IMPLEMENTACIÓN DE UN SISTEMA DE ACONDICIONAMIENTO ELÉCTRICO PARA LA LÍNEA DE BUJES HUECOS

Por
Jessica Vásquez Blandón

Asesor del proyecto de investigación
Deysi Echeverry

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍAS
DEPARTAMENTO DE INGENIERÍA DE PROCESOS
MEDELLÍN
2013
IMPLEMENTACIÓN DE UN SISTEMA DE ACONDICIONAMIENTO ELÉCTRICO PARA LA LÍNEA DE BUJES HUECOS

Jessica Vásquez Blandón

Trabajo de grado para optar al título de Ingeniero de Proceso

Asesor
Deysi Echeverry
Ingeniera Química

Co-Asesor
Diego Acosta
Ingeniero Químico

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍAS
DEPARTAMENTO DE INGENIERÍA DE PROCESOS
MEDELLÍN
2013
NOTA DE ACEPTACIÓN

PRESIDENTE DEL JURADO

JURADO

JURADO

Medellín, 2013.
AGRADECIMIENTOS

A la ingeniera Deysi Echeverry, asesora del proyecto.

Al Ingeniero Diego Acosta, Co-asesor del proyecto.

A los Auxiliares de Procesos, por toda la colaboración y apoyo.

A Gamma Aisladores CORONA, por facilitar el uso de sus instalaciones para la elaboración del proyecto.

A mi familia por toda el apoyo y la paciencia que me tuvieron durante este proyecto.
Contenido

1. INTRODUCCIÓN .. 10
2. RESUMEN... 10
3. MARCO TEÓRICO .. 11
 3.1 Cerámica .. 11
 3.2 Clasificación de las cerámicas .. 11
 3.2.1 Cerámica tradicional: ... 11
 3.2.2 Productos estructurales de la arcilla: .. 12
 3.2.3 Refractarios: ... 12
 3.2.4 Abrasivos.. 12
 3.3 Material cerámico ... 13
 3.4 Aisladores Eléctricos ... 14
 3.4.1 Tipos de aisladores de porcelana.. 16
 3.4.1.1. Aislador de línea tipo poste (line post) ... 16
 3.4.1.2. Aislador tipo suspensión ... 16
 3.4.2 Plasticidad en Aisladores Eléctricos ... 17
 3.5 Resistencia eléctrica ... 18
 3.6 Efecto Joule-Thomson en circuitos eléctricos .. 19
 3.6.1 Secado Eléctrico ... 20
 3.7 Diseño Estadístico de Experimentos del proyecto .. 21
4. PLANTEAMIENTO DEL PROBLEMA .. 22
5. PREGUNTAS DE INVESTIGACIÓN ... 22
6. OBJETIVO GENERAL ... 23
7. OBJETIVOS ESPECÍFICOS .. 23
8. ALCANCE .. 24
9. ANALISIS Y RESULTADOS ... 24
 9.1 Mapa de Procesos ... 24
 9.2 Mapeo de Humedades Antes y Después de Acondicionamiento Eléctrico 26
 9.3 Realización de un estudio comparativo de variabilidad para los instrumentos de medición de dureza de la pasta ... 27
 9.3.1. Análisis GAGE R&R.. 27
Lista de Figuras

Figura 1. Aislador tipo Line Post (CANO, 2005) .. 16
Figura 2. Aislador tipo Suspensión (CANO, 2006) .. 17
Figura 3. Representación de una Resistencia eléctrica (Rollo Cerámico) en un circuito ... 19
Figura 4. Esquema de Acondicionamiento de rollos macizos en Gamma Aisladores. 20
Figura 5. Proceso de Acondicionado al ambiente ... 26
Figura 6. Proceso de Acondicionado eléctrico .. 26
Figura 7. Mapeo de humedades en Acondicionamiento Eléctrico .. 27
Figura 8. Gage R & R. Penetrómetro digital .. 29
Figura 10. Gage R & R. Penetrómetro análogo de 7 mm .. 30
Figura 11. Gage R & R. P. análogo 7 mm, Informe resume .. 31
Figura 12. GAGE R & R. Penetrometro Digital .. 32
Figura 13. GAGE R & R. P. Digital, Informe resumen ... 33
Figura 14. GAGE R & R. Penetrómetro análogo de 3 mm ... 34
Figura 15. GAGE R & R. P. análogo de 3 mm, informe resumen ... 34
Figura 16. Capacidad de proceso a la salida de la amasadora .. 36
Figura 17. Capacidad de proceso antes de Acondicionamiento eléctrico 37
Figura 18. Capacidad de proceso después de Acondicionamiento Eléctrico 38
Figura 19. Diagrama de Pareto de efectos ... 41
Figura 20. Gráfico de cubos del DOE ... 42
Figura 21. Gráfico de interacción de Durezas ... 43
Figura 22. Gráfico de efectos principales para dureza .. 43
Figura 23. Diagrama de Pareto de efectos % Rotura ... 44
Figura 24. Gráfico de cubos % Rotura .. 45
Figura 25. Gráfica de interacción % Rotura .. 45
Figura 26. Gráfica de efectos principales % Rotura ... 46
Figura 27. Zona 1 de almacenamiento al ambiente de rollos huecos 46
Figura 28. Zona 2 de almacenamiento al ambiente de rollos huecos 47
Lista de Tablas

Tabla 1. Compuestos cerámicos sencillos con su punto de fusión (Marshall, 1986) 14
Tabla 2. Diseño de Experimentos ... 21
Tabla 3. Diseño de Experimentos Real .. 39
Tabla 4. Curva de tiempo de 65 min. .. 40
Tabla 5. Curva de tiempo de 50 min. .. 40
Tabla 6. Diseño de Experimentos MINITAB, Variable respuesta (Dureza) 41
Tabla 7. Diseño de experimentos MINITAB. % de rotura 44
Lista de Anexos

ANEXO 1. FOTO PENETROMETRO DIGITAL .. 54
ANEXO 2. FOTO PENETROMETRO ANALOGO DE CABEZA DE 7MM 54
ANEXO 3. FOTO PENETROMETRO ANALOGO DE CABEZA DE 3MM 55
ANEXO 4. GRÁFICA DE NORMALIDAD VARIABLE RESPUESTA DUREZA 55
ANEXO 5. GRÁFICA DE NORMALIDAD VARIABLE RESPUESTA % ROTURA 56
1. INTRODUCCIÓN

Gamma - Aisladores Corona es una empresa que fabrica y comercializa aisladores para las empresas de energía eléctrica, fabricantes de equipos originales (OEM) y los distribuidores del sector eléctrico.

En Gamma la producción de los aisladores requiere de variables críticas que pueden cambiar en cada etapa del proceso y que afectan la calidad del producto terminado.

La línea de bujes demanda casi el 50% de producción en la compañía, por esto es de gran importancia la implementación de un sistema de acondicionamiento eléctrico para la línea de bujes huecos, con el cual se pueda llegar a estandarizar, controlar y asegurar una de las variables críticas (dureza) la cual es asociada a algunos defectos en la producción, de esta manera se busca tener un control más estricto de esta variable crítica, además de aumentar el flujo de producción, disminuir inventario y porcentaje de rotura rollo antes de formación en húmedo.

Además se pretende generar y documentar bases teóricas sobre este fenómeno.

2. RESUMEN

Este trabajo consiste en la implementación de un sistema de acondicionamiento eléctrico para la línea de bujes huecos en la empresa Gamma Aisladores, con el cual se pretende reducir la alta variabilidad de dureza en la pasta (variable crítica del proceso), aumentar el flujo de producción y disminuir inventarios.

Con el fin de contribuir a la estandarización de los procesos y a la reducción de costos en la empresa, se busca obtener un mejor control del proceso y de sus variables críticas.
Finalmente, este proyecto con la optimización de un sistema de acondicionamiento eléctrico, busca contribuir en el aspecto económico de la empresa, e involucrar el tema de infraestructura, ya que actualmente deben disponerse de áreas muy grandes para el almacenamiento del inventario.

