
Artificial Intelligence for Modelling Dengue

Transmission in Bello

Elisabet Lobo-Vesga
Olga-Lućıa Quintero-Montoya

December 2014

Data

The main idea of this work is to establish a geographic (and temporal) relation-
ship between breeding sites of Ae. aegypti and cases of Denge Fever (DF) in
Bello. Then we have the coordinates and week occurrence of the breeding sites
(578 observations) and the cases (1667 observations) from 2008 to 2012.

Note: The data of breeding sites in 2009 are not available.

Neighbors

Initially, trying to figure out how the breeding sites and the cases are related
we created the neighbors algorithm. This algorithm takes a breeding site data
(Longitude, Latitude and Week) and determines which cases could be occa-
sioned by it depending on a radius and a week delay. This is what we call “The
neighbors of a breeding site”.

Biologically, the infection radius and the delay week fluctuate according to
the El Niño phenomenon. To simulate such behavior we determined yearly the
neighbors of every breeding site changing the delay from 3 to 6 weeks and the
radius from 50 to 200 meters. Then, we transform the original data given an
specific delay and radius as show in Fig 1.

1

B1

B2

B3

C1

C2

C3

C4

C5

B1

B1

B1

B1

B2

B2

C1

C2

C4

C5

C2

C3

Neighbors (d,r)

Figure 1: Data transformation using Neighbors algorithm

The results of our data transformation by year changing radius and delay
are show in next figures.

0 1,000 2,000 3,000 4,000
0

1,000

2,000

3,000

4,000

Latitude (m)

L
on

gi
tu

d
e

(m
)

2008
Cases Breeding Sites

d3-r50

d3-r100

d3-r150

d3-r200

d4-r50

d4-r100

d4-r150

d4-r200

d5-r50

d5-r100

d5-r150

d5-r200

d6-r50

d6-r100

d6-r150

Figure 2: Neighbors 2008

2

0 1,000 2,000 3,000 4,000 5,000
0

1,000

2,000

3,000

4,000

5,000

Latitude (m)

L
on

gi
tu

d
e

(m
)

2010
Cases Breeding Sites

d3-r50

d3-r100

d3-r150

d3-r200

d4-r50

d4-r100

d4-r150

d4-r200

d5-r50

d5-r100

d5-r150

d5-r200

d6-r50

d6-r100

d6-r150

Figure 3: Neighbors 2010

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

200

400

600

800

Latitude (m)

L
on

gi
tu

d
e

(m
)

2011
Cases Breeding Sites

d4-r150

d4-r200

d5-r50

d5-r100

d5-r150

d5-r200

d6-r50

d6-r100

d6-r150

Figure 4: Neighbors 2011

3

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

200

400

600

800

1,000

1,200

1,400

1,600

Latitude (m)

L
on

gi
tu

d
e

(m
)

2012
Cases Breeding Sites

d3-r50

d3-r100

d3-r150

d3-r200

d4-r50

d4-r100

d4-r150

d4-r200

d5-r50

d5-r100

d5-r150

d5-r200

d6-r50

d6-r100

d6-r150

Figure 5: Neighbors 2012

Clustering

The previous simulation generates 16 subgroups of data by year, all of them are
grouped by a combination of clustering techniques (subclust and fuzzy c-means).
To find the optimum number of centers we use the subclust MatLab function,
subsequently we take that number as a parameter for the fcm function to find
the optimum location of the centers. Moreover we improve the fcm function
given it the initialization of the centers (the result of subclust), that reduce the
number of iterations and generally minimize the objective function.

The modified function (see Algorithm 1) takes a data set, the initial loca-
tion of the centers and a vector of options (exponent for the partition matrix U ,
maximum number of iteration, minimum amount of improvement and a binary
variable to display info during iteration) and returns the membership function
matrix U (which contains the grade of membership of each data point in each
cluster), the optimum location of the centers and a vector that contains the
value of the objective function at each iteration.

Algorithm 1 follows the same procedure of fcm MatLab function, the prin-
cipal change is the “Initial fuzzy partition” section where, with the initial centers
we determined the Euclidean distance (distfcm function) of each data to each
center, subsequently we initialized the U matrix as follows (note that the fcm
function of MatLab initialized U randomly):

4

Uij =
1∑c

k=1(
dij

dkj
)(

2/(m−1))
(1)

Where dij is the Euclidean distance between ith cluster center and jth data
point, c is the number of clusters and m ∈ [1,∞) is the weighting exponent.

