DESARROLLO DE UNA METODOLOGÍA PARA SÍNTESIS, OPTIMIZACIÓN Y DIAGNÓSTICO DE REDES DE TRANSFERENCIA DE CALOR (HEN) – TRATAMIENTO DE PROBLEMAS CON CORRIENTES ISOTÉRMICAS

ESTEBAN JARAMILLO CHICA
JAVIER ARLEY SÁNCHEZ COSSIO

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA DE PROCESOS
MEDELLÍN
2009
DESARROLLO DE UNA METODOLOGÍA PARA SÍNTESIS, OPTIMIZACIÓN Y DIAGNÓSTICO DE REDES DE TRANSFERENCIA DE CALOR (HEN) – TRATAMIENTO DE PROBLEMAS CON CORRIENTES ISOTÉRMICAS

ESTEBAN JARAMILLO CHICA
JAVIER ARLEY SÁNCHES COSSIO

Proyecto de grado para optar al título de Ingeniero de Procesos

Asesor
PhD. Diego Andrés Acosta Maya
Docente Ingeniería de Procesos

UNIVERSIDAD EAFIT
ESCUELA DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA DE PROCESOS
MEDELLÍN
2009
Nota de aceptación

Firma del Presidente del Jurado

Jurado

Jurado

Medellín, Octubre de 2009
AGRADECIMIENTOS

A nuestras familias, que siempre estuvieron ahí y sin cuyo apoyo constante nada habría sido posible.

A mis padres por su fe, paciencia y por la oportunidad de demostrarles que sí era capaz. A los míos por los sacrificios que han hecho para ayudarme a llegar donde estoy.

A todos los profesores que durante la carrera se esforzaron por prepararnos para la vida más que para la profesión.

A todos los compañeros que compartieron esta etapa de la vida junto a nosotros.

Al mejor compañero y amigo que pude tener en la carrera y en este proyecto.

A Dios. A las chiquillas, que con su alegría y palabras de ánimo lograron sacarnos de nuestras “crisis”. A Víctor por los 10 años más de vida que tendremos. A Mario Cesar Vélez Gallego que aunque nada tenía que ver con nosotros realizó un aporte valiosísimo. A Diego. A la Universidad EAFIT por los recursos que aportó para el desarrollo del proyecto. Y a la selección natural…
CONTENIDO

INTRODUCCIÓN...12
OBJETIVO GENERAL...15
OBJETIVOS ESPECÍFICOS...16
1. MARCO REFERENCIAL ...17
 1.1 Clasificación según su principio de funcionamiento...21
 1.1.1 Métodos basados en heurística y búsqueda evolutiva..21
 1.1.2 Métodos termodinámicos...21
 1.1.3 Métodos matemáticos...22
 1.2 Clasificación según su proceso de solución..22
 1.2.1 Síntesis Secuencial..22
 1.2.2 Síntesis Simultánea..23
 1.3 Metodologías abordadas en el presente trabajo...24
 1.3.1 Diseño Heurístico H/H (Hottest/Highest)...24
 1.3.2 Análisis de Segunda Ley..26
 1.3.3 PINCH...28
 1.3.4 Superestructura...32
 1.4 Cambio de fase...34
2. HERRAMIENTAS DESARROLLADAS...36
 2.1 PINCH..36
 2.2 Método heurístico H/H..41
 2.3 Método heurístico H/H-RPS..43
 2.4 Superestructura..46
 2.5 Análisis de segunda ley..49
 2.6 Modificaciones para cambio de fase...55
3. METODOLOGÍA PROPUESTA..56
4. METODOLOGÍA DE CÁLCULO..59
LISTA DE TABLAS

Tabla 1: Datos de las corrientes para el caso de estudio 1 ... 62
Tabla 2. Resultados caso de estudio 1 ... 63
Tabla 3. Resultados económicos caso 1 PDM ... 63
Tabla 4. Resultados caso 1 H/H .. 64
Tabla 5. Resultados económicos caso 1 H/H .. 65
Tabla 6. Resultados caso 1 H/H-RPS ... 66
Tabla 7. Resultados económicos caso 1 H/H-RPS .. 66
Tabla 8. Resultados caso 1 superestructura ... 67
Tabla 9. Resultados económicos caso 1 superestructura ... 68
Tabla 10. Datos de las corrientes para el ejemplo 2 ... 70
Tabla 11. Resultados caso 2 PDM .. 71
Tabla 12. Resultados económicos caso 2 PDM ... 72
Tabla 13. Resultados caso 2 HH .. 73
Tabla 14. Resultados económicos caso 2 HH ... 73
Tabla 15. Resultados caso 2 HH-RPS ... 74
Tabla 16. Resultados económicos caso 2 HH-RPS ... 74
Tabla 17. Resultados caso 2 superestructura ... 75
Tabla 18. Resultados económicos caso 2 superestructura ... 76
Tabla 19. Datos de las corrientes para el ejemplo 3 ... 79
Tabla 20. Datos de las corrientes modificadas para el ejemplo 3................................. 80
Tabla 21. Resultados caso 3 PDM ... 81
Tabla 22. Resultados económicos caso 3 PDM ... 81
Tabla 23. Resultados caso 3 HH .. 82
Tabla 24. Resultados económicos caso 3 HH ... 83
Tabla 25. Resultados caso 3 superestructura .. 84
Tabla 26. Resultados económicos caso 3 superestructura ... 85
Tabla 27. Datos de las corrientes para el ejemplo 4 ... 87

pág.
7
Tabla 28. Datos de las corrientes modificadas para el ejemplo 3................................. 87
Tabla 29. Resultados caso 4 PDM.. 88
Tabla 30. Resultados económicos caso 4 PDM... 89
Tabla 31. Resultados caso 4 HH.. 90
Tabla 32. Resultados económicos caso 4 HH... 90
Tabla 33. Resultados caso 4 superestructura ... 91
Tabla 34. Resultados económicos caso 4 superestructura.. 92
Tabla A.1: Datos de las corrientes para el ejemplo.. 118
Tabla A.2. Resultados del ejemplo... 125
LISTA DE GRÁFICAS

Grafica 1. Comparación resultados caso 1 ... 69
Grafica 2. Comparación resultados caso 2 ... 78
Grafica 3. Comparación resultados caso 3 ... 86
Grafica 4. Comparación resultados caso 4 ... 93
Gráfica 5. Reducción de costos para las redes revisadas ... 98
Gráfica 6. Reducción de costos para las redes revisadas ... 99
Gráfica 7. Reducción de costos para las redes revisadas ... 99
Gráfica 8. Resultados ejemplo 1 .. 102
Gráfica 9. Resultados ejemplo 2 .. 102
Gráfica 10. Resultados ejemplo 3 .. 102
Gráfica 11. Resultados ejemplo 4 .. 103
Gráfica 12. Resultados ejemplo 1 .. 104
Gráfica 13. Resultados ejemplo 2 .. 105
Gráfica 14. Resultados ejemplo 3 .. 105
Gráfica 15. Resultados ejemplo 4 .. 106
LISTA DE FIGURAS