3. MARCO TEÓRICO

3.1 Cerámica

Tradicionalmente se ha definido a la cerámica como el arte de fabricar objetos de arcilla cocida. Esta definición debe su origen a que las primeras cerámicas que el hombre conoció y trabajó fueron materiales arcillosos que encontró en la naturaleza, a los cuales solo tuvo que agregarles agua para poder moldearlos. Sin embargo, pronto se descubrió que si la arcilla naturalmente obtenida se mezclaba con otros materiales, se mejorarían sus características antes y después de la quema. Las arcillas requieren ser moldeadas en crudo y después ser expuestas al fuego para su endurecimiento, convirtiéndose así en materiales cerámicos. (MALAGÓN, 2005)

3.2 Clasificación de las cerámicas

Se han desarrollado nuevos productos como resultado de la demanda de materiales con resistencia a altas temperaturas y presiones que tienen propiedades mecánicas superiores, con características eléctricas especiales o con resistencia a la corrosión química. Los productos convencionales cerámicos se dividen en:

3.2.1 Cerámica tradicional: Debido a que la cerámica en general es el resultado de una mezcla de sustancias minerales, los tipos de pastas o cuerpos cerámicos y las características de cada uno son numerosas, clasificándose en: Porcelana blanda, Porcelana de huesos, Porcelana dura. (Austin, 1984)
- **Porcelana Blanda**: Es fundamentalmente una pasta de tamaño de partícula fina, de color blanco muy resistente. Su nombre se debe a su temperatura de quema, no excede los 1300°C, fue desarrollada y fabricada inicialmente en Europa, para simular la porcelana china. (MALAGÓN, 2005)

- **Porcelana de Huesos**: Puede considerarse también como una porcelana blanda es una pasta de color marfil muy resistente al impacto. Su principal característica es la translucidez, la cual se debe al alto contenido de cenizas de hueso. (MALAGÓN, 2005)

- **Porcelana Dura**: Cocida a altas temperaturas (1300°C- 1450°C), preparada con materiales de alta selección, resulta ser una pasta muy dura y resistente. (MALAGÓN, 2005)

3.2.2 **Productos estructurales de la arcilla**: Un ejemplo son los ladrillos de construcción, que se hacen de varias arcillas de bajo costo, contienen sílice y materia granular, disponible ampliamente en depósitos naturales. Se forman por presión y cocción a bajas temperaturas. (AUSTIN, 1984)

3.2.3 **Refractarios**: Son aquellos materiales cuyas propiedades permiten que puedan soportar temperaturas muy elevadas, sin embargo estos deben de resistir una temperatura específica, sin sufrir ningún tipo de deterioro en sus condiciones internas. Por ejemplo Ladrillos, ladrillos de magnesita; productos de aluminio, silicato y alúmina. (REED, 1938)

3.2.4 **Abrasivos**. Es una sustancia que tiene como finalidad actuar sobre otros materiales con diferentes clases de esfuerzo mecánico: triturado, molienda, corte, pulido. Es de elevada dureza y se emplea en todo tipo de procesos industriales. Los materiales cerámicos usados para productos abrasivos como piedras de esmeril y papel de lija, son alúmina y carburo de silicio. (GROOVER, 1997)
3.3 Material cerámico

Un material cerámico es un sólido técnicamente procesado no metálico de naturaleza inorgánica, de estructura policristalina, aunque en ocasiones puede ser monocristalina, constituido por aglomeración de granos por medio de un proceso de sinterización o cocción. El tratamiento térmico define en parte lo que es un cerámico. Los cerámicos son útiles por su alta resistencia mecánica, a pesar de su inherente fragilidad. (GÜETO, 2005). Sus enlaces iónicos o covalentes les confieren una alta estabilidad y son resistentes a las alteraciones químicas. A temperaturas elevadas pueden conducir iónica-mente, pero muy poco en comparación con los metales (MARSHALL, 1996).

Son generalmente aislantes. Tienen una amplia gama de propiedades mecánicas, sin embargo, su comportamiento mecánico real suele ser menos predecible que el de los metales, por eso su uso en aplicaciones críticas es muy limitado, existiendo sin embargo cerámicos de alta ingeniería ideados para usos muy específicos, como turbinas de avión para citar un ejemplo. Comúnmente los cerámicos son duros, frágiles, con alto punto de fusión y baja conductividad eléctrica y térmica, buena estabilidad química y térmica, y altas resistencias a la compresión (GORTHY, 1999).

Estos materiales tienen variadas aplicaciones que van desde cosas simples, como la alfarería hasta las losetas que protegen un trasbordador espacial y aisladores eléctricos de alta tensión que han ganado un espacio importante en aplicaciones de alta ingeniería.

Los cerámicos poseen una temperatura de fusión alta (tabla 1) y una estabilidad química en medios agresivos por sus fuertes enlaces. Debido a las características de estos enlaces, las propiedades de los cerámicos pueden variar mucho, en general, los materiales cerámicos son duros y frágiles, de baja tenacidad y ductilidad. Además, se comportan usualmente como buenos aislantes eléctricos y térmicos debido a la ausencia de electrones (OSPINA, 2002). Por estas propiedades, los materiales cerámicos son indispensables para muchos de los diseños en ingeniería, en especial en las tecnologías de punta.
Tabla 1. Compuestos cerámicos sencillos con su punto de fusión (Marshall, 1986)

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Punto de fusión °C</th>
<th>Compuesto</th>
<th>Punto de fusión °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carburo de Hafnio, HfC</td>
<td>4150</td>
<td>Carburo de boro, B4C</td>
<td>2450</td>
</tr>
<tr>
<td>Carburo de titanio, TiC</td>
<td>3120</td>
<td>Oxido de aluminio, Al2O3</td>
<td>2050</td>
</tr>
<tr>
<td>Carburo de wolframio, WC</td>
<td>2850</td>
<td>Dióxido de silicio, SiO2</td>
<td>1715</td>
</tr>
<tr>
<td>Oxido de magnesio, MgO</td>
<td>2798</td>
<td>Nitruro de silicio, Si3N4</td>
<td>1900</td>
</tr>
<tr>
<td>Carburo de silicio, SiC</td>
<td>2500</td>
<td>Dióxido de titanio, TiO2</td>
<td>1605</td>
</tr>
</tbody>
</table>

Los materiales cerámicos usados en aplicaciones de ingeniería pueden clasificarse en dos grupos, materiales cerámicos tradicionales y cerámicos de ingeniería. Ejemplos de cerámicos tradicionales son los ladrillos y tejas usados en la industria de la construcción y las porcelanas de uso en la industria eléctrica. Los cerámicos de ingeniería, tienen gran aplicación en los sectores aeroespacial, en informática telecommunicaciones y en redes eléctricas. (MOUSTAFA, 1997)

3.4 Aisladores Eléctricos

La mayor ventaja que tienen los materiales cerámicos como aisladores es su capacidad de operar a altas temperaturas sin que se genere una degradación peligrosa en sus propiedades químicas, mecánicas o dieléctricas. La porcelana triaxial es la más comúnmente usada para aisladores y está compuesta de mezclas de feldespatos, Caolines y cuarzo (BUCHANAN, 1991).

