
 

 

  
Abstract—In this paper, we propose a novel numerical method 

for continuation of nonsmooth bifurcations in discontinuous 
piecewise smooth systems or Filippov systems which we are 
denominated Singular Point Tracking (SPT).  We use the evaluation 
of the vector fields on the discontinuity boundary (DB) to analyze the 
dynamics of the systems without integration of the ODE sets or 
integrating only in the points computed by the SPT algorithm. We 
apply a classification of points and events on DB recently proposed. 
Local and global nonsmooth bifurcations are detected using the SPT 
method.  Two principal advantages have the SPT method with other 
numerical methods to continuation of bifurcations in nonsmooth 
systems. First, the integration-free algorithms in the SPT avoid the 
well know numerical problems of these algorithms.  Second, when 
the integration is unavoidable the SPT method computes the initial 
condition of the simulation to reduce the compute time.  A piecewise 
smooth prey-predator model is used as illustrative example of the 
SPT method. 
 

Keywords—Bifurcation theory, continuation techniques,  
filippov systems, nonsmooth  bifurcations.  

I. INTRODUCTION 

ONSMOOTH characteristics as sliding, switching or 
impact cause many mathematical and numerical 

difficulties in modeling, simulation and analysis stages  [1-4].  
The bifurcation theory and the piecewise smooth approach 
have been used widely to analyze the dynamics of nonsmooth 
systems as power converters [5,6], friction oscillator [7-9], 
impact oscillators [10-12] or ecological models [13,14]. 
 

The focus of this paper is in the discontinuous piecewise 
smooth systems (PWS) or Filippov systems. A lot of papers 
have been restricted to continuous PWS systems or Filippov 
systems not involving sliding motion because of the analysis 
is more simplified [15,16]. When the sliding motion on the 
discontinuity boundary is possible, the analysis is more 
complicated.  

 
The number of specialized software in nonsmooth dynamics 

is reduced [17,18]. In [19] and [20,21], they are presented two 
toolboxes for analysis and continuation of nonsmooth 
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bifurcations in Filippov systems. In this paper, we propose a 
novel numerical method for continuation of nonsmooth 
bifurcations which we are denominated: Singular Point 
Tracking (SPT).  

 
We use the evaluation of the vector fields on the 

discontinuity boundary (DB) to analyze the dynamics of the 
Filippov systems without integration of the ODE sets or 
integrating only in the points computed for the SPT algorithm. 
We apply a classification of forty-one points and seven events 
on DB recently proposed in [22-24].  The existence conditions 
of the two crossing points (C class), the four  non-singular 
sliding points (S class) and the thirty-five singular sliding 
points (Ω class) are formulate using Boolean-valued functions 
B(.) based on integration-free geometric criterions. These 
conditions are easily programmable and they can be used 
directly in the detection of nonsmooth bifurcations 

 
The existence of singular sliding points on DB determines 

the existence of the events on DB and the change of the event 
type when a parameter is varied determines the existence of 
nonsmooth bifurcations.  Therefore, a continuation technique 
of nonsmooth bifurcations can be defined tracking the 
singular points on DB under variation in the parameters. Local 
and global nonsmooth bifurcations are detected using SPT 
method. 
 

Two principal advantages have the SPT method with other 
numerical methods to continuation of bifurcations in 
nonsmooth systems. First, the integration-free algorithms in 
the SPT avoid the well know numerical problems of these 
algorithms.  Second, when the integration is unavoidable the 
SPT method computes the initial condition of the simulation 
to reduce the compute time.  
 

The paper is organized as follows. In section II we present 
the background concepts of Filippov systems. The type of 
points and events on DB are summarized in the sections III 
and IV, respectively. In the sections V and VI we present the 
SPT method to continuation of local and global nonsmooth 
bifurcation in Filippov systems, respectively.  An illustrative 
example based on ecological models is presented in the 
section VII. Finally, the conclusions and future work are 
discussed in the section VIII.  

Continuation of Nonsmooth Bifurcations in 
Filippov Systems Using Singular Point Tracking

Iván Arango and John Alexander Taborda 

N 

Issue 1, Volume 1, 2007 36

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

II. BACKGROUND 

The Filippov systems are systems with discontinuous vector 
fields. These systems are characterized by the presence of the 
discontinuity boundaries in the phase space between regions 
where the vector field is smooth and continuous. The system 
flow can be expressed as: 
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where Fi and Fj are sufficiently smooth vector functions; Zi 

and Zj are the corresponding smooth phase space and 
Rα ∈ is the parameter. These zones depend of the scalar 

function of the scalar function H(x,α) and they are defined in 
the equation (2). 
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Between Zi and Zj, the system has the discontinuity 

boundary (DB) that it is assumed to be a smooth hyperplane.  
The DB is denoted as Σ and it is defined in the equation (3). 

 

( ){ }: : , 0nx R H x αΣ = ∈ =                                          (3) 

 
The system (1) is not invertible because of the orbits can 

overlap on DB with sliding [16]. In sliding situations, a 
convex combination G(x,α) of the vectors Fi and Fj is defined 
as the Filippov Method [15]. The vector G can be written as 
the equation (4) where λ is a parameter defined in function of 
the vector fields projections in the tangent vector Ht defined as 

,t
i t iF H F=  and ,t

j t jF H F=  where ,  

denotes scalar product. 
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The projection of G(x,α) with the tangent vector: 

,t tG H G=  is used to define the direction of sliding motion 

just as presented in the equation (5). 
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Recently, a methodology to study nonsmooth bifurcations 

on DB was proposed [22-24]. In this work, with reference to 

Ht, the angles of vector fields φi and φj are computed in 
anticlockwise direction. The conditions of each type of points 
on DB are defined evaluating the angles φi and φj in the 

analysis point bx ∈Σ . Two principal angle ranges are 

defined: ( ){ };180J θ θθΘ = ∈ Δ − Δ   and 

( ){ }180 ;360I θ θθΘ = ∈ + Δ − Δ  where Δθ is the tolerance 

angle. These ranges are used to study the points on DB just as 
presented in the figure 1 (a).  Auxiliary angle ranges are 
necessary to characterize the singular sliding points on DB 
(see figure 1 (b)). 

 

 
Fig. 1 Evaluation of vector fields in the analysis point xb on DB. (a) 
principal angle ranges ΘI y ΘJ. (b) Auxiliary angle ranges ΘTL, ΘJL, 
ΘNJ ,ΘJR, ΘTR, ΘIL, ΘNI ,ΘIR. 

 
In the next section, we summarize the characterization of 

points on DB proposed in [22].  The numerical method 
Singular Point Tracking is based on this approach. 