Figura 1. Línea temporal del desarrollo de la HENS .. 18
Figura 2. Esquema general de la metodología PINCH .. 28
Figura 3. Curvas Compuestas ... 30
Figura 4. Representación de la red de transferencia de calor ... 31
Figura 5. Superestructura genérica .. 33
Figura 6. Ventana de inicio de la herramienta desarrollada ... 36
Figura 7. Ventana de selección de problema .. 37
Figura 8. Curvas compuestas .. 37
Figura 9. Gráfico de cascada .. 38
Figura 10. Curva gran compuesta ... 39
Figura 11. Distribución de las corrientes .. 39
Figura 12: Ventanas del proceso de asignación ... 40
Figura 13. Asistente desarrollado para el método H/H .. 41
Figura 14. Distribución de las corrientes .. 42
Figura 15. Ventanas generadas por el asistente .. 42
Figura 16. Diseño final de la red ... 43
Figura 17. Asistente para el diseño según el algoritmo H/H-RPS 45
Figura 18. Red diseñada según H/H-RPS ... 45
Figura 19. Superestructura de 2 etapas para 2 pares de corrientes 46
Figura 20. Caso de estudio 1 .. 61
Figura 21. Red diseñada por PINCH para el caso de estudio 1 .. 62
Figura 22. Red diseñada por H/H para el caso de estudio 1 ... 64
Figura 23. Red diseñada por H/H-RPS para el caso de estudio 1 65
Figura 24. Red diseñada por superestructura para el caso de estudio 1 67
Figura 25. Red diseñada por PDM para el caso de estudio 2 ... 71
Figura 26. Red diseñada por HH para el caso de estudio 2 ... 72
Figura 27. Red diseñada por HH-RPS para el caso de estudio 2 74
Figura 28. Red diseñada por superestructuras para el caso de estudio 2 75
Figura 29. Red diseñada por PDM para el caso de estudio 3 ... 81
Figura 30. Red diseñada por HH para el caso de estudio 3 .. 82
Figura 31. Red diseñada por superestructuras para el caso de estudio 3 83
Figura 32. Red diseñada por PDM para el caso de estudio 4 ... 88
Figura 33. Red diseñada por HH para el caso de estudio 4 ... 89
Figura 34. Red diseñada por superestructuras para el caso de estudio 4 91
Figura 35. Red obtenida tras revisión de Segunda ley para el ejemplo 1 PDM.............. 95
Figura 36. Red obtenida tras revisión de Segunda ley para el ejemplo 2 PDM.............. 95
Figura 37. Red obtenida tras revisión de Segunda ley para el ejemplo 3 PDM.............. 96
Figura 38. Red obtenida tras revisión de Segunda ley para el ejemplo 3 HH............... 96
Figura 39. Red obtenida tras revisión de Segunda ley para el ejemplo 3 Matemática..... 97
Figura 40. Red obtenida tras revisión de Segunda ley para el ejemplo 4 PDM.............. 97
Figura 41. Red obtenida tras revisión de Segunda ley para el ejemplo 4 HH............... 98
Figura 42. Curvas compuestas para el problema 4 .. 101
Figura 43. Influencia de la HRAT en los costos totales anualizados 108
Figura 44. Curvas compuestas caso de estudio 3 ... 109
Figura A.1. Curvas compuestas... 118
Figura A.2. Representación de los intervalos ... 119
Figura A.3. Tabla de cascada ... 120
Figura A.4. Algoritmo de asignación por encima el PINCH 121
Figura A.5. Primera asignación sobre el PINCH ... 122
Figura A.6. Segunda asignación ... 122
Figura A.7. Última asignación sobre el PINCH ... 123
Figura A.8. Algoritmo de asignación por debajo del PINCH 123
Figura A.9. División de la corriente fría 1 y asignaciones bajo el PINCH 124
INTRODUCCIÓN

En la gran mayoría de los procesos industriales hay presentes corrientes que requieren ser calentadas o enfriadas, para cumplir con estos requerimientos energéticos deben existir corrientes de servicio o del mismo proceso con las que pueda realizarse intercambio de calor por lo que se hace necesario un conjunto de intercambiadores que relacionen estas corrientes. Al conjunto de equipos y corrientes que intercambian calor dentro de un proceso se les denomina Red de Intercambio de Calor o HEN (Heat Exchange Network) por sus siglas en inglés. Estas redes representan un aporte considerable dentro de los costos y las emisiones al ambiente del proceso, hasta el 40% de los costos operacionales totales de una planta química pueden ser atribuidos a la energía (Zargarzadeh, et al, 2007). Es por esto que la conservación de la energía es de vital importancia en el diseño de procesos y es necesario prestar atención al diseño de las HEN.

Por experiencia a nivel industrial el cálculo de los requerimientos mínimos de calentamiento y enfriamiento revela un ahorro significativo. Específicamente, industrias en el Reino Unido (ICl) y en los Estados Unidos (Union Carbide) reportan resultados para un gran número de casos de estudio que indican ahorros energéticos del 30% al 50% comparados con la operación tradicional (Narasimhan, 2000). Con el fin de aprovechar esta potencial disminución en los costos se lleva a cabo la optimización e integración energética de las que trata el presente trabajo.
Las metodologías para resolver el problema de redes de transferencia de calor que se han desarrollado pueden dividirse en tres tipos principales (Frangopoulos, et al, 2002):

- Métodos basados en heurística y búsqueda evolutiva.
- Métodos termodinámicos que tratan de alcanzar metas predeterminadas, identificadas mediante la aplicación de reglas físicas.
- Métodos matemáticos que inician con una estructura hipotética, que luego es reducida a la configuración óptima.

La primera clasificación incluye metodologías como el análisis de segunda ley de la termodinámica, la segunda el método PINCH y la última el concepto de superestructura y modelos de transbordo.

Sin embargo, hasta ahora ninguno de los métodos desarrollados ha logrado abordar el problema de HEN en toda su generalidad y complejidad, por lo que el tema está aún abierto a la investigación (Frangopoulos, et al, 2002). Cada una de estas metodologías proporciona grass-roots designs que pueden tomarse como una aproximación inicial a la red “óptima” que soluciona este problema clásico de diseño (Yee, Grossmann, 1990). No obstante, se ha encontrado que estas metodologías de solución del problema de HEN tienen limitaciones severas. Análisis como el de segunda ley requieren la existencia previa de una red susceptible de ser analizada y es más bien una serie de orientaciones cualitativas que de reglas cuantitativas (Sama, 1989); PINCH se queda corto cuando el problema presenta múltiples puntos de pliegue o corrientes con cambios de fase (Polley, Amidpour, 2000) (Liporace, et al, 2004) y las superestructuras arrojan un complicado modelo matemático (lo que hace necesaria la utilización de software especializado para resolverlas) y no permiten involucrar de forma directa una división de corrientes (splitting), varias asignaciones para una misma corriente o cambios de fase (Liporace, et al, 2004).
Se considera necesario entonces tomar lo mejor de cada una de las metodologías de diseño y optimización de redes de transferencia de calor para conseguir:

1. Redes que sean factibles físicamente y que tengan sentido desde el punto de vista heurístico y termodinámico.
2. Redes simples para facilitar el control y la flexibilidad de los procesos.

Para ello, en principio, se generarán grass-root designs (i.e. redes de transferencia de calor candidatas, aproximaciones iniciales a la red “óptima” buscada) a partir del uso de metodologías heurísticas, de superestructura y PINCH para luego, mediante algoritmos basados en el análisis de segunda ley de la termodinámica, depurar y mejorar esas estructuras y así lograr diseños “óptimos”. El gran problema a cuya solución pretende aportar este proyecto de grado radica en el tratamiento de corrientes con cambio de fase.
OBJETIVO GENERAL

Desarrollar una metodología para la síntesis de redes de transferencia de calor (HEN) que involucre corrientes con cambio de fase, a partir de técnicas utilizadas actualmente (e.g. PINCH, Superestructuras) y aplicarla a casos de estudio para evaluar su efectividad.
OBJETIVOS ESPECÍFICOS

- Identificar mediante una búsqueda información las principales falencias y fortalezas de las metodologías de síntesis de HEN.

- Automatizar la técnica de análisis PINCH mediante el desarrollo de un programa en MATLAB® para su posterior aplicación a problemas de HEN con o sin corrientes con cambio de fase.

- Resolver el problema de la optimización simultánea de HEN utilizando el concepto de superestructura, a través de la implementación de un modelo de optimización matemática en GAMS® con el fin de aplicarla a un grupo de corrientes.

- Evaluar los resultados obtenidos para un problema de síntesis y/o diagnóstico de HEN al complementar el diseño inicial arrojado por las metodologías de superestructura y PINCH con el análisis de segunda ley para algunos casos de estudio basados en los criterios de optimalidad (Área de transferencia de calor, consumo de servicios industriales, costos de operación, costos de capital y costos totales anualizados).