La composición de las materias primas para las porcelanas triaxiales es generalmente 40-60% de arcillas, 20-35% de feldespatos y de un 20-30% de cuarzo. Además del caolín, arenas y en algunos casos Alúmina. Cada uno de estos materiales le da diferentes características a la porcelana cocida (JONES, 1972).
Arcillas: Es el elemento principal que confiere a la pasta, además de otras. Sus dos características principales: la plasticidad y la capacidad de endurecerse después de la quema. Durante el secado se contrae provocando agrietamientos y deformaciones. Su principal propiedad es la plasticidad (Con interacción con el agua). (MALAGÓN, 2005)

Feldespato: Es el mineral más abundante en la corteza terrestre, Las principales aplicaciones del feldespato se encuentran en la industria del vidrio y la cerámica. Los feldespatos se consideran como la solución sólida de tres componentes: ortoclasa u ortosa, albita y anortita. (GALAN, 2006)

Estos minerales presentan alguna plasticidad pero muy baja, por eso se pueden considerar antiplásticos o desgrasantes, además como funden o sinterizan a las temperaturas comunes en el proceso cerámico se usan principalmente como fundentes. (BERNAL, 2003)

Arena: Es un elemento granular, compuesta por partículas muy finas de rocas y minerales. La arena blanca, por ejemplo, es piedra caliza erosionada, y puede contener también, fragmentos de conchas y coral. También se encuentran, la arena de yeso, la arcosa, con gran contenido de feldespato, las micas y las magnetitas. Para reconocer los componentes en la arena, se puede observar el color de las partículas. Por ejemplo, la mica se presenta de color amarillo pálido; el cuarzo no presenta color; el feldespato puede ser rojo, blanco, rosado, amarillo y verde; finalmente, la magnetita, es negra de brillo metálico. El color de la arena es determinado por el mineral predominante. En la industria cerámica la arena aporta control de contracción. (CEAC, 2001)

Caolín: Este es un material arcilloso formado por la alteración de feldespato con bajo contenido de hierro, de tonalidad amarilla cremosa. Está formado fundamentalmente por caolinita. Estos materiales se presentan generalmente con impurezas que es necesario retirar mediante un proceso de beneficio. Aportan plasticidad en los procesos de formación y resistencia mecánica. (Corona, 2012)
Alúmina: es el óxido de aluminio (Al₂O₃). Junto con la sílice, ingrediente importante en la constitución de las arcillas y los barnices, les aporta resistencia mecánica. (GAMMA, 2008)

3.4.1 Tipos de aisladores de porcelana

La forma y las dimensiones de los aisladores de porcelana son muy variadas. Sin embargo, en virtud de que en las capas gruesas no es uniforme el secado y la resistencia mecánica y la rigidez dieléctrica disminuyen cuando el espesor es muy grande, se recomienda evitar las piezas de porcelana gruesas y macizas. Existen diversas referencias en la producción de aisladores de porcelana, pero estos se clasifican en dos líneas, la de bujes o línea tipo poste o la de pines y suspensiones. Teniendo ambos aplicaciones en la industria eléctrica de alta o baja tensión. (CANO, 2006)

3.4.1.1. Aislador de línea tipo poste (line post)

Se emplea habitualmente como aislador soporte sobre crucetas de madera, hormigón o metal. Ocasionalmente se le usa para fijar puentes al vuelo o bajadas en subestaciones bajas (Figura 1).

![Figura 1. Aislador tipo Line Post (CANO, 2005)](image)

3.4.1.2. Aislador tipo suspensión

Es un aislador que se emplea como suspensión y anclaje de terminales de líneas de distribución y en subestaciones aéreas de distribución (Figura 2). Las cadenas de los aisladores de suspensión pueden ser de alineación que
sirven para suspender los cables en los postes intermedios, y tensores o de amarre que los sujetan de las torres de amarre (CANO, 2005).

Figura 2. Aislador tipo Suspensión (CANO, 2006)

3.4.2 Plasticidad en Aisladores Eléctricos

El estado plástico necesario para la conformación de los cuerpos cerámicos, cuya naturaleza definitiva se “fija” en la cocción, puede entenderse como intermedio entre un sólido y un líquido viscoso. En un líquido, aplicando una presión, se produce la fluencia, de acuerdo con las limitaciones y las caracterizaciones; si se aplica una presión a un sólido, este no presenta cambios apreciables hasta que, superada su carga de rotura, se rompe; una pasta con características plásticas presenta un comportamiento intermedio, como es en el caso de los materiales extruidos, los cuales están preparados a partir de pasta y agua, mediante la aplicación de fuerzas que obligan al material a pasar por una boquilla: el material se desplaza, con una velocidad proporcional a la presión aplicada, durante el tiempo de su aplicación, aunque no es un líquido, ya que conserva su propia forma. (REED, 1938)

En el caso del material cerámico prensado “en seco” (con contenidos de humedad aproximadamente entre 3 y 6%), no se puede hablar de propiedades plásticas reales de la pasta, ya que la composición mineralógica de los componentes y la cantidad de agua presente tienen una importancia crítica en el éxito del proceso de conformación por prensado. La plasticidad en estos sistemas semiplásticos se encuentra asociada a la formación de una película de agua de un cierto espesor alrededor de cada grano individual de material. En el caso de una cantidad excesiva de agua, existe la presencia de un segundo estrato de agua libre, que no interacciona con las partículas sólidas o los
caciones presentes en las zonas de fractura, que permite otro tipo de flujo, perjudicial para la plasticidad del sistema; si, por el contrario, el contenido de agua es inferior a lo necesario, las partículas individuales entran en contacto entre sí, generando fenómenos de rozamiento que destruyen toda propiedad plástica del material. Por consiguiente, la plasticidad del sistema está ligada a un sutil equilibrio, en función del contenido de agua y del área superficial humectable. (REED, 1938)

La eliminación de agua de las arcillas se debe hacer lentamente, ya que cualquier cambio agresivo en la pasta puede ocasionar grietas en el aislador cerámico, sin embargo se debe conservar la plasticidad pues en el momento del prensado y del formado se es de vital importancia. (REED, 1938)

3.5 Resistencia eléctrica

Es la oposición que ofrece un cuerpo al paso de la corriente eléctrica. Dependiendo del material y de aspectos constructivos (dimensiones físicas). Según su comportamiento al paso de la corriente eléctrica, los materiales se clasifican en:

- **Aislantes**: no permiten el paso de la corriente o presentan una elevada resistencia.
- **Conductores**: permiten el paso, aunque con una cierta resistencia.
- **Superconductores**: ofrecen una resistencia nula.

A mayor resistencia, más difícil es el paso de corriente. Todos los materiales tienen una cierta resistencia, de tal manera que en cualquier circuito eléctrico habrá resistencias presentes. (Kemmerly, 1995)

La resistencia eléctrica se define también como la propiedad de un objeto o sustancia de transformar energía eléctrica en otro tipo de energía de forma irreversible, generalmente calor. (Kemmerly, 1995)

En la (figura 3), se muestra un circuito eléctrico, donde el rollo cerámico representa la resistencia.
Figura 3. Representación de una Resistencia eléctrica (Rollo Cerámico) en un circuito.

Es en este caso donde se presenta lo que se conoce como Efecto Joule-Thomson. (GAMMA, 2008)

3.6 Efecto Joule-Thomson en circuitos eléctricos

Se habla de potencia gastada, potencia consumida o potencia que hay que entregar, cuando una corriente circula por una resistencia. Esta potencia es la energía disipada por el rozamiento de las cargas contra el cable, es energía que se libera en forma de calor. A este calentamiento de los cables cuando circula una corriente eléctrica se le llama efecto calórico o "Efecto Joule en honor al físico inglés que determinó sus leyes. (Nilsson, 2005)

Este efecto es utilizado para calcular la energía disipada en un conductor atravesado por una corriente eléctrica de la siguiente manera:

\[
\begin{align*}
P &= V \cdot I \\
E &= P \cdot t
\end{align*}
\]

\[E = V \cdot I \cdot t\]

La potencia \(P\) disipada en un conductor es igual a la diferencia de potencial \(V\) a la que está sometido multiplicada por la intensidad de corriente \(I\) que lo atraviesa.
La energía desarrollada E es el producto de la potencia P por el tiempo t transcurrido, luego la energía E es el producto de la tensión V por la intensidad I y por el tiempo t.

