrowing step t ′ =
y β

❀ϕ t = y. In this case, by the inductive hypothesis there exists 1 ≤ j ≤ n − 1 s.t. f (x̄)θ ′ = t ′ ∈ Tϕ
R ↑ j, and

hence it follows trivially from the definition of strategy ϕ of narrowing and Tϕ
R that f (x̄)θ ′β = t ∈ Tϕ

R ↑ j + 1, and the
conclusion follows.

The second possible form is

f (x̄) = y θ ′,n−1
❀ϕ C ′, t ′ = y α

❀ϕ C, t = y β,m
❀ϕ (tβ = y),
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where the final subderivation C, t = y β,m
❀ϕ (tβ = y) reduces to⊤ the condition C without narrowing the term t , and the

step C ′, t ′ = y α
❀ϕ C, t = y narrows t ′ to the term t by applying a rule (λ → ρ ⇐ B) << R

ϕ
+ to the selected position

u ∈ ϕ(t ′) s.t. α = mgu({λ = t ′|u}) and t = (t ′[ρ]u)α, with C = (C ′, B)α.
In the following, we will apply structural analysis over D for concluding that this derivation produces an equation in

Tϕ
R ↑ k for any k.

Since C, t = y β,m
❀ϕ (tβ = y), we have that C β,m

❀ϕ ⊤ and, by Lemma 85 flatϕ(C)
β ′ ∗
❀ϕ ⊤, with β = β ′

|̀Var(C)
, hence

flatϕ(C)β ′
ϵ
❀∗ ϕ ⊤. The flat equations in flatϕ(C) have the form f ′(x1, . . . , xn)δ = x or dl =ϕ y, where δ = {x1/d1, . . . , xn/dn}

and dl, di, i = 1 . . . n, are constructor terms and x, y are variables.
For each equation e ≡ (dl =ϕ y)β ′ in flatϕ(C)β ′, by the definition of Tϕ

R , we will prove that there exist me ≥ 1 and an
equation e′′ ∈ Tϕ

R ↑ mi such that e′′γ ≡ eβ ′, where γ is a constructor substitution. In fact, in the case when ϕ = inn, by
definition of T inn

R , for c/n ∈ C we know that the equations c(x1, . . . , xn) = c(x1, . . . , xn) ∈ T inn
R ↑ 1, and the claim follows.

In the case when ϕ = out , if (dl ≈ y)β ′ ϵ
❀∗ out ⊤, then (dl ≈ y)β ′ is ground since the rules which define the strict equality

≈ are applied. Now, by definition of T out
R , there existme ≥ 0 such that (dl ≈ y)β ′ ∈ T out

R ↑ me.

Now, we consider e′ ≡ (f ′(x1, . . . , xn)δ = x) ∈ flatϕ(C) and f ′(x1, . . . , xn)δ = x β ′

❀ϕ ⊤. Then, f ′(x1, . . . , xn) =

y δβ ′

❀ϕ xβ = y. By hypothesis, we conclude that there existsme′ such that (f ′(x1, . . . , xn)δ = x)β ′ ∈ Tϕ
R ↑ me′ .

In general, let us construct the set C ′′ = {e1, . . . , ep} such that C ′′ ⊆ Tϕ
R ↑ m, where m is the maximum of the me’s,

for all equations e in flatϕ(C) such that C ′′ϑ = flatϕ(C)β ′. Note that, since β ′, ϑ are constructor substitutions without
common variables, then C ′′ is a flat set of equations. Then, C ′′ ⊆ (Tϕ

R ↑ m)C . and mgu(flat(C), C ′′) = ϑβ ′. Moreover,
β = β ′

|̀Var(C)
= (ϑβ ′)|̀Var(C).

Finally, consider the prefix f (x̄) = y θ ′,n−1
❀ϕ C ′, t ′ = y of D . By the inductive hypothesis, there exists q ≥ 0 s.t.

{f (x̄)θ ′αβ = t ′αβ} ⊆ Tϕ
R ↑ q.

In conclusion,wehaveproven that there exists p, 1 ≤ p ≤ q+m, such that {f (x̄)θ ′αβ = t ′αβ} ⊆ Tϕ
R ↑ p,C ′′ ⊆ (Tϕ

R ↑ p)C ,
and β = mgu(flatϕ(C), C ′′)|̀Var(C). Therefore, since there exist u ∈ ϕ(t ′) and a rule (λ → ρ ⇐ B) << R

ϕ
+ (hence

(λ → ρ ⇐ B) << R
ϕ
++) with mgu(flatϕ(B), C ′′) = β|̀Var(B), α = mgu({λ = t ′|u}) and t = (t ′[ρ]u)α, we conclude that

(f (x̄)θ = tβ) ∈ Tϕ
R ↑ k, with k = p+ 1 and θ = θ ′αβ . �

Theorem 15 (Strong soundness and completeness). Let R ∈ Rϕ and g a (non-trivial) goal for ϕ. Then θ is a computed answer
for g in R w.r.t. ❀ϕ iff g is closed by F ca

ϕ (R) with substitution θ .

Proof. (⇒): Let g be a goal such that flatϕ(g) = (e1, . . . , en) and g θ
❀∗ ϕ ⊤. Using Lemma 85, it follows that (e1, . . . ,

en)
θ ′
❀∗ ϕ ⊤ and θ|̀g = θ ′

|̀g . By Lemma 84 e1
σ1
❀∗ ϕ ⊤, . . . , en

σn
❀∗ ϕ ⊤ such that θ ′ = σ1 ⇑ . . . ⇑ σn.