- Determinar si la combinación de técnicas para la síntesis de HEN es una alternativa viable y práctica para potenciar las fortalezas y minimizar las falencias de las mismas mediante el análisis de los resultados de su aplicación a los casos de estudio comparando el desempeño de la nueva técnica con las técnicas individuales.
1. MARCO REFERENCIAL

La síntesis de redes de transferencia de calor (HENS – Heat Exchange Network Synthesis) es un importante campo de estudio en la Ingeniería y el Diseño de Procesos y ha sido el tema de estudio para una cantidad bastante considerable de investigaciones durante los últimos 40 años. Su trascendencia puede ser atribuida al importante papel que juegan las HEN en la industria, controlando los costos de energía de un proceso.

El problema del diseño de HEN fue introducido por primera vez en la literatura por Ten Broeck en 1944. El primer trabajo sobre grassroots HENS fue presentado por Hwa en 1965 y luego la primera ocasión en que el problema de HENS fue rigurosamente definido, en 1969, por Masso y Rudd (Furman, Sahinidis, 2002).

Desde entonces se ha realizado una ingente cantidad de estudios y publicaciones sobre el tema, abordando la solución de este importante problema desde diferentes perspectivas. Proponiendo varias metodologías para resolver el problema de HENS que se clasifican según el principio básico que utilicen o la forma de abordarlo, desarrolladas todas con una influencia bastante importante de la capacidad computacional y de cálculo en la época donde cada técnica se desarrolló.

En la figura 1 se presenta una línea temporal con los más importantes hitos y desarrollos presentados en el tema.
Figura 1. Línea temporal del desarrollo de la HENS

- (1940) Primer artículo relacionado con HENS
- (1950)
- (1960) (1961) Primer uso de programación dinámica en HENS
 (1965) Primer diseño grassroot y superestructura
 (1971) Curvas compuestas Temperatura vs Entalpía
 (1973) Regla Heurística RPS
 (1974) Diseño heurístico H/H
 (1978) Se identifica el punto PINCH
 (1983) Método de Diseño PINCH, Modelos de Transporte y Transbordo
 (1986) HENS automatizado basado en optimización, Supertargeting
 (1995) Análisis de segunda ley
- (2008) Modelo MINLP para HENS con cambio de fase isotérmico
 (2009) Modelo MINLP para HENS con cambio de fase no isotérmico

Adaptado de Furman y Sahinidis, 2002.
El problema de síntesis, optimización y/o diagnóstico de redes de transferencia de calor se puede presentar en dos situaciones: cómo la necesidad de diseñar una red a partir de unas condiciones requeridas para un conjunto de corrientes, o con el objetivo de realizar un análisis a una red existente que permita diagnosticar e identificar oportunidades de mejora.

En el primer caso, el problema de diseño se puede formular cómo sigue: Sean los conjuntos de corrientes sin cambio de fase H_i (corrientes calientes a ser enfriadas) y C_j (corrientes frías a ser calentadas) con flujos m_{hi}, m_{cj} y capacidades caloríficas $C_{p_{hi}}$ y $C_{p_{cj}}$; y los conjuntos de corrientes con cambio de fase $H_{f_{ci}}$ y $C_{f_{ci}}$ con entalpías de cambio de fase λ_{i} y λ_{j} y unas corrientes de servicios (vapor y agua de enfriamiento); construir la red de intercambio de calor más económica para este sistema, estableciendo intercambios entre las corrientes frías y calientes y de éstas con las corrientes de servicios.

El caso del problema de diagnóstico-optimización se presenta cuando ya existe una red operando pero se quiere analizar y evaluar su desempeño. En este caso se debe partir del hecho de que ya existen ciertos equipos y asignaciones, lo cual se constituye en una restricción para el proceso de diseño pues no se puede simplemente descartar esto y diseñar una nueva red; por el contrario, es necesario realizar un procedimiento de auditoria más que un proceso de diseño. Este problema podría ser formulado como: Sea una red de intercambio de calor (HEN) existente, compuesta por corrientes calientes que son enfriadas (H_i) y corrientes frías que son calentadas (C_j) entre $T_{i_{hi}}$ y $T_{o_{hi}}$ o $T_{i_{cj}}$ y $T_{o_{cj}}$ respectivamente, con o sin cambio de fase, con capacidades caloríficas $C_{p_{hi}}$ y $C_{p_{cj}}$ y entalpías de cambio de fase λ_{i} y λ_{j} según sea el caso; que intercambian calor entre ellas y de éstas con corrientes de servicio (vapor y agua de enfriamiento). Realizar un diagnóstico a la red existente, desde el punto de vista del uso de servicios industriales, área total de transferencia de calor, exergía y disponibilidad; con el fin de presentar propuestas de mejora que contribuyan a la reducción de los costos.
Debido entonces a los numerosos estudios y publicaciones realizadas, repetidamente se ha tratado de hacer una clasificación adecuada de estos métodos y técnicas dejando como resultado dos principales criterios para agruparlos. Según el principio básico que rige su funcionamiento y según la forma cómo abordan el problema. El primer esquema de clasificación hace referencia a cómo se construye el modelo y el segundo a la forma cómo se resuelve.

Así las cosas, según el primer criterio, las metodologías para resolver el problema de redes de transferencia de calor que se han desarrollado pueden dividirse en tres tipos principales (Frangopoulus, et al, 2002):

- Métodos basados en heurística y búsqueda evolutiva.
- Métodos termodinámicos, que tratan de alcanzar metas predeterminadas identificadas mediante la aplicación de reglas físicas.
- Métodos matemáticos, que inician con una estructura hipotética que luego es reducida a la configuración óptima.

Según el otro criterio, pueden dividirse en métodos “secuenciales” y “simultáneos”.

20
1.1 Clasificación según su principio de funcionamiento

1.1.1 Métodos basados en heurística y búsqueda evolutiva

Dividido en dos partes, el diseño por medio de reglas heurísticas y luego la optimización con la búsqueda evolutiva. La heurística se refiere a un conjunto de reglas basadas en la experiencia adquirida con la práctica de la ingeniería y en conceptos físicos, mientras que la búsqueda evolutiva mejora gradualmente las configuraciones encontradas a través de la aplicación de reglas heurísticas y criterios físicos. Cada configuración aceptable que es encontrada debe ser comparada contra un criterio de desempeño, ya sea eficiencia, costo o el consumo de algún recurso. La configuración con mejor desempeño es la escogida. Dado el mejoramiento sucesivo y gradual del diseño (“evolución”) ésta configuración está muy cerca a la configuración óptima. Un ejemplo de la búsqueda evolutiva es el llamado análisis exergético o de segunda ley de la termodinámica.

1.1.2 Métodos termodinámicos.

Tratan de alcanzar metas predeterminadas, identificadas mediante la aplicación de reglas físicas. Las ciencias físicas son utilizadas para la obtención de objetivos que representan la configuración óptima. Estos objetivos pueden ser límites superiores o inferiores para la configuración óptima y suministrar información vital para la mejora de sistemas existentes.

Estas metodologías tienden a ser muy útiles cuando el objetivo es también físico, siendo una temperatura o el valor de alguna propiedad termodinámica. Ya que si se trata de algún criterio económico no son las más apropiadas.
Como principal representante de los métodos termodinámicos se encuentra la metodología PINCH, que persigue la meta del menor consumo de servicios industriales, fijando como criterio una diferencia mínima de temperatura.

1.1.3 Métodos matemáticos.

Por último, los métodos matemáticos pretenden solucionar el problema de HEN mediante el planteamiento de un modelo compuesto de ecuaciones basadas en balances de materia y energía y restricciones físicas y técnicas, para posteriormente obtener la configuración “óptima” al minimizar mediante algún algoritmo computacional una función objetiva definida.

De éstos, los más comunes son los que inician con una superestructura que luego es reducida a la configuración óptima. Superestructura se refiere a que en dicho modelo se consideran todas las asociaciones posibles de corrientes y equipos dentro de la HEN en cuestión.

1.2 Clasificación según su proceso de solución

Según la forma como se aborde la solución del modelo, la mayoría de los trabajos en investigación de HENS pueden clasificarse en técnicas de “Síntesis Secuencial” o “Síntesis Simultánea”.