Si a esta expresión añadimos la Ley de Ohm tendremos:

$$
\begin{align*}
E &= V \cdot I \cdot t \\
I &= \frac{V}{R}
\end{align*}
\longrightarrow
\begin{align*}
E &= I^2 \cdot R \cdot t \\
E &= \frac{V^2}{R} \cdot t
\end{align*}
$$

La energía desarrollada es igual al cuadrado de la intensidad por la resistencia y por el tiempo. (Nilsson, 2005)

3.6.1 Secado Eléctrico

Cuando circula una corriente eléctrica a través de una resistencia se presenta el **Efecto Joule**, aumentando la temperatura del material, por lo tanto la resistencia, o para el caso de nosotros el rollo (el cual cumple la función de una resistencia), se calentará en la parte interna así como en la externa dando como resultado un aumento en la homogeneidad del rollo, secándolo de adentro hacia fuera y llevándolo de una humedad inicial h_1 a una humedad final h_2 mucho menor que la inicial. En la figura 4 se muestra el proceso actual de la empresa Gamma Aisladores para acondicionar bujes macizos eléctricamente. (Gamma, 2008)

![Figura 4. Esquema de Acondicionamiento de rollos macizos en Gamma Aisladores.](image)
3.7 Diseño Estadístico de Experimentos del proyecto

Inicialmente se realizará un diseño de experimentos factorial completo 2^2 y con las siguientes variables del proceso:

Factores a controlar:

- Referencias: Rollos de diferente longitud y diámetro.
- Tiempo: Curva de tiempo en minutos del paso de corriente.

Variable Respuesta:

- Dureza (Calidad del rollo cerámico)

<table>
<thead>
<tr>
<th>Ensayos</th>
<th>Referencia</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Variable 1: Referencia

- **Positivo:** Referencia Grande (610 mm de altura)
- **Negativo:** Referencia pequeña (5000 mm de altura)
Variable 2: Curva de Tiempo

- **Positivo:** 65 min, por ciclos.
- **Negativo:** 50 min, corridos.

4. PLANTEAMIENTO DEL PROBLEMA

Actualmente se presenta variabilidad en la dureza de los rollos en la formación de bujes huecos, ya que las condiciones de ambientación que estos necesitan dependen del clima y del tiempo que estos permanezcan almacenados antes de ser formados. Por esta razón algunos de estos rollos pierden sus condiciones de trabajabilidad y deben desecharse. En el 2012 el porcentaje de rotura rollo fue 6.64%, que equivale a $42.546.717. La empresa incurre además en costo de inventarios y de infraestructura (áreas de almacenamiento grandes y mantenimiento locativo de las mismas).

El proyecto surge para darle solución a esta necesidad con la optimización de un sistema de acondicionamiento eléctrico con condiciones controladas, que permita la reducción de inventarios y por consiguiente del área empleada actualmente para el almacenamiento de rollo antes de formación.

5. PREGUNTAS DE INVESTIGACIÓN

✔ ¿Será posible reducir la variabilidad de la dureza y llevar a cabo un control de la humedad, de tal manera que se vea reflejado en la disminución del porcentaje de rotura del rollo?

✔ ¿Existe una correlación directa entre las variables del proceso humedad y dureza del rollo al final de acondicionamiento eléctrico?

✔ ¿Cuáles deben ser las condiciones finales de la dureza en las que deben encontrarse los rollos antes del acondicionamiento eléctrico?
¿Qué impacto económico tiene la disminución de rotura en rollos acondicionados eléctricamente en la empresa Gamma Aisladores al finalizar el proyecto?

6. OBJETIVO GENERAL

Implementar un sistema de acondicionamiento eléctrico para la línea de bujes huecos en la empresa Gamma Aisladores, que reemplace el acondicionamiento de rollos al ambiente.

7. OBJETIVOS ESPECÍFICOS

Analizar la variabilidad de las durezas de los rollos después del acondicionamiento eléctrico, con el fin de reducirlas y así obtener las condiciones adecuadas de formación.

Desarrollar un mapeo de las humedades de los rollos en el acondicionamiento eléctrico, para determinar el % de disminución para esta variable con la implementación del método, teniendo registrados los valores antes y después del paso del rollo por el acondicionamiento eléctrico.

Diseñar las curvas (Tiempo) de acondicionamiento eléctrico de las diferentes referencias para reducir el acondicionamiento al ambiente, con un análisis entre calidad y productividad.

Evaluar la reducción de costos del proyecto y el impacto en los indicadores de la compañía, para determinar cuánto es el costo beneficio de este proyecto para la empresa Gamma Aisladores.
8. ALCANCE

Al finalizar el proyecto se espera tener claro el comportamiento de la variabilidad de la dureza y la humedad en los rollos de pasta en el proceso de acondicionamiento para la línea de bujes huecos, con el fin de disminuir esta variabilidad, para así poder aumentar el flujo de producción, disminuir inventarios y reducir las áreas de almacenamiento, buscando implementar un sistema de acondicionamiento eléctrico con el cual se pueda controlar y asegurar las condiciones de humedad y dureza con una norma determinada.

Al final del proyecto se hará entrega a Gamma Aisladores y a la Universidad EAFIT el desarrollo del trabajo llevado a cabo. (Informe escrito, artículo científico, recomendaciones de proceso)

9. ANALISIS Y RESULTADOS

9.1 Mapa de Procesos

A continuación se describe el proceso para realizar un aislador eléctrico y se muestra el proceso actual, y el propuesto en este trabajo: el proceso actual en el cual los rollos de pasta se acondicionan al ambiente y se dejan de 24 a 48 horas para luego ser formados en húmedo (Figura 5), y el proceso 2 que es con el Acondicionamiento eléctrico de los rollos de pasta, con un tiempo de 1 a 2 horas para ser formados.

Preparación pasta: Inicia el proceso con la mezcla de las materias primas: arcilla, arena, feldespato, caolín, y en algunos casos alúmina.

Filtroprensado: El principio básico del filtroprensado es aumentar el contenido de los sólidos, disminuyendo el contenido de agua.

Amasado: Cuando las arcillas se mezclan con agua, adquieren alta plasticidad y flexibilidad y pueden ser moldeadas sin agrietamientos. La consistencia de la masa hidroplastia debe ser lo suficientemente fuerte para permitir la formación de la pieza. La técnica más común de formación hidroplastia es la extrusión, en
la que los rollos que salen de la filtroprensa son cortados y forzados a pasar por un orificio con el diámetro deseado.

Acondicionamiento eléctrico: proceso en el cual se pasa corriente eléctrica por los rollos por cierto tiempo determinado, dependiendo de su diámetro y longitud. Pasando de acondicionar los rollos al ambiente 48 horas, a 2 horas con este proceso.

Formación: Es en esta parte del proceso donde se forman los bujes en tornos, dependiendo de la referencia (especificaciones del cliente).

Secado: después de la formación de la pieza el agua debe removese del cuerpo de la pieza antes de quemarla. La contracción es un problema durante este proceso porque el agua aporta volumen a la pieza y cuando se retira, el volumen se reduce.

Esmaltado: el esmalte es una sustancia de estructura vítrea, que se aplica en forma de una fina capa sobre el soporte cerámico, que con la cocción funde la capa de polvo formando una masa compacta.

Cocción: proceso térmico controlado, que tiene como fin convertir el material moldeado en un producto duro, resistente al agua y a los productos químicos.

Pruebas: se realizan diferentes pruebas de chequeo, chequeo a la flexión, chequeo eléctrico, chequeo mecánico, entre otras.
9.2 Mapeo de Humedades Antes y Después de Acondicionamiento Eléctrico

La humedad es una variable del proceso a la cual se le realiza un seguimiento, ya que está directamente relacionada con la contracción final de la pieza. La humedad disminuye un 1% con el paso de los rollos en el acondicionamiento eléctrico.

Estas mediciones de humedad se tomaron de diferentes rollos de pasta antes y después del acondicionamiento eléctrico, la cual fue medida tomando 10 g del material y posteriormente secarlo hasta peso constante:

\[
%H = \frac{W_{humedo} - W_{seco}}{W_{humedo}} \times 100
\]

En la figura 7 a continuación se muestra un gráfico realizado en el software SIGMA XL, en el cual se puede observar una disminución de humedad a la salida del acondicionamiento eléctrico con respecto a los datos de entrada, además notándose una reducción en la variabilidad de la misma.
9.3 Realización de un estudio comparativo de variabilidad para los instrumentos de medición de dureza de la pasta.

9.3.1. Análisis GAGE R&R

Para establecer si un sistema de medición es bueno para controlar una variable de un proceso se requieren tener claridad sobre que variación es debida al proceso y cual debida a la mano de obra y método de medición.

