IMPLEMENTACIÓN DE PLAN PILOTO DE TPM EN UNA INDUSTRIA DE CERÁMICA

DIEGO LUÍS PINTO LÓPEZ

JUAN FERNANDO MESA VELÁSQUEZ

Trabajo de grado para optar por el

Título de Ingeniero Mecánico

Asesor:

JUAN PABLO AGUDELO SUÁREZ

Ingeniero Mecánico

UNIVERSIDAD EAFIT

ESCUELA DE INGENIERÍA

DEPARTAMENTO DE INGENIERÍA MECÁNICA

MANTENIMIENTO INDUSTRIAL

MEDELLÍN

2008
DEDICATORIA

A nuestros padres que con tanto amor, esfuerzo y empeño han apoyado todas nuestras decisiones, sueños, ideas y proyectos para que se volvieran realidad.
AGRADECIMIENTOS

Los autores expresan sus agradecimientos a:

Juan Pablo Agudelo Suárez, ingeniero mecánico, asesor del proyecto por su inalcanzable labor de enseñanza.

A todas las personas que colaboraron y siguieron de cerca el proyecto.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>JUSTIFICACIÓN</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>OBJETIVOS</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>OBJETIVO GENERAL</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>OBJETIVOS ESPECÍFICOS</td>
<td>14</td>
</tr>
<tr>
<td>3.</td>
<td>PROPUESTA DEL PROYECTO</td>
<td>15</td>
</tr>
<tr>
<td>4.</td>
<td>FUNDAMENTOS DEL TPM</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>MANTENIMIENTO PRODUCTIVO TOTAL (TPM)</td>
<td>16</td>
</tr>
<tr>
<td>4.2</td>
<td>OBJETIVOS DEL TPM</td>
<td>17</td>
</tr>
<tr>
<td>4.3</td>
<td>CARACTERÍSTICAS DEL TPM</td>
<td>18</td>
</tr>
<tr>
<td>4.4</td>
<td>PILARES DEL TPM</td>
<td>18</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Pilar 1: Mejoras Enfocadas (Kaizen)</td>
<td>18</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Pilar 2: Mantenimiento Autónomo (Jishu Hozen)</td>
<td>19</td>
</tr>
<tr>
<td>Pilar 3: Mantenimiento Progresivo o Planificado (Keikaku Hozen)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Pilar 4: Educación y formación</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Pilar 5: Gestión de seguridad y medio ambiente</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>PASOS PARA LA IMPLEMENTACION DEL TPM</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>IMPLEMENTACIÓN DEL TPM</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>DESARROLLO DEL PROYECTO</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>DIAGNÓSTICO DE LA ZONA</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>MODELO DE IMPLEMENTACIÓN DISEÑADO PARA LA INDUSTRIA CERÁMICA</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Necesidades de la industria cerámica</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Estructuración estratégica</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>RECOPILACIÓN DE INFORMACIÓN</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Indicadores</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>PILARES RELACIONADOS CON LA IMPLEMENTACIÓN DEL PROYECTO</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Seguridad en la zona</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Mantenimiento Autónomo</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
5.4.3 Mejoras enfocadas

5.5 CAPTACIÓN DE CONOCIMIENTOS POR EL EQUIPO DE TRABAJO

6. CRONOGRAMA

7. RECOMENDACIONES Y CONCLUSIONES

7.1 PROBLEMAS EN LA IMPLEMENTACIÓN

7.2 RECOMENDACIONES

7.3 CONCLUSIONES

BIBLIOGRAFÍA
LISTA DE FIGURAS

Figura 1. Pilares del TPM .. 19
Figura 2. Formato de tarjeta roja .. 41
Figura 3. Análisis de espina de pescado .. 43
Figura 4. Resultado de la evaluación del proyecto en el equipo de trabajo .. 45
Figura 5. Evaluación del proyecto por tema .. 46
Figura 6. Análisis de espina de pescado para el incumplimiento de las metas .. 49
LISTA DE TABLAS

Tabla 1. Los doce pasos del desarrollo del TPM
Tabla 2. Relación de las necesidades con los indicadores
Tabla 3. Responsabilidades
Tabla 4. Capacitaciones teóricas
Tabla 5. Cronograma de actividades del proyecto
Tabla 6. Parte del cronograma de actividades de implantación del TPM en la industria de cerámica
Tabla 7. Análisis de cinco por qués para el caso de la prensa.
Tabla 8. Cronograma real y presupuestado
LISTA DE ANEXOS

ANEXO A. EVALUACIÓN DEL PROYECTO 55
1. JUSTIFICACIÓN

La competitividad nacional y mundial es una variante en crecimiento diario que exige a las empresas dar o prestar servicios de muy buena y alta calidad. En otras palabras, si se quiere ser competitivo se, necesita de calidad y para la calidad se necesita del proceso, los cuales son inseparables.

De la misma forma que la calidad y los procesos, estos últimos son inseparables de los equipos, con lo cual se llega a concluir que todo comienza desde la máquina.

El Mantenimiento Productivo Total (TPM) se encarga de enfrentar los problemas desde la fase más incipiente en la que se puedan presentar, lo que demuestra que la implantación de un modelo como este en cualquier industria, sin importar el tamaño de la empresa, da paso a un nuevo mundo de competitividad.

En términos generales, las condiciones para el desarrollo de una empresa requieren de métodos más precisos y efectivos que prometan un incremento en la producción y calidad de sus productos, y esas promesas son hechas por el TPM.

En Colombia la implantación de este modelo ha comenzado a tomar auge debido a los resultados que se han dado a conocer por otras empresas en el mundo. Muchas de las empresas que han dado testimonio de su experiencia dicen que han alcanzado una Efectividad Global de Planta (EGP) superior al 85%.

Dicho lo anterior, la implementación del TPM en la industria cerámica garantizará la disponibilidad de los equipos e instalaciones de acuerdo con las necesidades de producción, optimizando su vida útil bajo condiciones adecuadas de operación y al menor costo de mantenimiento posible; mediante el
trabajo de un equipo humano calificado, con el apoyo de un software de mantenimiento y respetando los principios de preservación del medio ambiente. Esto se alcanzará con el trabajo en equipo y realizando un estudio de los resultados obtenidos con la implementación inicial de algunos de los pasos del TPM.

El proyecto deberá ser realizado por dos personas debido a la complejidad de la ejecución de todas las actividades que este presenta. Es conveniente el trabajo en pareja dada la localización de la empresa, la cual está situada en las afueras de la ciudad, circunstancia que entorpece el constante seguimiento de las actividades. A continuación se presenta las funciones que cumplirá cada alumno.

Alumno 1: Juan Fernando Mesa

Alumno 2: Diego Luis Pinto

Las funciones del alumno 1 son:

- Informar a la empresa el comportamiento de la EGP mientras se realiza el proyecto
- Evidenciar los casos de mejoras realizados durante el proyecto
- Ejecutar los pasos del mantenimiento autónomo

Las funciones del alumno 2 son:

- Elaboración de formatos para recolección de datos
- Investigación del marco teórico
• Seguimiento y elaboración de indicadores de fallas, disponibilidad, rendimiento, calidad y efectividad global de planta

Y las funciones conjuntas son:

• Reuniones periódicas con el grupo de trabajo (semanal o quincenal) y recolección de datos del proyecto (fotos, informes, etc.)

• Preparación de la introducción del proyecto

• Creación de los objetivos del proyecto

• Elaboración de conclusiones y análisis de resultados

• Redacción de recomendaciones

• Capacitar y entrenar al personal de la planta
2. OBJETIVOS

2.1 OBJETIVO GENERAL.

Implementar un plan piloto del TPM en la zona de prensa 4 en la industria cerámica en un período de 20 semanas.