III. TYPE OF POINTS ON DISCONTINUITY BOUNDARY (DB) 

 
 Three types of points can be distinguished on the 

discontinuity boundary (DB): Crossing points (C), Sliding 
points (S) and Singular sliding points (Ω). Forty-one different 
points are characterized using Boolean-valued functions B(.) 
that return True or False when their arguments are evaluated.  
In these functions we use the logical connectives AND, OR 
and NOT denoted by ∧ , ∨  and ¬ , respectively. 

 
The Boolean-valued conditions B(.) for the three types of 

points on DB are presented in the equation (6) where 

,n
i n iF H F=  and ,n

j n jF H F=  are the vector field 

projections in the normal vector Hn and Q is the condition for 
pseudo-equilibrium points given by the equation (7). 
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( ) ( )( )180 180o o
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Issue 1, Volume 1, 2007 37

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

 
Fig. 2 Crossing points. (a) Cij point: the angles φi and φj are 
contained in the range ΘJ. (b) Cji point: the angles φi and φj are 
contained in the range ΘI. Numerical codes: N(Cij)=1 and N(Cji)=2. 

 
Crossing and sliding flows are the predominant behaviors 

of the Filippov systems on the discontinuity boundary (DB).  
Depending of the direction of the crossing orbits, two crossing 
(C) points are defined and four sliding (S) points are 
determined depending of the stability and the sliding motion 
direction. The thirty-five singular sliding points (Ω) exist in 
the transition of C and S points on DB. 

A. Crossing Points (C): 
 
In the equation (8) we present the Boolean-valued 

conditions B(.) for the crossing points Cij and Cji. Both vector 
field angles φi and φj should be contained in the same range ΘI 
or ΘJ. The symbols, the angular evaluations and the numerical 
codes N(xb) for each crossing point are presented in the figure 
2. 
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ji i I j I

C C B B

C C B B

ϕ ϕ

ϕ ϕ
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⎨

= ∧ ∈Θ ∧ ∈Θ⎪⎩
                    (8) 

 

 
Fig. 3 Nonsingular sliding points (Stable sliding points): the angle φi 
is contained in the range ΘJ and the angle φj is contained in the range 
ΘI. (a) MR is True. (b) ML is True. Numerical codes: N(Ss

r)=3 and 
N(Ss

l)=4. 

B. Sliding Points (S): 
 
In the sliding points we characterize stability and direction 

of the sliding orbits. A sliding (S) point is stable if the 

Boolean-valued function Ss presented in the equation (9) is 
True.  

 

( ) ( )s i J j IS S B Bϕ ϕ= ∧ ∈Θ ∧ ∈Θ                         (9) 

 
In the same form, a sliding (S) point is unstable if the 

Boolean-valued function Su presented in the equation (10) is 
True.  Note that each B(.) function is excluding for each 
analysis point xb, i.e. if  Cij(xb) is True then Cji,  S or Ω are 
False in this point. Also, if Ss is True in a point on DB then Su 
is False. 

 

( ) ( )u i I j JS S B Bϕ ϕ= ∧ ∈Θ ∧ ∈Θ                       (10) 

 
The sliding direction is toward Ht direction if the Boolean-

valued function Sr is True. On the other hand, the sliding 
direction is toward Ht opposed direction if the Boolean-valued 
function Sl is True. These conditions are presented in the 
equations (11) and (12), respectively. 

 
r

RS S M= ∧                                                             (11) 

l
LS S M= ∧                                                              (12) 

 
Therefore, the necessary and sufficient Boolean-valued 

conditions for the four sliding (S) points are given in the 
equation (13). 

 
l l l l
s s u u
r r r r
s s u u

S S S S S S
S S S S S S

⎧ = ∧ = ∧
⎨

= ∧ = ∧⎩
                              (13)   

 
In the figures 3 and 4 we present the symbols, the angular 

evaluations and the numerical codes N(xb) for each 
nonsingular sliding point. Note that the vector field angles φi 
and φj are contained in the different ranges (ΘI or ΘJ). 

 

 
Fig. 4 Nonsingular sliding points (Unstable sliding points): the angle 
φi is contained in the range ΘI and the angle φj is contained in the 
range ΘJ. (a) MR is True. (b) ML is True. Numerical codes: N(Su

r)=5 
and N(Su

l)=6. 
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Fig. 5 Tangent (T) Singular Points. Normal component of Fi or Fj is 
zero. Numerical codes N(T)={7;14}. 

C. Singular Sliding Points (Ω): 
 

To analyze the singular sliding points (Ω) we define six 
subclasses: T, V, Π, Ψ, Q and Φ. Next, we explain the general 
considerations of each subclass. More details can be found in 
[xxx].   

1) Tangent (T) Singular Points: The vector field Fi or Fj 
is tangent on the analysis point xb. 

 
The Boolean-valued condition for Tangent (T) singular 

points is given in the equation (14) where ΘT={ΘTL,ΘTR} (see 
figure 1(b)). 
 

( ) ( )i T j TT B Bϕ ϕ= ∈Θ ∨ ∈Θ                                  (14) 

 
Eight different options are possible depending of the vector 

field characteristics that it is not tangent. If Fi is tangent then 
the characteristics of Fj define four different points: Ti

sr , Ti
sl, 

Ti
ur, Ti

ul. If Fj is tangent then the characteristics of Fi define 
four different points: Tj

sr , Tj
sl, Tj

ur, Tj
ul. In the figure 5 we 

present the symbols of the Tangent singular points. 
 

2) Vanished (V) Singular Points: The vector field Fi or Fj 
is vanished on the analysis point xb. 

 
The Boolean-valued condition for Vanished (V) singular 

points is given in the equation (15) where Θ � [0 o,360o]. 
 

( ) ( )i jV B Bϕ ϕ= ∉Θ ∨ ∉Θ                                      (15) 

 
Again, eight different options are possible depending of the 

vector field characteristics that it is not vanished. If Fi is 
vanished then the characteristics of Fj define four different 
points: Vi

sr , Vi
sl, Vi

ur, Vi
ul. If Fj is vanished then the 

characteristics of Fi define four different points: Vj
sr , Vj

sl, Vj
ur, 

Vj
ul. In the figure 6 we present the symbols of the Vanished 

singular points. 

3) Tangent-Tangent (Π) Singular Points: The vector 
fields Fi and Fj are tangent on the analysis point xb. 

 
The Boolean-valued condition for Tangent-Tangent (Π) 

singular points is given in the equation (16). 
 

 
Fig. 6 Vanished (V) Singular Points. Tangent and normal 
components of Fi or Fj are zero. Numerical codes N(V) ={15;22}. 
 