Variación del proceso: Esta se debe a la variabilidad propia de las partes y de la medición, se requiere un valor típico al menos de 10 mediciones. En este caso no se cuenta con valores históricos por lo que se realizara un análisis a muestras puntuales.

Variación de la medición: Se debe realizar el análisis mínimo con tres operadores y con 10 mediciones de modo que se tenga buena claridad sobre la reproducibilidad y repetibilidad del sistema. Idealmente más del 50% de las mediciones debe ubicarse por fuera de los límites de control del proceso de modo exista buena variación de las partes, además ninguna medición debe estar por encima del límite de control superior.
Se realizaron dos análisis de instrumentos de medición para dos instancias diferentes del proceso, la primera de ellas es la etapa previa al acondicionamiento eléctrico posterior al amasado de los bujes, la segunda es la etapa de formación de bujes en húmedo.

Para ambos estudios se utilizó una metodología similar, se escogieron 3 operadores familiarizados con el proceso y con el método de mediciones, además se seleccionaron 15 rollos para cada etapa del proceso cuidando que tuvieran un amplio rango de durezas tanto dentro de la norma, como fuera de ella para evitar que la variabilidad de proceso recayera solo en los operadores. Para la primera parte del estudio se evaluó un penetrómetro análogo con cabeza de 7 mm y uno de tipo digital basado en una celda de carga. Para la segunda etapa se evaluó un penetrómetro análogo de 3 mm y el mismo penetrómetro digital previamente citado.

9.3.2 GAGE R&R – Antes de Acondicionamiento eléctrico

9.3.2.1 Penetrómetro digital (Ver Anexo 1)

A nivel general se puede concluir de este instrumento que tiene una pobre reproducibilidad que aporta el 40.11% de la variación total; éste dato se genera porque las variaciones ocurren cuando una misma persona mide dos veces el mismo rollo (62%) y obtiene valores diferentes entre sí.

Se presenta también una baja repetibilidad que aportan un 36.18 % de la variación. La variación generada cuando los operadores miden el mismo elemento es del 74.3 %, es decir que las mediciones son considerablemente diferentes entre sí.

En conclusión el penetrómetro digital genera el 54% de la variación total del sistema de medición, lo que no es aceptable pues se considera como máximo valor permisible un 30%.
9.3.2.2 Penetrómetro análogo 7 mm (Ver Anexo 2)

El penetrómetro análogo con cabeza de 7 mm presenta mejores resultados de reproducibilidad y repetibilidad con valores de 16.31 y 26.51% respectivamente.
El componente prueba- repetición de prueba (repetibilidad) que evalúa la variación generada cuando un operador mide el mismo elemento más de una vez tiene un valor del 61.5 %.

Idealmente la variación causada por las partes debe ser mucho mayor que aquella causada por la medición; para asegurar que exista buena variabilidad en las partes más del 50% de los datos debe estar por fuera de los límites de control; en este caso el valor fue de 88.1% lo que cumple con el mínimo establecido y es mejor que el 42.9 % presentado en la prueba del penetrometro digital.

Las gráficas de caja y de interacción operador-parte presentan menores valores de variación existiendo menor desfase entre los operadores en la primera y un comportamiento similar de las tres líneas en el segundo caso.

En conclusión el penetrometro análogo de 7 mm genera un 26.5% de la variación total del proceso, lo que es aceptable; además de ser considerablemente mejor que el 54% obtenido por el digital.

Figura 10. Gage R & R. Penetrómetro análogo de 7 mm.
En resumen, el penetrómetro análogo con cabeza de 7 mm es un instrumento más apto para evaluar el rendimiento del proceso generando un 26.1 % de la variabilidad total contra un 49.2 % del penetrómetro digital. Además es un equipo mucho más fácil de usar al ser más ergonómico, tener un menor peso y no requiere de baterías para su funcionamiento.

El penetrómetro digital es un dispositivo basado en una celda de carga y que por ende debería presentar una alta precisión a la hora de medir durezas, sin embargo su alta sensibilidad lo vuelve sujeto de variabilidad por errores pequeños en el método de medición y tiende a cambiar dependiendo de la posición y la fuerza que haga el operador. El penetrómetro análogo por el contrario funciona con un resorte calibrado y presenta mayor robustez frente al método de medición resultando en menor variabilidad, sin embargo por tratarse de un dispositivo mecánico debe ser revisado y calibrado con mayor frecuencia.

9.3.4 GAGE R&R – Después de Acondicionamiento Eléctrico

9.3.4.1 Penetrometro digital
Para asegurar que la variación en el proceso se deba a las partes y no al método de medición, más del 50% de los datos se debe encontrar por fuera de los límites de control en la gráfica de X barra, sin embargo en este caso solo el 27.5% de los datos se sitúa por fuera. Además en la gráfica R, donde todos los datos deberían estar por debajo del límite de control superior, un 5,9% se encuentra por encima, lo que indica mediciones irregulares.

El dato de reproducibilidad corresponde a un 16.07% de la variabilidad total; las gráficas de caja y de Interacciona operador por parte tienen comportamientos conforme a lo deseado.

La repetibilidad corresponde a 48.10% de la variación del proceso, esto se puede evidenciar en los comportamientos tan distintos de operador a operador en la gráfica de X barra. El componente prueba-repetición de prueba representa el 94.8% de la variación en las mediciones.

En general, el sistema de medición genera un 50.7% de la variabilidad total del proceso por lo que no se considera apto para el proceso, pues porque como se mencionaba anteriormente esta valor no debe ser superior al 30%.

![Diagrama de GAGE R & R. Penetrometro Digital](image-url)
Las gráficas de cajas y de interacción operario - parte presentan comportamientos muy buenos, indicando que la reproducibilidad del sistema de medición es alta. Solo el 15.65% de la variación es debida a la reproducibilidad.

La repetibilidad del sistema de medición genera el 20.86 % de la variación del sistema presentando un valor adecuado.

Para asegurar que la variación en el proceso se deba a las partes y no al método de método de medición más del 50 % de los datos se debe encontrar por fuera de los límites de control en la gráfica de X barra, en este caso el 58,8 % de los datos cumplen con este requisito por lo que es correcto hacer inferencias en este aparte.

La grafica R de rangos debe tener la totalidad de sus datos debajo del límite superior de control, en este caso el 7.8 % de los datos están por encima de este valor lo que indica que algunas partes se midieron inconsistente.
Figura 14. GAGE R & R. Penetrómetro análogo de 3 mm

Figura 15. GAGE R & R. P. análogo de 3 mm, informe resumen.

9.3.5 Conclusiones GAGE después de acondicionamiento eléctrico

Los resultados de este análisis de sistema de medición son similares al realizado para el proceso de acondicionamiento eléctrico. El penetrómetro análogo con cabeza de 3 mm presenta una variación debida al sistema de medición del 26.1% contra un penetrómetro digital que presenta valores
mucho más altos de 50.7 % que la excluyen como instrumento apto para la medición de dureza en este proceso.

De manera similar al penetrómetro de 7 mm, el de cabeza de 3 mm es un instrumento de fácil operación, con buena robustez frente a las variaciones y ruidos propios del método y la mano de obra. El penetrómetro digital pese a estar fundamentado en un dispositivo de mayor precisión está sujeta a altas variaciones por pequeños cambios en el método o la mano de obra.

El penetrómetro de 3 mm es el instrumento más apto para la medición de la dureza después de acondicionamiento eléctrico, es decir en el proceso de formación en húmedo.

9.4 Estudio de la Capacidad de Proceso del Acondicionamiento Eléctrico

Se realizó una recopilación de datos de durezas para rollos de distintas referencias que compartan una geometría similar y que sean de carácter hueco. De esta manera se prosigue a calcular la capacidad estadística de proceso respectiva a este procedimiento y emitir conclusiones acerca de la influencia del mismo sobre la variabilidad de la dureza y sobre la calidad de los rollos.

Las mediciones se realizaran a la salida de la amasadora, antes y después del proceso de acondicionamiento eléctrico.