Having an initial U matrix our modified function follows the general steps
(stepfcm function):

1. Calculates c fuzzy clusters

2. Computes the cost (objective) function

3. Computes a new U by Equation 1

4. Goes to step 1

It stops if either it exceeds a maximum of iterations or if the improvement
of the actual cost function over previous iteration is below a certain threshold.

input : data, centers 0, options
output: U, centers, objFnc

n ← length (centers 0);
objFnc ← zeros (maxIter,1);
defaultOpt ← [2, 100, 1E− 5, 1];
if options is null then

options ← defaultOpt;
end

expo ← options (1);
maxIter ← options (2);
minImpro ← options (3);
display ← options (4);

Initial fuzzy partition;
dist ← distfcm (centers 0, data);

tmp ← dist(−2/(expo−1));
U ← tmp/(ones(n, 1) ∗

∑
tmp);

U (isnan (U)) ← 1;

Main loop;
for i← 1 to maxIter do

[U, centers, objFnc(i)]← stepfcm(data,U, n, expo);
if display then

print “Iteration count = i, obj.fcn = objFnc (i)”;
end
Check termination condition;
if i > 1 then

if |objFnc(i)− objFnc(i− 1)| < minImpro then
break;

end

end

end

Algorithm 1: Main function of modified fcm

5

Start

OptionsData Centers0

Is Options
null?

Calculate U matrix

Set default options

NaN
values?

i = 1

Set NaN = 1 and other
values of the row = 0

Calculate centers

Compute objective function

Calculate new U matrix

i > maxIter

i ≤ 1

diff = |objFcni −ObjFcni−1|

i = i + 1

diff > minImpro i = i + 1

Ucenter objFnc

Stop

no

yes

no

yes

no

yes

no

yes

no

yes

Figure 6: FCM Flowchart

6

The results of the clustering section are reported in the next tables, each
column corresponds to:

• Index: number of the subgroup

• Delay: delay week

• Radius: radius of action (in meters)

• Size: data size, number of observations

• Clusters: optimum number of centers, this is given by the subclust function

• FCM: Objective function value of the fcm method.

• FCM2: Objective function value of the improved fcm algorithm.

Index Delay Radius Size Clusters FCM FCM2

1 3 50 1 0 0 0
2 3 100 3 3 2.12E-007 NaN
3 3 150 4 4 5.23E-007 NaN
4 3 200 11 6 1.67E-005 1.62E-005
5 4 50 3 3 1.21E-012 NaN
6 4 100 10 7 2.98E-005 3.07E-005
7 4 150 15 8 3.17E-005 5.12E-005
8 4 200 26 9 0.0001623551 0.0001305956
9 5 50 4 3 6.52E-004 NaN
10 5 100 8 3 8.58E-006 0.0002654141
11 5 150 10 3 1.11E-005 1.11E-005
12 5 200 11 3 1.22E-005 1.22E-005
13 6 50 0 0 0 0
14 6 100 2 2 1.09E-026 NaN
15 6 150 5 3 7.13E-007 7.13E-007
16 6 200 7 4 1.06E-006 0.0006128854

Table 1: Clustering 2008

7

Index Delay Radius Size Clusters FCM FCM2

1 3 50 1 0 0 0
2 3 100 18 10 0.0001715234 0.0002592176
3 3 150 58 7 0.0006638709 0.0006943074
4 3 200 86 8 0.001170078 0.0010761235
5 4 50 6 5 5.88E-005 NaN
6 4 100 26 5 0.0006173628 0.000582129
7 4 150 51 3 0.0020991648 0.0020985399
8 4 200 89 6 0.001859613 0.0017673659
9 5 50 11 1 9.67E-007 NaN
10 5 100 45 6 0.0005095857 0.0009989919
11 5 150 73 5 0.0017237401 0.0028274043
12 5 200 108 6 0.0030788256 0.0035099061
13 6 50 8 6 1.03E-006 8.59E-005
14 6 100 46 4 0.0026861811 0.0026893429
15 6 150 87 4 0.0043727996 0.0043944189
16 6 200 146 6 0.0036385615 0.0039475001

