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The p-regions problem involves the aggregation or clustering of n small areas into p

spatially contiguous regions while optimizing some criteria. The main objective of this

article is to explore possible avenues for formulating this problem as a mixed integer-

programming (MIP) problem. The critical issue in formulating this problem is to ensure

that each region is a spatially contiguous cluster of small areas. We introduce three

MIP models for solving the p regions problem. Each model minimizes the sum of dis-

similarities between all pairs of areas within each region while guaranteeing contigu-

ity. Three strategies designed to ensure contiguity are presented: (1) an adaptation of

the Miller, Tucker, and Zemlin tour-breaking constraints developed for the traveling

salesman problem; (2) the use of ordered-area assignment variables based upon an

extension of an approach by Cova and Church for the geographical site design prob-

lem; and (3) the use of flow constraints based upon an extension of work by Shirabe.

We test the efficacy of each formulation as well as specify a strategy to reduce overall

problem size.

Introduction

The p-regions problem involves the aggregation of a finite set of n small areas into a

set of p regions, where each region is geographically connected, while optimizing a

predefined objective function. This problem is referred to by a host of different

names, including the zonation, districting, and regionalization problem. It is related

to a family of problems that are classified as nondeterministic polynomial-time hard

(NP-hard) (Cliff et al. 1975; Keane 1975). Many spatial optimization models found

in the regional science literature fall into this class; for example, the multiple facility

location problem, the maximal covering location problem, and the land acquisition

problem. Virtually all of these problems have been the subject of considerable re-

search in terms of model formulation and algorithm design. The combinatorial

complexity of such problems, including the p-regions problem, has led researchers
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to focus primarily on the use and development of heuristic solution methods

(Openshaw 1988; Browdy 1990; Macmillan and Pierce 1994; Horn 1995; Open-

shaw and Rao 1995). For the p-regions problem, a heuristic approach typically

starts with a nonoptimal but spatially contiguous regional configuration, and then

iteratively moves or reassigns areas from a region to one of its adjacent regions in an

attempt to improve objective quality while retaining spatial contiguity (Lankford

1969; Murtagh 1985; Gordon 1996; Duque, Ramos, and Surinach 2007). Unlike

other computationally complex problems (e.g., the discrete multiple facility loca-

tion problem), little or no emphasis has been placed on the formulation of an exact

mixed integer-programming (MIP) model for the p-regions problem.

Even though most p-regions problems remain too large to consider solving us-

ing exact methods, general-purpose optimization software has improved over the

last decade, and computational resources continue to be increased (Bixby 2002).

This means that problem instances now are possible to solve optimally that were

previously considered to be too big or complex to solve (Bixby et al. 2000).1 Testing

this boundary between problem size and the use of heuristics versus an optimal

approach requires a model formulation. Unfortunately, few p-regions models have

been formulated for this purpose (i.e., to be solved as a MIP problem). Thus, we

pursue in this article three different formulations for this problem. This is not a

straightforward task, as ensuring spatial contiguity among the defined regions is

difficult, if not seemingly impossible.

Mixed integer-linear programming models for p-regions problem

Developing an exact model for the p-regions problem is dominated by one prin-

cipal issue: the formulation of constraints needed to ensure spatial contiguity within

each defined region.

Objective function

P-regions models ultimately attempt to optimize some objective function, typically

maximizing a measure of overall intraregional homogeneity, which is functionally

equivalent to minimizing heterogeneity. Gordon (1999) calculates heterogeneity

for region k, Ck, as

HðCkÞ �
X

ij2Ck ji< j

dij: ð1Þ

Equation (1) measures a region’s heterogeneity as the sum of dij values

associated with all possible area–area pairs within the region, where dij denotes

a distance measure between areas i and j. In our formulation, dij can be relaxed to

be a dissimilarity measure because it has to satisfy only the following properties: (a)

dij 5 dji, (b) dij � 0, and (c) dij 5 0 if i 5 j.2

Unlike other methodological approaches for spatial aggregation, the attribute

variables that characterize each area, and that are utilized to calculate dij, can

be nongeographical variables, such as socioeconomic profiles. This is possible
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because our models do not rely on geographical distances between areas to ensure

spatial contiguity.

Given this definition of heterogeneity within a given region k, we can define

the summed heterogeneity of p regions as the sum of each region’s heterogeneity:

PðH;SÞ �
Xp

k¼1

HðCkÞ: ð2Þ

Accordingly, we can define one form of the p-regions problem as follows:

‘‘Cluster n areas into p spatially contiguous regions, while minimizing the value of

P(H,S).’’3

To illustrate how the objective function works, Fig. 1 shows a simple example

using a regular lattice with nine areas. Figure 1a shows the grid grayscale coded

according to the median housing price per area (y). Figure 1b shows a feasible way

to aggregate nine areas into two regions.

In order to calculate the objective function that corresponds to this feasible

solution, determination of the functional form that will be utilized to calculate the

distance, or dissimilarity, between two areas is necessary. In this example, we apply

a univariate Euclidean distance to measure how different two areas, i and j, are in

terms of their mean housing price (dij). These distances are presented in Table 1.