2.2 OBJETIVOS ESPECÍFICOS.

- Monitorear la disponibilidad, rendimiento y calidad durante la fase de implementación del TPM.

- Informar a la empresa el comportamiento de la EGP antes y después de usar el TPM.

- Evidenciar casos de mejoramiento en la industria cerámica debido al uso de los pasos del TPM.

- Capacitar y entrenar a las personas responsables del plan piloto.

- Realizar seguimiento en la conformación del equipo piloto y desarrollo del mantenimiento autónomo en el área seleccionada.

- Concluir, recomendar y explicar los resultados obtenidos en la ejecución de los principios del TPM bajo el pilar mantenimiento autónomo en la industria cerámica.
3. PROPUESTA DEL PROYECTO

Este proyecto tiene dos motivaciones principales: realizar la implementación de un plan piloto del TPM en la zona de prensa en la industria cerámica; ya que verificando y evaluando su ejecución, y siguiendo el cronograma de actividades que se planearon para la implementación de este en la empresa, se llevará a cabo la aplicación de los cuatro primeros pilares del TPM (mejoras enfocadas, mantenimiento autónomo, mantenimiento planeado, educación y entrenamiento), como también analizar los resultados obtenidos en las actividades ejecutadas de dicho plan piloto. Todo esto tiene como finalidad ver y evidenciar la efectividad del TPM en las industrias y mejorar en especial la ejecución de éste en la empresa.

Hoy en día la industria cerámica es una empresa que se encuentra bien posicionada en el mercado local, nacional e internacional. Todo esto se ha logrado por medio del trabajo duro de todos sus empleados; sin embargo, este trabajo duro se puede mejorar haciendo una buena ejecución del TPM en ésta empresa.

Al final del proyecto se tendrá la información suficiente para sustentar la veracidad de las teorías del TPM en una de las industrias nacionales, todo esto respaldado con los datos e información que se logre recoger y analizar en el transcurso del proyecto en la industria cerámica.
4. FUNDAMENTOS DEL TPM

4.1 MANTENIMIENTO PRODUCTIVO TOTAL (TPM)

El TPM se orienta a crear un sistema corporativo que maximiza la eficiencia de todo el sistema productivo, estableciendo un sistema que previene las pérdidas en todas las operaciones de la empresa. Esto incluye "cero accidentes, cero defectos y cero fallos" en todo el ciclo de vida del sistema productivo. Se aplica en todos los sectores, incluyendo producción, desarrollo y departamentos administrativos. Se apoya en la participación de todos los integrantes de la empresa, desde la alta dirección hasta los niveles operativos. La obtención de cero pérdidas se logra a través del trabajo de pequeños equipos.

El TPM permite diferenciar una organización con relación a su competencia debido al impacto en la reducción de los costos, mejora de los tiempos de respuesta, fiabilidad de suministros, el conocimiento que poseen las personas y la calidad de los productos y servicios finales. El TPM busca:

- Maximizar la efectividad del equipo.
- Desarrollar un sistema de mantenimiento productivo por toda la vida del equipo
- Involucrar a todos los departamentos que planean, diseñan, usan, o mantienen equipo, en la implementación del TPM.
- Activamente involucrar a todos los empleados, desde la alta dirección hasta los trabajadores de piso.
• Promover el TPM a través de motivación con actividades autónomas de pequeños grupos

• Cero accidentes

• Cero defectos

• Cero averías

4.2 OBJETIVOS DEL TPM

Los objetivos del TPM son tres, los cuales se mencionan a continuación:

• Objetivo estratégico: ayudar a construir capacidades competitivas desde las operaciones de la empresa, gracias a su contribución a la mejora de la efectividad de los sistemas productivos, flexibilidad y capacidad de respuesta, reducción de costos operativos y conservación del "conocimiento" industrial.

• Objetivos operativos: El TPM tiene como propósito en las acciones cotidianas que los equipos operen sin averías y fallos, eliminar toda clase de pérdidas, mejorar la fiabilidad de los equipos y emplear verdaderamente la capacidad industrial instalada.

• Objetivos organizativos: El TPM busca fortalecer el trabajo en equipo, incremento en la moral en el trabajador, crear un espacio donde cada persona pueda aportar lo mejor de sí, todo esto, con el propósito de hacer del sitio de trabajo un entorno creativo, seguro, productivo y donde trabajar sea realmente grato.
4.3 CARACTERÍSTICAS DEL TPM

• Acciones de mantenimiento en todas las etapas del ciclo de vida del equipo

• Amplia participación de todas las personas de la organización

• Es observado como una estrategia global de empresa, en lugar de un sistema para mantener equipos

• Orientado a mejorar la Efectividad Global de las operaciones, en lugar de prestar atención a mantener los equipos funcionando

• Intervención significativa del personal involucrado en la operación y producción en el cuidado y conservación de los equipos y recursos físicos

• Procesos de mantenimiento fundamentados en la utilización profunda del conocimiento que el personal posee sobre los procesos

4.4 PILARES DEL TPM

Los pilares o procesos fundamentales del TPM sirven de apoyo para la construcción de un sistema de producción ordenado. Se implantan siguiendo una metodología disciplinada, potente y efectiva. Los pilares considerados como necesarios para la implementación de un plan piloto de TPM en la organización son los que se indican a continuación:

4.4.1 Pilar 1: Mejoras Enfocadas (Kaizen)
Las mejoras enfocadas son actividades que se desarrollan con la intervención de las diferentes áreas comprometidas en el proceso productivo, con el objeto de maximizar la Efectividad Global de planta y proceso; todo esto, a través de un trabajo organizado en equipos multidisciplinarios, empleando metodología
específica y concentrando su atención en la eliminación de los despilfarros que se presentan en las plantas industriales.

Figura 1. Pilares del TPM

(geocities,2007)

Se trata de desarrollar el proceso de mejora continua similar al existente en los procesos de Control Total de Calidad, aplicando procedimientos y técnicas de mantenimiento. Si una organización cuenta con actividades de mejora similares, simplemente podrá incorporar dentro de su proceso, Kaizen o mejora, nuevas herramientas desarrolladas en el entorno TPM. No deberá modificar su actual proceso de mejora que aplica actualmente.

4.4.2 Pilar 2: Mantenimiento Autónomo (Jishu Hozen)
El mantenimiento autónomo está compuesto por un conjunto de actividades que se realizan diariamente por todos los trabajadores en los equipos que operan, incluyendo inspección, lubricación, limpieza, intervenciones menores, cambio de herramientas y piezas, estudiando posibles mejoras, analizando y solucionando problemas del equipo y acciones que conduzcan a mantener el equipo en las
mejores condiciones de funcionamiento. Estas actividades se deben realizar siguiendo estándares previamente preparados con la colaboración de los propios operarios. Los operarios deben ser entrenados y deben contar con los conocimientos necesarios para dominar el equipo que opera o maneja.

Los objetivos fundamentales del mantenimiento autónomo son:

- Emplear el equipo como instrumento para el aprendizaje y adquisición de conocimiento
- Desarrollar nuevas habilidades para el análisis de problemas y creación de un nuevo pensamiento sobre el trabajo
- Mediante una operación correcta y verificación permanente según los estándares.
- Mejorar el funcionamiento del equipo con el aporte creativo del operador
- Construir y mantener las condiciones necesarias para que el equipo funcione sin averías y rendimiento pleno
- Mejorar la seguridad en el trabajo
- Lograr un total sentido de pertenencia y responsabilidad del trabajador
- Mejora de la moral en el trabajo

4.4.3 Pilar 3: Mantenimiento Progresivo o Planificado (Keikaku Hozen)
El mantenimiento progresivo es uno de los pilares más importantes en la búsqueda de beneficios en una organización industrial. El propósito de este pilar
consiste en la necesidad de avanzar gradualmente hacia la búsqueda de la meta "cero averías" para una planta industrial.