Since ei, i = 1, . . . , n are flat equations, then they have the following form fs(di1, . . . , d
i
n) = xi or dil =ϕ yi. We consider

the two cases separately:
If ei ≡ fs(di1, . . . , d

i
n) = xi, then we can write it as fs(x̄)βi = xi where βi = {x1/di1, . . . , xn/d

i
n}. Now, for every i, since

fs(x̄)βi = xi
σi∗
❀ϕ ⊤, then fs(x̄)βiσi = xiσi

ϵ ∗
❀ϕ ⊤ i.e. fs(x̄) = y βiσi∗

❀ϕ xiσi = y where xiσi is a constructor term not including
⊥. By Lemma 86 and the definition ofF ca

ϕ (R), we have fs(x̄)βiσi = xσi ∈ F ca
ϕ (R). Let e′i ≡ fs(x̄)βiσi = xσi, thenwe conclude

that e′i = eiσi and therefore ei is closed by F ca
ϕ (R).

If ei ≡ dil =ϕ y. If ϕ = inn, then dil = y σi
❀ϕ ⊤ by using the rule x = x → true. By Definition 8, every equation

c(x̄) = c(x̄), with constructor symbol c/n, is in TR ↑ k for all k. Therefore, there exists a substitution αi such that
(dil = y)σi = (c(x̄) = c(x̄))αi. Hence, there exits a substitution θ ′i such that θ ′i = mgu((dil = y), (c(x̄) = c(x̄))). Note
that, θ ′i |̀Var(dil=y) = σi . If ϕ = out , then dil ≈ y σi

❀∗ ϕ ⊤ by using the rules defining the strict equality ≈ which are added to
the program. Let e′i ≡ ci(x) = ci(x), then in both strategies we conclude that e′i = eiσi and therefore ei is closed by F ca

ϕ (R).
Thus, we have proved that for all 1 ≤ i ≤ n, e′i = eiσi with e′i ∈ F ca

ϕ (R); hence,

mgu((e1, . . . , en), (e′1, . . . , e
′
n)) = mgu((e1, . . . , en), (e1σ1, . . . , enσn))
= mgu(σ̂1, . . . , σ̂n)
= θ ′.

Then, θ ′ = mgu(flatϕ(g), g ′) with g ′ = e′1, . . . , e
′
n and θ|̀g = θ ′

|̀g . Therefore, g is closed by F ca
ϕ (R) with substitution θ .

(⇐): Let g be a goal closed by F ca
ϕ (R) such that flatϕ(g) = (e1, . . . , en), then there exist (e′1, . . . , e

′
n) ∈ F ca

ϕ (R) s.t.
θ ′ = mgu((e1, . . . , en), (e′1, . . . , e

′
n)). Therefore, for every i = 1, . . . , n, there is σi s.t. eiσi = e′iσi. By Lemma 83, the

left-hand sides of equations in Tϕ
R ↑ k are patterns or constructor terms; then by definition of F ca

ϕ (R), each e′i ∈ F ca
ϕ (R)

has the form fs(x̄)βi = dis or d
i
l =ϕ dir . Now, for ϕ ∈ {inn, out} we know that θ ′ is a constructor substitution, hence so is σi.

By Lemma 86, there exists a derivation fs(x̄) = y βi
❀∗ ϕ dis = y; hence fs(x̄)βi = dis

ϵ
❀∗ ϕ ⊤, then fs(x̄)βiσi = disσi

ϵ
❀∗ ϕ ⊤.
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Similarly, dilσi =ϕ dirσi
ϵ
❀∗ ϕ ⊤. Since e′iσi

ϵ
❀∗ ϕ ⊤, then eiσi

ϵ
❀∗ ϕ ⊤; hence ei

σi
❀∗ ϕ ⊤. In general, e1

σ1
❀∗ ϕ ⊤, . . . , en

σn
❀∗ ϕ ⊤

and by Lemma 84 (e1, . . . , en)
θ ′
❀∗ ϕ ⊤where θ ′ = σ1 ⇑ . . . ⇑ σn. By Lemma 85, g θ

❀∗ ϕ ⊤ and θ = θ ′�Var(g). �

The equivalence between the operational and the (computed answers) fixpoint semantics is established in the following
lemma.

Lemma 87. If R ∈ Rout , then Oca
out(R) = {l = r ∈ F ca

out(R) | ⊥ does not occur in r}. If R ∈ Rinn, then Oca
inn(R) = F ca

inn(R).

Proof. (⊇): Let (f (x̄)θi = ti) ∈ F ca
ϕ (R) where ti is a constructor term and⊥ does not occur in ti. By Lemma 86, there exists

a narrowing derivation with strategy ϕ such that f (x̄) = y θi ∗
❀ϕ ti = y and then ti = y {y/ti}❀ϕ ⊤. Hence, by definition of

Oca
ϕ (R), we have

(f (x̄) = y)θi{y/ti} ∈ Oca
ϕ (R).

Since y /∈ Var(θi) then

(f (x̄)θi = tn) ∈ Oca
ϕ (R).

In the case of constructor equations, we distinguish between two cases: ϕ = inn or ϕ = out .
When ϕ = inn and dil = dir ∈ F ca

inn(R), then dil = dir ∈ ℑ
inn
R which is a subset of Oca

inn(R). Therefore, by Definition 17,
dil = dir ∈ Oca

inn(R).
The case when ϕ = out and dil ≈ dir ∈ F ca

out(R) is perfectly analogous, by considering the rules defining≈.
Note that, we disregard all equations in F ca

out(R) and Oca
out(R) such that they contain⊥ symbol on their right-hand side.

(⊆): Let (s = t) ∈ Oca
ϕ (R), by definition of Oca

ϕ (R); hence s = t has the form (f (x̄) = y)θ ′. Since θ ′ is a constructor
substitution, then the equation can be written as (f (x̄)θ = tn), where θ = θ ′

|̀f (x̄) and tn is a constructor term. There are two
cases:

If f /m ∈ C, then trivially (s = t) ∈ F ca
ϕ (R) (see the first part of this proof).