9.4.1 Capacidad de proceso Salida de Amasadora

Para el caso específico del cálculo de la capacidad de proceso en el amasado de rollos es importante aclarar los límites de especificación corresponden a la norma de proceso para la salida de la amasadora.

Tanto la siguiente, como todas las gráficas respectivas a la capacidad de proceso, se realizaron por medio del software Minitab 16.
Figura 16. Capacidad de proceso a la salida de la amasadora

Para el caso de la capacidad de proceso de esta operación se puede ver que los valores no se encuentran agrupados claramente en la zona centro de la campana, con una tendencia hacia la izquierda por fuera del límite de especificación inferior.

Cp nos dice que tan capaz es el proceso (Repetibilidad de los datos sin importar que tan lejos este la media de esos datos respecto al punto medio de la tolerancia). El Cpk es la habilidad del proceso, es decir, además de ser capaz, la media de los datos debe estar lo suficientemente cerca del punto medio de la tolerancia buscando de que ningún dato se salga de la misma.

Para este caso se puede decir que las piezas a la salida de la amasadora no tienen buena capacidad proceso y se deben tomar medidas para que esto no influya en la variabilidad de la dureza con el paso en acondicionamiento eléctrico.

9.4.2 Capacidad de proceso Antes de Acondicionamiento Eléctrico
En este caso el cálculo de la capacidad de proceso antes de acondicionamiento eléctrico no cuenta con una norma de proceso, es importante aclarar esto ya que los rollos pueden permanecer tiempos variables al ambiente, razón por la cual pueden cambiar características tales como su humedad y dureza. Por tal motivo se establecieron límites de especificación amplios para este caso en especial. Lo importante es evaluar que los datos se encuentren agrupados alrededor de un valor estable sin necesidad de compararlos con límites.

Figura 17. Capacidad de proceso antes de Acondicionamiento eléctrico

Para el caso de la capacidad de proceso de esta operación se puede ver con claridad que gran número de los valores se encuentran agrupados en la zona centro de la campana, cabe recordar que en esta parte del proceso no se tiene una norma de trabajo, por esta razón el rango de los límites de especificaciones es amplio, pudiendo establecer posibles recomendaciones de rango de trabajo en esta parte del proceso.

9.4.3 Capacidad de proceso Después de Acondicionamiento Eléctrico
El acondicionamiento eléctrico es entonces el proceso que busca homogenizar y aumentar las durezas de los rollos amasados disminuyendo la cantidad de agua presente haciéndole circular corriente eléctrica logrando el calentamiento de los mismos.

Sin embargo los rollos usualmente no tienen durezas iguales al entrar al cuarto de acondicionamiento eléctrico pues se mezclan unidades recién amasadas con otras que pueden llevar un determinado tiempo al ambiente, por lo tanto se busca con esta implementación disminuir la variabilidad de la dureza, de tal manera que los rollos salgan en un rango de dureza trabajable (0.8-1.2 límites de especificación penetrómetro de 3mm).

![Diagrama de análisis de capacidad para DUREZAS DESPUÉS DE ACONDICIONAMIENTO](image.png)

Figura 18. Capacidad de proceso después de Acondicionamiento Eléctrico.

A nivel general se puede decir que los valores obtenidos indican que el proceso se encuentra con un 17.35% de datos por fuera de especificación y una media natural del proceso sesgada hacia el límite superior.
9.5 Resultados Diseño de experimentos

Tabla 3. Diseño de Experimentos Real

<table>
<thead>
<tr>
<th>Ensayos</th>
<th>Referencia</th>
<th>Tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Variable 1: Referencia
- **Positivo**: Referencia Grande (5457-610mm de altura)
- **Negativo**: Referencia pequeña (5280-500mm de altura)

Variable 2: Tiempo de Curva
- **Positivo**: 65 min
- **Negativo**: 50 min

Se realizó un diseño de experimentos factorial de 2^2 con replica, en el cual se trabajaron dos referencias (una de mayor longitud que la otra), y con tiempos diferentes. Además se trabajó con dos curvas de tiempo con características diferentes, la curva que se muestra en la tabla 4, hace referencia a un tiempo de 65 min con un sistema de ciclos, se enciende 20 min y se apaga 5 min, esto hasta cumplir los 65 min totales de la curva, con el fin de evitar que los rollos se estallen. La curva que se muestra en la tabla 5, es un sistema con un tiempo de 50 min y no se apaga hasta que finaliza este tiempo. Se busca con esto encontrar el tiempo óptimo y el más impactante en desempeño (calidad y dureza de formación).

Así:
En el experimento se bloquearon y se registraron para seguimiento algunas variables en el proceso, con el fin de que existiera la mínima variabilidad posible entre estas las condiciones de dureza a la entrada del acondicionamiento eléctrico, la humedad (aunque se realizó seguimiento), la corriente eléctrica, y el tiempo de ambientación de los rollos cerámicos antes de acondicionarlos eléctricamente.

La variable respuesta (Dureza), se representa también en la calidad final de los rollos cerámicos (% de Rotura rollo), pues los estudios cerámicos indican que la dureza es un factor de alta influencia para la calidad de las piezas elaboradas por el método de torneado.

El propósito es determinar la combinación de niveles de los factores en los que el proceso presenta mejores resultados.

A continuación se presenta el cuadro de corridas usado y la respuesta obtenida. El diseño de experimentos se generó con el software MINITAB (DOE). La variable respuesta del Diseño de experimentos (DOE-Dureza) es un promedio de la dureza de los rollos evaluados a la salida del Acondicionamiento eléctrico.
Tabla 6. Diseño de Experimentos MINITAB, Variable respuesta (Dureza)

<table>
<thead>
<tr>
<th>OrdenEst</th>
<th>OrdenCorrida</th>
<th>PtCentral</th>
<th>Bloques</th>
<th>Referencia</th>
<th>tiempo</th>
<th>Dureza</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>50</td>
<td>1.1333</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>50</td>
<td>1.03</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>65</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>65</td>
<td>1.11</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>50</td>
<td>1.31</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>50</td>
<td>1.13</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>65</td>
<td>1.44</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>65</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Inicialmente se realizó un supuesto de normalidad para el DOE de la variable respuesta dureza y para el de variable respuesta % de rotura (Anexo 4 y 5) respectivamente, estos resultados nos arrojan que los datos tienen una distribución normal y son valederos.

Se muestra a continuación en la figura 19 el grafico de Pareto de efectos, en el cual se puede observar que la mayor influencia en la variable dureza a la salida de acondicionamiento eléctrico se presenta por el factor A (referencia).

Figura 19. Diagrama de Pareto de efectos
A la salida de Acondicionamiento eléctrico se ha trabajado con un rango de durezas entre (0.8-1.2) penetrometro de 3 mm, norma de trabajabilidad donde los rollos se comportan de tal manera que el porcentaje de rotura disminuye. En la siguiente figura se aprecia que para la referencia 5280 (500 mm) ambas curvas de tiempo dejaron el rollo de pasta por fuera del rango de trabajabilidad, caso contrario para la referencia 5457 (610 mm), donde ambas curvas de tiempo se comportaron dentro del rango especificado.

Figura 20. Gráfico de cubos del DOE

En la figura 21 se puede ver que las líneas que corresponden a las referencias tienden a cruzarse en un tiempo de curva de maso menos 40 minutos, punto donde sería el óptimo de trabajo, sin embargo esto sería una recomendación del proceso.
En la figura 22 corroboramos la información anteriormente mencionada donde la línea de referencia tiene mayor pendiente que la línea tiempo de curva, siendo esta la más influyente en este DOE.

Figura 21. Gráfico de interacción de Durezas

Figura 22. Gráfico de efectos principales para dureza
Para determinar qué factores (referencia o tiempo de curva) influyen tanto en la dureza a la salida de acondicionamiento eléctrico como en el % Rotura se realizó el DOE para ambos. A continuación se presenta el cuadro de corridas usado y la respuesta obtenida para la variable % de Rotura. El diseño de experimentos se generó con el software Minitab.