El mantenimiento progresivo o planificado que se practica en numerosas empresas presenta, entre otras, las siguientes limitaciones:

- No se dispone de información histórica necesaria para establecer el tiempo más adecuado para realizar las acciones de mantenimiento preventivo. Los tiempos son establecidos de acuerdo con la experiencia, las recomendaciones del fabricante y otros criterios con poco fundamento técnico y sin el apoyo en datos e información histórica sobre el comportamiento pasado.

- Se aprovecha la parada de un equipo para "hacer todo lo necesario en la máquina", ya que la tenemos disponible. ¿Será necesario un tiempo similar de intervención para todos los elementos y sistemas de un equipo?, ¿Será esto económico?

- Se aplican planes de mantenimiento preventivo a equipos que poseen un alto deterioro acumulado. Este deterioro afecta la dispersión de la distribución (estadística) de las fallas, imposibilitando la identificación de un comportamiento regular de las mismas y con el que se debería establecer el plan de mantenimiento preventivo.

- A los equipos y sistemas se les da un tratamiento similar desde el punto de vista de la definición de las rutinas de preventivo, sin importan su criticidad, riesgo, efecto en la calidad, grado de dificultad para conseguir el recambio o repuesto, etc.

- Es poco frecuente que los departamentos de mantenimiento cuenten con estándares especializados para realizar su trabajo técnico. La práctica habitual
consiste en imprimir la orden de trabajo con algunas asignaciones que no indican el detalle del tipo de acción a realizar.

- El trabajo de mantenimiento planificado no incluye acciones Kaizen para la mejora de los métodos de trabajo. No se incluyen acciones que permitan mejorar la capacidad técnica y la fiabilidad del trabajo de mantenimiento, como tampoco es frecuente observar el desarrollo de planes para eliminar la necesidad de acciones de mantenimiento. Esta también debe ser considerada como una actividad de mantenimiento preventivo.

4.4.4 Pilar 4: Educación y formación
Este pilar considera todas las acciones que se deben realizar para el desarrollo de habilidades para lograr altos niveles de desempeño de las personas en su trabajo. Se puede desarrollar en pasos como todos los pilares TPM y emplear técnicas utilizadas en mantenimiento autónomo, mejoras enfocadas y herramientas de calidad.

4.4.5 Pilar 5: Gestión de seguridad y medio ambiente
Tiene como propósito crear un sistema de gestión integral de seguridad. Emplea metodologías desarrolladas para los pilares mejoras enfocadas y mantenimiento autónomo. Contribuye significativamente a prevenir riesgos que podrían afectar la integridad de las personas y efectos negativos al medio ambiente.

4.5 PASOS PARA LA IMPLEMENTACION DEL TPM

A continuación se muestra un plan general y teórico para la implementación del TPM en cualquier industria, este es un buen ejemplo para ver le envergadura de un proyecto como este, ya que es un proyecto a largo plazo.
Tabla 1. Los doce pasos del desarrollo del TPM

<table>
<thead>
<tr>
<th>Fase</th>
<th>Paso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación</td>
<td>La alta dirección anuncia la introducción del TPM</td>
</tr>
<tr>
<td></td>
<td>Programas de educación y campañas para introducir TPM</td>
</tr>
<tr>
<td></td>
<td>Crear Organizaciones para promover TPM</td>
</tr>
<tr>
<td></td>
<td>Establecer políticas básicas TPM y metas</td>
</tr>
<tr>
<td></td>
<td>Formular Plan maestro para desarrollo TPM</td>
</tr>
<tr>
<td></td>
<td>Organizar un acto de iniciación TPM</td>
</tr>
<tr>
<td>Implementación TPM</td>
<td>Mejorar la efectividad de cada pieza del equipo</td>
</tr>
<tr>
<td></td>
<td>Desarrollar un programa de mantenimiento autónomo</td>
</tr>
<tr>
<td></td>
<td>Desarrollar un programa de mantenimiento para el departamento de mantenimiento</td>
</tr>
<tr>
<td></td>
<td>Dirigir entrenamiento para mejorar operación y capacidades de mantenimiento</td>
</tr>
<tr>
<td></td>
<td>Desarrollar programa gestión equipos fases iniciales</td>
</tr>
<tr>
<td>Estabilización</td>
<td>Implantación perfecta del TPM y elevación niveles TPM</td>
</tr>
</tbody>
</table>

4.6 IMPLEMENTACIÓN DEL TPM

Un aspecto importante en la implementación del TPM es la comunicación, por parte de la dirección, hacia todas las unidades de la empresa, acerca del cambio estratégico que se inicia a partir del mismo, ya que gracias a esto se logra interés, motivación y compromiso en todos los niveles para eliminar, en la medida de lo posible, todos los despilfarros presentes en la organización.

El JIPM (Japan Institute of Plant Maintenance) sugiere un procedimiento en general para implementar el TPM; pero estos no son fijos para todas las empresas por lo cual pueden variar de una compañía a otra. Los puntos clave sugeridos son los siguientes:

- Entendiendo la implementación del TPM como una estrategia, la organización debe suministrar componentes, capacidades y recursos para llevarla a cabo. Para ello, se forma el comité TPM compuesto por los directivos de cada centro productivo quienes a su vez integran pequeños grupos o pilares de los que son líderes. El objetivo consiste en involucrar a todos los directivos en la coordinación de las acciones TPM. No es aconsejable asignar “responsables”, sino “líderes”. Finalmente, están los equipos de trabajo a nivel operativo, encargados de ejecutar numerosas acciones TPM.

- Asignar presupuesto para el desarrollo de la estrategia TPM, debido a que muchas de las acciones implican gastos; por ejemplo, la reparación del deterioro acumulado de los equipos. Estos gastos pueden verse realmente como inversiones de productividad y utilización de los equipos. Otro factor es la formación técnica de los niveles operativos y la mejora de la capacidad de gestión de los mandos medios y superiores involucrados.
• Establecer políticas y procedimientos que respalden la implementación del TPM, ya que se requiere un sistema de gestión que estimule la mejora continua y la responsabilidad de los integrantes de la organización en los procesos productivos. Es necesario establecer parámetros como: objetivos específicos, índices de gestión y sistemas de control.

• Diseñar sistemas de control del TPM que impliquen acciones de “autocontrol”, mecanismos de gestión visual, auditorias de progreso por etapa en cada uno de los pilares.

• Desarrollar sistemas de comunicación eficaces que permitan a la organización trabajar paralelamente a los objetivos de la misma. El TPM se apoya en modelos de comunicación informales como encuentros, jornadas internas, comunicación visual, entre otros.

• Cerrar el ciclo de gestión llevando a cabo una evaluación de desempeño que contemple aspectos como el reconocimiento de logros por acciones TPM y programas de motivación.

• Crear un ambiente de trabajo participativo, que ofrezca la oportunidad a los empleados de resolver problemas en forma autónoma. Esto exige que la dirección promueva la formación permanente del trabajador y la asignación gradual de responsabilidades mayores.

• Ejercer liderazgo para mantener el entusiasmo en las personas. Es necesario comprender la necesidad de la capacidad dual en un directivo: dirigir es lograr los objetivos de la empresa y liderar significa transformar la empresa simultáneamente.
5. DESARROLLO DEL PROYECTO

5.1 DIAGNÓSTICO DE LA ZONA

La zona piloto es prensa. En la industria cerámica se lleva un registro por turnos de los tiempos improductivos; esto se hace registrando el tiempo cada vez que una prensa para de trabajar por algún motivo. Dado que las prensas son los equipos más críticos de la empresa el tiempo improductivo se mide desde allí. Un tiempo improductivo se puede registrar por una parada en otro equipo atrás o adelante en el proceso respecto a la prensa, la condición para que el tiempo sea improductivo es que pare la prensa y, en este caso, los minutos improductivos son cargados a la zona a la cual pertenece el equipo que causó el paro, o simplemente puede ser que la misma prensa sea la que haga parar el proceso. Las causas de paro pueden ser mecánicas, eléctricas, de producción o improductivos programados. Los datos son ingresados por los operarios de las prensas a Excel con la información que corresponde al día, turno, tiempo, código causa, descripción de la causa, proceso, máquina y observación.