If f /m ∈ F , by definition of Oca
ϕ (R), there exists a narrowing derivation with strategy ϕ

f (x̄) = y θ
❀∗ ϕ tn = y {y/tn}❀ ϕ ⊤.

By Lemma 86, (f (x̄)θ = tn) ∈ F ca
ϕ (R); therefore, (s = t) ∈ F ca

ϕ (R). �

Theorem 19. The following relation holds:

Oca
ϕ (R) = Fϕ(R)− partial(Fϕ(R)).

Proof. It follows straightforwardly from Lemma 87. �

B.2. Proofs of Section 4

Proposition 26. If there are no incorrect rules in R w.r.t. the intended fixpoint semantics IF , then R is partially correct w.r.t.
the intended success set semantics Ica.

Proof. Consider e ∈ Oca
ϕ (R) and assume that e ∉ Ica. Since Ica

⊆ IF , this implies that e is an incorrectness symbol, which
contradicts the hypothesis that R is correct. �

B.3. Proofs of Section 5

Proposition 41. The operator T ♯ϕ
R is continuous in the lattice of abstract Herbrand interpretations, ϕ ∈ {inn, out}.

Proof. It is analogous to Proposition 9. �

We now define an abstract narrowing relation by means of an abstract transition system. An abstract computation is
performed w.r.t. an abstract goal and an abstract program R♯. The calculus corresponds to the concrete conditional one,
where the concrete domains and operators are replaced by their corresponding abstract versions. The abstract narrowing
relation is genericw.r.t. a strategyϕ. LetR♯

+ be the extension of the abstract programR♯ by the rules that dealwith syntactic
equality, as in the concrete case.

Definition 88 (Abstract narrowing ❀♯ϕ). Let R ∈ Rϕ and R♯ be the corresponding abstraction of R. We define abstract
conditional narrowing with strategy ϕ, ϕ ∈ {inn, out}, as the smallest relation ❀♯ϕ satisfying:

{u} = ϕ(g) ∧ r ≡ (λ→ ρ ⇐ C) << R
♯
+ ∧ σ = mgu♯({g |u = λ})

g σ
❀♯ϕ (C, g[ρ]u)σ

.
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Lemma 89 (Termination of the abstract narrowing). Let R ∈ Rϕ and R♯ be the corresponding abstraction of R and g be an
abstract goal. The abstract transition system for ❀♯ϕ and g has a finite number of nodes [15].

Lemma 90. Let R ∈ Rϕ and R♯ be the corresponding abstraction of R. For all k ≥ 0, we have that

(f (x̄)θ = t) ∈ T ♯ϕ
R ↑ k iff f (x̄) = y R♯,θ

❀ ∗
♯ϕ t = y

where⊥ does not occur in t.

Proof (Outline). Analogous to Lemma 86. By simply replacing unification mgu, TRS R, narrowing σ
❀ϕ and the immediate

consequences operator Tϕ
R with abstract unification mgu♯, abstract TRS R♯, abstract narrowing σ

❀♯ϕ and the abstract
immediate consequences operator T ♯ϕ

R . Routine. �

Theorem 43. There exists a finite positive number k such that F ♯
ϕ (R) = T ♯ϕ

R ↑ k, ϕ ∈ {inn, out}.

Proof. Let us show that there exists a finite positive number k such that F ♯
ϕ (R) = T ♯ϕ

R ↑ k is the fixpoint of the abstract
immediate consequence operator. First, we show that F ♯

ϕ (R) is finite.
Let us assume, by contradiction, thatF ♯

ϕ (R) is an infinite set. This means that the set generated by T ♯ϕ
R ↑ k for each k > 0

is different from the preceding one; i.e., for all k there exists at least one equation e /∈ T ♯ϕ
R ↑ k such that e ∈ T ♯ϕ

R ↑ (k+ 1).
This implies that there is an infinite sequence:

f (x̄) = f (x̄) ∈ T ♯ϕ
R ↑ 1

f (x̄)θ1 = t1 ∈ T ♯ϕ
R ↑ 2

f (x̄)θ1θ2 = t2 ∈ T ♯ϕ
R ↑ 3

...

f (x̄)θ1θ2 . . . θk+1 = tk+1 ∈ T ♯ϕ
R ↑ (k+ 2)

...

Moreover, for each equation of the form f (x̄)φi = ti in this series, by Lemma 90 there exists an abstract narrowing
derivation:

f (x̄) = y ❀
φi∗
♯ϕ ti = y.

Therefore, there exists an infinite abstract narrowing derivation ❀♯ϕ stemming from the goal f (x̄) = y:

f (x̄) = y ❀
∗

♯ϕ t1 = y ❀
∗

♯ϕ t2 = y ❀
∗

♯ϕ · · · ❀
∗

♯ϕ tk = y ❀
∗

♯ϕ . . .

which contradicts the termination of abstract narrowing proven in Lemma 89.
Thus, there exists a finite positive number k such that F ♯

ϕ (R) = T ♯ϕ
R ↑ k. �

Lemma 91. T ♯ϕ
R ∝ Tϕ

R .

Proof (Sketch). We must prove that, for all I, I′ such that I′ ∝ I, T ♯ϕ
R (I′) ∝ Tϕ

R(I), that is Tϕ
R(I) ∈ γ (T ♯ϕ

R (I′)). The
proof follows immediately from Lemmas 86, 90 and the fact that, for any strategy ϕ with the property of non-productive

substitutions, R′
❀♯ϕ ∝

R
❀ϕ whenever R′ ∝ R. �

Theorem 44. F ♯
ϕ (R) ∝ Fϕ(R) and F ca♯

ϕ (R) ∝ F ca
ϕ (R).