1.2.1 Síntesis Secuencial.

Los métodos de síntesis secuencial usan la estrategia de dividir el problema de HENS en una serie de “subproblemas” con el fin de reducir los requerimientos computacionales para obtener el diseño de la red. Estos métodos generalmente involucran la segmentación del problema en un número de intervalos, lo que se consigue dividiendo el rango de temperaturas en varios intervalos.
Estos intervalos son importantes para modelar los intercambiadores de calor a la vez que se obedecen las leyes de la termodinámica. El problema se descompone en una serie de subproblemas que son resueltos sucesivamente en orden decreciente de significancia respecto al costo anual total de la HEN basados en reglas heurísticas. Generalmente los subproblemas en los que se divide son los siguientes: El mínimo uso/costo de servicios industriales, el mínimo número de intercambiadores y el área/costo de capital mínimo (Furman, Sahinidis, 2002).

1.2.2 Síntesis Simultánea.

El objetivo de la HENS simultánea es hallar la red óptima sin descomponer el problema. Los métodos de síntesis simultánea son principalmente formulaciones del problema mediante modelos MINLP (Mix Integer Non Linear Problem) sujetos a restricciones físicas y que involucran algunas simplificaciones para facilitar la solución de estos complejos modelos.

Mientras las metodologías que siguen un desarrollo secuencial tienen la ventaja de descomponer el problema de síntesis facilitando bastante su solución, tienen la desventaja de que los trade-offs entre consumo de energía, número de unidades y área de transferencia de calor no son tomados en cuenta rigurosamente (Biegler, et al, 1999) de modo que no minimizan el costo total:

\[
\min \text{ costo total } = \text{ costo capital } + \text{ costo servicios }
\]

En el caso de PINCH por ejemplo, se minimiza el área de transferencia de calor sujeta a un número de unidades fijado con anterioridad en el proceso; sujeto esto a su vez al consumo mínimo de servicios industriales (utilities) determinado como primer paso en el proceso de diseño PINCH (Biegler, et al, 1999). Lo que sería:
Para ayudar a mejorar esta situación es que surgen precisamente las metodologías simultáneas.

1.3 Metodologías abordadas en el presente trabajo

1.3.1 Diseño Heurístico H/H (Hottest/Highest)

Esta metodología de diseño heurístico fue propuesta por Ponton y Donaldson (Ponton, Donaldson, 1974) y a pesar de su antigüedad sigue vigente pues aporta un algoritmo sencillo para el diseño de redes de transferencia de calor, que arroja redes cercanas al óptimo sin demandar grandes esfuerzos de cálculo pues basa su funcionamiento en la aplicación de reglas heurísticas sencillas.

Tradicionalmente el aparenamiento de corrientes para el intercambio de calor se realiza considerando sus temperaturas a la entrada del proceso. Un acercamiento alternativo es realizar la asignación basados en la temperatura de entrada de la corriente caliente y en la temperatura objetivo de la corriente fría a la salida del intercambiador.

La experiencia en ingeniería y la intuición muestran que para que se alcance la temperatura más alta de la corriente fría esta debió, de ser posible, intercambiar calor con la corriente caliente de más alta temperatura. Ésta es la regla heurística en la que se basa esta metodología.
De esta forma se inicia un proceso secuencial para la síntesis de la red. Esta metodología se desarrolla de la siguiente forma:

1. Partiendo de un conjunto de corrientes frías y calientes, se define $T^*_{c_{out}}$ como el máximo de las temperaturas objetivo de las corrientes frías ($T_{c_{out}}$), y $T^*_{c_{in}}$ como el máximo de las temperaturas de entrada de las corrientes calientes ($T_{c_{in}}$).

2. Si $T^*_{c_{in}}$ es muy baja para que se alcance $T^*_{c_{out}}$, ésta se debe remplazar por la temperatura máxima ($T_{c_{m}}$) que se pueda alcanzar con $T^*_{c_{in}}$ respetando la diferencia mínima de temperatura y para llevar la corriente desde $T_{c_{m}}$ hasta su temperatura objetivo se debe incluir un calentador en la red.

3. Para calcular el calor transferido en el intercambiador que resulta de este apareamiento se debe hacer uso de heurística (Pho, Lapidus, 1973). Para efectos prácticos generalmente se decide transferir todo el que sea posible.

4. Utilizando este calor estimado se calculan para esta asignación la temperatura de salida de la corriente caliente $T_{h_{out}}$ y la temperatura de entrada de la corriente fría $T_{c_{in}}$.

5. Si $T_{c_{in}}$ es igual a la temperatura inicial de la corriente, esta ha cumplido con las condiciones y se elimina del proceso de diseño, si esto no se cumple $T_{c_{in}}$ se asigna de nuevo a $T_{c_{in}}$ para continuar con la metodología.

6. De la misma manera ocurre para la corriente caliente, si $T_{h_{out}}$ es igual que la temperatura final de la corriente, esta cumple con las condiciones y se elimina del proceso de diseño. En el caso contrario $T_{h_{out}}$ se convierte nuevamente en $T_{c_{in}}$.

7. Se inicia nuevamente desde el paso 1 para las corrientes restantes hasta que no se pueda realizar ninguna pareja más.

8. Para cualquier caso en los que no se cumpla con las temperaturas objetivo se hace uso de calentadores o enfriadores.
Este procedimiento genera una red que se asemeja en gran proporción a la red óptima sin la necesidad de hacer un gran esfuerzo computacional y presenta capacidad para acoplarse con las diferentes técnicas de optimización. Por ejemplo, después de obtener la estructura básica de la red, ésta puede modelarse para hallar la cantidad de calor transferido en cada intercambiador y las temperaturas intermedias en la red que minimicen el costo total.

1.3.2 Análisis de Segunda Ley

Consiste en la identificación de decisiones de diseño que desperdician innecesariamente disponibilidad termodinámica (exergía física), denominados “errores de segunda ley”. Su aplicación al diseño y optimización de procesos se basa en que la eliminación de un error de segunda ley garantiza una mejora en el diseño. De este modo, se espera que un diseño cercano al óptimo, resultará cuando se corrijan todos los errores de segunda ley (Sama, 1995).

Segunda Ley de la Termodinámica:

En general, la energía se transfiere a través de las fronteras de sistemas de dos formas:
- Trabajo: Energía que puede, en principio, convertirse en movimiento mecánico.
- Calor: Energía transferida debido a una diferencia de temperaturas que actúa como fuerza impulsora, no puede nunca ser convertida totalmente en trabajo.

La segunda ley se utiliza para cuantificar la equivalencia termodinámica de calor en trabajo, i.e. exergía o disponibilidad. La disponibilidad \(B = H - T_0S \) es una medida de “alejamiento” del medio, de modo que disminuye conforme la temperatura de la corriente se acerca a la temperatura del ambiente y viceversa. Así, la disponibilidad es consumida siempre que ocurra un intercambio de calor a través de una diferencia de temperatura.
La exergía consumida, que puede ser fácilmente calculada cuantitativamente, ha sido llamada tradicionalmente trabajo “perdido” (Sama, 1995).

Sin embargo, el significado real de la segunda ley es frecuentemente direccional, no cuantitativo; así, aún sin cálculos cuantitativos la segunda ley puede aportar entendimiento del proceso, de su diseño o del mejoramiento de un diseño existente (Sciubba, Wall, 2007). De ahí que se han propuesto un conjunto de 13 “reglas de segunda ley” (Sama, et al, 1989) que pueden ser usadas como una ayuda para detectar y evitar errores. Éstas son:

1. No usar fuerzas impulsoras termodinámicas (diferencia de temperatura) demasiado grandes o demasiado pequeñas en operaciones de proceso.
2. Minimizar el mezclado de corrientes con diferencias en temperatura, presión o composición química.
3. No descartar calor a altas temperaturas al ambiente o a agua de enfriamiento.
4. No calentar corrientes refrigeradas con corrientes calientes o con agua de enfriamiento.
5. Cuando se escojan corrientes para intercambiar calor, tratar de asignar corrientes donde la temperatura final de una esté cerca a la temperatura inicial de la otra.
6. Cuando se intercambie calor entre dos corrientes, este intercambio es más eficiente si la capacidad de flujo calórico de ambas corrientes es similar. Si hay una gran diferencia entre las dos, considere dividir la corriente con la mayor capacidad.
7. Minimice el uso de fluidos de transferencia intermedios cuando se intercambie calor entre corrientes.
8. El calentamiento o enfriamiento es más valioso mientras más alejada se encuentre la temperatura de la ambiental.
9. El ΔT óptimo económico de un intercambiador disminuye conforme disminuye la temperatura, y viceversa.
10. Minimice el estrangulamiento de vapor u otros gases.
11. Mientras mayor sea el flujo másico, mayor es la oportunidad de ahorrar o desperdiciar energía.
12. Use cálculos simplificados de consumo de exergía (disponibilidad) como una guía para las modificaciones de proceso.
13. Algunas ineficiencias de segunda ley no pueden ser evitadas, otras sí. Concéntrese en las que se pueden.