Para dar un diagnóstico de la zona de prensa y observar cuáles son los problemas que causan más tiempos perdidos se pueden analizar los tiempos improductivos de prensa, en donde se revisa el número de paradas, el tiempo de estas y la causa principal de las mismas.

Con la de ayuda de la herramienta de gráficos dinámicos de Excel se hace un análisis de los tiempos improductivos de los meses de noviembre y diciembre del 2007. Se seleccionaron estos meses ya que el mes de octubre no tenía los datos suficientes para realizar un análisis como este.
Se puede observar que el equipo que más hace parar el proceso en la zona es la misma prensa, por lo que se puede analizar en los dos meses evaluados cuáles fueron las causas más relevantes para que el equipo parara.

En noviembre la prensa paró menos minutos que en diciembre. Aunque es notorio que diciembre fue el mes más crítico para la prensa, noviembre no se puede hacer a un lado ya que la prensa paró un número de minutos significativos.

En noviembre las causas más relevantes de parada son bajo ciclo y aseo de machos. Cada causa se presenta varias veces en el mes, por ejemplo, la parada más larga por bajo ciclo es de 77 minutos, y por lo contrario la parada más larga por aseo de machos es de 24 minutos, pero se presentaron muchas de estas paradas en este mes. En diciembre hay tres causas de paro importantes que son aseo de machos, ajuste mecánico y cambio de formato. En aseo de machos la parada más larga es de 37 minutos pero con un gran número de paradas; en ajuste mecánico es de 120 minutos y en cambio de formato es de 298 minutos con una sola parada. Lo anterior quiere decir que es importante atacar tanto el número de paradas como el tiempo por parada para poder reducir el tiempo improductivo total, todo esto ayudando a aumentar la disponibilidad de la zona y también el rendimiento (puesto que entre menos paradas, mayor es la producción).

Se recolectaron los datos de la EGZ (Efectividad Global de Zona) en la zona piloto para los quince meses anteriores al inicio del proyecto del TPM; el período va desde julio de 2006 hasta septiembre de 2007. Inicialmente, se contó con la disponibilidad global de todas las prensas no sólo de la prensa; referente a la calidad sólo se disponía la global de la planta, y en cuanto al rendimiento sí se tenía un dato histórico de la zona.

Por lo anterior, sí se tiene los datos de efectividad global de la zona de prensa son una base para ver el progreso de la implementación del plan piloto del TPM, pero
no sirven para ser comparados directamente con los datos obtenidos a partir de Octubre de 2007 puesto que la calidad y la disponibilidad actualmente se miden exclusivamente para la zona piloto.

La disponibilidad ha mostrado un alza en los últimos meses, en comparación con los meses iniciales del registro. La línea de tendencia muestra una predisposición a la disminución de la disponibilidad, esto es debido, en parte, a que las prensas empezaron a trabajar al 100% de la capacidad en el segundo semestre de 2007, lo que ha originado más paros por fallas de los equipos.

El rendimiento de la zona también tuvo una tendencia de descenso como el cual se evidencio en el seguimiento de los indicadores. Las fluctuaciones se deben a dos razones; la primera, por algunos meses de bajo rendimiento al final del período evaluado y, la segunda, por un error en el registro del total de metros prensados en los meses de octubre y noviembre de 2006.

Al contrario de la disponibilidad y el rendimiento, la calidad ha aumentado en los meses evaluados.

La EGZ disminuyó en los meses evaluados puesto que el rendimiento y la disponibilidad también disminuyeron, causando un descenso considerable de este indicador principalmente en abril y mayo de 2007. Se puedo observar una EGZ muy variable, lo que hace muy impredecible el comportamiento de la efectividad de la zona.

En cuanto al conocimiento de los operadores, mecánicos y lubricadores de la zona con respecto al TPM, es poco; aunque saben sobre algunas herramientas que se usan en el proceso, por ejemplo las 5’s, desconocen el verdadero fundamento de esta y sobretodo el objetivo real del uso de las mismas. En el momento en que se inició el proyecto en la zona no se había implementado ninguna herramienta del TPM y mucho menos ninguno de los pasos del mismo. En la zona “falta un poco
más de disciplina y se pueden obtener resultados mucho más alentadores con la implementación de algunos conceptos del TPM que se han mencionado en las capacitaciones.” Dijo el facilitador de la zona de prensas.

5.2 MODELO DE IMPLEMENTACIÓN DISEÑADO PARA LA INDUSTRIA CERÁMICA.

5.2.1 Necesidades de la industria cerámica.
Con base en el diagnóstico inicial realizado a toda la zona piloto y equipo de trabajo, se pudieron obtener las siguientes necesidades de la empresa frente al desempeño del proyecto:

- Mejoramiento de la relación hombre máquina, la disponibilidad y la productividad de la zona: esta necesidad se refiere a la capacitación que tiene el operario en su puesto de trabajo, el TPM y la facilidad de mejorar la interfaz con las máquinas de la zona.

<table>
<thead>
<tr>
<th>NECESIDAD</th>
<th>INDICADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relación hombre máquina</td>
<td>Rendimiento</td>
</tr>
<tr>
<td>Disponibilidad</td>
<td>Disponibilidad</td>
</tr>
<tr>
<td>Productividad de la zona</td>
<td>EGZ</td>
</tr>
</tbody>
</table>

- Eliminación o reducción de las pérdidas relacionadas con la producción: la principal pérdida que se presenta en la zona piloto es llamada rotura, que se refiere a las baldosas que sufren una rotura después de ser prensada. Los rechazos de pasta provocados por los tamices como los derrames de la misma en la zona, son considerados pérdidas relacionadas con la producción.
• Eliminar o reducir las fuentes de contaminación: se pudo detectar que las fuentes de contaminación más relevantes en la industria cerámica son los derrames de pastas, ruido y aceite. En la sección de mantenimiento autónomo se podrá observar un cuadro con las fuentes de contaminación halladas en la zona piloto.

• Identificación de los conocimientos que debe tener cada uno de los integrantes del equipo de trabajo acerca de los objetivos, metas y pasos del TPM: los integrantes del equipo deben manejar los temas relacionados con el segundo pilar del TPM, el mantenimiento autónomo, los pasos que corresponden a la limpieza inicial, y la creación de estándares. También deben tener conocimiento para la utilización de las 5’s y las lecciones de un punto.