Given a feasible solution and a distance function, Table 2 shows how to

calculate both the heterogeneity of each region (i.e., H(C1) and H(C2)) and the

objective function P(H,S).4

y6 = 481.00 

y9 = 226.90 

y3 = 487.30 

y4 = 200.40 y5 = 245.00

y7 = 170.90  y8 = 225.90

y1 = 726.70 y2 = 623.60

Mean housing prices
170.90

(a) (b)

170.91 - 200.40
200.41 - 245.00
245.01 - 487.30
487.31 - 726.70

y6 = 481.00 

y9 = 226.90 

y3 = 487.30 

y4 = 200.40  y5 = 245.00

y7 = 170.90  y8 = 225.90

y1 = 726.70  y2 = 623.60

Regional borders
Mean housing prices

170.90
170.91 - 200.40
200.41 - 245.00
245.01 - 487.30
487.31 - 726.70

Figure 1. Example of input data and a feasible solution (a) Mean housing price per area (y);

(b) Feasible solution for two regions.
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Spatial contiguity

For a p-regions model solution to be considered feasible, the areas that form a given

region must form a single contiguous region. Spatial contiguity poses the greatest

obstacle in terms of producing exact methods for solving any p-regions problem.

Although several methods exist that permit inclusion of constraints forcing spatial

contiguity, all appear to require significant numbers of constraints and variables,

resulting in a model of considerable size (Garfinkel and Nemhauser 1970; Macmillan

and Pierce 1994; Mehrotra, Johnson, and Nemhauser 1998; Duque 2004).

Most MIP models for the p-regions problem are based on graph theory, where

areas to be aggregated are represented by nodes on a network, and links are used to

represent area adjacencies (Zoltners and Sinha 1983). Conceptually, given a graph

G(n, l) with n nodes and l links, the p-regions problem involves selecting a set of links

to create p-disconnected subnetworks or trees, where each tree represents a connected

set of areas (or nodes) representing a region. A tree can exist as an isolated node,

because no a priori limit exists for the size of any specific region. The important feature

is that each subnetwork or tree represents a region. To ensure that each subnetwork or

region is connected, the subnetwork must be a tree; that is, contain no cycles.

The fundamental impediment in developing a MIP model is to design a constraint

structure to ensure that a feasible solution contains no cycles within each identified

tree. Typically, methods proposed to prevent cycles have been prohibitively costly to

solve in terms of CPU run time. The literature is not clear about how this prevention

can be accomplished, which, unfortunately, is a necessary condition for solving the p-

regions problem as a MIP problem. In this article, we propose three new formulations,

all quite different in structure, to identify an efficient model form for preventing cycles.

Table 1 Pairwise Distances dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyi � yjÞ2

q
ji < j

2 3 4 5 6 7 8 9

1 103.1 239.4 526.3 481.7 245.7 555.8 500.8 499.8

2 136.3 423.2 378.6 142.6 452.7 397.7 396.7

3 286.9 242.3 6.3 316.4 261.4 260.4

4 44.6 280.6 29.5 25.5 26.5

5 236 74.1 19.1 18.1

6 310.1 255.1 254.1

7 55.0 56.0

8 1.0

Table 2 Construction of the Objective Function P(H,S)

Expressions Values

H(C1 5 f1, 2, 3, 6g) d1,21d1,31d1,61d2,31d2,61d3,6 5 103.11239.41245.71

136.31142.616.3 5 873.4

H(C2 5 f4, 5, 7, 8, 9g) d4,51d4,71d4,81d4,91d5,71d5,81d5,91d7,81d7,91d8,9544.61873.4

129.5125.5126.5174.1119.1118.1155.0156.011.0 5 349.4

P(H,S) 5 H(C1)1H(C2) 873.41349.4 5 1222.8
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Formulating the p-regions problem in terms of a MIP model

The three MIP p-regions models (PRM) that are presented in this article have been

inspired by different areas of spatial optimization research and are accordingly named:

� TreePRM: a forest of trees, with one tree per region. Cycles are prevented in each

tree based upon the properties of three sets of constraints. This model is further

constrained by redundant but effective cut constraints inspired by constraints

developed by Miller, Tucker, and Zemlin (1960), known as the MTZ constraints,

which were originally developed for the traveling salesman problem.

� OrderPRM: areas are added to a given region in a specified order, where order

prevents cycles and ensures contiguity.

� FlowPRM: a model inspired by the work of Shirabe (2005). This approach

ensures contiguity by establishing a unit flow from each area (node) within a

region to a selected sink of the region. The trace of flows for a given region

represents a tree graph rooted at the designated regional sink. Flow can be

routed only along arcs between nodes selected for the same region, thereby

ensuring contiguity of the areas selected for the region.

TreePRM

In this model, links (represented by xij variables) are chosen to force each area i to

appear in one of p-distinct trees or subnetworks. Cycles for each tree are prevented

by a combination of several constraints. This first model is rather distinct in that

regional membership is inferred from a set of variables, tij, whereas the subsequent

two models (FlowPRM and OrderPRM) are based upon an index that represents a

given region. In general, we represent regions using the index k. To define a Tree

model, consider the following problem parameters:

i; I ¼ index and set of areas; i ¼ f1; � � � ; ng;

cij ¼
1; if areas i and j share a border; with i; j 2 I and i 6¼ j;

0; otherwise;

(

Ni ¼ jjcij ¼ 1
� �

; the set of areas that are adjacent to area i;

dij ¼ dissimilarity relationships between areas i and j with i; j 2 I and i < j:

:

The model is based upon the following decision variables:

tij ¼
1; if areas i and j belong to the same region;

0; otherwise;

(

xij ¼

1; if the arc or link between adjacent areas i and j is selected

for a tree graph;

0; otherwise;

8>><
>>:

ui ¼ order assigned to each area i in a subnetwork or tree:

:
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Consequently, we can define this first model as follows:

Minimize

Z ¼
X

i

X
jjj> i

dij tij; ð3Þ

subject to

Xn

i¼1

X
j2Ni

xij ¼ n � p; ð4Þ

X
j2Ni

xij � 1 8i ¼ 1; � � � ; n; ð5Þ

tij þ tim � tjm � 1 8i; j;m ¼ 1; � � � ; n where i 6¼ j;m 6¼ j; ð6Þ

tij � tji ¼ 0 8i; j ¼ 1; � � � ; n; ð7Þ

xij � tij � 0 8i ¼ 1; � � � ; n; 8j 2 Ni; ð8Þ

ui � uj þ n � pð Þ � xij þ ðn � p � 2Þ � xji � n � p1 8i ¼ 1; � � � ; n; 8j 2 Ni; ð9Þ

1 � ui � n � p 8i ¼ 1; � � � ; n; ð10Þ

xij 2 0; 1f g 8i ¼ 1; � � � ; n; 8j 2 Ni ; ð11Þ

tij 2 0; 1f g 8i; j ¼ 1; � � � ; n where j > i: ð12Þ

The objective function (3), which is identical for all of the models, minimizes the

sum of dissimilarities between all pairs of areas within each region. The variables xij

represent the selection of arcs or links for each tree graph, of which there are p. Each

connected group of arcs represents a region and forms a tree graph (i.e., contains no

cycles). If the entire problem space is divided into one region, the associated tree graph

contains n� 1 arcs. In general, if the entire problem is divided into p regions, the sum

of all arcs across all selected tree graphs represents the selection of n� p arcs or links.

Constraint (4) establishes that the sum of all selected links (i.e., xij 5 1) across

all trees equals n� p. This condition by itself does not eliminate cycles from among

the selected arcs. Constraints (5) require that any area i can have only one link xij

selected for the tree that is directed away from node i. Constraints (6) ensure that if

area i is part of the same region as j and m, then areas j and m also must be clas-

sified as being in the same region. Constraints (7) ensure symmetry in the matrix tij.

Thus, if tji 5 1 with joi, then tij must equal 1; otherwise, the objective function

remains unaffected. Constraints (8) require that if a link between adjacent areas i

and j is selected for a tree graph, then areas i and j must be in the same region (i.e.,

tij 5 1). Together constraints (4), (5), and (8) ensure that the arcs or links chosen are

from adjacent areas grouped into the same region, but does not necessarily ensure
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that the subnetworks contain no cycles and therefore represent tree graphs. Con-

straints (9) and (10) are structured to prevent cycles among the selected trees. Es-

sentially, this set of constraints represents a form of the tour-breaking constraints

that can be found in Miller, Tucker, and Zemlin (1960). The ui variables represent

an integer value given to an area, and the value of each ui variable represents an

‘‘order’’ that is assigned to an area of a region. Constraints (9) make a set of xij that

are one in value impossible to form a cycle in any subgraph, because arcs chosen to

lead away from an area i, xij 5 1, must lead from an area assigned a ui value that is

less than the value assigned to area j. A cycle cannot exist because the arc chosen to

complete a cycle would lead from an area with a higher ui to an area with a lower uj

value. Thus, as structured, these constraints prevent any cycles among the selected

subgraphs determined by the xij variables when xij 5 1. Constraints (10) establish

upper bounds on the values of ui. Because each tree could contain at most n� p

arcs or links, we can specify that individual ui values do no need to be any larger

than n� p. If we wanted to maintain an upper limit on the number of areas that

could be assigned to a given region, we could reduce the upper limit of the ui

values accordingly. Finally, constraints (11) and (12) ensure that the decision vari-

ables for xij and tij are either 0 or 1 in value.

The preceding model is a MIP problem and can be solved by using a general-

purpose integer-linear optimization package. After we formulate all three models,

we compare issues of model size and solvability.

OrderPRM

The basis for the OrderPRM model is quite different from the Tree model in that an

explicit assignment of an area to a region exists. Each region is represented by an

index k, where k 5 1, . . . , p, as well as by an area to serve as a ‘‘root’’ area. Any

area can be chosen as a root, but one and only one root can exist per region. The

other areas are assigned to one root according to an ordering system that ensures

that the areas assigned to the same region are spatially connected. The contiguity

conditions in this model represent an extension of the ordered-area assignment

conditions proposed by Cova and Church (2000), who developed such conditions

to enforce contiguity in a site design problem. The parameters of this model are

i; I ¼ index and set of areas; i ¼ 1; � � � ; nf g;

cij ¼
1; if areas i and j share a border; with i; j 2 I and i 6¼ j

0; otherwise;

(

k ;K ¼ index and set of regions; k ¼ 1; � � � ; pf g;
o;O ¼ index and set of contiguity order; o ¼ 0; � � � ; qf g; with q ¼ n � p þ 1;

Ni ¼ jjcij ¼ 1
� �

; the set of areas that are adjacent to area i;

dij ¼ dissimilarity relationships between areas i and j; with i; j 2 I and i < j:

:
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The decision variables for this model are

tij
1; if areas i and j belong to the same region k ; with i < j;

0; otherwise;

(

xko
i

1; if areas i is assigned to region k in order o;

0; otherwise:

( :

Although all models use the same set of variables, tij, the linking variables, xko
i ,

are now quite different in definition and function from the previously used variables

xij. The variable xko
i represents the assignment of a given area i to region k based

upon an order o. Contiguity is enforced for a region by ensuring that each area is

either adjacent to the root area or next to an area that is assigned to the same region

with a smaller order number. This model can be formulated as follows:

Minimize

Z ¼
X

i

X
jjj> i

dij tij; ð13Þ

subject to

Xn

i¼1

xk0
i ¼ 1 8k ¼ 1; � � � ; p; ð14Þ

Xp

k¼1

Xq

o¼0

xko
i ¼ 1 8i ¼ 1; � � � ; n; ð15Þ

xko
i �

X
j2Ni

x
kðo�1Þ
j 8i ¼ 1; � � � ; n; 8k ¼ 1; � � � ; p; 8o ¼ 1; � � � ; q; ð16Þ

tij �
Xq

o¼0

xko
i þ

Xq

o¼0

xko
j � 1 8i; j ¼ 1; � � � ; nji < j; 8k ¼ 1; � � � ; p; ð17Þ

xko
i 2 0; 1f g 8i ¼ 1; � � � ; n; 8k ¼ 1; � � � ; p; 8o ¼ 1; � � � ; q; ð18Þ

tij 2 0; 1f g 8i; j ¼ 1; � � � ; nji < j: ð19Þ

The objective is exactly the same as in the Tree model, employing the same set

of variables. Each region is explicitly referred to by index, k. Constraints (14)

establish that each region k has a defined root area. A root area for a region has a

defined order of zero. Essentially, these constraints require that each region k has

one and only one root, o 5 0. Constraints (15) require that each area i be assigned to

exactly one region k and one contiguity order o. Constraints (16) require that area i

be assigned to region k at order o if and only if an area j exists, in the adjacent

neighborhood of i, that is assigned to the same region k in order o� 1. Altogether,

constraints (14), (15), and (16) establish that each region k must be contiguous to
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the assigned root area. The structural constraints (17) force tij 5 1 whenever areas i

and j are assigned to the same region k, regardless of the order in which they are

assigned. Next, constraints (18) restrict the xko
i variables to be 0-1 integer values.

Finally, constraints (19) require that the tij variables be restricted in a similar

manner. Like the Tree model, this also is a MIP, which can be solved by the use of

off-the-shelf optimization software.

FlowPRM

The final model was inspired by Shirabe’s model for spatial unit allocation (Shirabe

2005), which uses an embedded network flow model in which all areas that are

assigned must be connected with a flow route to the designated sink.

Our formulation allows for multiple networks, one per region. Thus, each

region has an area that is designated as its sink. A flow network is defined along arcs

connecting areas that are adjacent and share a portion of their boundary. If an area

is assigned to region k, then this area must supply a unit to the flow that arrives to

the sink of region k. A flow cannot be shared by two or more regions. FlowPRM uses

the following parameters:

i; I ¼ index and set of areas; i ¼ 1; � � � ; nf g;
k;K ¼ index and set of regions; k ¼ 1; � � � ; pf g;
Ni ¼ jjcij ¼ 1

� �
; the set of areas that are adjacent to area i;

dij ¼ dissimilarity relationships between areas i and j;with i; j 2 I and i < j:

:

The decision variables for this model are as follows:

tij ¼
1; if areas i and j belong to the same region k; with i < j

0; otherwise;

(

fijk nonnegative contiguous variable indicating the amount of flow

from area i to j in region k;

yik ¼
1; if area i is included in region k

0; otherwise;

(

wik ¼
1; if area i is chosen as a sink

0; otherwise:

(
:

The FlowPRM model can now be formulated as:

Minimize

Z ¼
X

i

X
jjj> i

dij tij; ð20Þ

subject to

Xp

k¼1

yik ¼ 1 8i ¼ 1; � � � ; n; ð21Þ
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wik � yik 8i ¼ 1; � � � ; n; 8k ¼ 1; � � � ; p; ð22Þ

Xn

i¼1

wik ¼ 1 8k ¼ 1; � � � ; p; ð23Þ

fijk � yik � ðn � pÞ 8i ¼ 1; � � � ; n; 8j 2 Ni ; 8k ¼ 1; � � � ; p; ð24Þ

fijk � yjk � ðn � pÞ 8i ¼ 1; � � � ; n; 8j 2 Ni ; 8k ¼ 1; � � � ; p; ð25Þ
X
j2Ni

fijk �
X
j2Ni

fjik � yik � ðn � pÞ �wik 8i ¼ 1; � � � ; n; 8k ¼ 1; � � � ; p; ð26Þ

tij � yik þ yjk � 1 8i; j ¼ 1; � � � ; nji < j; 8k ¼ 1; � � � ; p; ð27Þ

yik 2 0; 1f g 8i ¼ 1; � � � ; n; 8k ¼ 1; � � � ; p; ð28Þ

wik 2 0; 1f g 8i ¼ 1; � � � ; n;8k ¼ 1; � � � ; p; ð29Þ

tij � 0 8i; j ¼ 1; � � � ; nji < j; ð30Þ

fijk � 0 8i ¼ 1; � � � ; n; 8j 2 Ni ; 8k ¼ 1; � � � ; p: ð31Þ

The objective here is exactly the same as in the first two models. Constraints

(21) ensure that each area i is assigned to only one region k. Constraints (22) restrict

the assignment of a sink in region k only to those areas that have been assigned to

that region. Constraints (23) force each region to contain one and only one sink.