1.3.3 PINCH

El método de diseño PINCH o PDM (*Pinch Design Method*) fue desarrollado a finales de la década de los 70 como una técnica para la recuperación de energía térmica, como respuesta a la primera crisis del petróleo. Desde ese entonces ha evolucionado en una metodología general de optimización y de diseño de HEN basada en los principios de integración de procesos (Biegler, *et al*, 1999).

Se caracteriza por seguir una estructura secuencial que hace que el problema sea más manejable pues lo divide en la solución de una serie de problemas más pequeños. En la figura 2 se presenta un esquema general de la metodología.

Figura 2. Esquema general de la metodología PINCH

Adaptado de Kumana, 2002.
Para comenzar se divide el rango de temperatura abarcado por las corrientes calientes y frías en pequeños intervalos donde aparezcan corrientes diferentes, es decir, se delimitan por sus temperaturas de entrada y salida; de modo que las corrientes que se presentan en cada intervalo son diferentes para cada uno de ellos.

Luego, se realiza un balance de energía en cada intervalo para determinar la cantidad de calor disponible en las calientes o necesaria para las frías en cada uno. Con esta información, se obtienen un par de líneas llamadas “curvas compuestas” que ilustran el comportamiento total de ambos tipos de corrientes. Muestran la disponibilidad de entalpía presente en las corrientes calientes y la necesidad de las corrientes frías; tomándose las primeras como la “fuente” de energía y las segundas como el “sumidero” de la misma (Smith, Patel, 1987).

Con base en las curvas compuestas y un objetivo fijo se encuentra un punto de pliegue para el proceso conocido como el punto PINCH, donde el acercamiento entre ambas curvas de temperatura es mínimo. Este punto divide el proceso en dos zonas térmicas: una por encima del PINCH, donde el calor debe ser suministrado (Calentamiento) y otra por debajo del mismo, donde el calor debe ser retirado (Enfriamiento). Las zonas donde ambas curvas no se sobreponen (Figura 3) representa el consumo mínimo de servicios industriales requerido para las condiciones de corrientes planteadas, la zona a la derecha para el calentamiento y a la izquierda para el enfriamiento (Kumana, 2002).
Con la información obtenida anteriormente se inicia el diseño de la HEN, tomando en cuenta los siguientes lineamientos (Smith, Patel, 1987):

- No hay servicios industriales de calentamiento por debajo de la temperatura del PINCH.
- No hay servicios industriales de enfriamiento por encima de la temperatura del PINCH.
- No hay transferencia de calor desde las corrientes calientes por encima del PINCH hacia las corrientes frías por debajo del mismo.

El siguiente paso es entonces la síntesis de la HEN y el aspecto más importante en este momento es la asignación de las parejas de corrientes que van a intercambiar calor, pues se debe hacer la distinción si la transferencia es por encima o por debajo del PINCH. Se introduce una variable de gran importancia en diseño, conocida como la capacidad de flujo calórico (FCp), que es simplemente el producto del flujo de la corriente por la capacidad calorífica de la misma y se utilizará como criterio de asignación.
Por encima del PINCH

- El FCp de la corriente caliente debe ser mayor que el FCp de la corriente fría con la que intercambiará calor.
- Cuando el número de corrientes calientes es menor que el de corrientes frías, se debe realizar división de las corrientes calientes, ya que no debe haber calentamiento por encima del PINCH.

Por debajo del PINCH

- El FCp de la corriente fría debe ser mayor que el FCp de la corriente caliente con la que intercambiará calor.
- Cuando el número de corrientes frías es menor que el de corrientes calientes, se debe realizar división de las corrientes frías, ya que no debe haber enfriamiento por encima del PINCH.

Finalmente, una red generada siguiendo esta metodología quedaría como se ilustra en la figura 4. En el anexo A puede encontrarse un ejemplo que ilustra el desarrollo de la metodología.

Figura 4. Representación de la red de transferencia de calor
1.3.4 Superestructura

La principal desventaja del método de diseño PINCH es que no toma en cuenta rigurosamente los *trade-offs* entre consumo de energía, número de unidades y área de transferencia de calor al resolver el problema de HENS de forma secuencial.

Para ayudar a mejorar esta situación, el problema puede abordarse de forma diferente siguiendo la representación según la metodología de “superestructura” (Yee, Grossmann, 1990). En la figura 5 se ilustra una representación genérica de esta superestructura (ejemplo en caso en que se tienen 2 corrientes frías, 2 corrientes calientes y el problema se divide en 2 etapas). Este término hace referencia a que se plantea un modelo matemático MINLP que describe la totalidad de intercambios que pueden presentarse; para luego resolver el problema aplicando algún algoritmo de optimización matemática, minimizando una función específica establecida con anterioridad y sujeto a las restricciones físicas pertinentes expresadas también matemáticamente.

Para comenzar, la HEN se divide en varias “etapas”. Dentro de cada etapa de la superestructura se presentan los intercambios potenciales que pueden ocurrir entre cualquier par de corrientes calientes y frías. En cada etapa, la corriente es dividida y dirigida a un intercambiador o una “asignación potencial” entre cada corriente caliente y fría. Se asume que las corrientes de salida de cada intercambiador son mezcladas isotérmicamente para simplificar los cálculos de la temperatura para la siguiente etapa y dado que no es necesaria información de los flujos, las temperaturas en cada etapa son tratadas como variables. El número de etapas puede ser modificado para que coincida con el número de intervalos de temperatura que aseguren la máxima recuperación de energía, aunque seleccionar el número de etapas como el número máximo de corrientes frías y calientes generalmente funciona bien.
Nótese que configuraciones en serie y en paralelo son entonces consideradas así como una posible reasignación de corrientes al dividir el problema en varias etapas. Sin embargo, corrientes con dos o más asignaciones o by-passes dentro de cada etapa no son tenidas en cuenta. Un calentador o enfriador es colocado a la salida de cada corriente para satisfacer completamente sus necesidades. La optimización de este modelo MINLP identifica la red de menor costo embebida en la superestructura al especificar cuáles intercambiadores son requeridos y la distribución de las corrientes. Una presentación completa del modelo y las ecuaciones para este tipo de superestructura puede encontrarse en la literatura (Yee, Grossmann, 1990) (Biegler, et al, 1999).

Pero, cómo puede observarse en las restricciones identificadas para cada método, hasta ahora ninguna de las metodologías ha logrado abordar el problema de optimización de síntesis en toda su complejidad y por esto el tema sigue abierto a discusión e investigación.
1.4 Cambio de fase

No obstante la cantidad de trabajos realizados sobre el tema de HENS, la mayoría de las metodologías propuestas para resolver el problema no han considerado corrientes con cambio de fase. Pero las corrientes isotérmicas o con cambio de fase son mucho más comunes de lo que se cree, aparecen por ejemplo como parte de los procesos de separación o las secciones de refrigeración, surgen cómo las corrientes multicomponente que sufren cambios de fase en el rehervidor o condensador de una torre de destilación. Más aún, las corrientes de salida de reactores que deben ser enfriadas o condensadas se pueden incluir dentro de este conjunto (Ponce Ortega, et al., 2008).

Las metodologías reportadas para corrientes isotérmicas, y en general con cambio de fase, típicamente han simplificado excesivamente el problema, por ejemplo, asumiendo un aumento o caída de la temperatura de 1 K en estas corrientes. De ahí que muy pocos modelos rigurosos se han reportado para manejar este problema.