( ) ( )i T j TB Bϕ ϕΠ = ∈Θ ∧ ∈Θ                                 (16) 

 
Four different options are possible depending of the flow 

direction of the tangent vectors on the analysis point. If Fi and 
Fj are tangents toward to Ht direction then the point Π is 
denoted as Πrr. If both vector fields are tangents toward to Ht 
opposed direction then the point Π is denoted as Πll. When the 
tangent vectors have different directions are presented the 
other two points denoted as Πrl and Πlr. In the figure 7 we 
present the symbols of the Tangent-Tangent (Π) singular 
points. 

4) Tangent-Vanished (Ψ) Singular Points: A vector field 
Fi or Fj is tangent and the other vector field is vanished on 
the analysis point xb. 

 
The Boolean-valued condition for Tangent-Vanished (Ψ) 

singular points is given in the equation (17). 
 

( ) ( )
( ) ( )

1 2

1
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i T j

i j T

B B

B B

ϕ ϕ

ϕ ϕ

⎧ Ψ = Ψ ∨ Ψ⎪⎪Ψ = ∈Θ ∧ ∉Θ⎨
⎪

Ψ = ∉Θ ∧ ∈Θ⎪⎩

                            (17) 

 

 
Fig. 7 Tangent-Tangent (Π) Singular Points. Normal components of 
Fi and Fj are zero. Numerical codes N(Π) ={23;26}. 
 

 
Fig. 8 Tangent-Vanished (Ψ) Singular Points. Fi or Fj is tangent and 
the other vector field is vanished. Numerical codes N(Ψ) ={27;30}. 
 

Four different options are possible depending of the flow 
direction of the tangent vector on the analysis point. If Fi is 
tangent toward to Ht direction and Fj is vanished on xb then 
the point Ψ is denoted as Ψr

x. If Fi is tangent toward to Ht 
opposed direction and Fj is vanished on xb then the point Ψ is 
denoted as Ψl

x. In the other two points Fj is the tangent vector 
field and Fi is vanished. These points are denoted as Ψx

r and 
Ψx

l.  In the figure 8 we present the symbols of the Tangent-
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Vanished (Ψ) singular points. 

5) Quadrant (Q) Singular Points: The vector fields Fi and 
Fj are anti-collinear on the analysis point xb. 

 
The Boolean-valued condition for Quadrant (Q) singular 

points or pseudo-equilibrium points was given in the equation 
(7). 
 

Six different options are possible depending of the flow 
direction of the anti-collinear vector fields on xb. The auxiliary 
angle ranges ΘJL, ΘJR, ΘIL and ΘIR presented in the figure 1(b) 
are used to determine the points Q. If the angle φi is contained 
in the range ΘJ, the angle φj is contained in the range ΘI and Q 
is True then three points can be defined: Qjr

il, Qjl
ir and Qnj

ni. If 
the angle φi is contained in the range ΘI, the angle φj is 
contained in the range ΘJ and Q is True then three points can 
be defined: Qil

jr, Qir
jl and Qni

nj. In the figure 9 we present the 
symbols of the Quadrant (Q) singular points. 
 

 
Fig. 9 Quadrant (Q) Singular Points. Fi and Fj are anti-collinear.  
Numerical codes N(Q) ={31;36}. 

6) Quadrant-Vanished (Φ) Singular Points: A vector 
field Fi or Fj is vanished and the other vector field is 
normal to Ht on the analysis point xb. 

 
The Boolean-valued condition for Quadrant-Vanished (Φ) 

singular points is given in the equation (18) where 
ΘN={ΘNI,ΘNJ} (see figure 1(b)). 
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Fig. 10 Quadrant-Vanished (Φ) Singular Points. Tangent component 
Fi and Fj are zero. Numerical codes N(Φ) ={37; 41}. 
 
Five different options are possible depending of the quadrant 
of the vector fields that it is not vanished on xb. If both vector 
fields are vanished on xb then the point Φ is denoted as Φx

x. If 

Fi is normal to Ht on xb and Fj is vanished then the direction of 
Fi define two points: Φnj

x and Φni
x. If Fj is normal to Ht on xb 

and Fi is vanished then the direction of Fj define two points: 
Φx

nj and Φx
ni. In the figure 10 we present the symbols of the 

Quadrant-Vanished (Φ) singular points. 

IV. TYPE OF EVENTS ON DISCONTINUITY BOUNDARY (DB) 

 
The existence of several points types on the discontinuity 

boundary characterizes different scenarios on DB. Seven 
events are considered. In all events, a sequence of tree points 
is determined. The central point is a singular sliding point (Ω). 
The laterals points are crossing (C) points or nonsingular 
sliding (S) points. Let xb1, xb2 and xb3 be three consecutive 
analysis points on DB. We assume that xb2 is a singular (Ω) 
point and we characterize the neighboring points (xb1 and xb3). 
In the sections V and VI, we study the detection of singular 
points and their continuation techniques of local and global 
nonsmooth bifurcations. 
 

1) Change of direction in crossing orbits: 
 

The DB has a change of direction in crossing orbits if the 
Boolean-valued function Λcc presented in the equation (19) is 
True. 
 

( ) ( )
( ) ( )

1 2

1 1 3

2 1 3

cc cc cc

cc ij b ji b

cc ji b ij b

C x C x
C x C x

⎧ Λ = Λ ∨ Λ
⎪Λ = ∧⎨
⎪Λ = ∧⎩

                                        (19) 

 
The lateral points should be Type C (Cij or Cji) and the 

central point (xb2) should be a singular point contained in the 
subsets Π or Qc={Qnj

ni, Qni
nj} or Φx

x point. The numerical 
codes of the central point can be 
N(xb2)={23,24,25,26,33,36,37}. An example of the event is 
presented in the figure 11(a). 
 

2) Change of crossing boundary to stable sliding 
boundary and vice versa: 

 
The DB has a change of crossing boundary to stable sliding 

boundary or vice versa if the Boolean-valued function Λcss 
presented in the equation (20) is True. 
 

( ) ( )
( ) ( )

1 2

1 1 3

2 1 3

css css css

css b b s

css b s b

B x C B x S
B x S B x C

⎧ Λ = Λ ∨ Λ
⎪Λ = ⊂ ∧ ⊂⎨
⎪Λ = ⊂ ∧ ⊂⎩

                        (20) 

 
The lateral points should be Type C={ Cij ; Cji } or Type 

Ss={Ss
r ; Ss

l} and the central point (xb2) should be a singular 
point contained in the subsets Ts={Ti

sr ; Ti
sl ; Tj

sr ; Tj
sl}, Vs={ 

Vi
sr ; Vi

sl ; Vj
sr ; Vj

sl } or Φs={Φnj
x ;  Φx

ni ; Φx
x }.  The 

numerical codes of the central point can be N(xb2) = {7, 8, 9, 
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10, 15, 16, 17, 18, 37, 38, 41}. An example of the event is 
presented in the figure 11(b). 
 