<table>
<thead>
<tr>
<th>OrdenEst</th>
<th>OrdenCorrida</th>
<th>PtCentral</th>
<th>Bloques</th>
<th>Referencia</th>
<th>tiempo</th>
<th>Rotura</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>50</td>
<td>3.333</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>65</td>
<td>3.3333</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>65</td>
<td>1.6667</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>5280</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>5457</td>
<td>65</td>
<td>3.333</td>
</tr>
</tbody>
</table>

Tabla 7. Diseño de experimentos MINITAB. % de rotura

En la variable % de Rotura el factor de mayor influencia como para el caso de variabilidad de dureza es la referencia, y el factor de menor influencia es el tiempo de curva.

Figura 23. Diagrama de Pareto de efectos % Rotura
Continuando con el análisis podemos observar en la figura 24 que la referencia que presentó menor % de rotura fue el 5457 (610 mm) a un tiempo de curva de 50 minutos, por el contrario la referencia 5280 (500 mm) presentó un % de rotura de 4.16% para una curva de tiempo de 65 minutos y un 9.16% para una curva de tiempo de 50 minutos.

Figura 24. Gráfico de cubos % Rotura

En la siguiente gráfica observamos que las líneas no se cruzan entre sí, para la referencia 5457 la mayor rotura se presentó en la curva de tiempo de 65 minutos, mientras que en la referencia 5280 la mayor rotura se da en la curva de tiempo de 50 minutos, esto puede deberse a el tiempo de espera para ser formado los rollos después de salir del acondicionamiento eléctrico.

Figura 25. Gráfica de interacción % Rotura
En la figura 26 corroboramos la información anteriormente mencionada donde la línea de referencia tiene mayor pendiente que la línea tiempo de curva, siendo esta la más influyente en el % de rotura final.

Figura 26. Gráfica de efectos principales % Rotura

9.6 Cálculo de capacidad instalada

La zona de almacenamiento de rollos que demanda el programa de producción es grande, infraestructura con la que tiene que contar la empresa para el almacenamiento de estos rollos al ambiente. Cuenta con dos zonas, zona 1, principalmente para rollos de bujes huecos de gran longitud y zona 2 que es la zona de nuestro interés ya que almacenan las referencias (5457 y 5280)

Figura 27. Zona 1 de almacenamiento al ambiente de rollos huecos
Las ventajas de implementar el sistema de acondicionamiento eléctrico para la línea de bujes huecos de Gamma no solo está en disminuir variabilidad de dureza para formar los rollos, y reducir % de rotura, sino también en aumentar el flujo de producción y disminuir inventario en proceso.

A continuación se presentan unas tablas donde podemos observar la capacidad instalada para ambas referencias y el flujo de producción que se le da a estas con el acondicionamiento eléctrico.

Tabla 8. Capacidad Instalada Acondicionamiento al ambiente 5457

<table>
<thead>
<tr>
<th>ACONDICIONAMIENTO AL AMBIENTE</th>
<th>REFERENCIA 5457</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estandar de Amasadora</td>
<td>1200 Rollos *día</td>
</tr>
<tr>
<td>Estandar de almacenamiento</td>
<td>2500 Rollos</td>
</tr>
<tr>
<td>Estandar de formación</td>
<td>540 Rollosdíatorno</td>
</tr>
</tbody>
</table>

Tabla 9. Capacidad Instalada Acondicionamiento al ambiente 5280

<table>
<thead>
<tr>
<th>ACONDICIONAMIENTO AL AMBIENTE</th>
<th>REFERENCIA 5280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estandar de Amasadora</td>
<td>1200 Rollos *día</td>
</tr>
<tr>
<td>Estandar de almacenamiento</td>
<td>2500 Rollos</td>
</tr>
<tr>
<td>Estandar de formación</td>
<td>840 Rollosdíatorno</td>
</tr>
</tbody>
</table>

En la zona 2 se pueden almacenar cerca de 60 estibas, en las cuales para nuestras referencias de interés caben 42 rollos por estiba, teniendo entonces una capacidad de almacenamiento de más o menos 2500 rollos, este
acondicionamiento al ambiente depende del clima con el que se cuente, además de cómo se mencionaba antes de un tiempo de acondicionamiento de 24 a 48 horas, tiempo con el que se tendría que contar para el programa de producción.

Tabla 10. Capacidad Instalada Acondicionamiento eléctrico 5457

<table>
<thead>
<tr>
<th>ACONDICIONAMIENTO ELÉCTRICO</th>
<th>REFERENCIA 5457</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estandar de Amasadora</td>
<td>1200 Rollos *día</td>
</tr>
<tr>
<td>Estandar de Acond. eléctrico</td>
<td>1080 Rollos *día</td>
</tr>
<tr>
<td>Estandar de formación</td>
<td>540 Rollos *día *torno</td>
</tr>
</tbody>
</table>

Tabla 11. Capacidad Instalada Acondicionamiento eléctrico 5280

<table>
<thead>
<tr>
<th>ACONDICIONAMIENTO ELÉCTRICO</th>
<th>REFERENCIA 5280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estandar de Amasadora</td>
<td>1200 Rollos *día</td>
</tr>
<tr>
<td>Estandar de Acond. eléctrico</td>
<td>1080 Rollos *día</td>
</tr>
<tr>
<td>Estandar de formación</td>
<td>840 Rollos *día *torno</td>
</tr>
</tbody>
</table>

Con el acondicionamiento eléctrico se reduce el tiempo inicial que varía entre 24 a 48 horas hasta 1 a 3 horas, además que se le da un flujo continuo a esta producción sin necesidad de zona de almacenamiento (proceso esbelto). En cuarto de acondicionamiento eléctrico caben 60 rollos, realizando cerca de 6 curvas de tiempo por turno, para un total de 1080 rollos por día, cumpliendo con el estándar que entrega la amasadora de 1200 rollos por día y supliendo la necesidad en formación ya sea porque se tenga un solo torno o dos como funciona cuando se necesita dar flujo al programa de producción.

Finalmente con un programa de producción de mas o menos 15000 unidades de la línea de bujes huecos al mes, el acondicionamiento eléctrico estaría entregando a formación la totalidad de los rollos del programa en 15 días, mientras que con el acondicionamiento al ambiente de entrada ya van 48 horas de retraso con respecto al acondicionamiento eléctrico, además de las condiciones climáticas que se presenten.
9.7 Costo del Proceso

A continuación se muestra el impacto energético y económico de las diferentes curvas de tiempo y su respectiva referencia. Consume 2 KWh más la curva de 65 minutos con respecto a la de 50 minutos, aunque en una sola curva no se note mucho el impacto, si es más económico trabajar con una curva de 50 minutos ya que es menos tiempo y menos plata, además se pudo observar con el DOE que los resultados para la curva de 50 min en cuestión de calidad fueron de 0% de rotura para el 5457 y la variabilidad en la dureza se comportó dentro del rango de norma.

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>CURVA DE TIEMPO (min)</th>
<th>COSTO CURVA DE TIEMPO</th>
<th>CONSUMO KWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>5457</td>
<td>50</td>
<td>$ 1.123</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>$ 1.426</td>
<td>8</td>
</tr>
<tr>
<td>5280</td>
<td>50</td>
<td>$ 1.123</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>$ 1.426</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 12. Costo de las curvas de tiempo

<table>
<thead>
<tr>
<th>REFERENCIA</th>
<th>COSTO ROTURA ROLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5457</td>
<td>$ 3.152</td>
</tr>
<tr>
<td>5280</td>
<td>$ 2.043</td>
</tr>
</tbody>
</table>

Tabla 13. Costo Rotura rollo

El % de rotura se evaluó en cada ensayo realizado, disminuyendo con respecto al mencionado en el planteamiento del problema, sin embargo se espera que con este proyecto y con este análisis los rollos a la salida de acondicionamiento eléctrico trabajen en el rango de dureza estipulado, garantizando entonces que de una rotura inicial de 6.64% se reduciría a menos del 4% de rotura, pasando así de $42.546.717 a más o menos $ 25.630.552, reduciendo al año un total de $ 16.916.165.
10. CONCLUSIONES

- La medición de la dureza es primordial durante los diferentes procesos, por esta razón se debe utilizar un penetrometro análogo de 3 mm a la salida del acondicionamiento eléctrico de modo que se puede tener un control más preciso de la dureza y se logre controlar de manera más efectiva el proceso. Este penetrometro pese a presentar una variabilidad sujeta a mejoras se postula como la mejor opción disponible por su fácil uso y por tener una buena replicabilidad y reproducibilidad, ya que los operarios acostumbran medir la dureza con los dedos (tocando los rollos de pasta) ésta es una técnica sujeta a variaciones y ruidos producto de las diferencias físicas y morfológicas en los operarios, además de su pericia y experiencia.