El principal aporte de este trabajo consiste entonces en involucrar el tratamiento de corrientes con cambio de fase, presentando algunas de las modificaciones a las metodologías antes presentadas que se han desarrollado en los últimos años, con el fin de realizar un análisis comparativo y presentar las observaciones pertinentes en la búsqueda de una metodología combinada.

Se presentan ahora algunos de los aportes que se han hecho al tema. Para comenzar se propuso, como parte de un modelo riguroso para la optimización simultánea de proceso e integración energética (Grossmann, et al., 1998) una estrategia previa de ubicación del PINCH usando programación disyuntiva, sin embargo, este método no consideraba la síntesis de la red.
Castier y Queiroz reportaron en 2002 una metodología basada en el diseño PINCH para resolver el problema del mínimo consumo de servicios industriales considerando corrientes con cambios de fase y finalmente, en 2004 (Liporace, et al., 2004) se presentó una alternativa simplificada en la cual se divide a las corrientes con cambio de fase. Estos desarrollos son secuenciales por naturaleza, de modo que cómo es de esperarse, los mencionados trade-offs pueden no ser considerados correctamente.

En cuanto a las metodologías combinadas, varias modificaciones se han propuesto también, siendo la más representativa y reciente (Ponce Ortega, et al., 2008) la que se tratará en este trabajo. En ella, se presenta un modelo riguroso para la síntesis de redes de transferencia de calor que involucren corrientes con cambio de fase basado en el mismo modelo MINLP aquí tratado (Yee, Grossmann, 1990) pero extendido con las ecuaciones y restricciones necesarias para permitir el manejo de corrientes que no sólo cambian de fase, sino que también presentan calor sensible en el proceso.
2 HERRAMIENTAS DESARROLLADAS

2.1 PINCH

Figura 6. Ventana de inicio de la herramienta desarrollada

Para automatizar el método PINCH se recurrió a desarrollar un programa y su respectiva interfaz gráfica en MATLAB (Figura 6). El método se desarrolla de la misma manera que cuando se hace manualmente: de forma secuencial. A partir de los datos del problema, que pueden ser ingresados por el usuario o cargados para alguno de los cuatro casos de estudio propuestos (Figura 7) se generan las curvas compuestas para los conjuntos de corrientes (Figura 8) y se calcula la ubicación del punto PINCH utilizando el gráfico y la tabla de cascada (Figura 9) pues resulta mucho más práctico desde el punto de vista computacional y mucho más exacto numéricamente que hacerlo a partir de las curvas compuestas, no obstante, para efectos ilustrativos se ofrece la posibilidad de desplazarlas para observar su comportamiento.
Figura 7. Ventana de selección de problema

Figura 8. Curvas compuestas
Junto con el diagrama de cascada y la ubicación del punto PINCH, en esta última ventana se presenta además el consumo mínimo de servicios industriales.

Se genera también, en la siguiente ventana, la curva gran-compuesta para analizar la disponibilidad de *Energy Pockets* y corroborar el consumo mínimo de utilities y la temperatura del punto PINCH (Figura 10).

Finalmente, se presenta al usuario una distribución general de las corrientes y se divide la red en su sección por encima del PINCH (*Above*) y su sección por debajo del mismo (*Below*) (Figura 11).
Figura 10. Curva gran compuesta

Figura 11. Distribución de las corrientes
Debido a las múltiples opciones posibles la asignación de las corrientes se hace de forma interactiva, es decir, se le indica al usuario cuales corrientes pueden ser asignadas y este va seleccionando paso a paso qué desea hacer, dividir una de las corrientes o asignar un par de las existentes y finalmente, decidir qué cantidad de calor desea que intercambien las corrientes seleccionadas, previo cálculo por parte del asistente de la cantidad máxima posible (Figura 12).

Figura 12: Ventanas del proceso de asignación
2.2 Método heurístico H/H

Al igual que para el PDM, se desarrolló un asistente para llevar a cabo este proceso utilizando MATLAB (Figura 13), usando éste basta con alimentar los datos de las corrientes involucradas o seleccionar uno de los casos de estudio ofrecidos y el programa realizará paso a paso el diseño de la red, informando al usuario de cada cálculo y decisión relevante para el diseño (Figura 15). Informando al final las características de la red obtenida. Es decir, presenta para cada asignación las temperaturas de entrada y salida de las corrientes y el calor total transferido, así como para los intercambios con los servicios industriales (Figura 16).

Figura 13. Asistente desarrollado para el método H/H

Programa para realizar el diseño de una HEN utilizando el algoritmo de diseño "Hottest/Highest"

Realizado por:
Esteban Jaramillo
Javier Sánchez

Universidad EAFIT
Escuela de Ingenierías
Opto de Ing de Procesos
2009
Figura 14. Distribución de las corrientes

Figura 15. Ventanas generadas por el asistente
2.3 Método heurístico H/H-RPS

Durante el desarrollo del asistente para el método H/H propuesto por Ponton y Donaldson se hizo evidente un problema, éste no considera en ningún momento el flujo calórico (FCp) de las corrientes.

Por tal motivo, si se es estricto en el cumplimiento del algoritmo, cuando el FCp de la corriente caliente es menor al de la corriente fría y la diferencia de temperatura de las corrientes en el extremo caliente del intercambiador es igual a la diferencia mínima de temperatura no es posible realizar la asignación, pues el extremo frío resultaría violando la diferencia mínima de temperatura estipulada.
En este caso, la única solución, si se sigue al pie de la letra el método, sería descartar esta asignación y pasar a la corriente con la siguiente temperatura más alta. Sin embargo, esta opción resulta perjudicial para la recuperación de energía, pues obliga a calentar utilizando servicios industriales una corriente que de otro modo podría haber recibido una parte de su requerimiento energético de otra corriente de proceso que ahora debe ser enfriada con servicios industriales.

Como alternativa a esto se considera entonces la aplicación de una regla heurística diferente, conocida como RPS (Rudd, Powers & Sirola, 1973). Que se propuso aproximadamente al mismo tiempo que la aquí utilizada (Ponton & Donaldson, 1974) pero presenta un enfoque un poco distinto. En este caso, se seleccionan para la asignación la corriente caliente con la temperatura de entrada más alta y la corriente fría con la mayor temperatura de entrada y se diseña el intercambiador partiendo desde el extremo frío, estableciendo en este una diferencia de temperatura igual a la mínima.

Así, se realizó una pequeña modificación al modelo inicial y se desarrolló el asistente para diseñar la HEN según el algoritmo H/H-RPS. En éste, cuando se presenta el caso antes mencionado, en lugar de descartar la asignación y pasar a la siguiente corriente se prefiere diseñar el intercambiador comenzando por el extremo frío, de modo que es posible aprovechar un poco mejor esta porción de energía. En el apartado dedicado a los casos de estudio se analizará los resultados de este par de técnicas.
Figura 17. Asistente para el diseño según el algoritmo H/H-RPS

Programa para realizar el diseño de una HEN utilizando el algoritmo de diseño "H/H-RPS"

Realizado por
Esteban Jaramillo
Javier Sánchez

Universidad EAFIT
Escuela de Ingenierías
Dépto de Ing de Procesos
2009

Figura 18. Red diseñada según H/H-RPS
2.4 Superestructura

De acuerdo a lo expuesto en el marco teórico, la metodología de diseño utilizando “superestructura” no es más que plantear un modelo matemático que describa todas las asignaciones posibles y, habiendo definido una función objetivo, resolverlo utilizando como variables de decisión la existencia de la asignación i,j en la etapa k, escrita como Z_{ijk}.

En el presente trabajo, se aplica el modelo propuesto por Yee y Grossmann (1990). Que se reproduce a continuación. Donde i representa las corrientes calientes, j las corrientes frías y k los puntos donde se calculan las temperaturas, que para una superestructura con dos etapas son tres: uno a la entrada de la superestructura, uno en medio de las dos etapas y otro a la salida. Para facilitar un poco la comprensión de las ecuaciones se presenta de nuevo en la figura 19 una representación del modelo para 2 corrientes calientes y 2 corrientes frías.