5.2.2 Estructuración estratégica
5.2.2.1 Equipo de trabajo: las actividades, que son delegadas a las personas, como se muestra en la tabla 3, son monitoreadas semanalmente por parte de los encargados; estos seguimientos se hacen de manera informal con retroalimentación verbal y se lleva un registro de los pendientes, los cuales son publicados en la cartelera del TPM. El superintendente y el facilitador del área de prensa utilizan mecanismos de presión y seguimiento de los pendientes por medio de memorando personales.
<table>
<thead>
<tr>
<th>ROL EN EL PROYECTO</th>
<th>CARGO EN LA EMPRESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigilar el cumplimiento de todas las actividades propuestas</td>
<td>Director de mantenimiento</td>
</tr>
<tr>
<td>Capacitar, entrenar y monitorear todas las actividades</td>
<td>Diseñadores del proyecto.</td>
</tr>
<tr>
<td></td>
<td>Ingeniero de Mantenimiento</td>
</tr>
<tr>
<td>Dirigir, vigilar, designar responsabilidades de las actividades</td>
<td>Superintendente de mecánico prensas</td>
</tr>
<tr>
<td></td>
<td>Asistente de prensas</td>
</tr>
<tr>
<td></td>
<td>Ingeniero de Prensas</td>
</tr>
<tr>
<td>Dirigir, vigilar, designar responsabilidades de las actividades eléctricas y electrónicas</td>
<td>Superintendente eléctrico</td>
</tr>
<tr>
<td>Apoyar todo el proceso de implementación</td>
<td>Practicante de Ing. Mecánica</td>
</tr>
<tr>
<td>Ejecutar y hacer seguimiento de los pasos realizados en el área de producción</td>
<td>Operario de Prensas</td>
</tr>
<tr>
<td></td>
<td>Operario de Prensas</td>
</tr>
<tr>
<td></td>
<td>Operario de Prensas</td>
</tr>
<tr>
<td>Ejecutar y hacer seguimiento de los pasos realizados en el área de mecánica</td>
<td>Mecánico de Prensas</td>
</tr>
<tr>
<td></td>
<td>Mecánico de Prensas</td>
</tr>
<tr>
<td></td>
<td>Mecánico de Prensas</td>
</tr>
<tr>
<td>Ejecutar y hacer seguimiento de los pasos realizados en el área de mecánica</td>
<td>Mecánico de Prensas</td>
</tr>
<tr>
<td></td>
<td>Lubricador de Prensas</td>
</tr>
<tr>
<td>Ejecutar y hacer seguimiento de los pasos realizados en la parte eléctrica</td>
<td>Electricista de prensas</td>
</tr>
</tbody>
</table>
5.2.2.2 Capacitación y entrenamiento: la capacitación del personal estuvo a cargo de los organizadores del proyecto. Las primeras capacitaciones fueron totalmente teóricas, y se basaron en las generalidades del TPM y en las herramientas que se usarían durante el proceso de implementación del plan piloto. Después de haber realizado la sensibilización del equipo de trabajo se comenzaron las capacitaciones teóricas prácticas.

La metodología que se utilizó para la capacitación teórica práctica en la zona piloto, consistía en una introducción al tema y luego se indicaba la forma como se iba a realizar cada actividad en la zona.

Tabla 4. Capacitaciones teóricas

<table>
<thead>
<tr>
<th>CAP.</th>
<th>TEMAS</th>
<th>Fecha</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plan Piloto de TPM</td>
<td>11/07/2007</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Cronograma de Actividades</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equipo de Trabajo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilares de TPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proceso Inicial de mantenimiento autónomo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Las cinco eses y sus herramientas</td>
<td>12/10/2007</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mantenimiento Autónomo: Limpieza Inicial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mantenimiento Autónomo: Fuentes de contaminación</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mantenimiento Autónomo: Estándares de Limpieza y Lubricación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Las 5 eses: Clasificar</td>
<td>07/02/2008</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Las 5 eses: Organizar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las 5 eses: Limpiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las 5 eses: Estandarizar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Continuación tabla 4.

<table>
<thead>
<tr>
<th>CAP.</th>
<th>TEMAS</th>
<th>Fecha</th>
<th>Horas</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Seguimiento de 5 eses</td>
<td>14/02/2008</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Implementación de Lección de un punto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Mantenimiento Autónomo: Limpieza Inicial</td>
<td>21/02/2008</td>
<td>2.5</td>
</tr>
</tbody>
</table>

5.2.2.3 Misión /Visión: crear una cultura organizacional en la zona de prensa alrededor del Mantenimiento Total Productivo (TPM) en el transcurso del primer semestre del 2008, incrementando la Efectividad Global de la Zona (EGZ) y, de esa manera, convertirse en un ejemplo a seguir por parte de las otras zonas de la empresa.

5.2.2.4 Criterios de éxito: para medir el éxito de los pasos implementados se tendrán en cuenta:

- Rendimiento y calidad de la ejecución de las actividades propuestas en cada reunión.

- Nivel de aceptación y entendimiento de las capacitaciones realizadas durante la implementación del proyecto.

- Mejoras en los indicadores de gestión del área de prensa.

5.2.2.5 Metas del plan: las metas del plan de implementación del proyecto en la empresa son:

- Disminuir la cantidad de desperdicio de pasta en la zona: actualmente en la zona de prensa, se considera desperdicio a la pasta que es rechazada por el tamiz, la pasta que cae al piso por alguna falla en un equipo, la pasta que no cumple las normas técnicas exigidas por la empresa y las baldosas que sufren una
rotura después de ser presadas. Históricamente, el único desperdicio que se mide en la zona es la rotura de baldosas presadas. El desperdicio restante es básicamente pasta sin presar. En este momento se están evaluando diferentes métodos para obtener los datos de este desperdicio; sin embargo, por la dificultad de obtener dichos datos en este proyecto, se presenta como desperdicio simplemente la rotura sin desconocer que también hay que trabajar para disminuir el desperdicio de pasta.

Se puede observar que el desperdicio ha disminuido considerablemente desde que comenzó el proyecto debido al trabajo de los mecánicos y de los operarios en pro de aumentar la calidad de la zona.

- Incrementar la calidad del producto en prensa: durante la ejecución del proyecto se tomaron los datos de los defectos en la zona para medir la calidad. Estos defectos son los siguientes:

 Rotura: es la cantidad de baldosas que se rompen después de ser presadas. Aunque la rotura es desperdicio también se considera que es un defecto que afecta la calidad porque se cuentan como baldosas defectuosas las presadas menos las que llegan buenas a las líneas de esmalteado, por lo tanto, si una baldosa se rompe durante el trayecto afectará la cantidad de baldosas buenas que se entregan a dicha línea de esmalteado.

 Rayado de platina: esto ocurre cuando la baldosa es rayada en un lado en el momento de ser presada.

 Desgarre: es un defecto que afecta un gran volumen de baldosas en la zona y se da por algunos problemas en la conformación de la baldosa.

 Rebaba: cuando la baldosa presenta una pequeña protuberancia por un lado se le llama rebaba.
Despunte: cuando se ensucia con pasta alguna de las esquinas del molde donde se prensan las baldosas pueden quedar puntas flojas en la cerámica y posteriormente caerse afectando la calidad del producto.

5.2.2.6 Cronograma de actividades a desarrollar: para el desarrollo de un plan de implementación del TPM en una zona piloto de la empresa se diseñó un cronograma de actividades basado en un plan general propuesto para la implementación de TPM en la misma desarrollado por la empresa. El cronograma está basado en el tiempo máximo en el que puede realizarse el proyecto y contiene las actividades a desarrollarse semanalmente.