Proof. The result is an immediate corollary of Lemma 91. �

In [8], this result was only established for ϕ = inn, as we heavily relied on the abstract narrowing methodology of [15]
which was developed for an eager strategy, namely (innermost) basic conditional narrowing. It was only afterwards that
we realized that the key property for the ‘inherited’ abstract narrowing results to hold is the property of non-productive
substitutions, which is trivially fulfilled by innermost as well as outermost narrowing because both of them only compute
constructor substitutions.

Theorem 46 (Completeness). Let R be a program in Rϕ and g be a (non-trivial) goal. If θ is a computed answer substitution for
g in R w.r.t. ϕ, then g is abstractly closed by F ca♯

ϕ (R) with substitution θ ′ and (θ ′ ≼ θ)|̀Var(g).

Proof (Sketch). It is analogous to Theorem 15 by using Lemma 90 in the place of Lemma 86, and Theorem 44. �

B.4. Proofs of Section 6

Theorem 50. Let (I+, I−) be a correct approximation of the intended semantics IF . If r is abstractly incorrect w.r.t. (I+, I−)
on e, then r is incorrect on e.
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Proof. Let r be a rule such that it is abstractly incorrect on e w.r.t. (I+, I−). Then, by Definition 49, e ∈ Tϕ

{r}(I
−) and for all

I ∈ γ (I+)), e is not closed by I. Note that e is not an abstract equation. We will prove that the rule r ∈ R is incorrect on e
according to Definition 24.

Since (I+, I−) is a correct approximation of the intended semantics IF , then I− ⊆ IF . By the continuity of Tϕ
R ,

Tϕ

{r}(I
−) ⊆ Tϕ

{r}(IF ). Hence e ∈ Tϕ

{r}(IF ).
On the other hand, if (I+, I−) is a correct approximation of the intended semantics IF , then we have IF ∈ γ (I+), and

since e is not closed by any I ∈ γ (I+), then in particular e is not covered by IF .
Therefore, we have proved that e ∈ Tϕ

{r}(IF ) whereas e is not closed by IF , and the result follows. �

Theorem 51. Let (I+, I−) be a correct approximation of the intended semantics IF . If R is abstractly incomplete on e w.r.t.
(I+, I−), then e is uncovered in R.

Proof. Since R is abstractly incomplete on e w.r.t. (I+, I−), then by Definition 49, e ∈ I− and e is not closed by any
I ∈ γ (T ♯ϕ

R (I+)). We will prove that e is uncovered by R, i.e., e ∈ IF and e is not covered by Tϕ
R(IF ).

Consider e ∈ I−. Since I− ⊆ IF , then e ∈ IF . On the other hand, since T ♯ϕ
R ∝ Tϕ

R (Lemma 91) and I+ ∝ IF (hypothesis),
then Tϕ

R(IF ) ∈ γ (T ♯ϕ
R (I+)). Now, since e is not closed by any I ∈ γ (T ♯ϕ

R (I+)), then e is not closed by Tϕ
R(IF ), which proves

the claim. �

Lemma 54. Let (cI+, cI−) be a computed approximation of the intended semantics IF . Then (cI+, cI−) is a correct
approximation of IF .

Proof. First, let RSpec be a program, IF = lfp(Tϕ
RSpec

) and cI− = Tϕ
RSpec
↑ i for i ≥ 0. Since Tϕ

RSpec
↑ i ⊆ Tϕ

RSpec
↑ ω for each

i ≥ 0 then cI− ⊆ IF .
Second, let R

♯

Spec be the corresponding abstract program of RSpec and cI+ = lfp(T ♯ϕ
RSpec

). Then cI+ = F ♯
ϕ (R), by

Theorem 44, cI+ ∝ IF then IF ∈ γ (cI+). �

Theorem 55. Let (cI+, cI−) be a computed approximation of IF . If there exists an equation e such that, e ∈ Tϕ

{r}(cI
−) and e is

not abstractly closed by cI+, then the rule r ∈ R is incorrect on e.

Proof. Since (cI+, cI−) is a computed approximation of IF , by Theorem 54, (cI+, cI−) is a correct approximation of the
intended semantics IF , hence cI− ⊆ IF and IF ∈ γ (cI+). By hypothesis, e is not abstractly closed by cI+; hence, we
have that for all g ′ ∈ cI+, mgu♯(flatϕ(e), g ′) = fail. Therefore, e is not abstractly closed by IF .

On the other hand, if e ∈ Tϕ

{r}(cI
−), by the monotonicity of Tϕ

R , we obtain that e ∈ Tϕ

{r}(IF ).
Therefore, we have that e ∈ Tϕ

{r}(IF ) whereas e is not closed by IF . Thus, the rule r ∈ R is incorrect on e. �

Theorem 56. Let (cI+, cI−) be a computed approximation of IF . If there exists an equation e such that e ∈ cI− and e is not
abstractly closed by T ♯ϕ

R (cI+) then e is uncovered in R.

Proof. Since (cI+, cI−) is a computed approximation of IF , by Theorem 54, (cI+, cI−) is a correct approximation of the
intended semantics IF ; hence, cI− ⊆ IF and IF ∈ γ (cI+).

Since e is not abstractly closed by T ♯ϕ
R (cI+), then for all g ′ ∈ T ♯ϕ

R (cI+), mgu♯(flatϕ(e), g ′) = fail. Hence, since T ♯ϕ
R ∝ Tϕ

R

(Lemma 91) and cI+ ∝ IF , we derive that T ♯ϕ
R (cI+) ∝ Tϕ

R(IF ). This implies that e is not closed by Tϕ
R(IF ), and the result

follows. �

B.5. Proofs of Section 7

In order to prove Proposition 66, we need the following auxiliary lemmata.