3) Change of crossing boundary to unstable sliding 
boundary and vice versa: 

 
The DB has a change of crossing boundary to unstable 

sliding boundary or vice versa if the Boolean-valued function 
Λcus presented in the equation (21) is True. 
 

( ) ( )
( ) ( )

1 2

1 1 3

2 1 3

cus cus cus

cus b b u

cus b u b

B x C B x S
B x S B x C

⎧ Λ = Λ ∨ Λ
⎪Λ = ⊂ ∧ ⊂⎨
⎪Λ = ⊂ ∧ ⊂⎩

                         (21) 

 
The lateral points should be Type C={ Cij ; Cji } or Type 

Su={Su
r ; Su

l} and the central point (xb2) should be a singular 
point contained in the subsets Tu={Ti

ur ; Ti
ul ; Tj

ur ; Tj
ul}, Vu={ 

Vi
ur ; Vi

ul ; Vj
ur ; Vj

ul } or Φs={Φni
x ;  Φx

nj ; Φx
x }. The 

numerical codes of the central point can be N(xb2) = {11, 12, 
13, 14, 19, 20, 21, 22, 37, 39, 40}. An example of the event is 
presented in the figure 11(c). 
 

4) Change of direction in stable sliding boundary: 
 

The DB has a change of direction in stable sliding boundary 
if the Boolean-valued function Λslr presented in the equation 
(22) is True. 
 

( ) ( )
( ) ( )

1 2

1 1 3

2 1 3

slr slr slr
l r

slr s b s b
r l

slr s b s b

S x S x
S x S x

⎧ Λ = Λ ∨ Λ
⎪Λ = ∧⎨
⎪Λ = ∧⎩

                                          (22) 

 
The lateral points should be Type Ss (Ss

r or Ss
l) and the 

central point (xb2) should be a singular point contained in the 
subset Qs={Qjr

il ;  Qjl
ir ; Qnj

ni }. The numerical codes of the 
central point can be N(xb2) = {31, 32, 33}. An example of the 
event is presented in the figure 11(d). 

 
5) Change of direction in unstable sliding boundary: 

 
The DB has a change of direction in unstable sliding 

boundary if the Boolean-valued function Λulr presented in the 
equation (23) is True. 
 

( ) ( )
( ) ( )

1 2

1 1 3

2 1 3

ulr ulr ulr
l r

ulr u b u b
r l

ulr u b u b

S x S x
S x S x

⎧ Λ = Λ ∨ Λ
⎪Λ = ∧⎨
⎪Λ = ∧⎩

                                         (23) 

 
The lateral points should be Type Su (Su

r or Su
l) and the 

central point (xb2) should be a singular point contained in the 
subset Qu={Qir

jl ;  Qil
jr ; Qni

nj }. The numerical codes of the 

central point can be N(xb2) = {34, 35, 36}. An example of the 
event is presented in the figure 12(a). 
 

 
Fig. 11 Examples of events on DB. (a) Event 1: Cji to Cij. (b) Event 2:  
Cji to Ss

r. (c) Event 3: Cji to Su
r. (d) Event 4: Ss

r to Ss
l. 

 
6) Change of stability in sliding boundary: 

 
The DB has a change of stability in sliding boundary if the 

Boolean-valued function Λus presented in the equation (24) is 
True. 
 

( ) ( )
( ) ( )

1 2

1 1 3

2 1 3

us us us

us b s b u

us b u b s

B x S B x S
B x S B x S

⎧ Λ = Λ ∨ Λ
⎪Λ = ⊂ ∧ ⊂⎨
⎪Λ = ⊂ ∧ ⊂⎩

                          (24) 

 
The lateral points should be Type S (Ss or Su) and the central 

point (xb2) should be a singular point contained in the subsets 
Π or Ψ. The numerical codes of the central point can be N(xb2) 
= {23, 24, 25, 26, 27, 28, 29, 30}. An example of the event is 
presented in the figure 12(b). 
 

7) Change of direction in the velocity of stable sliding 
boundary: 

 
The DB has a change direction in the velocity of stable 

sliding boundary if the Boolean-valued function Λvs presented 
in the equation (25) is True. 
 

( )
( ) ( )
( ) ( )

( )( ) ( )( )

1 2 3

1 1 3

2 1 3

3 1 30 0

vs vs vs vs
l l

vs s b s b
r r

vs s b s b

vs Gt b Gt b

S x S x
S x S x

B x B x

⎧ Λ = Λ ∨ Λ ∧ Λ
⎪ Λ = ∧⎪
⎨ Λ = ∧⎪
⎪Λ = Δ > ∧ Δ <⎩

            (25) 

 
where, 
 

( ) ( ) ( )Gt bi t bi t bix G x G x δΔ = − +                            (26) 

 
The lateral points should be Type Ss (Ss

r or Ss
l) and the 
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central point (xb2) should be a singular point contained in the 
subset Qs={Qjr

il ;  Qjl
ir ; Qnj

ni }. The numerical codes of the 
central point can be N(xb2) = {31, 32, 33}. An example of the 
event is presented in the figure 12(c). 
 

 
Fig. 12  Examples of events on DB. (a) Event 5: Su

l to Su
r. (b) Event 

6:  Ss
r to Su

r. (c) Event 7: Ss
r to Ss

r.  

V. CONTINUATION OF LOCAL NONSMOOTH BIFURCATIONS 

USING SINGULAR POINT TRACKING (SPT) 

 
Let nΩ be the number of singular points on DB. Therefore, a 

sequence of (2nΩ +1) points can be determined: (xb1, xb2,…, 
xb(2nΩ +1)). The points: (xb1, xb3,…, xb(2nΩ +1)) are crossing points 
(C={Cij; Cji}) or nonsingular sliding points (S={ Ss

r ; Ss
l ; Su

r ; 
Su

l }). The other points: (xb2, xb4,…, xb(2nΩ)) are singular points 
(Ω={T; V; Π; Ψ; Q; Φ}). 

 
Using the Boolean-valued conditions for one-event on DB 

given by three points (just as we explain in the previous 
section) is possible to characterize any combinations of events 
on DB considering that the laterals points (C or S) can be 
common to two triads of points.  