Constraints (24) and (25) ensure that a flow can exist between areas i and j if and

only if both areas have been assigned to the same region k and are adjacent areas. If

area i is not a sink, constraints (26) ensure that area i must supply at least one unit of

flow (net outflow � 1). If area i is chosen to be a sink, then these constraints allow a

negative net flow of up to n� p� 1 because sink areas do not have outflows. The

value of n� p� 1 is because the largest possible region (in terms of the number of

areas assigned to it) cannot be larger than n� p. If a sink does not generate a net

outflow, then a total flow of no more than n� p� 1 units ends at a given regional

sink. Constraints (27) force the tij variables to be one when both areas i and j are

assigned to the same region. Constraints (28) and (29) ensure that the variables wik

and tij are 0-1 integers in value. Finally, constraints (30) and (31) restrict the re-

maining decision variables to be nonnegative in value.

A deeper understanding of the three strategies to satisfy the spatial

contiguity contraint

Each of the three models presented is based upon specific approaches: (1) defining

each region with a subtree, where the subtrees cannot contain cycles, (2) defining

each region to have an assigned root area, where contiguity is forced by special
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‘‘order’’ conditions, and (3) representing regions by flow nets, where flow originates

at each area and must flow between adjacent areas within the same region until it

reaches the area designated as a sink. Depicting how contiguity is represented in

each model allows for a better understanding of these three models.

Figure 2 shows six different ways to obtain the optimal solution for our example

about mean housing prices introduced in the subsection ‘‘objective function.’’ Each

row reports two solutions per model (tree, order, and flow), and for each solution,

we indicate the decision variables with values other than 0.5 Note that the shape of

the regions is the same in all of the solutions. The difference among these solutions

is the way in which the decision variables are combined to guarantee the spatial

contiguity of each region. These solutions are not the only ones; for each model,

multiple ways exist to obtain the optimal solution with a proper recombination of

decision variables.

For the TreePRM model, in Fig. 2a, the region connects areas 1–3, and 6 with a

tree formed by links 1–2, 2–3, and 3–6 (i.e., x1, 2 5 x2, 3 5 x3, 6 5 1). In Fig. 2b, the

same region connects these areas with links 1–2, 3–2, and 6–3. Thus, the links can

be arranged in different ways to construct a region. The decision variable u guar-

antees that the links do not create any tour that violates feasibility. The integer

values of u require that an area i, from which a link xij is leaving, must have a value

ui less than the value assigned to the destination area j, uj, to which the link is

arriving.6

For the OrderPRM model, the solution in Fig. 2c selects area 3 as the root area

for region 1 (i.e., w1;0
3 ¼ 1), and area 7 as the root area for region 2 (i.e., w2;0

7 ¼ 1).

Given these root areas, all of the other areas are assigned following an ordering

system that depends on the position of each area with respect to its region’s root.

Thus, in region 1, areas 2 and 6, which are first-order neighbors of the root area, are

assigned in order 1 (i.e., x1;1
2 ¼ x1;1

6 ¼ 1), while area 1, which is two contiguity

orders from its region’s root, is assigned in order 2 (i.e., x1;2
1 ¼ 1).7 Figure 2d shows

a different way to configure the same regions with different root areas. In conclu-

sion, any area can be selected as the root of its region without affecting optimality.8

Finally, for the FlowPRM model, the solution in Fig. 2e shows that region 1

(formed by areas 1, 2, 3, and 6) has its sink located in area 2 (i.e., w2;1 ¼ 1). All of the

other areas in this region are connected to this sink through flow strings represented

by the decision variables fijk. Each area, apart from the sink, contributes a unit of flow;

for example, in region 1 in Fig. 2f, a flow string starts in area 1 and arrives to area 2,

f1,2,1. Because no flow arrives to area 1, the flow f1,2, 1 accumulates only one unit of

flow contributed by area 1 (i.e., f1,2, 1 5 1). Next, a flow leaves from area 2 and ar-

rives to area 3, f2,3, 1, accumulating the unit of flow coming from area 1, plus the unit

of flow contributed by area 2; thus, f2,3, 1 5 2. Finally, a third string connects area 3 to

area 6 (the sink area) that deposits three units of flow into the sink.9 As can be seen,

because of the adaptability of the flow strings, any area can be the sink of a region

without affecting optimality. Last, the role of variables yik is to ensure that no string

flows leave from one region and arrive to a different region.
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Figure 2. Examples of different ways to obtain the optimal solution (a) TreePRM: optimal

solution 1; (b) TreePRM: optimal solution 2; (c) OrderPRM: optimal solution 1; (d) OrderPRM:

optimal solution 2; (e) FlowPRM: optimal solution 1; (f) FlowPRM: optimal solution 2.
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In conclusion, the p-regions problems have alternate optima, and this property

can be potentially useful when searching for strategies for reducing run times.

Comparing model size and solution times

We have formulated three rather different models for the p-regions problem. Each

model is a MIP, which conceivably can be solved by a general-purpose optimiza-

tion software. The ease with which a given model can be solved is predicated on a

number of factors, including model size (number of variables and constraints) and

model structure.

Table 3 presents the functions that can be used to estimate the theoretical

number of constraints and variables for each model. Figures 3 and 4 show the

graphical representation of those functions for n 5 4, . . . ,50, and p 5 2, . . . ,n� 1.

Each model behaves differently when increasing the number of areas and/or

regions.

TreePRM is the biggest model in terms of number of constraints. It grows rapidly

when increasing the number of areas, mostly because of equation (6), which grows

exponentially (n3� 2n21n). However, the simplicity of its formulation makes this

model the smallest one in terms of the number of variables. An important charac-

teristic is that TreePRM is not sensitive to changes in the number of regions because

none of its variables include an index for the region.