Lemma 92. Let R be a program and r ≡ (λ→ ρ ⇐ C) ∈ R be a rule. Let σ be a constructor substitution and s ∈ τ(Σ ∪ V ).
If sσ

r,p
→ t, then

(1) p ∈ O(sσ) ∩ O(s);
(2) mgu({s|p = λ}) = θ and θ|Var(s) ≤ σ|Var(s).

Proof. To prove claim 1, simply note that sσ|p is a redex of sσ ; thus, p ∈ O(sσ). Moreover, no redexes of sσ can occur in
subterms introduced in s by σ , as σ is a constructor substitution. Therefore, p ∈ O(s). And finally, p ∈ O(sσ) ∩ O(s).

Let us demonstrate claim 2. First of all, we assume that s and λ are variable disjoint; otherwise, we choose a suitable
variant of r which meets this assumption. Since sσ|p is a redex of sσ , there exists a substitution φ such that sσ|p = λφ. This
implies that s|p and λ are unifiable (e.g., φσ is a unifier for s|p and λ). Therefore, the most general unifiermgu({s|p = λ}) = θ
exists and θ|Var(s) ≤ (φσ)|Var(s). Since s|p and λ are variable disjoint, (φσ)|Var(s) = σ|Var(s). Hence, θ|Var(s) ≤ σ|Var(s). �
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Let p1 and p2 be two positions. We say that p1 and p2 are not comparable (in symbols, p1 || p2), if p1 ≰ p2 and p2 ≰ p1. A
position p1 is said to be on the left (resp., on the right) of a position p2, if p1 || p2, p1 = w.i.w′, p2 = w.j.w′′ and i < j (resp.,
i > j) for some sequences of natural numbers w, w′, w′′ and natural numbers i, j. Analogously, given a term t and subterms
t|p and t|q, we say that t|p is on the left (resp., the right) of t|q, if p is on the left (resp., the right) of q.

Lemma 93. LetR be a program and r ≡ (λ→ ρ ⇐ C) ∈ R be a rule. Let σ be a constructor substitution and s, t ∈ τ(Σ ∪V ).

(1) If sσ
r,p
→ t, with p ∈ O(sσ), then s r,p,θ

❀ (t ′, Cθ) and there exists σ ′ such that σ|Var(s) = (σ ′θ)|Var(s) with t ′σ ′ ≡ t.
(2) IfR is completely defined and p is the position of the leftmost, innermost redex of sσ , then p is the leftmost, innermost position

narrowable in s.

Proof. Let r beλ→ ρ ⇐ C . Let us first demonstrate point 1. By Lemma 92, there exist p ∈ O(sσ)∩O(s),mgu({s|p = λ}) = θ
and θ|Var(s) ≤ σ|Var(s). Therefore, the following narrowing step is enabled:

s r,p,θ
❀ (t ′, Cθ) with (s|p)θ = λθ.

Besides, since θ|Var(s) ≤ σ|Var(s), there exists a substitution σ ′ such that (σ ′θ)|Var(s) = σ|Var(s).
Now, we have that

(s|p)σ = (sσ ′θ)|p = σ ′(θ(s|p)) = λσ ′θ

which implies that t ≡ sσ [ρσ ′θ ]p. Finally,

t ′σ ′ = (s[ρ]p)σ ′θ = sσ ′θ [ρσ ′θ ]p = sσ [ρσ ′θ ]p ≡ t.

To prove point 2, we suppose by contradiction that p is not the leftmost, innermost narrowable position of s. Thus, there
exists q, which is on the left of p, such that s is narrowable at position q. Now, for each constructor substitution σ , sσ|q is a
redex of sσ , as R is completely defined. Hence, there is a redex of sσ which is on the left of sσ|p, which contradicts that sσ|p
is the leftmost, innermost redex of sσ . �

Lemma 94. Let R be a completely defined program and r1, r2 ∈ R be two rules with r1 discriminable. Let e0, e1 and e2 be

equations. If e0
r1,p1
→ e1

r2,p2
→ e2, pi ∈ O(ei−1), is a leftmost, innermost rewrite sequence, then e0

r∗,p1
→ e2 is a leftmost, innermost

rewrite sequence where r∗ ∈ Ur1(R).

Proof. Let r1 be the rule λ1 → ρ1 ⇐ C1. Let us consider the leftmost, innermost rewrite sequence D ≡ e0
r1,p1
→ e1

r2,p2
→ e2.

Then e0|p1 ≡ λ1σ1 is the leftmost, innermost redex of e0. σ1 must be a constructor substitution, sinceR is completely defined
(otherwise, the leftmost, innermost redex would not be rooted at p1).

Moreover, e1 ≡ e0[ρ1σ1]p1 . As rule r1 is discriminable (in particular, unfoldable), some defined function occurs in ρ1σ1.
Again, by the fact that R is completely defined, each subterm in ρ1σ1 of the form f (t1, . . . , tn), where f is a defined function
symbol, is a redex of ρ1σ1. Let p′ ∈ O(ρ1σ1) be the position of the leftmost, innermost redex of ρ1σ1.

Now,we show that p2 = p1.p′. Suppose by contradiction that p2 ≠ p1.p′; hence, p1 ≰ p2.We distinguish three exhaustive
cases.

p2 < p1. In this case, the contradiction is immediate: e1|p1 cannot be the leftmost, innermost redex of e1, since there is an
inner redex of e1 rooted at position p1.p′.

p2 is on the left of p1. This implies that e1|p2 ≡ e0|p2 . Hence, there is a redex of e0 (namely, e0|p2 ) occurring on the left of the
redex e0|p1 , which contradicts the hypothesis that e0|p1 is the leftmost, innermost redex of e0.

p2 is on the right of p1. p2 is also on the right of p1.p′. And e1|p1.p′ is a redex of e1, which contradicts the hypothesis that e1|p2
is the leftmost, innermost redex of e1.