Figura 19. Superestructura de 2 etapas para 2 pares de corrientes

(Yee, Grossmann, 1990)
1. Balance de energía global para cada corriente.

\[(TIN_i - TOUT_i) F_i = \sum_{k \in ST} \sum_{j \in CP} q_{ijk} + q_{cu_i}\]

\[(TOUT_j - TIN_j) F_j = \sum_{k \in ST} \sum_{i \in HP} q_{ijk} + q_{hu_j}\]

2. Balance de energía en cada etapa.

\[(t_{i,k} - t_{i,k+1}) F_i = \sum_{j \in CP} q_{ijk}\]

\[(t_{j,k} - t_{j,k+1}) F_j = \sum_{i \in HP} q_{ijk}\]

3. Asignación de las temperaturas de entrada a la “superestructura”.

\[TIN_i = t_{i,1}\]

\[TIN_j = t_{j,NOK+1}\]

4. Viabilidad de las temperaturas.

\[t_{i,k} \geq t_{i,k+1}\]

\[t_{j,k} \geq t_{j,k+1}\]

\[TOUT_i \leq t_{i,NOK+1}\]

\[TOUT_j \geq t_{j,1}\]
5. Carga calórica de los servicios industriales.

\[(t_{i\text{,}NOK} + 1 - \text{OUT}_t)F_i = qcu_i\]
\[(\text{OUT}_j - t_{j,1})F_j = qhu_j\]

6. Restricciones lógicas para el máximo de calor transferido.

\[q_{ijk} - \Omega z_{ijk} \leq 0\]
\[qcu_i - \Omega zcu_i \leq 0\]
\[qhu_j - \Omega zhu_j \leq 0\]

\[z_{ijk}, zcu_i, zhu_j = 0,1\]

7. Cálculo de la diferencia de temperaturas.

\[dt_{ijk} \leq t_{i,k} - t_{j,k} + \Gamma(1 - z_{ijk})\]
\[dt_{ijk+1} \leq t_{i,k+1} - t_{j,k+1} + \Gamma(1 - z_{ijk})\]
\[dtcu_i \leq t_{i\text{,}NOK} + 1 - \text{OUT}_{CU} + \Gamma(1 - zcu_i)\]
\[dthu_j \leq \text{OUT}_{HU} - t_{j,1} + \Gamma(1 - zcu_i)\]
\[dt_{ijk} \geq HRAT\]

La diferencia de temperatura logarítmica media se calcula según la aproximación de Chen para evitar las discontinuidades propias de la función logaritmo, que puede presentar problemas dentro de la solución del modelo por parte del software de optimización matemática empleado:

\[LMTD = [(dt1 * dt2) * (dt1 + dt2) / 2]^{1/3}\]
Y la función objetivo, económica, se define como el costo total anualizado, incluyendo términos para el costo fijo de los intercambiadores, para el costo de los servicios industriales utilizados y para el área de intercambio de calor.

\[
\begin{align*}
\min & \quad \sum CCU qcu_i + \sum CHU qhu_j + \sum \sum CF_{ij} z_{ijk} \\
& + \sum CF_{i, CU} zcu_i + \sum CF_{j, HU} zhu_j \\
& + \sum \sum \sum C_{ij} \left[q_{ijk} / (U_{ij} [dt_{ijk} dt_{ijk+1} (dt_{ijk} + dt_{ijk+1})/2]^{1/3}) \right]^{\beta_{ij}} \\
& + \sum C_{i, CU} \left[q^{cu_i} / (U_{i, CU} [dtcu_i (TOUT_i - TIN_{CU}) [dtcu_i + (TOUT_i - TIN_{CU})]/2]^{1/3}) \right]^{\beta_{i, CU}} \\
& + \sum C_{j, HU} \left[q^{hu_j} / (U_{j, HU} [dthu_j (TIN_{HU} - TOUT_j) [dthu_j + (TIN_{HU} - TOUT_j)]/2]^{1/3}) \right]^{\beta_{j, HU}}
\end{align*}
\]

2.5 Análisis de segunda ley

En el capítulo correspondiente al marco teórico se mencionó cómo a partir de la comprensión de la segunda ley de la termodinámica y del concepto de “exergía” que de ahí se deriva se extrajo una serie de reglas para evaluar y mejorar el desempeño de una red (Sama, 1989). Sin embargo, estas fueron posteriormente ampliadas (Bejan, et al.,1996) (Szargut & Sama, 1995) y adaptadas para ser utilizadas en un modelo de evaluación computarizada (Maiorano & Sciubba, 2000).
A continuación se presenta entonces el conjunto de 19 “criterios de diseño” un poco más cuantitativos desarrollado (Maiorano & Sciubba, 2000).

1. El número de intercambiadores en la red de intercambio de calor debe ser próxima al número mínimo de intercambiadores que predice la regla de Hohmann.
2. La transferencia de calor desde una corriente fría hacia una caliente es imposible.
3. Calentar una corriente previamente enfriada está prohibido.
4. Enfriar una corriente previamente calentada está prohibido.
5. El enfriamiento de corrientes calientes con servicios industriales fríos por encima del punto PINCH está prohibido.
6. El calentamiento de corrientes frías con servicios industriales calientes por debajo del punto PINCH está prohibido.
7. Intercambiadores de calor donde el delta de temperatura a la entrada del mismo es menor que la diferencia de temperatura mínima (HRAT) están prohibidos.
8. Intercambiadores de calor donde el delta de temperatura en la salida del mismo es menor que HRAT están prohibidos.
9. Para una corriente fría, el apareamiento debe realizarse con la corriente caliente con la temperatura de salida más cercana a la de entrada de la fría.
10. Para una corriente caliente el apareamiento debe realizarse con la corriente fría con la temperatura objetivo más cercana a su temperatura de entrada.
11. Evitar el mezclado de corrientes, de no ser posible se debe hacer entre corrientes que no presenten diferencias significativas en sus temperaturas, presión o composición.
12. No desperdiciar calor a altas temperaturas directamente o indirectamente al ambiente.
13. Evitar en lo posible intercambio de calor entre corrientes con diferencias muy grandes en sus FCp.

15. El ΔTóptimo de los intercambiadores es directamente proporcional a la diferencia promedio de temperatura del intercambio (diferencia de temperatura logarítmica media).

16. No realice, en lo posible, estrangulamiento de vapor o gases.

17. Considere el potencial de irreversibilidades de las corrientes. Mientras mayor sea el flujo másico o calórico, mayores posibilidades de pérdidas u oportunidades de mejoras se presentan.

18. Realizar cálculos básicos de exergía son de gran ayuda y guía en el diseño para cuantificar las modificaciones.

19. Algunas de las irreversibilidades acá señaladas no pueden corregirse, algunas sí, centrar el diseño en las que sí.

De aquí se construye entonces el siguiente conjunto de pruebas lógicas que se constituyen en un algoritmo para evaluar el cumplimiento de la segunda ley por parte de una red (Maiorano & Sciubba, 2000):

1. Número mínimo de intercambiadores:

Si (Número de intercambiadores de calor > Nmin) Entonces
(Violación de la segunda ley de la Termodinámica)

Siendo Nmin el número mínimo de intercambiadores determinado según la regla de Hohmann (Hohmann & Lockhart, 1976). desarrollada en 1971 por Hohmann y mejorada por Linnhoff en 1986.

Nmin= Nh+Nc+Nhu+Ncu-1, donde:

Nh: # de corrientes calientes. Nhu: # de servicios industriales de calentamiento.
Nc: # de corrientes de frías. Ncu: # de servicios industriales de enfriamiento.
2. Esta restricción está contenida dentro del criterio de diseño 7.