OrderPRM is the second biggest model in terms of constraints, and the biggest in

terms of variables. This model does not increase linearly with increases in the

number of regions. For a given number of areas, OrderPRM tends to reach the max-

imum number of constraints when the proportion of regions/areas is 75.7%

(	 1.3%), and the maximum number of variables when the proportion of regions/

areas is 52.0% (	 3.4%).

The theoretical number of variables and constraints for OrderPRM was esti-

mated for the worst-case scenario, where the index o is allowed to reach its the-

oretical maximum value; that is, o 5 0, . . . , (n� p11). This maximum contiguity

order (n� p11) occurs when p� 1 regions have only one area, and the n� p11

areas belonging to a single region are connected as a single chain with the variable

xk0
i located at one extreme of that chain.

Finally, FlowPRM is the smallest model in terms of the number of constraints,

and the second biggest model in terms of the number of variables. Different from

Table 3 Number of Constraints and Variables per Model

Model Constraints Variables

TreePRM 1þ n3 � n2 þ 3n þ 2
Pn

i¼1 jNi j n2 þ
Pn

i¼1 jNi j
OrderPRM npðn � p þ 1Þ þ n þ pð1þ n2�n

2 Þ npðn � p þ 2Þ þ n2�n
2

FlowPRM pðn2�n
2 þ 1Þ þ 2np þ n þ 2p

Pn
i¼1 jNi j 2np þ p

Pn
i¼1 jNi j þ n2�n

2

Note: jNi j is the cardinality of Ni.
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TreePRM and OrderPRM, the size of FlowPRM increases with increases in either the

number of areas or the number of regions.

Table 4 summarizes computational results from using ILOG CPLEX 11.2 exe-

cuted on a Dell Precision T3400 computer running the Windows XP-64 bits op-

erating system equipped with 8 GB RAM and a 2.99 GHz Intel Corel 2 Extreme

processor. We solved 10 problems that combine different numbers of areas (n 5 16,

25, and 49) and different numbers of regions (p 5 3–7, and 10). The areas are or-

ganized as regular lattices with equal numbers of rows and columns (4 � 4, 5 � 5,

and 7 � 7).

The aggregation variables (y), from which the dissimilarities dij are calculated,

were simulated as spatial autoregressive (SAR) processes with r5 0.7.10 A total of

three spatial processes were simulated, one for n 5 16, another for n 5 25, and a

third for n 5 49. Thus, for a given value of n, the parameters dij are the same for the

three models.11

Figure 3. Number of constraints (with
Pn

i¼1 jNi j ¼ 5n) (a) TreePRM; (b) OrderPRM;

(c) FlowPRM.
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Regarding the parameter Ni, we use a simple rook contiguity criterion where

area j is considered as adjacent to area i (i.e., cij 5 1) if they share a common edge.

The TreePRM model optimally solved 40% of the problems, and the remaining

60% were stopped after 3 h. Problem 4 was stopped after 3 h but was optimally

solved. The results also show that for a given value of n, the run times decrease

when increasing the value of p.

The OrderPRM model produces the highest run times and optimally solved 30%

of the problems. The run times increase dramatically for small values of p; this is

predominantly due to the necessity of a higher range for the index of contiguity

order, o.

The FlowPRM model optimally solved 50% of the problems. After 3 h, this

model did not find a feasible solution for problems 9 and 10. Compared with the

other models, FlowPRM incurs the lowest run times, but, unlike the TreePRM model,

the run times increase with both n and p.

Figure 4. Number of variables (with
Pn

i¼1 jNi j ¼ 5n) (a) TreePRM ; (b) OrderPRM; (c) FlowPRM.
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In conclusion, the TreePRM and FlowPRM models perform better than the Or-

derPRM model. However, a clear dominant model does not exist. All of the models

require considerable computational resources, even when solving small p-regions

problems.

Figure 5 presents the best-known solutions for each problem. The three sets of

grids (n 5 16, 25, and 49) are grayscale coded according to their respective values

of y such that the lighter the polygon, the lower the value of y. The bold borders in

the grids outline the resulting regions. As expected, the regions capture the spatial

patterns by aggregating areas with similar values. Note that for a given value of n,

the solutions for different values of p are not nested; that is, the solution for p

regions cannot be obtained by merging two regions from the solution for p11

regions. Two areas that are together in an optimal solution at a given scale do not

Figure 5. Best-known solutions of problems 1–10.

Table 4 Computational Experience with CPLEX

Problem n p Best

known

TreePRM OrderPRM FlowPRM

Objective

function

Time

(sec)

Objective

function

Time

(sec)

Objective

function

Time

(sec)

1 16 3 27.42� 27.42 59.33 27.42 3131.03 27.42 0.84

2 16 4 17.34� 17.34 6.61 17.34 240.77 17.34 3.28

3 16 5 10.99� 10.99 0.61 10.99 324.06 10.99 3.59

4 25 3 59.72� 59.72 w 66.64 w 59.72 296.38

5 25 4 37.52� 38.60 w 39.05 w 37.52 4594.53

6 25 6 19.01� 19.01 1439.73 22.35 w 21.40 w

7 49 3 416.11 461.44 w 1075.54 w 416.35 w

8 49 5 226.32 226.32 w 334.22 w 328.17 w

9 49 7 101.36 101.36 w 237.47 w — w

10 49 10 55.32 55.32 w 123.30 w — w

�Optimal (by CPLEX).wRun stopped after 3 h.
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necessarily have to be together in an optimal solution at a different scale (Bunge

1966; Ferligoj and Batagelj 1982). Finally, unlike some algorithms proposed in the

literature, our formulations do not force the regions to be compact; rather the shape of

the regions are driven by the spatial distribution of the variables. This flexibility makes

our models capable of capturing either compact or elongated spatial patterns.