Therefore, p2 = p1.p′.

Now, consider the leftmost, innermost rewrite step ρ1σ1
r2,p′
→ t . Since p2 = p1.p′, the rewrite sequence D can be seen as

follows:

e0
r1,p1
→ e0[ρ1σ1]p1

r2,p1.p′
→ e0[t]p1 ≡ e2.

By applying point 1 of Lemma 93 to the rewrite step ρ1σ1
r2,p′
→ t , we have that (i) ρ1

r2,p′,θ
❀ (t ′, C2θ), where C2 is the condition

of rule r2; (ii) there exists a substitution σ ′ such that t ≡ t ′σ ′ and σ1|Var(ρ1) = (σ ′θ)|Var(ρ1). Besides, the rule r∗ ≡ λ1θ → t ′
belongs to Ur1(R) by point 2 of Lemma 93 and Definition 62.

Finally, we complete the proof by simply noting that

e0 ≡ e0[λ1σ1]p1 ≡ e0[λ1σ
′θ ]p1

r∗,p1
→ e0[t ′σ ′]p1 ≡ e0[t]p1 ≡ e2. �

Lemma 95. Let R ∈ Rinn and r1, r2 ∈ R, with r1 ≡ (λ1 → ρ1 ⇐ C1) and r2 ≡ (λ2 → ρ2 ⇐ C2). Let ρ1
θ,r2,q
❀ inn (ρ∗, C∗) be

a leftmost-innermost narrowing step such that r∗ ≡ (λ1θ → ρ∗ ⇐ C∗) and r∗ ∈ Ur2(r1). If e
r∗,p
→ e′′ for some p ∈ O(e), then

e
r1,p
→ e′

r2,p.q
→ e′′.
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Proof. Given the leftmost-innermost narrowing stepρ1
θ,r2,q
❀ inn (ρ∗, C∗), by the soundness of leftmost-innermost narrowing

w.r.t. Rinn, we get ρ1θ
r2,q
→ ρ∗. Since e

r∗,p
→ e′′, there exists a substitution σ such that λ1θσ = e|p and e′′ = e[ρ∗σ ]p. Since

ρ1θ
r2,q
→ ρ∗, by the stability of the rewrite relation, we get ρ1θσ

r2,q
→ ρ∗σ . Therefore, e ≡ e[λ1θσ ]p

r1,p
→ e[ρ1θσ ]p

r2,p.q
→

e[ρ∗σ ]p ≡ e′′, where e′ ≡ e[ρ1θσ ]p. �

Now, we are able to proceed with the proof of Proposition 66.

Proposition 66. Let R ∈ Rinn, R′ = Ur(R), r ∈ R be a discriminable rule, and e be an equation. Then, we have

(1) if e→∗ true in R, then also e→∗ true in R′

(2) if r ∈ OR(DR(e)), then |DR′(e)| < |DR(e)|
(3) if e→∗ true in R′, then also e→∗ true in R.

Proof. Claims (1) and (2). Since the leftmost, innermost rewrite strategy is complete w.r.t. the class of programs Rinn and
e→∗ true inR, then there exists a leftmost, innermost rewrite sequence from e to true inR. Let us call this rewrite sequence
DR(e). We prove (1) and (2) by induction on the length n of DR(e).

n = 0. Since e ≡ true, claims (1) and (2) hold trivially.
n > 0. Equation e contains at least one redex. Let e|q be the leftmost, innermost redex of ewhich is reduced via r1 ≡ λ1 →

ρ1 ⇐ C1 ∈ R. So, we have

DR(e) ≡ e
q,r1
→ e[ρ1σ1]q →

∗ true.

Here, we consider two cases.
Case r1 ∈ R′. Since r1 belongs to both programs R and R′, we have that the first reduction step of DR(e) is also

a reduction step w.r.t. R′. Moreover, by the induction hypothesis, e[ρ1σ1]q →
∗ true is a successful rewrite

sequence in R′. Thus, (1) holds.
To prove (2), we first observe that r1 ≢ r by Definition 62 (unfolding). By induction hypothesis, if r ∈

OR(DR(e[ρ1σ1]q)), then |DR′(e[ρ1σ1]q)| < |DR(e[ρ1σ1]q)|, and claim (2) follows.
Case r1 ∉ R′. By Definition 62, we have that r1 ≡ r . Since r ≡ r1 is discriminable (in particular, unfoldable), there

is at least one defined function on the right-hand side of r1. Therefore, the leftmost, innermost rewrite sequence
DR(e) has the form

DR(e) ≡ e
q,r
→ e[ρ1σ1]q

p,r2
→ e′′ →∗ true

with r2 ∈ R.
By applying Lemma 94 to the following leftmost, innermost rewrite sequence

e
q,r
→ e[ρ1σ1]q

p,r2
→ e′′

we know that

e
q,r∗
→ e′′

with r∗ ∈ R′ = Ur(R). Now, by the induction hypothesis, a leftmost, innermost rewrite sequence for e′′ to true
in R′ does exist. Hence, the sequence DR′(e) ≡ e→∗ truemust exist, which demonstrates (1).

Let us give the proof for (2). Clearly,

|e
q,r∗
→ e′′| < |e

q,r
→ e[ρ1σ1]q

p,r2
→ e′′|.