 
The existence of singular sliding points on DB determines 

the existence of the events on DB. The change of the event 
type when the parameter α is varied determines the existence 
of nonsmooth bifurcations.  Therefore, a continuation 
technique of nonsmooth bifurcations can be defined tracking 
the singular points on DB under variation in the parameter α.  

 
The first step in the SPT method consists in the 

determination of the initial condition in the continuation 
algorithm which it is reached tracking the singular points.  
Therefore, the parameter α is fixed and the discontinuity 
boundary is inspected to characterize the points and events on 
DB. Seven events are possible on DB. A singular point exists 
in each event transition. When the existence of an event is 
determined, the singular point is located diminishing the step 
size on the DB evaluation until the singular point condition is 
verified.  In the figure 13 we present an example of singular 
point detection for α fixed. When the change of crossing 
boundary to stable sliding boundary (Cji →Ssl) is detected, 
the location of the tangent point Tisl is determined 
diminishing the step size.  

 

 
Fig. 13  Example of singular point detection for α fixed: when the 
event Cji →Ss

l is detected, the step size is diminished until the 
detection of the point Ti

sl. 
 
The continuation algorithm SPT has the initial condition 

when the three points (xb1,xb2,xb3) are characterized.  The 
numerical codes of each point (N(xb1), N(xb2) and N(xb3))   are 
used to track the singular points when α is varied. The curves 
of singular points are generated computing two-dimensional 
points Pij in the space (xb vs. α) defined as 

( ): ( 1), ( 1)ij bP P x i jα= + + .  

 

 
Fig. 14  Example of singular point tracking (SPT): a sequence of 
points N(xb1,xb2,xb3)=(2,8,4) is used as initial condition to track the 
Ti

sl curve when α is varied. 
 

( ) ( ) ( )( ) ( )21 b bj j if N x i N xαα α+ = + Δ =    (27) 

 
The value of α is modified if the xb(i) component of Pij has 

the numerical code of the singular point N(xb2) just as we 
present in the equation (27) where Δα is the increment value 
of α. 

( )
( ) ( )( ) ( )

( ) ( )( ) ( )
( ) ( )( ) ( )

1

2

3

1

b x b b

b b b b

b x b b

x i if N x i N x

x i x i if N x i N x

x i if N x i N x

⎧ + Δ =
⎪⎪+ = =⎨
⎪ + Δ =⎪⎩

    (28) 

 
The value of  xb(i) is modified for each α(j) until the 

numerical code of N(xb(i)) is equal to numerical code of the 
singular point N(xb2). In the equation (28) we present the 
adaptation law for xb(i) where Δx is the increment value of xb. 
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In the figure 14 we present an example of singular point 

tracking. The Ti
sl curve is generated, evaluating and finding 

the numerical codes N(xb1,xb2,xb3)=(2,8,4) in the space (xb vs. 
α). 
 

 
Fig. 15  Example of bifurcation point detection using SPT method: 
the intersection of two or more singular point curves when α is varied 
implies a bifurcation point. 
 

The bifurcation points can be detected of several ways. 
Changes in the number of the singular points on DB or the 
events on DB when α is varied imply the existence of 
bifurcation points. Also, the intersection of two or more 
singular point curves implies a bifurcation point in the 
intersection point. In the figure 15 we present an example of 
bifurcation detection using SPT method. Taking as initial 
conditions the singular points for α=α1 and α=α2, the singular 
point curves cross in the point Πlr.  

 
In [16] the codimension-one nonsmooth bifurcations were 

classified.  Next, we present the general consideration to 
detect the local nonsmooth bifurcations using the SPT 
method.  
 

1) Boundary Equilibrium Bifurcations (BF,BN,BS) 
 

The equilibrium point of the vector fields Fi or Fj can 
collide with the discontinuity boundary. When a hyperbolic 
equilibrium collides with the DB, the system has a Boundary-
Equilibrium bifurcation. Depending of the equilibrium type 
the bifurcation is denoted as Boundary-Focus (BF), 
Boundary-Node (BN) or Boundary-Saddle (BS) . 

 
The BF, BN and BS bifurcations are characterized by the 

intersection between a tangent curve T and a pseudo-
equilibrium curve Q when α is varied. In the bifurcation point 
the system has a singular point type V or type Φ. In the figure 
16 we present two examples of boundary equilibrium 
bifurcations. In the figure 16(a), the BF1 bifurcation is 
characterized while the BN2 bifurcation is analyzed in the 
figure 16(b). 
 

2) Tangent Collisions Bifurcations (DT, VV, VI, II) 
 

The collisions of two tangent points when a parameter is 
varied are local codim 1 bifurcations. In [16] these 
bifurcations are classified depending the characteristics of the 
tangent points in the following classes: Double tangency 
(DT), Visible-Visible tangencies (VV), Visible-Invisible 
tangencies (VI) and Invisible-Invisible tangencies (II).  To 
detect these bifurcations we can track the tangent curves T and 
determine the bifurcation point when a point type Π or Ψ is 
detected.  In the figure 16(c) we present an example of VI1 
bifurcation. 
 

3) Pseudo-saddle-node Bifurcation (PSN) 
 

Two pseudo-equilibrium points (type Q)  can collide and 
disappear via the standard saddle-node bifurcation and it is 
known as pseudo-saddle-node (PSN) bifurcation.  With the 
SPT method we can track the points Q and detect the 
intersection or the disappearance of the points when α is 
varied. In the figure 16(d) we present the characterization of 
the PSN bifurcation. 
 

 
Fig. 16  Examples of continuation local nonsmooth bifurcations 
using SPT. (a) Boundary focus bifurcation. (b) Boundary node 
bifurcation. (c) Collision of visible and invisible tangencies. (d) 
Pseudo-saddle-node bifurcation. 

VI. CONTINUATION OF GLOBAL NONSMOOTH BIFURCATIONS 

USING SINGULAR POINT TRACKING (SPT) 

 
All nonsmooth bifurcations in Filippov systems can be 

classified as Local and Global bifurcations [16]. The local 
bifurcations can be detected and continued with the 
integration-free SPT procedure detailed in the previous 
section. 
 

To analyze global bifurcations which involve sliding on the 
discontinuity boundary the integration is unavoidable, 
however using the integration-free algorithms explained in the 
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Section V, we can determine the initial condition of the 
integration to reduce the compute time.  Also, in several cases 
with the SPT method we can integrate only a vector field to 
avoid numerical problems very common in simulation of 
nonsmooth systems. 
 

 
Fig. 17  Examples of continuation global nonsmooth bifurcations 
using SPT. (a) Grazing bifurcation. (b) Crossing bifurcation. (c) 
Switching bifurcation. 
 