Table 2: Clustering 2010

Index Delay Radius Size Clusters FCM FCM2

1 3 50 0 0 0 0
2 3 100 0 0 0 0
3 3 150 0 0 0 0
4 3 200 0 0 0 0
5 4 50 0 0 0 0
6 4 100 0 0 0 0
7 4 150 1 0 0 0
8 4 200 2 2 4.85E-012 NaN
9 5 50 2 2 3.95E-010 NaN
10 5 100 8 4 3.68E-006 8.56E-008
11 5 150 17 4 1.65E-005 0.0004055341
12 5 200 21 4 2.04E-005 0.0004067676
13 6 50 0 0 0 0
14 6 100 0 0 0 0
15 6 150 0 0 0 0
16 6 200 1 0 0 0

Table 3: Clustering 2011

8

Index Delay Radius Size Clusters FCM FCM2

1 3 50 4 3 3.14E-006 NaN
2 3 100 5 4 1.65E-007 NaN
3 3 150 15 8 5.78E-006 2.98E-006
4 3 200 16 8 2.04E-005 4.40E-006
5 4 50 1 0 0 0
6 4 100 4 4 3.29E-006 NaN
7 4 150 9 6 4.39E-006 2.49E-006
8 4 200 11 7 5.82E-006 1.90E-006
9 5 50 1 0 0 0
10 5 100 2 2 3.80E-008 NaN
11 5 150 7 5 1.54E-005 4.06E-005
12 5 200 11 7 1.84E-005 1.39E-006
13 6 50 3 3 3.01E-007 NaN
14 6 100 5 5 7.20E-006 NaN
15 6 150 8 8 5.62E-006 NaN
16 6 200 10 10 6.79E-006 NaN

Table 4: Clustering 2012

As stated above, in the Tables 1, 2, 3, 4 it can be seen that generality our
fcm algorithm minimizes the objective function, unfortunately at the same time
is remarkable that it has problems when the data size is small. This is due to
the origin of the initial centers because the subclust function takes each data
point as a possible center and groups them with a a measure of closeness, but
always the center is a data point. This implies that the result is a subset of
the data set. Now, in the fcm method, when U is initialized, we have some
distances that are zero (because there are data points that are centers) and in
the Equation 1 it will generate division by zero. This phenomenon is controlled
replacing the NaN values by 1 and the others values of the row by zero, but
when the amount of centers is approximately the number of observations we
obtain a diagonal matrix of ones as U , and this is an useless matrix.

Neural Network

However, the previous clusters do not have a clear interpretation, for that rea-
son in this section we consider only the data sets obtained by the Neighbors
algorithm. For each year we selected the 4th largest data sets (highlighted in
Table 1, 2, 3, 4) and with them an unique data set by year was created, every
set contained the coordinates (Longitude, Latitude and Week) of the Breeding
Sites and the possible Cases associated to them.

With the selected data we created a Neural Network (by year) that takes as
inputs the coordinates of the Breeding Sites and generates as output (predicts)
the coordinates of the Cases. The Networks were created using the MatLab
command nftool.

The general architecture of our neural networks have three inputs, one hidden

9

layer with n neurons and three outputs (see Figure 7). In every year the variables
of the neural network will be the number of neurons in the hidden layer and the
size of data (number of observations).

Breeding
Sites

Input
Layer

Hidden
Layer

Output
Layer

Cases

Longitude

Latitude

Week

I1

I2

I3

H1

H2

H3

...
Hn

O1

O2

O3

Longitude

Latitude

Week

Figure 7: General structure of a Neural Network

All our neural network are a two-layer feed-forward network with sigmoid
hidden neurons and linear output neurons. The networks are trained with
Levenberg-Marquardt backpropagation algorithm, unless there is not enough
memory, in which case scaled conjugate gradient backpropagation is used (non
of our neural networks required it).

10

For 2008 we have 63 observations that are divided, 60% to training, 20% to
testing and 20% to validation. The neural network has 15 neurons in the hidden
layer.

−75.58

−75.57

−75.56

−75.55 6.31
6.32

6.33
6.34

6.35

20

30

40

50

Latitude Longitude

W
ee

k

2008 Cases
NN Otput

Figure 8: Location of the real and the predicted Cases in 2008

In Figure 8, the location of the original Cases and the predicted by the neu-
ral network are shown. Note that the blue asterisks are relatively close to the
red circles (the main idea is to have the asterisks and the circles as close as pos-
sible). To quantify how close are they, for each variable (Longitude, Latitude
and Week of the Cases) we subtract the predicted data to the original ones, this
works as an error measure.

The results given in Figure 9 show that the neural network for 2008 has a
good approximation predicting the Longitude and the Latitude. Although the
Week variable has a bigger scale, it means that the neural network has a lag of
an a half of a week predicting the Week variable which is an acceptable interval.
Then, in general terms, and confirming the analysis of the Figure 8, the neural
network for 2008 has a good behavior.