Now, if r occurs in OR(DR′(e′′)), by induction hypothesis,
|DR′(e′′)| < |DR(e′′)|,

thus claim 2 follows directly. Otherwise, If r does not occur in OR(DR′(e′′)), then by Definition 62, each rule in
OR(DR′(e′′))⊂ R. Then,

|DR′(e′′)| = |DR(e′′)|,
hence |DR′(e)| < |DR(e)|.

Claim (3). Again, since the leftmost, innermost rewrite strategy is complete w.r.t. the class of programs Rinn and e→∗ true
in R′, then there exists a leftmost, innermost rewrite sequence from e to true in R′. Let us call this rewrite sequence DR′(e).
Now, we prove (3) by induction on the length n of DR′(e).

n = 0. Since e ≡ true, claim (3) is trivial.
n > 0. Let DR′(e) be the following leftmost-innermost rewrite sequence:

e ≡ e0
p0,r0
→ e1

p1,r1
→ · · · en−1

pn−1,rn−1
→ en ≡ true.

First, we observe that—by the inductive hypothesis and the completeness of the leftmost-innermost rewrite strategy—there
exists a leftmost-innermost rewrite sequence e ≡ e0→∗en−1 in R.
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Then, in order to prove e→∗ en ≡ true in R, it suffices to show that it is always possible to rewrite en−1 to en in R and
then combining the rewrite sequence e ≡ e0→∗en−1 given by the induction hypothesis with the rewrite step en−1 → en.
To this purpose, we consider the following two cases.
Case rn−1 ∈ R. In this case, the rewrite step en−1

pn−1,rn−1
→ en ≡ true is enabled both in R′ and R. Thus, e ≡ e0 →∗

en−1
pn−1,rn−1
→ en ≡ true in R.

Case rn−1 ∉ R. Since rn−1 ∉ R and rn−1 ∈ R′, rn−1 is a rule of R′ which has been obtained by unfolding a rule r1 ∈ R w.r.t.
a rule r2 ∈ R by means of a leftmost-innermost narrowing step. Hence, rn−1 ∈ Ur2(r1). Now, since en−1

pn−1,rn−1
→ en ≡ true

in R′ and rn−1 ∈ Ur2(r1), we can obtain the rewrite sequence

en−1
pn−1,r1
→ e′

p′,r2
→ en ≡ true in R

by applying Lemma 95. Thus, e ≡ e0 →∗ en−1
pn−1,r1
→ e′

p′,r2
→ en ≡ true in R. �

Corollary 96. LetR ∈ Ru,R′ = Ur(R), r ∈ R be a discriminable rule, and e be an equation. Then, e→∗ true inR iff e→∗ true
in R′.

Proof. It directly follows by Proposition 66 and by the fact that Ru
⊆ Rinn. �

Lemma 97. Let R ∈ Rinn, and l = c be an example such that c ∈ τ(C). If (l = c) →∗ true in R, then there exists a leftmost,
innermost rewrite sequence

l = c
q1,r1
→ l1 = c

q2,r2
→ l2 = c · · ·

qn,rn
→ ln = c in R

where ln ≡ c, n ≥ 0, ri ∈ R, qi ∈ O(li), i = 1, . . . , n.

Proof. Straightforward. �

Proposition 70. Let R ∈ Rinn. Let Ep (resp. En) be a set of positive (resp. negative) examples. If there are no ep ∈ Ep and en ∈ En

that can be proven in R by using the same rule application sequence, then, for each unfolding succession S(R), there exists k such
that ∀en ∈ En, ∃r ∈ OR(DRk(e

n)) s.t. r is not discriminable.

Proof. The key idea for the proof is in the following fact (which holds by Proposition 66).

At each unfolding step involving a discriminable rule, the length of the proof of, at least, one positive example
decreases.

Therefore, by a finite number k of unfolding steps, we get the program Rk where each ep ≡ (lp = cp) ∈ Ep, lp ∈ τ(F ∪ C)

and cp ∈ τ(C), succeeds by using just one rule r of Rk. Hence, by Lemma 97, we have (lp = cp)
q,r
→ (cp = cp), with r ∈ Rk,

q ∈ O(lp).
This amounts to saying that there is no defined symbol on the right-hand side of r .
Now, consider a negative example en ≡ ln = cn, ln ∈ τ(F ∪ C) and cn ∈ τ(C), and the corresponding proof DRk(e

n). In
order to prove the claim, we distinguish two cases:
|DRk(e

n)| > 1. In this case, there exists one rule r ∈ Rk occurring in DRk(e
n), where the right-hand side of r contains at

least one defined function symbol. Hence, r cannot occur in the proof of any positive example, and the claim follows.
|DRk(e

n)| = 1. Let r ∈ Rk be the rule used to prove en. By contradiction, suppose that there exists a positive example
ep ∈ Ep, whose proof DRk(e

p) uses the very same rule r . Since Rk derives from R by repeatedly applying unfolding, the
application of the rule r ∈ Rk can bemimicked inR by applying the rule application sequence ⟨r1, . . . , rn⟩ ofR. This means
that examples ep and en can be proven in R by using the same rules sequence. That is,

ep
r1
→ ep1

r2
→ · · ·

rn
→ cp = cp

en
r1
→ en1

r2
→ · · ·

rn
→ cn = cn.

This fact contradicts the hypothesis that no ep ∈ Ep and en ∈ En can be proven in R by using the same rule application
sequence. �

Theorem 71. Let R ∈ Ru. Let IF be the intended fixpoint semantics of R, and (cI+, cI−) be a computed approximation of
IF . Then, if Ep and En are two sets of examples generated w.r.t. (cI+, cI−) such that R ⊢ϕ Ep, ϕ ∈ {inn, out}, and there
are no ep ∈ Ep and en ∈ En which can be proven in R by using the same rule application sequence, then the execution of
TD-Corrector(R, cI+, cI−) yields a corrected program Rc w.r.t. Ep and En.