In Filippov systems, the periodic solutions or cycles can be 
divided in standard, sliding or crossing cycles. In the standard 
cycles, the flow lies entirely in Zi or Zj zone without points on 
DB. The sliding cycles have stable sliding points (Ss

r or Ss
l) 

and singular points on DB and the crossing cycles have 
crossing points (Cij or Cji) or singular points on DB. 
 

1) Grazing Bifurcations (or Touching Bifurcations) 
 

The Filippov system has a grazing bifurcation point when a 
standard cycle collides with the DB in a tangent point Tw. The 
tangent point should be contained in the subset Ts={Ti

sr ; Ti
sl ; 

Tj
sr ; Tj

sl}.  
 
In the grazing transition, the Filippov system has the 

sequence of cycles presented in the equation (29), where Lst 
denotes a standard cycle, Lg denotes a grazing cycle and Ls 
denotes a sliding cycle.  

 

G GG

s g stL L L
α α α αα α< >=

→ →                                                (29) 

 
Therefore, analyzing only the points on DB in the stationary 

state xss(t), in the cycle Lst there is not points on DB, in the 
cycle Lg there in one point on DB: Tw. Finally, in the cycle Ls 
two different type of points on DB can be distinguished: S and 
T.  In the figure 17(a), we present the sequence of points on 
DB in the grazing transition. 
 

The grazing condition on DB is presented in the equation 

(30) where αG is the critic value of α; nT is the number of 
tangent points and tσ is the period of the Lg cycle. 

 

( )
( )

( ) { }

0

1

,

,

, ,

G w

G w

G

x t T T
x t T

x t C S

α
α

α

⎧ = ⊂ ∈Σ
⎪ =⎨
⎪ ∉⎩

                                          (30) 

with 0 11, , :Tw n t t t tσ= ≤ ≤ = . 

 
The initial condition x(t0) of the orbit is the tangent point 

Tw.  If the tangent vector field in Tw is Fi  (points: Ti
sr or Ti

sl ) 

then we integrate the equation ( , )i Gx F x α= .  Otherwise, if 

the tangent vector field in Tw is Fj (points: Tj
sr ; Tj

sl) then we 

integrate the equation ( , )j Gx F x α= .  In a time tσ the 

solution x(t) returns to the tangent point Tw without other 
points on DB. In the figure 17(a), we present an example of 
cycle Lg for the grazing condition.  

 
2) Crossing Bifurcations 

 
The crossing bifurcation point happens when a crossing 

cycle returns to tangent point without sliding points on DB. 
Both field vectors Fi and Fj should be integrated to verify the 
crossing bifurcation. The crossing condition is presented in 
the equation (31) where αC is the critic value of α.  

 

( )
( )

( )
( ) { }

0

1

2

,

,

,

,

C w

C w

C w

C

x t T T
x t C C

x t T
x t S

α
α

α
α

⎧ = ⊂ ∈Σ
⎪ = ⊂ ∈Σ⎪
⎨ =⎪
⎪ ∉⎩

                                      (31) 

with 0 21, , :Tw n t t t tσ= ≤ ≤ = . 

 
The initial condition x(t0) of the crossing orbit is the tangent 

point Tw.  If the tangent vector field in Tw is Fi  (points: Ti
sr or 

Ti
sl ) then first we integrate the equation ( , )i Cx F x α=  and 

when the solution arrives to DB we integrate the equation 

( , )j Cx F x α= .  In a time tσ the crossing cycle x(t) returns to 

the tangent point Tw without sliding points on DB. In the 
figure 17(b), we present an example of cycle Lc for the 
crossing condition.  

 
When α is varied, this bifurcation can be studied detecting 

the point on DB in the periodic solutions. Only for α=αC the 
equation (31) is hold. For α<αC  the periodic solution has 
stable sliding points on DB and for α>αC  the crossing cycle 
has not the tangent point Tw. 

 
3) Switching Bifurcations (or Buckling Bifurcations) 

 
In the switching bifurcation point the solution travels an 
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entire stable sliding segment and returns to a tangent point 
defined as initial condition T1.  Two tangent points T1 and T2 
are necessary in the switching bifurcation.  The initial 
condition T1 is defined depending of the sliding segment 
direction just as presented in the equation (32). 
 

{ }
{ }

2 1 1 2

1 2 1 2

,

,

r sr sr
s i j

l sl sl
s i j

T S T T T T T

T S T T T T T

⎧ → → = ∈⎪
⎨

→ → = ∈⎪⎩
                     (32) 

 
The switching condition on DB is presented in the equation 
(33) where αsw is the critic value of α. 
 

( )
( )

( )
( ) { }

0 1

1 2

2 1

,

,

,

,

SW

SW

SW

SW

x t T T
x t T T

x t T
x t C

α
α

α
α

⎧ = ⊂ ∈Σ
⎪ = ⊂ ∈Σ⎪
⎨ =⎪
⎪ ∉⎩

                                            (33) 

with 0 2 :t t t tσ≤ ≤ = . 

 
The tangent points T1 and T2 are the same type just is 

shown in the equation (32).  If the tangent vector field in the 
tangent points is Fi (points: Ti

sr or Ti
sl ) then we integrate the 

equation ( , )i SWx F x α= .  Otherwise, if the tangent vector 

field in the tangent points is Fj (points: Tj
sr ; Tj

sl) then we 

integrate the equation ( , )j SWx F x α= .  The solution x(t) 

arrives of T1 to T2 in a time t1, after the solution slides and 
returns to T1 in a time t2 without crossing points on DB. In the 
figure 17(c), we present an example of cycle Lsw for the 
switching condition. 

 

 
Fig. 18  Examples of continuation global nonsmooth bifurcations 
using SPT. (a) Pseudo-homoclinic bifurcation. (b) Pseudo-
heteroclinic bifurcation.  
 

The cycle points on DB in the stationary state xss(t) when α 
is varied are presented in the figure 17(c). For α< αSW the 
periodic solution has the following points on DB: Ss (Ss

r or 
Ss

l) and one tangent point T1. For α= αSW the periodic solution 

has the following points on DB: Ss (Ss
r or Ss

l) and two tangent 
points (T1

 and T2). Finally, for α> αSW the periodic solution 
has the following points on DB: Ss (Ss

r or Ss
l), crossing points 

(Cij or Cji) and one tangent point T1
 . 

 
4) Pseudo-homoclinic Bifurcations 

 
The pseudo-homoclinic bifurcation point happens when a 

sliding cycle returns to tangent point without crossing points 
on DB via pseudo-equilibrium point. Therefore, one tangent 
point Tw and one stable pseudo-equilibrium point contained 
in the subset Qs={Qjr

il ;  Qjl
ir ; Qnj

ni }  are necessary in the 
pseudo-homoclinic bifurcation. The sliding homoclinic orbit 
condition is presented in the equation (34) where αSH is the 
critic value of α.  
 