Tabla 5. Cronograma de actividades del proyecto

<table>
<thead>
<tr>
<th>FECHA</th>
<th>ACTIVIDAD A REALIZAR</th>
<th>DETALLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-20 Octubre 07</td>
<td>Planeación</td>
<td>preparación de cronograma para la implementación del proyecto</td>
</tr>
<tr>
<td>21-03 Noviembre 07</td>
<td>Campaña educacional y entrenamiento</td>
<td>Conferencia en sobre TPM en la compañía</td>
</tr>
<tr>
<td>09-15 Diciembre 07</td>
<td>Recolección de datos</td>
<td>Se recopilarán datos y se continuará con la campaña educacional</td>
</tr>
<tr>
<td>07-14 Febrero 08</td>
<td>5'S</td>
<td>Capacitación y ejecución</td>
</tr>
<tr>
<td>21-28 Febrero 08</td>
<td>M.A. (Limpieza inicial, fuentes de contaminación)</td>
<td>Capacitación y ejecución</td>
</tr>
<tr>
<td>29-06 Marzo 08</td>
<td>M.A. (Creación de estándares de limpieza y lubricación)</td>
<td>Se explicarán los formatos que se usarán en la creación de estándares</td>
</tr>
<tr>
<td>06-13 Marzo 08</td>
<td>M.A. (Inspección del equipo y de los procesos en general)</td>
<td>Capacitación y ejecución</td>
</tr>
<tr>
<td>20-27 Marzo 08</td>
<td>Mejoras enfocadas</td>
<td>Realización de algunas mejoras en la zona piloto</td>
</tr>
<tr>
<td>27-03 Abril 08</td>
<td>Revisión</td>
<td>Revisar las actividades realizadas en todo el proceso</td>
</tr>
</tbody>
</table>
Durante el transcurso del proyecto se modificó el cronograma de actividades del mismo (Tabla 5), debido a inconvenientes en la empresa. Al igual que el cronograma anterior, el siguiente plan de actividades ha sufrido muchas modificaciones desde el momento de su creación hasta hoy, por lo cual, actualmente, no hay fechas tentativas para el cumplimiento de aquellas. En esta parte del cronograma general de implementación del TPM en la industria cerámica se visualiza el alcance del proyecto actual en el proceso de ejecución del TPM en la empresa.

La parte sombreada de la tabla siguiente corresponde a las etapas que abarcaron el proyecto propuesto en este trabajo.

Con el proyecto actual, se logró iniciar el proceso de implementación de TPM en equipos pilotos en la industria de cerámica.

Tabla 6. Parte del cronograma de actividades de implantación del TPM en la industria de cerámica.

<table>
<thead>
<tr>
<th>ETAPA</th>
<th>PASO</th>
<th>ACTIVIDADES A REALIZAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASE I</td>
<td>1</td>
<td>Estudio de TPM</td>
</tr>
<tr>
<td>FASE I</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FASE I</td>
<td>2</td>
<td>Implementación TPM Equipos Pilotos</td>
</tr>
<tr>
<td>PREPARACION</td>
<td>3</td>
<td>Presentación del TPM a la gerencia</td>
</tr>
<tr>
<td>PREPARACION</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
5.3 RECOGIDA DE INFORMACIÓN

Con la colaboración de todos los empleados de la empresa se recolectó la información necesaria para soportar las teorías y resultados de la implementación del TPM en la industria. El proyecto se apoya en indicadores que evalúan la información recopilada para permitir un análisis de esta. Los principales indicadores se muestran a continuación.

5.3.1 Indicadores

5.3.1.1 Disponibilidad: en la planta se mide con los minutos improductivos mencionados en el diagnóstico de la zona; para cada zona, se puede observar cuáles son los minutos improductivos y con ellos apoyarse para calcular la disponibilidad de los equipos. Tan solo con calcular cual es el tiempo total teórico que los equipos pudieron haber trabajado en un mes y restándole el tiempo que los equipos estuvieron parados en el mismo mes se tiene un dato de disponibilidad.

5.3.1.2 Calidad: en la empresa se mide a la salida de los hornos antes de empaquetar el producto y, simplemente, se cuenta cuántos metros cuadrados de baldosa son de calidad primera y se divide por los metros cuadrados totales que salieron del horno, dando así un porcentaje de dicha calidad. Para la zona de prensa no se van a tomar estos datos de calidad dado que involucran defectos que se dan en los otros procesos, alterando los datos reales de la zona. Para tener datos más reales de calidad se tienen en cuenta solo los defectos de la zona mencionados en las metas del plan; de esta forma se tiene un dato más preciso de calidad para la misma y un posterior cálculo de la EGZ. Para calcular este indicador se tiene en cuenta los metros cuadrados prensados de baldosa y se le resta todo lo que sea defectuoso.
5.3.1.3 Rendimiento: en la industria de cerámica se mide contando los metros cuadrados quemados (que salieron del horno) y dividiendo por los metros cuadrados teóricos, lo que da un porcentaje de rendimiento para la planta. Para el caso de la zona de prensa solo se tomarán los metros cuadrados de baldosa prensados puesto que no son iguales a los quemados por diferentes problemas que se tienen durante el proceso (pueden ser más o menos metros quemados que prensados en un día, pero nunca son iguales).

5.3.1.4 EGZ: la efectividad global de la zona se calcula multiplicando la calidad por la disponibilidad por el rendimiento.

5.3.2 Resultados de indicadores
A continuación se mostrarán los indicadores de disponibilidad, rendimiento, calidad y efectividad global de la zona (EGZ), también conocido como OEE. Se hará énfasis en la zona en que se realizó la implementación piloto del TPM.

5.3.2.1 Calidad: se puede observar que la calidad, en general, tiene una tendencia a aumentar en donde la meta se puede lograr atacando los defectos explicados en las metas del plan. Noviembre de 2008 y marzo de 2008 son los meses que más se han afectado por defectos de calidad. Noviembre se vio afectado principalmente por el desgarre y marzo por la rebaba y el desgarre.

5.3.2.2 Disponibilidad: esta muestra un comportamiento sostenido durante los meses evaluados, aunque con una leve tendencia a caer y se propone una meta que se calcula con los tiempos de paro presupuestados por la empresa para cada área basados en unos minutos que paran todos procesos por día. Febrero y marzo de 2008 son los meses en los se perdió más tiempo.

El equipo de la zona que más paró en febrero fue la prensa con 3413 minutos perdidos. Los paros más significativos se deben a los cambios de formato en
donde el tiempo estimado estándar mensual por cambios de formato es menor. Esto explica por qué en febrero se afectó tanto la disponibilidad. La industria de cerámica tiene poca experiencia en la producción de estos formatos, los cuales presentan una gran dificultad en el montaje y la estabilización por su gran tamaño. Para disminuir el tiempo perdido por causa de algunos formatos se propone crear estándares documentados que expliquen claramente el montaje de cada uno de ellos y además contengan los posibles problemas con una solución rápida y eficaz.

En marzo se presentaron diferentes causas de paros en la prensa, de los cuales los más significativos ocurrieron por bloqueos eléctricos. Los paros más significativos fueron debidos a bloqueos en el actuador del carro alimentador de pasta de la prensa.

5.3.2.3 Rendimiento: se evidenció un comportamiento muy variable de rendimiento con una tendencia a bajar en los últimos meses.

5.3.2.4 EGZ: esta ha sido muy variable con una tendencia a bajar levemente. La meta de este indicador estuvo siempre por encima del valor real en cada mes evaluado.

5.4 PILARES RELACIONADOS CON LA IMPLEMENTACIÓN DEL PROYECTO

Es imposible pensar que se puede implementar un solo pilar del TPM sin que se vea en evidencia la presencia de otro de los mismos, esto se debe a que el TPM se fundamenta en estos pilares y son la columna vertebral de la implementación, creando así una dependencia entre ellos.

Los pilares relacionados con el mantenimiento autónomo son el pilar de educación y entrenamiento, seguridad y medio ambiente y mejoras enfocadas.
5.4.1 Seguridad en la zona
Con ayuda del departamento de riesgos profesionales en la empresa se pudo recolectar toda la información que incumbe a la zona de prensa en la seguridad industrial. Se consiguieron los manuales de seguridad de los prenseros, mecánicos y electricistas de dicha zona.

Toda esta información hace parte del TPM y de su implementación ya que la seguridad es una sección muy importante tanto en la herramienta como en los trabajos que se realizan en la empresa. Actualmente el indicador que se lleva en la misma para medir la seguridad es muy incipiente. Dicho indicador lo único que hace es medir la duración que hay entre un accidente y otro, es decir la cantidad de días sin accidentes en la planta. En la zona piloto no se ha reportado ningún accidente durante los meses de ejecución del proyecto.