11

0 10 20 30 40 50 60

−2

0

2

·10−3
Longitude 2008

0 10 20 30 40 50 60

−2

0

2

4

·10−3 Latitude 2008

0 10 20 30 40 50 60

−0.5

0

0.5

Week 2008

Figure 9: Difference between real and predicted data variables 2008

12

For 2010 we have 429 observations that are divided, 50% to training, 25%
to testing and 25% to validation. The neural network has 50 neurons in the
hidden layer.

−75.6

−75.55

−75.5
6.3

6.4

20

30

40

Latitude Longitude

W
ee

k

2010 Cases
NN Otput

Figure 10: Location of the real and the predicted Cases in 2010

Figure 10 shows that the neural network for 2010 could not learn the behav-
ior of the data set, the errors (see Figure 11) predicting the variables are not
permissible, specially in the Week variable (it would have a lag from half to one
month) and follow by the Latitude one, this, considering that a variation of a
decimal in a Latitude is a significant change in the point location.

Despite the fact, the bad results were expected. In 2010 there was an DF
epidemic in the municipality of Bello, as a consequence the data set of this year
has an abnormally pattern, then the cases location becomes unpredictable.

13

0 100 200 300 400

−5

0

5

·10−2
Longitude 2010

0 100 200 300 400

−0.1

0

0.1

Latitude 2010

0 100 200 300 400

−4

−2

0

2

Week 2010

Figure 11: Difference between real and predicted data variables 2010

14

For 2011 we have 38 observations that are divided, 70% to training, 15% to
testing and 15% to validation. The neural network has 5 neurons in the hidden
layer.

−75.57

−75.57

−75.56 6.32
6.33

6.34
6.35

20

30

40

50

Latitude Longitude

W
ee

k

2011 Cases
NN Otput

Figure 12: Location of the real and the predicted Cases in 2011

Figure 12 evidence that the neural network for 2011 predicts correctly (with
a small error) the location of the cases, this is confirmed with the difference
between the variables (see Figure 13) where, based on the scale of the graphics,
we conclude that the neural network has an excellent approximation.

15

0 5 10 15 20 25 30 35 40

−2

0

·10−4
Longitude 2011

0 5 10 15 20 25 30 35 40

−1

0

1

·10−3 Latitude 2011

0 5 10 15 20 25 30 35 40

0

1

2

·10−5 Week 2011

Figure 13: Difference between real and predicted data variables 2011

16

For 2012 we have 53 observations that are divided, 70% to training, 15% to
testing and 15% to validation. The neural network has 10 neurons in the hidden
layer.

−75.56

−75.56

−75.55
6.32

6.33
6.34

6.35

30

40

50

Latitude Longitude

W
ee

k

2012 Cases
NN Otput

Figure 14: Location of the real and the predicted Cases in 2012

In Figure 14 we observed that the neural network for 2012 estimates cor-
rectly (with a small error) the Longitude and Latitude variables, however the
estimation of the Week variable has some looseness, this is reflected in the Fig-
ure 15, where the third graph has a considerable error in the 45th observation
approximately.

17

0 10 20 30 40 50
−4

−2

0

2

·10−3
Longitude 2012

0 10 20 30 40 50

−1

−0.5

0

0.5

·10−2 Latitude 2012

0 10 20 30 40 50

−5

0

Week 2012

Figure 15: Difference between real and predicted data variables 2012

18

Finally, we created a general neural network that uses the data of the 2008,
2011 and 2012, for this new set of data we have 197 observations that are divided,
60% to training, 20% to testing and 20% to validation. The neural network has
10 neurons in the hidden layer.

−75.6

−75.58

−75.56
6.3

6.32

6.34

0

100

200

Latitude Longitude

W
ee

k

General Cases
NN Otput

Figure 16: Location of the real and the predicted Cases in NN without 2010
data

In Figure 16 we can not conclude rightly if the neural network has good or
a bad behavior, but with the help of Figure 17, it is clear that the predicted
variables are approximate to the real ones. Note that the scale of the difference
between the variables is small except by some outliers in the Week variable.

19

0 50 100 150 200
−2

0

2

·10−2
Longitude

0 50 100 150 200

−1

0

1

·10−2 Latitude

0 50 100 150 200

−10

−5

0

5

Week

Figure 17: Difference between real and predicted data variables

20