( )
( )

( )
( ) { }

0

1

2

,

,

,

,

SH w

SH w s

SH w

SH

x t T T
x t Q Q

x t T
x t C

α
α

α
α

⎧ = ⊂ ∈Σ
⎪ = ⊂ ∈Σ⎪
⎨ =⎪
⎪ ∉⎩

                                         (34) 

with 0 21, , :Tw n t t t tσ= ≤ ≤ = . 

 
The initial condition x(t0) of the sliding homoclinic orbit is 

the tangent point Tw.  If the tangent vector field in the tangent 
points is Fi (points: Ti

sr or Ti
sl ) then we integrate the equation 

( , )i SHx F x α= .  Otherwise, if the tangent vector field in the 

tangent points is Fj (points: Tj
sr ; Tj

sl) then we integrate the 

equation ( , )j SHx F x α= .  The solution x(t) arrives of Tw to 

Q point in a time t1, after the solution slides and returns to Tw 
in a time t2 without crossing points on DB. In the figure 18(a), 
we present an example of cycle Lsh for the pseudo-homoclinic 
condition. 
 

5) Pseudo-heteroclinic bifurcations 
 

The pseudo-heteroclinic bifurcation point happens when  
two pseudo-equilibrium points are connected. Two pseudo-
equilibrium points Q1 and Q2 are necessary for this 
bifurcation, one point should be contained in the subset 
Qs={Qjr

il ;  Qjl
ir ; Qnj

ni } and the other point should be 
contained in the subset  Qu = {Qir

jl ; Qil
jr ;Qni

nj }. 
 

The heteroclinic orbit condition is presented in the equation 
(35) where αHT is the critic value of α. Taking as initial 
condition x(t0) the Q point contained in Qu,  we should 
integrate the vector fields Fi and Fj until arrive to the DB in a 
time t1. If  x(t1) is a Qs point then the equation (35) is verified. 
 

( )
( )

( ) { }

0 1

1 2
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,
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u
HT

s
HT
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x t Q Q
x t Q Q
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                                    (35) 
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In the figure 18(b) we present an example of heteroclinic 
bifurcation. 
 

 
Fig. 19  State portrait of PWS prey-predator for α=2.75.   Standard 
cycle (Lst) and unstable focus in F0=(0.047;1.01017). Equation (38). 
 

VII. ILLUSTRATIVE EXAMPLE: PIECEWISE SMOOTH PREY-
PREDATOR MODEL 

 
In this section, we explain the SPT method in continuation 

of local and global nonsmooth bifurcations by means of 
piecewise-smooth (PWS) prey-predator example proposed in 
[16].  
 

The configuration (Fi,Fj,H) of the PWS prey-predator is 
presented in the equation (36) where α is the bifurcation 
parameter and k1, k2, k3 and k4 are the system parameters that 
we have assumed constants.  
 

( )
( ) ( )( )

( )( )

( )
( ) ( )( )

( )( )
( )

1 1 1 1 2 1 2

1 1 2 1 2 3 2

1 1 1 1 2 1 2

1 1 2 1 2 3 2 4 2

2

1

1

, 0

i

j

x x k x k x x
F x

k x k x x k x

x x k x k x x
F x

k x k x x k x k x

H x xα α

⎛ ⎞− − +
⎜ ⎟=
⎜ ⎟+ −⎝ ⎠
⎛ ⎞− − +
⎜ ⎟=
⎜ ⎟+ − −⎝ ⎠

= − =

        (36) 

 
The parameters ki are fixed in the values proposed in [16] just 
as is presented in the equation (37). 
 

1 2

3 4

0.3556 0.33

0.0444 0.2067

k k
k k

= =⎧
⎨ = =⎩

                                       (37) 

 
The state variables x1 and x2 correspond to prey density and 

predator density, respectively. These densities should be 
positive x1 > 0 and x2 > 0. In the state portraits the prey 
density is varied in the range 0<x1<1 while the predator 
density is considered from 0 until a little bigger than α 
threshold.  The bifurcation parameter α is associated to the DB 
Σ={x : x2 = α} and α is varied in the range [3; 0.25]. 

 

 
Fig. 20  State portrait of PWS prey-predator for α ≈ 2.44.  Grazing 
bifurcation: The cycle Lg grazes the DB in the tangent point.  
 

First, we analyze with SPT method the prey-predator 
system for different decreasing values of α. Later, we apply 
the continuation techniques for local and global nonsmooth 
bifurcations based on SPT method.  
 

For values of α near to 3, the analysis of prey-predator 
system on DB has the sequence of points presented in the 
equation (38).  Two singular points are detected: 
Ti

sl=(0.047;α) and Tj
sl=(0.793;α). The singular points are in 

the transitions of two changes of crossing boundary to stable 
sliding boundary explained in the Section IV(1). 
 

= =

→ → → →
b2 x b4 x

sl l sl
ji i s j ij

x 0.047 x 0.793

C T S T C                (38) 

 
In the figure 19, we present the state portrait x1 vs. x2 for 

α=2.75.  In the zone Zi, the vector field Fi has a unstable focus 
F0 and a standard cycle Lst. The direction of the sliding 
segment Ss

l is associated to the flow direction in the cycle Lst
 

and the tangent point Ti
sl is aligned with the focus F0. 

 

 
Fig. 21  State portrait of PWS prey-predator for α=1.625.   Stable 
sliding cycle (Ls) in discontinuity boundary H=x2 - α. Equation (38). 

 
When α is diminished, the discontinuity boundary comes 

closer to the standard cycle Lst.  For α ≈ 2.44 the standard 
cycle collides with the DB in the tangent point Ti

sl. This fact is 
well known as grazing bifurcation.  The grazing bifurcation is 
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not detected with the DB analysis, however the DB 
information can be used to reduce the compute time in the 
global bifurcation detection.  Using the tangent point Ti

sl as 
initial condition we integrate the vector field Fi and we verify 
the existence of the cycle Lg easily.  In the figure 20 we 
present the state portrait for the critic value α ≈ 2.44. 

 

 
Fig. 22   State portrait of PWS prey-predator for α ≈ 1.2437.  Pseudo-
saddle-node bifurcation. Equation (39). 

 
After the grazing bifurcation α < 2.44, the periodic solution 

becomes in sliding cycle Ls. The sequence of points on DB is 
equal to the sequence given in the equation (38).  In the figure 
21 we present the state portrait of the PWS prey-predator for  
α=1.625. The results presented in the figures 19, 20 and 21 are 
equivalent with the figure 17(a). The solution has a transition 
of standard cycle to grazing cycle to sliding cycle. 