Al ser concientes que la seguridad es un elemento muy importante en la empresa, se ha creado una mejora para las actividades que se realizan en las alturas dentro de la zona de prensa. Con la iniciativa del equipo de mecánicos de prensa se creó un dispositivo que asegura dichos trabajos dando así un significativo avance en los elementos de seguridad de la zona piloto. Anteriormente se usaban estibas en las uñas de la montacarga para elevar a la persona hasta el lugar donde debía realizar el trabajo. Hoy en día se adaptó una jaula realizada por los integrantes del grupo piloto para realizar trabajos en altura.

5.4.2 Mantenimiento Autónomo.

5.4.2.1 Las 5’s: Lo primero que se realizó en esta parte fue la creación del formato de la tarjeta roja que se ve en la siguiente figura.
También se creó una zona de desalojo para todos los elementos que se necesiten retirar de la zona piloto después de haber realizado el trabajo de las 5’s. Durante esta parte se hicieron algunas mejoras, como la demarcación de algunas zonas en donde deben ir algunos elementos, lo mismo que la reubicación de otros.

Con la implementación de la demarcación de algunos sitios se pudo disminuir un poco el tiempo de limpieza de los equipos, ya que se redujo la duración de la búsqueda de los elementos de aseo aproximadamente en dos minutos por turno, y gracias a su ubicación estratégica, la cual es cercana a cada equipo.

Al ser comprendido el concepto 5’s se generalizó en toda la zona y llegó hasta los puestos de trabajo de los integrantes del grupo piloto.

Finalmente se realizó una mejora con ayuda de las 5’s en la cual se elaboró una caja donde se ubican las correas de los equipos de la zona. Para garantizar el puesto de cada correa se marcó cada referencia específica en un lugar definido de la caja.

5.4.2.2 Desarrollo del mantenimiento autónomo: para este pilar se creó un formato, con el cual se lleva un registro de las actividades realizadas como la limpieza inicial e inspección general del equipo.
El inicio de este pilar se puede soportar con actividades antes realizadas en las 5’S. El primer paso para el mantenimiento autónomo que se trató en el proyecto fue el de limpieza inicial con carácter de inspección, y fue realizado por cada miembro del equipo de trabajo, en las máquinas especificadas por el superintendente de la zona.

Luego de la limpieza se creo un estándar para la zona en donde se especificaron los pasos, puntos, implementos y actividades que se deben realizar en el momento de realizar una limpieza con carácter de inspección.

En la zona del tamiz durante la inspección general se halló un problema en la cubierta de la caja de comandos eléctricos del equipo. Esta se encontraba sin la tapa de protección, lo cual permitía el ingreso de polvo a la caja; esto podría causar bloqueos eléctricos en el equipo por causa de cortocircuitos. El problema fue reportado inmediatamente al responsable de la parte eléctrica en el equipo de trabajo, quien efectuó las acciones necesarias para la eliminación del problema.

Como se pudo observar en la implementación del plan piloto, en los cepillos horizontales de limpieza se identificó una fuente de contaminación que se pueden mejorar. La solución que propone el mecánico es simplemente colocar una capa protectora sobre los cepillos que reducirá el ruido y el polvo en esta parte de la zona.

El problema de la acumulación de pasta y polvo en esta zona con tan difícil acceso es el “deterioro acelerado de los fuelles y moldes de la prensa”, asegura el operario y mecánico de la misma.

A continuación se muestra el análisis realizado para buscar la solución a este problema:
El diagrama muestra que las principales causas que llevan al deterioro de los fuelles y los moldes de la prensa son la acumulación de pasta y de polvo que suman el 80% aproximadamente de dichas causas. Ya que dichos componentes de la prensa son críticos y de difícil acceso, se debe mejorar la succión en la zona para mantener limpias todas las partes del equipo incluyendo las mencionadas anteriormente. Al disminuir la acumulación de pasta y polvo se aumenta la vida útil de estos componentes, y además se reduce el tiempo de intervención de mantenimiento de la prensa.

En conclusión se puede decir que el mantenimiento autónomo se enfocó en la búsqueda de fuentes de contaminación, áreas de difícil acceso y soluciones para los problemas que los equipos presentaban, esto para llevarlos a un estado de cero averías.
5.4.3 Mejoras enfocadas

Después de haber comenzado a implementar los conceptos iniciales del TPM dio un pequeño paso al pilar de las mejoras enfocadas, dando a conocer el significado de este pilar al equipo de trabajo, y también realizando un ejercicio de reconocimientos y uso de las mismas mejoras enfocadas en la zona piloto.

Un buen ejemplo fue dado a conocer por parte de un mecánico. El problema es la cantidad de tiempo que se pierde cada vez que se necesita intervenir la parte del posterior de la prensa, las razones por las cuales se tarda son las siguientes:

Tabla 7. Análisis de cinco por qués para el caso de la prensa.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Porque Hay que limpiar charcos de aceites</td>
</tr>
<tr>
<td>2</td>
<td>Porque Se presentan fugas, aun estando el sistema hidráulico cerrado</td>
</tr>
<tr>
<td>3</td>
<td>Porque No hay dispositivos de detención del aceite en las tuberías</td>
</tr>
<tr>
<td>4</td>
<td>Porque No están en el diseño inicial de la máquina</td>
</tr>
<tr>
<td>5</td>
<td>Porque No se pensó en eso.</td>
</tr>
</tbody>
</table>

Con lo anterior se pudo enseñar y capacitar al personal de la empresa en la herramientas de análisis de problemas con lo que se tienen un fundamento para realizar aporte de más fuerza hacia los superiores en el momento de justificar una mejora en los equipos.

5.5 CAPTACIÓN DE CONOCIMIENTOS POR EL EQUIPO DE TRABAJO.

Para medir el éxito en la transmisión de los conocimientos durante el desarrollo de todo el proyecto se realizaron unos exámenes que contienen los conceptos básicos del mismo (ver anexo 1). La evaluación se enfocará en dos grandes temas que son herramientas del TPM, 5’s y Lecciones de un punto (LUP), mantenimiento autónomo y mejoras enfocadas.
A continuación se mostrará el resultado del análisis realizado:

Figura 4. Resultado de la evaluación del proyecto en el equipo de trabajo

Como se puede ver en la figura anterior, la captación de los conocimientos transferidos durante el proyecto está bastante alta. En promedio la calificación de todo el equipo estuvo en un 88%; esto permite aseverar que las capacitaciones fueron realmente eficientes.
Figura 5. Evaluación del proyecto por tema

Finalmente, en el análisis de la evaluación por temas, se descubrió que los conocimientos por temas también estuvieron altos, aunque los menores valores se obtuvieron en la herramienta de lección de un punto (LUP’s) y el mantenimiento autónomo esto es debido la amplitud del tema y el tiempo tan restringido de capacitación.

Estos altos resultados en las evaluaciones del proyecto se dieron gracias al empeño de aprender todo lo posible acerca del TPM, por parte del equipo de trabajo, y a las capacitaciones realizadas en la planta.
Finalmente se hizo un análisis del cronograma inicial del proyecto y el real. Estos retrasos y adelantos se debieron a impedimentos por parte de la empresa o de los organizadores, igualmente la influencia de problemas que se presentaron en el transcurso del mismo.

Tabla 8. Cronograma real y presupuestado
7. RECOMENDACIONES Y CONCLUSIONES

7.1 PROBLEMAS EN LA IMPLEMENTACIÓN.

- Uno de los principales problemas que se presentaron en el proceso de implementación de los conocimientos adquiridos durante cada capacitación, fue el desánimo demostrado por los integrantes del equipo a los cuales les correspondía realizar los pendientes asignados en cada sección; esto se derivó de la idea que tenían estas personas acerca del claro objetivo de la implementación del TPM en la empresa, tomándolo como un trabajo para unos estudiantes y no como una herramienta que les facilitaría el trabajo en un futuro, incrementado todos sus indicadores.