Proof. Let us consider a uniform program R ∈ Ru along with two sets of examples Ep and En. Any example in Ep
∪ En

is a ground equation of the form l = c , with l ∈ τ(F ∪ C) and c ∈ τ(C). Note that example sets can be effectively
computed by using the example generation procedure which we described in Section 7.2.1. In fact, ground sets Ep and En

are effectively generated by using the computable abstract tests of Theorems 55 and 56. Therefore, the execution of line 2
of TD-Corrector(R, cI+, cI−) always terminates delivering a set of positive examples Ep and a set of negative examples
En.
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SinceR ∈ Ru, (i)R is terminating; (ii) both the narrowing strategy out and the narrowing strategy inn are completew.r.t.
R, the overgenerality test of lines 3–4 always terminates and establishes whether R is overly general w.r.t. Ep. In particular,
when this test succeeds, we know that there exists a (finite) leftmost, innermost rewrite sequence which proves ep in R for
each ep ∈ Ep.

Now, according to Proposition 70, the unfolding phase (lines 5–11) terminates delivering a program Rk such that every
negative example en succeeds in Rk by means of (at least) one rule which is not used in the proof of any positive example.

On the other hand, since the semantics of R is preserved by unfolding w.r.t. inn and R ∈ Ru
⊆ Rinn [16], program,

Rk ⊢inn Ep. Moreover, Rk ⊢out Ep, since R ∈ Ru and the out narrowing strategy is complete w.r.t. the class Ru [60].
Subsequently, the deletion phase (lines 12–15) removes all, and only those rules r ∈ Rk which do not appear in the

proofs of the positive examples. Hence, a specialized program Rc is computed such that Rc
⊬ϕ En, ϕ ∈ {inn, out}, while it

still succeeds on the whole Ep, which gives the desired result. �

Appendix C. Auxiliary information of the debugging session of Section 8.1

This appendix presents part of the log file that has been generated as a by-product of the debugging session of Section 8.1.
Specifically, we show the under- and over-approximations along with the sets of positive and negative examples generated
by the debugger. Variables are specified by using notation _ n, where n is a natural number. The over-approximation I+ has
been generated by computing the fixpoint of the abstract immediate consequence operator (it took only two iterations to
reach the fixpoint). The under-approximation I- has been obtained by computing two iterations of the concrete immediate
consequence operator. Both computations took less than 1 s on a Macbook Air 2.13 GHz Intel Core 2 Duo . Positive and
negative example sets have been generated by applying an optimized version of the example generation procedure of
Section 7.2.1 which increases the number of examples produced without the need of increasing the size of the under-
approximation (which is typically one of the most time-consuming tasks of the whole debugging process). Specifically,
our optimization allows us to generate ground examples even from non-ground equations by first instantiating them and
then normalizing their right-hand sides.

************************************************
*** OVER APPROXIMATION I+
************************************************
playdice(s(s(0))) = s(_16184).
playdice(s(0)) = s(_16159).
playdice(s(0)) = sum(s(0),s(0)).
playdice(s(s(0))) = sum(s(s(0)),s(s(0))).
dd(s(_16054)) = s(_16064).
dd(0) = 0.
playdice(s(s(0))) = dd(s(s(0))).
playdice(s(0)) = dd(s(0)).
sum(_15959,s(_15947)) = s(_15957).
sum(_15935,0) = _15935.
dd(_15910) = sum(_15910,_15910).
winface(s(s(0))) = s(s(0)).
winface(s(0)) = s(0).
playdice(_15836) = dd(winface(_15836)).
sum(_15806,_15807) = sum(_15806,_15807).
0 = 0.
s(_15780) = s(_15780).
playdice(_15767) = playdice(_15767).
winface(_15752) = winface(_15752).
dd(_15737) = dd(_15737).
************************************************
************************************************
*** POSITIVE EXAMPLES
************************************************
playdice(s(s(0))) = s(s(s(s(0)))).
dd(s(s(s(s(0))))) = s(s(s(s(s(s(s(s(0)))))))).
dd(s(s(s(0)))) = s(s(s(s(s(s(0)))))).
playdice(s(0)) = s(s(0)).
dd(s(s(0))) = s(s(s(s(0)))).
dd(0) = 0.
dd(s(0)) = s(s(0)).
winface(s(s(0))) = s(s(0)).
winface(s(0)) = s(0).

************************************************
*** UNDER APPROXIMATION I-
************************************************
dd(s(_42043)) = s(sum(s(_42043),_42043)).
sum(_42010,s(s(_42002))) = s(s(sum(_42010,_42002))).
dd(0) = 0.
sum(_41942,s(0)) = s(_41942).
playdice(s(s(0))) = dd(s(s(0))).
playdice(s(0)) = dd(s(0)).
sum(_41854,s(_41850)) = s(sum(_41854,_41850)).
sum(_41817,0) = _41817.
dd(_41792) = sum(_41792,_41792).
winface(s(s(0))) = s(s(0)).
winface(s(0)) = s(0).
playdice(_41718) = dd(winface(_41718)).
sum(_41688,_41689) = sum(_41688,_41689).
0 = 0.
s(_41662) = s(_41662).
playdice(_41649) = playdice(_41649).
winface(_41634) = winface(_41634).
dd(_41619) = dd(_41619).
************************************************

************************************************
*** NEGATIVE EXAMPLES
************************************************
winface(0) = 0.
playdice(0) = 0.
winface(s(s(s(0)))) = s(s(s(0))).
winface(s(s(s(s(0))))) = s(s(s(s(0)))).
playdice(s(s(s(0)))) = s(s(s(s(s(s(0)))))).
playdice(s(s(s(s(0))))) = s(s(s(s(s(s(s(s(0)))))))).
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