 

 
Fig. 23   State portrait of PWS prey-predator for α = 1.2375.  Stable 
sliding cycle and stable pseudo-node. Equation (40). 
 

When the parameter arrives to α ≈ 1.2437 the system has a 
pseudo-saddle-node (PSN) bifurcation.  In the equation (39) 
we present the sequence of points on DB in the PSN point.   
 

= = =

→ → → →
b2 b4 b6

sl l ni l sl
i s nj s j

x 0.047 x 0.3584 x 0.793

T S Q S T          (39) 

 
In xb=(0.3584,1.2437) appears a pseudo-equilibrium point 

Qnj
ni.  In the figure (22) we present the state portrait in the 

PSN bifurcation point. The transition Ss
l -> Qnj

ni -> Ss
l was 

explained in the section IV(7). 
 

= =

→ → → →
b4 b4

l ni r ni l
s nj s nj s

x 0.2532 x 0.3813

S Q S Q S                  (40) 

 

 
Fig. 24   State portrait of PWS prey-predator for α ≈ 1.2277.  Sliding 
homoclinic orbit to a pseudo-saddle bifurcation.  
 

Reducing a little the α value, the point Q becomes in two 
points Q just as was presented in the figure 16(d).  Between 
the two points Qnj

ni a sliding segment Ss
l appears.  In the 

equation (40) we present the sequence of points on DB for 
α=1.2375. Two changes of direction in the sliding segment are 
present in the state portrait of the figure (23). 
 
When α is diminished, a sliding homoclinic orbit is formed at 
α ≈ 1.2277.  In the figure 24 we present the state portrait with 
the cycle Lsh. The pseudo-homoclinic bifurcation can be 
detected using the SPT method verifying the equation (34).    
 

 
Fig. 25   State portrait of PWS prey-predator for α = 1.175.  Stable 
pseudo-node. Equation (41). 
 

If the parameter α is reduced newly, the sliding homoclinic 
orbit disappear and a sliding cycle is formed. The sequence of 
points is equal to the sequence presented in the equation (40) 
but the pseudo equilibrium points are come closer to tangent 
points just as shown in the equation (41) for α=1.175. 
 

b4 b4

l ni r ni l
s nj s nj s

x 0.1792 x 0.4912

S Q S Q S
= =

→ → → →              (41) 

 
The state portrait  for α=1.175 is presented in the figure 25. 

The sliding cycle has a Ss
r points and Ti

sl point on DB.  Note 
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that the discontinuity boundary is coming closer to unstable 
focus F0. This fact is reflected in the DB with the proximity of 
the points Ti

sl and Qn
jni. 

 

 
Fig. 26   State portrait of PWS prey-predator for α ≈ 1.03.  Sliding 
homoclinic orbit to a pseudo-saddle bifurcation. Equation (42). 
 
When α ≈ 1.03, a second homoclinic bifurcation can be 
detected. The cycle Lsh is very small due to the extreme 
proximity of the points Ti

sl and Qn
jni.  The location of these 

points is presented in the equation (42).  The state portrait is 
presented in the figure 26. 
 

b2 x b4

sl l ni
ji i s nj

x 0.047 x 0.0594

C T S Q
= =

→ → →                                   (42 ) 

 
In both homoclinic bifurcations, when the cycle Lsh 

disappear, a sliding cycle Ls is generated when α is reduced. 
In the figure 27 we present the state portrait of the PWS prey-
predator with α=1.02. 
 

In α ≈ 1.01017 the discontinuity boundary collides with 
unstable focus taking place a Boundary-Focus Bifurcation. 
This scenario was explained in the Section V(1). The 
sequence of points on DB is different due to BF bifurcation. 
In the equation (43) is presented the new configuration of 
point after the bifurcation. 

 

 
Fig. 27   State portrait of PWS prey-predator for α = 1.02.  Stable 
sliding cycle (almost invisible).  
 

 
Fig. 28   State portrait of PWS prey-predator for α ≈ 1.01017.  
Boundary focus bifurcation. Equation (43). 
 
 

b2 x b4 b4 x

sr r ni l sl
i s nj s j

x 0.047095 x 0.6235 x 0.7929

T S Q S T
= = =

→ → → →   (43) 

 
In the figures 28 and 29 we present the state portraits for 

α=1.01017 and α=0.9 respectively. Only one pseudo-
equilibrium point is conserved on DB. The Qn

jni come closer 
to the tangent point Tj

sl.  
 

= =

→ → → →
b2 x b4 x

sr r sr
ji i s j ij

x 0.047095 x 0.7929

C T S T C                  (44) 

 
In α ≈ 0.6527 the pseudo-equilibrium point Qn

jni collides 
with the tangent point in a Boundary Node (BN) bifurcation. 
For α < 0.6527 the PWS prey-predator has a sequence of 
points on DB presented in the equation (44). Note that the 
sequence is similar to the sequence for  α > 1.625 presented in 
the equation (38) but now the sliding motion is in the other 
direction (Ss

r). In the figure 30 we present the state portrait for 
α=0.5.  

 

 
Fig. 29   State portrait of PWS prey-predator for α = 0.9.  Stable 
pseudo-node. Equation (43). 

 
In the figure 31, we present the bifurcation diagram of the 

PWS prey-predator given by the equation (36) when α is 
varied in the range [3; 0.25].  Local and global nonsmooth 
bifurcations can be identified using SPT method.  
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Fig. 30   State portrait of PWS prey-predator for α = 0.5.  Stable 
pseudo-node. Equation (44). 
 

 

 
Fig. 31   Bifurcation diagram of PWS prey-predator.  GB: Grazing 
bifurcation. PSN: Pseudo-saddle-node bifurcation. SHB: Sliding 
homoclinic bifurcation. BF: Boundary Focus. BN: Boundary Node. 

VIII. CONCLUSIONS AND FUTURE WORK  

 
We have proposed a novel numerical method for continuation 
of nonsmooth bifurcations in Filippov systems denominated 
Singular Point Tracking (SPT). We have used a classification 
of points and events on the discontinuity boundary (DB) 
recently proposed. We have identified the singular points on 
DB for an arbitrary parameter value. Later, we have used the 
characterization of the singular points as initial condition in 
the continuation algorithm based on SPT method. Finally, we 
have determined the existence of nonsmooth bifurcation 
associated to changes in the singular point curves when a 
parameter is varied.  The future work is related with the 
application of the SPT method to three dimensional 
nonsmooth systems. 
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