- Debido principalmente a los múltiples paros por causas mecánicas, eléctricas y cambios de formato en la zona durante la ejecución del proyecto, no se lograron las metas esperadas en los indicadores (calidad, rendimiento, disponibilidad y EGZ). También se puede explicar dado que las metas son a largo plazo, por lo tanto solo se espera que los indicadores aumenten progresivamente a medida que se implementa el TPM. Este análisis se puede observar claramente en la figura 6.
Figura 6. Análisis de espina de pescado para el incumplimiento de las metas.
7.2 RECOMENDACIONES

- Los indicadores de calidad, disponibilidad, rendimiento y la EGZ son de vital importancia para la correcta implementación del TPM; por lo tanto, se debe guardar un registro histórico de cada uno de los datos con los que se calculan dichos indicadores. Si se eliminan los registros de los datos que permiten obtener los indicadores del TPM, se reduce la posibilidad de hacer un buen análisis de los problemas de la planta y además se presenta la imposibilidad de plantear un posterior plan de acción que permita solucionar estos.

- Comprometer mucho más a todas las personas del equipo piloto para un mejor rendimiento en la implementación. Este compromiso se podría lograr si existiera una presión de los altos mandos en el proyecto, es decir, que estos altos mandos deberían estar, constantemente vigilando los avances en cada etapa del proyecto para que el equipo piloto pueda sentir una gran responsabilidad en vez de considerar una carga de trabajo extra por las actividades asignadas.

- Es importante ejecutar un plan a largo plazo en la zona piloto para llevar los equipos a “estado inicial” punto en el cual se intenta lograr el objetivo de “cero averías” en los equipos.

7.3 CONCLUSIONES

- Implementar un plan piloto del TPM en 20 semanas es muy ambicioso dado que se tienen diferentes variables (registro de datos, capacitación de personas, ejecución de tareas y otros), que conlleva a superar diversos tropiezos (retrasos en el cronograma, bajo nivel de aceptación de las personas, poco compromiso de algunos participantes, incompatibilidad con los horarios de la empresa y otros), los cuales reducen la velocidad de avance del proyecto.
• Los indicadores de calidad, disponibilidad y rendimiento se optimizaron durante los primeros meses de ejecución del proyecto, permitiendo de este modo obtener resultados reales de la zona evaluada. Se logró calcular la calidad para la zona filtrando los defectos que son causados por la prensa, logrando así registrar este indicador en el área requerida. Por su parte el rendimiento se basó en el producto que se elabora en la zona, dejando a un lado los otros procesos productivos de la planta. Finalmente con datos precisos de la zona se plantearon metas para cada indicador de acuerdo a los datos obtenidos durante el proceso de ejecución del plan.

• La capacitación dada al equipo piloto de TPM se puede calificar como muy buena; ya que los resultados obtenidos en el análisis de la evaluación de los temas involucrados en el proyecto fue de un 88 % lo que demuestra la efectividad de las capacitaciones y entrenamientos. El éxito en dicha evaluación a los integrantes del grupo piloto y las mejoras en la calidad de la producción de la zona permiten ver el compromiso de todos para que este proyecto salga adelante.

• Los resultados de los indicadores no fueron los esperados, debido a que la disponibilidad y el rendimiento de la zona tuvieron una tendencia a disminuir durante los meses evaluados, sin embargo la calidad tiene una tendencia a mejorar, lo que es de gran importancia puesto que es una señal de mejoramiento en los procesos y el mantenimiento de los equipos. La disponibilidad y el rendimiento fueron afectados principalmente por múltiples paros en febrero y marzo de 2008, lo que explica el porque de la tendencia a bajar durante el semestre evaluado.

• Como se pudo comprobar en el trabajo, se puede incurrir en un error grave cuando las implementaciones y técnicas son seguidas textualmente de los libros, ya que no todo lo que se presenta en estos es aplicable a la empresa.
Los planes de trabajo y las metodologías para la implementación del TPM son particulares y únicos para cada empresa aunque puede tener similitudes con otros casos.

- El TPM es una herramienta que necesita compromiso de todas las partes dentro de la empresa, desde la alta gerencia hasta los operarios, ya que durante la implementación de esta técnica se plantea un cambio cultural en toda la organización. Siendo un plan piloto lo implementado, es necesario incrementar el compromiso de todos ya que este va a ser la carta de presentación del TPM para la misma empresa, por lo cual la compañía debe destinar recursos hacia la motivación y capacitación del equipo piloto para así poder conseguir el apoyo, la responsabilidad y conocimiento necesario para el cumplimiento de el plan piloto y el éxito del mismo.

- Puesto que las metas de disponibilidad, calidad, rendimiento y EGZ fueron propuestas durante el desarrollo del proyecto estas no fueron cumplidas. Dichas metas se plantearon para ser alcanzadas a largo plazo, ya que se necesita de grandes mejoras en cada uno de los indicadores para superar los valores propuestos. Las mejoras en la calidad y el rendimiento dependen de una reducción importante en los tiempos improductivos de la zona, y no es fácil disminuir dichos tiempos dado que cada mes estos se presentan por diversos problemas que hay que atacar progresivamente. Para mejorar la calidad se necesitan reducir los defectos que se presentan en la producción de la zona, y como dichos defectos varían considerablemente cada mes, se debe hacer un seguimiento constante de estos en el área ayudando así a la disminución los mismos.
BIBLIOGRAFÍA

GAVIRIA DUQUE, Daniel y RESTREPO ARISTIZABAL, Juan José. Selección de las variables que tiene relación de causalidad directa o estructural con la implantación del TPM: Revisión del caso SOFASA. Medellín (Colombia), 2005, Trabajo de grado (Ingeniero Mecánico). Universidad Eafit. Departamento de ingeniería mecánica.
OCHOA MARIN, Carolina y LEON OSPINA, Juan Camilo. Análisis de resultados de implementación de TPM en las empresas de Medellín y el valle de Aburra. Medellín (Colombia), 2002, Trabajo de grado (Ingeniero Mecánico). Universidad Eafit. Departamento de ingeniería mecánica.
ANEXO 1. EVALUACIÓN DEL PROYECTO

1. Cual de los siguientes no es un pilar del TPM:
 a) Mantenimiento Autónomo
 b) Mejoras Enfocadas
 c) Las 5 eses

2. Cual de los siguientes es un indicador importante para el TPM:
 a) Disponibilidad
 b) EGZ
 c) Calidad
 d) Todos

3. Cual es principal objetivo del TPM:
 a) Mejorar los costos
 b) Mejorar la productividad
 c) Mejorar todas las variables del negocio
 d) Mejorar el mantenimiento

4. La limpieza inicial lo que busca es:
 a) Dejar la maquina impecable
 b) Inspeccionar la maquina
 c) Quitar las fuentes de contaminación

5. Las averías se clasifican en:
 a) Deterioro Normal
 b) Deterioro Forzado
 c) Error Humano
 d) Todos
 e) Ningunos

6. Las 5 eses son:
 a) Clasificar, ordenar, limpiar, estandarizar, disciplina
 b) Organizar, Limpiar, botar, recoger, desalojar
 c) Tarjetas rojas, Lecciones de un punto
 d) Ninguna
7. Las lecciones de un punto (LUP’S) es una herramienta para:
 a) Transferir conocimientos y habilidades
 b) Estandarizar los problemas de producción
 c) Hacer dibujos para enseñar a otras personas

Recomendaciones y Conclusiones:

Al reverso de la página escriba las recomendaciones, dudas y problemas que creen que se puedan solucionar para continuar con el proceso de implementación del TPM.