Two methods to reduce the complexity of the p-regions models

As we stated in the introduction, the p-regions problem is an NP-hard problem,

meaning that the time needed to solve a worst-case problem increases substantially

as problem size increases. The results of the previous section indicate why re-

searchers have concentrated on the development of heuristics to solve this prob-

lem, as even small problems may be difficult and time consuming to solve

optimally. Nevertheless, the models proposed here are useful for various reasons.

First, they can be used to establish and test the boundary between problem size and

the use of heuristics versus the use of an optimal approach. Second, they may be

streamlined, resulting in a potential reduction in solution time. In this section we

present two strategies that offer the potential to reduce run times. The first tech-

nique involves the addition of one or more equality constraints that can be added

without affecting optimality, and the second strategy involves solving a problem in

a sequential manner.

Initial seeds

Solutions to the OrderPRM and FlowPRM models involve explicit assignments to k

regions. Given an optimal solution to either the OrderPRM or the FlowPRM model,

simply swapping a group’s region number with another group’s region number can

generate k! equivalent optima. The region number indicates which areas belong to

the same region, but the value of the solution is not dependent on the specific

region number used for a specific region. Thus, there are k! ways in which the

regional groups can be assigned a region number, yielding k! different optimal so-

lutions. This first strategy consists of reducing the set of feasible solutions by es-

tablishing a priori one or a few regional seeds or roots. Without loss of generality,

we can arbitrarily assign area 1 to region 1 and declare it a root or sink of the region.

Because each area must be assigned to a region, and because the OrderPRM and

FlowPRM models do not distinguish any order between regional designations, we

can assign any one area to the first region. This type of constraint is known as an

initial seed. Initial seeds can be used in the OrderPRM and FlowPRM (but not the

TreePRM) model as follows:

1. OrderPRM: the seeds require that a specific area i be the root (i.e., order o is

equal to 0) of a given region k. For example, we can add an additional con-

straint to the original formulation that sets area 1 to be the root of region 1:

x1;0
1 ¼ 1: ð32Þ
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2. FlowPRM: this formulation has two ways to set the initial seed. The first one

requires that a given area i be included in a given region k. The second con-

sists of assigning area i to be the sink of region k. Thus, for area 1 and region 1,

the constraints are as follows:

y1;1 ¼ 1; ð33Þ
w1;1 ¼ 1: ð34Þ

More than one seed can be added, depending on our knowledge of a

problem. For example, we can assign two areas to different regions because they

are located too far from each other, and they are not very similar, implying that the

probability of an optimal solution assigning both areas to the same region essen-

tially is 0.

Recursive cycle-breaking constraints

The second strategy for reducing computational time consists of solving the

p-regions problem in an iterative fashion, where a relaxed model is solved first.

The relaxed model does not contain all of the constraints needed to ensure con-

tiguity. For instance, we can relax the TreePRM model by removing the constraints

that eliminate cycles; that is, the modified MTZ constraints. This model is likely to

take a small amount of computation time to solve but may not necessarily result in a

feasible solution to the p-regions problem as one or more regions may not be con-

tiguous. Rather than include all of the constraints necessary to ensure contiguity

within a region, we can add constraints only when necessary. Regions in the

TreePRM model are not contiguous when a cycle exists in one of the subtrees. We

can prevent a specific cycle from existing in a region’s subtree using the following

constraints: X
i

X
j2Ni

xij � Gj j � 1 8i; j 2 G; ð35Þ

where G is the set of areas involved in the cycle, and jGj is the cardinality of G.

If we add these constraints to the relaxed problem and then resolve it, we

identify a solution that groups areas into regions, and no regional subtree contains

the cycle associated with G. If other cycles exist, we can then identify them and

add cycle-breaking constraints to prevent them as well. We can continue this pro-

cess of adding cycle-busting constraints and resolving the relaxed problem until no

cycles exist in any subtrees. This final solution is optimal and presents a feasible

solution to the p-regions problem. Pseudocode 1 describes the process for applying

this strategy.

Pseudocode 1: Recursive cycle breaking (I, K, cij, Ni, dij)

comment: Reach feasibility by adding cycle-breaking constraints
1: Solve TreePRM without MTZ constraints (9) and (10)
2: Check for cycles that means the solution is infeasible
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3: if infeasible solution

then
add cycle� breaking constraints based on equation ð35Þ

GOTO 1

(

else STOP

return (optimal solution)

Table 5 show the results of solving the 10 problems introduced in the section

‘‘Comparing model size and solution times‘‘ when utilizing the strategies for re-

ducing the complexity of the three models. As can be seen, the run times are sig-

nificantly reduced.

The recursive cycle-breaking strategy proposed for the TreePRM model shows

significant reductions in run times compared with the complete version of the

models. The percentage of optimally solved problems is now 50%. This strategy

performs better when the ratio n/p is small. In such a case, the number of areas per

region tends to be small, and therefore the number of potential cycles also is small.

The number of cycle-breaking constraints confirms this tendency.

An initial seed in the OrderPRM model increases the percentage of optimally

solved problems from 30% to 50%, with a significant decrease in run times. Also,

for those problems that were stopped after 3 h, the objective function value shows

an improvement compared with the solutions obtained with the complete models.