- La capacidad de proceso a la salida de la amasadora no es buena. El Cpk es -0.11, lo que indica que la media del proceso está por fuera de los límites de especificación. Esta condición genera variabilidad de dureza la entrada del acondicionamiento eléctrico, dificultando la selección de una curva de secado única para cada referencia.

- A pesar de una pobre capacidad de proceso a la salida de la amasadora y de un tiempo de permanencia al ambiente variable, los datos no están muy dispersos y se agrupan alrededor de una media de 2.0. el rango de durezas inmediatamente antes de la entrada de acondicionamiento podría trabajar con unos límites de 1.8 a 2.4, según observación en la gráfica de capacidad de proceso.

- A la salida del acondicionamiento eléctrico la capacidad de proceso indica que el 82.65% de los datos están dentro de los límites de especificación. Para el proceso esto es bueno pues a pesar de tener variabilidad a la entrada, la salida del acondicionador, que finalmente es la variable de interés para la formación, tiene una capacidad de proceso buena.

- El mapeo de humedades muestra una disminución de un 1% de las humedades de los rollos de la salida del acondicionamiento eléctrico con
respecto a las humedades a la entrada, de igual manera disminuye la variabilidad, lo que es benéfico para el proceso pues la humedad de formación (que es igual a la de salida de acondicionamiento) está relacionado directamente con la contracción de las piezas. Mientras más variabilidad de humedad, mayor variabilidad de contracciones.

- En el DOE realizado se encontró que la referencia es el factor que más incide en la variabilidad de la dureza y el % de rotura rollo, sin embargo para los dos tiempos de curvas evaluados, la referencia 5280 (500 mm) de longitud no cumple con las especificaciones del rango de dureza a la salida de acondicionamiento eléctrico, sugiriéndose para ella y para referencias de esta longitud evaluar una curva de menor tiempo. Esto sería bueno ya que entre menos tiempo necesiten los rollos para formarse mejor para el proceso (lead time). Sin embargo para la referencia 5457 (610 mm) de longitud ambos tiempos de curva se comportaron dentro del rango de norma de dureza (0.8-1.2).

- Para el análisis que se realizó con él % de rotura según la tabla 7, se mostró que con la curva de 50 minutos el 5457 no tuvo de rotura (0%), la de 65 minutos tuvo un porcentaje de 2% y la rotura de ambas para el 5280 superó el 4%, por esta razón y, porque para esta referencia la dureza a la salida de acondicionamiento eléctrico no está en el rango de trabajo, se debe realizar otro tiempo de curva mucho menor.

- La curva de 50 minutos es la de menos consumo de energía (6 KWh) y la menos costosa (1123$) en comparación con la curva de 65 minutos que consume (8 KWh) y cuesta (1426$) por curva, por esta razón, por ser la que menos % de rotura presentó y por ser la que menos variabilidad de dureza final presenta, se escoge esta curva de 50 minutos de paso de corriente continua para trabajar referencias de 610 mm de longitud.

- Las ventajas de implementar el acondicionamiento eléctrico para la línea de bujes huecos no solo son reducir variabilidad de dureza y disminuir % de rotura, si no también reducir inventarios y darle mayor flujo a la producción. Con este sistema se podría esperar que, con un promedio de 15000
unidades mensuales de esta línea de proceso, el flujo de la producción puede realizarse en aproximadamente 15 días si se tiene un flujo continuo de la producción, mientras que con el acondicionamiento el ambiente tardaría 17 días ya que estos rollos necesitan 48 horas de ambiente, pueden ser más días ya que no se está teniendo en cuenta el tipo de clima del que depende esta ambientación.

- El tiempo que se dejan los rollos después de salir de la amasadora debe ser de 1 a 2 horas, porque es en esta parte del proceso, antes de acondicionar los rollos eléctricamente, donde más variabilidad de dureza se puede presentar. Idealmente los rollos deben ingresarse a las cabinas de acondicionamiento eléctrico siguiendo un modelo FIFO (First in Fist out) asegurando de esta manera un buen grado de homogeneidad y una dureza final uniforme.
11. RECOMENDACIONES

- Actualmente las normas de dureza que deben tener los rollos luego del acondicionamiento eléctrico están establecidas con mediciones del penetrometro digital, un instrumento difícil de operar y con una alta variabilidad en las mediciones como se probó previamente en el Gage de medición. Se debe establecer de nuevo la norma con valores del penetrometro de 3 mm y cambiar los tableros de control ubicados en cada cabina. Se propone una norma que va desde 0.8 a 1.2 de dureza para trabajar los rollos huecos en formación.

- Se recomienda seguir un modelo FIFO (First in First out) a la entrada de acondicionamiento eléctrico, asegurando de esta manera un buen grado de homogeneidad y una dureza final uniforme, sin embargo al proceso se ingresan arañas de rollos con tiempos de ambientación diferentes entre sí, razón por la cual la variabilidad de la dureza inicial es muy alta y por ende la durezas finales serán también valores dispersos; es necesario entonces que los operarios de la zona y las de demás partes implicadas tengan clara la importancia del orden de carga de las cabinas de acondicionamiento en pro de obtener rollos con menor variabilidad y de estandarizar este proceso.

- Se recomienda realizar un estudio de curva óptima para las referencias tipo 5280 ya que con las curvas de tiempo evaluadas no se obtuvieron buenos resultados, se recomienda trabajar una curva de 40 minutos ya que por ser una referencia de menor altura necesita menos tiempo de paso de corriente, pero teniendo en cuenta que necesita de 1 a 2 horas de ambiente antes de entrar al acondicionamiento eléctrico.

- Se recomienda realizar más ensayos con el fin de garantizar que la variable referencia (longitud de rollo) en el diseño de experimento es realmente la más influyente a la hora de obtener resultados en la variable respuesta dureza.
12. ANEXOS

ANEXO 1. FOTO PENETROMETRO DIGITAL

Instrumento de medición anteriormente utilizado

ANEXO 2. FOTO PENETROMETRO ANALOGO DE CABEZA DE 7MM

Instrumento de medición utilizado antes de Acondicionamiento Eléctrico
ANEXO 3. FOTO PENETROMETRO ANALOGO DE CABEZA DE 3MM

Instrumento de medición utilizado después de Acondicionamiento Eléctrico

ANEXO 4. GRÁFICA DE NORMALIDAD VARIABLE RESPUESTA DUREZA
ANEXO 5. GRÁFICA DE NORMALIDAD VARIABLE RESPUESTA % ROTURA

Gráfica de probabilidad normal
(la respuesta es Rotura)
13. BIBLIOGRAFÍA

3. AMY S, CHU. High Strength porcelain and method therefor Patente #: 5565392 USA.

14. GONZÁLEZ, JULIANA; TORO, DIANA (2009). Efecto de la distribución de tamaño de partícula en variables de desempeño de una pasta para porcelana eléctrica. Universidad EAFIT.

18. Insumos industriales empresa GAMMA (2012), Aisladores CORONA.

20. KINSMAN, K; (1995). High Strength feldspathic porcelain and method therefor Patente #: 5461015. USA.

29. Personal y archivos del Departamento de Ingeniería de Procesos de la empresa GAMMA (2008), Aisladores CORONA.

32. WILLIAM ANDREW (2002). Ceramic Technology and processing. King A.G.