The FlowPRM model also shows improvement when using an initial seed. In this

case, the percentage of optimally solved problems increases from 50% to 60%, and

problems 9 and 10, for which the complete problem was not able to find an initial

solution after 3 h, now have feasible solutions.

The results of the OrderPRM and FlowPRM models show that the time taken to

converge to optimality is a function of the number of alternative optima and that

eliminating the existence of alternative optima with seed constraints reduces com-

putational time substantially.

Conclusions

This article introduces three MIP model formulations for the p-regions problem, a

generic name for any model that aggregates n small areas into p spatially contig-

uous regions. Each of our three models has identical objective functions but uses

one of three different techniques to ensure that all areas within a region are spatially

contiguous. The assurance of spatial contiguity is what makes the p-regions model

difficult to solve using exact methods. However, increased computational re-

sources and a wider availability of parallelized computing, ever-improving opti-

mal solvers, and methods for reducing complexity allow increasingly larger p-

regions problems to be solved optimally.
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Wide availability of disaggregated, georeferenced data give researchers the

ability to customize their area of research, including varying the level of data ag-

gregation and zoning scheme. This customization allows a focus on the appropriate

scale for each study and potentially minimizes the effect of the modifiable areal unit

problem. However, little research has been devoted to models and formal descrip-

tions of how data should be aggregated to maximize the appropriateness of data

aggregation and zoning. We believe that our three MIP p-regions models make a

significant contribution in this respect.

The three MIP models retain a significant advantage over other p-regions prob-

lem methods in the sense that they do not make any assumptions about the shape of

regions. Our approach can generate both compact and elongated regions, captur-

ing the underlying spatial patterns within data. Other models typically rely on ap-

proximate measures for defining regions, such as generating regions based on

minimizing the geographic distance to the centroid or minimizing a region’s pe-

rimeter. Forcing compactness, for example, can be critically detrimental in many

contexts (Duque, Ramos, and Surinach 2007).

Regarding the performance of the models, we found that TreePRM works better

when the ratio n/p is small, whereas OrderPRM and FlowPRM are recommended for those

cases where the ratio n/p is large. Also, when a restriction on running time exists, the

complete TreePRM model appears as the best option to obtain a good feasible solution.

Although during computational experiments, a substantial number of problems

were stopped after their code executed for 3 h, in real applications, most of the p-

regions solutions are meant to last for a long time (e.g., school districts, electoral dis-

tricts, census output areas, among others). This longevity for solutions makes decision

makers more willing to invest days, and even weeks, to find a good solution.

Further research can identify techniques to reduce the complexity and number

of constraints to guarantee spatial contiguity in spatial MIP models. In general, ex-

amination of the spatial distribution of the input data could be used as a guide to

reduce the problem size. Additionally, heuristics can be applied to a problem to

minimize the number of variables and constraints required to represent a MIP

model. Also, for the TreePRM model, a priori known cycles that lead to an objective

value lower than the optimal feasible solution could be used to reduce the number

of times a model needs to be solved in the recursive cycle-breaking procedure.

Acknowledgement

We would like to thank the editor and the three anonymous reviewers for their

insightful and helpful comments during the review process.

Notes

1 To illustrate the significant improvements in run times, Bixby (2002) solved different

instances of a linear problem known as the patient distribution system (Carolan et al.

1990). The biggest instance of this model that was possible to be solved in 1988, the
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pds70, has 114,944 rows, 422,356 columns, and 929,346 nonzeros. Taking CPLEX as a

measure, CPLEX 1.0 (released in 1988) solved this model in 335,292.1 s, while CPLEX 7.1

(released in 2002) dual solved this model in 187.8 s on the same machine, or 1695.1 times

faster.

2 See Batagelj and Bren (1993) for more properties of distance and dissimilarity measures.

3 See Fischer (1980) for other regional homogeneity measures.

4 dij can be extended to include more than one variable (e.g., mean housing price and mean

housing age), or more than one time period for a variable (e.g., gross domestic product for

year t, t11, . . .).

5 The decision variable tij takes the same values in the six solutions:

t1, 2 5 t1, 3 5 t1, 6 5 t2, 3 5 t2, 6 5 t3, 6 5 t4, 5 5 t4, 7 5 t4, 8 5 t4, 9 5 t5, 7 5 t5, 8 5 t5, 9 5 t7, 8 5

t7, 9 5 t8, 9 5 1. Therefore, the objective function value is the same: 1222.8.

6 This condition would not work without the additional constraint requiring that each area

cannot have more than one leaving node.

7 In our examples, we use a rook criterion of contiguity where adjacent areas are neighbors

if they share a common edge. This spatial contiguity relationship is captured by the

parameter cij that appears in our three formulations.

8 Note that this property can be further analyzed with the aim of finding a way to reduce the

maximum value, q 5 n� p� 1, that the index o can take in our formulation. A reduction in

this value can drastically reduce run times.

9 Depending on the location of a sink, the region can have several flow strings arriving to the

sink (this is the case of region 1 in the solution on the left) or a unique string that flows

through all of the areas in a region before arriving to the sink (this is the case of region 1 in

Fig. 2e).

10 Simulating the values of y as SAR processes with r5 0.7 ensures that y shows spatial

patterns;that is, areas with high (low) values tend to be surrounded by areas with high

(low) values. Those patterns should be captured by our models because they seek to

aggregate into a region those areas with similar values in order to minimize the

heterogeneity within each region, H(Ck).

11 We used the Euclidean distance to calculate the dij values.
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