Si (DTin < HRAT) Entonces
(Violación de la segunda ley de la Termodinámica)

3. Esta restricción está contenida dentro del criterio de diseño 8.

Si (DTout < HRAT) Entonces
(Violación de la segunda ley de la Termodinámica)

4. Esta restricción hace referencia a los criterios de diseño 5, 6 y 12.

Para (j=1, Ncu) Haga:
 Para (i=1,Nh) Haga:
 Si (THin > Tpinch) Y (TCin = Tcu,j) Entonces
 (Violación de la segunda ley de la Termodinámica)
 Fin
 Fin
Fin

5. Esta restricción hace referencia a los criterios de diseño 5, 6 y 12.

Para (k=1, Nhu) Haga:
 Para (i=1,Nh) Haga:
 Si (TCin < Tpinch) Y (THin = Thu,k) Entonces
 (Violación de la segunda ley de la Termodinámica)
 Fin
 Fin
6. Esta restricción es equivalente a los criterios de diseño 13 y 17

Si $\text{FCp}_i >> \text{FCP}_j$ Entonces
(Divida la corriente caliente)

7. Esta restricción es equivalente a los criterios de diseño 13 y 17

Si $\text{FCp}_i << \text{FCP}_j$ Entonces
(Divida la corriente fría)

8. Esta restricción contiene los criterios de diseño 3 y 4

Si (La corriente es caliente) Y (Ha sido enfriada anteriormente) Y (Está siendo calentada) Entonces
(Violación de la segunda ley de la Termodinámica)

9. Esta restricción contiene los criterios de diseño 3 y 4

Si (La corriente es fría) Y (Ha sido calentada anteriormente) Y (Está siendo enfriada) Entonces
(Violación de la segunda ley de la Termodinámica)

10. Esta restricción es equivalente al criterio de diseño 11

Si (Hay mezclado de corrientes) Y (PH >> PC) O (PH << PC) O (TH >> TC) O (Composiciones químicas diferentes) Entonces
(Violación de la segunda ley de la Termodinámica)
11. Esta restricción es equivalente a los criterios de diseño 9 y 10

Si (La corriente es fría) Y (Debe ser calentada) Entonces
(Asignar con una corriente caliente con una temperatura de salida cerca de la temperatura objetivo de la fría)

12. Esta restricción es equivalente a los criterios de diseño 9 y 10

Si (La corriente es caliente) Y (Debe ser enfriada) Entonces
(Asignar con una corriente fría con una temperatura objetivo cerca de la temperatura de salida de la corriente caliente)

Estas restricciones, a pesar de ser ahora más cuantitativas que los criterios de diseño en las cuales se basan, carecen de claridad para darle valor a variables determinantes, por ejemplo, que tan grande debe ser la diferencia entre los flujos calóricos como para que se realice la división de una corriente o en el caso del número mínimo de intercambiadores, como se definen los límites alrededor de Nmin. Por lo tanto, estas restricciones siguen siendo sólo unos lineamientos básicos para el diseñador, pero este tendrá que poner bastante del criterio construido en su experiencia para tomar decisiones de diseño.
2.6 Modificaciones para cambio de fase

De acuerdo a lo mencionado hasta ahora, la forma más común de tratar las corrientes con cambio de fase para involucrarlas dentro de las metodologías presentadas es representar las corrientes isotérmicas como corrientes con un cambio en su temperatura de 1 grado y un FCp igual a su cambio entálpico de vaporización, de modo que el calor transmitido o absorbido sea el mismo. En el caso de las corrientes que presentan calor latente y calor sensible dentro del intervalo de temperaturas presentado el procedimiento es básicamente el mismo, Dicha corriente se divide en la(s) sección(es) que intercambie calor sensible, bien sea como líquido o como vapor y en la que presente cambio de fase utilizando su temperatura de saturación como línea de división.

Esta técnica es la que se decidió utilizar para el método PINCH y el diseño heurístico H/H, pues es bastante sencilla de implementar ya que simplifica considerablemente la situación y permite realizar los cálculos con cierto grado de realismo a la vez que elimina las complicaciones de una sola corriente cuyas propiedades cambian a lo largo de la red. Además, ha sido probada en varias ocasiones y ha arrojado resultados satisfactorios (Liporace, et al., 2004).

No obstante, no debe perderse de vista que tal vez se “sobre-simplifique” el problema y se debe ser especialmente cuidadoso a la hora de revisar los resultados para detectar y corregir incoherencias.

Finalmente, en el caso de superestructura, se utiliza una reciente modificación (Ponce Ortega, et al, 2008) que agrega ciertas ecuaciones y algunos valores iniciales del modelo original, utilizando programación disyuntiva para modelar el cambio de fase y los diferentes tipos de intercambio que pueden presentarse. El modelo completo puede encontrarse en la fuente citada. Este modelo se desarrolló usando GAMS y allí mismo fue resuelto utilizando el solver DICOPT.
3 METODOLOGÍA PROPUESTA

Tras realizar la revisión bibliográfica y apoyados en los resultados de los casos de estudio que más adelante serán tratados puede entonces proponerse la metodología combinada objetivo de este trabajo. Para comenzar, en la solución de cualquier problema se debe revisar cual es el estado inicial del mismo, con que materiales se cuenta y que se puede hacer con ellos en pro de la solución. Luego, se define qué es lo que espera lograrse y se resuelven las diferentes redes con las metodologías propuestas para analizarlas y finalmente seleccionar la más adecuada.

DEFINICIÓN DEL PROBLEMA DE DISEÑO.

Cómo primer paso obviamente es necesario definir cuál será el objeto de estudio y recolectar la mayor cantidad de información sobre él. Identificar el diseño de la red en el caso de que esta ya exista, revisión de equipos disponibles, características de las corrientes que estarán involucradas en el diseño. Además, es necesario tener claro cuál será el objetivo del diseño, ya sea obtener una HEN con el menor consumo de servicios industriales, el menor costo de capital o cualquier otro criterio, esto es de vital importancia para definir qué tipo de metodología aplicar, tener un horizonte claro para no desperdiciar recursos en acciones no necesarias y filtrar desde el principio algunas opciones.

CRITERIO DE EVALUACIÓN.

Teniendo esto claro, el siguiente paso es entonces decidir cuál debe ser el criterio de evaluación de la HEN, la función objetivo. Tiene tanta importancia esto como la definición del problema de diseño, ya que es el criterio de comparación de las propuestas con la situación actual o entre las diferentes soluciones que se obtengan.
DISEÑO INICIAL.

Para comenzar la solución, se sugiere aplicar una metodología simple que lleve a una aproximación inicial, esto proporciona cierta información que puede ser tomada como punto de partida. Hottest/Highest puro o Hottest/Highest-RPS brindan, como ya se vio, un diseño inicial bastante competitivo que da una aproximación a la cantidad de unidades que tendrá la HEN y sus características, así como la cantidad de servicios industriales que puede llegar a necesitar el proceso y un orden de magnitud de los costos involucrados.

PDM (HEN con menor consumo de servicios industriales).

Luego se desarrolla el PDM para obtener la red con el menor consumo de servicios industriales, sin importar cuál sea la selección del objetivo del diseño este paso es muy importante en la consecución de la información que va a llevar al diseño optimo pues brinda un importantísimo punto de comparación, la red MER. Un aspecto importante de esta metodología es que dentro de ella se incluye la realización de la curva gran compuesta, esta permite ubicar cuales son los puntos del proceso en los que se recupera la energía y cuales son aquellos en los que no, permitiendo realizar una escogencia de los servicios industriales que serán utilizados para cubrir los puntos de no recuperación.

AUDITORIA DE DISEÑO.

Siempre tras la realización de todo diseño se debe realizar una revisión que permita comprobar si el resultado es correcto termodinámicamente y mecánicamente. En cuestión termodinámica la herramienta por excelencia es la auditoría de la Segunda Ley de la Termodinámica, que son un conjunto de lineamientos que revisan la factibilidad termodinámica, estos lineamientos fueron propuestos por Sama (Sama, 1989), en el presente trabajo se presentan estos y además una ampliación cuantitativa de los mismos (Bejan, 1996) (Szargut, 1995).
COMPARACIÓN ENTRE LOS DISEÑOS OBTENIDOS.

Según el criterio seleccionado para la evaluación, realizar la misma y decidir cuál es el diseño que mejores resultados presenta según la definición del problema y los objetivos de diseño.

DISEÑO POR OPTIMIZACIÓN MATEMÁTICA (Superestructura).

La optimización matemática proporciona una solución muy cercana al óptimo económico, comparar los diseños contra este, corrobora el objetivo del diseño. Se debe tener presente que este diseño por optimización matemática debe pasar igualmente una auditoría de Segunda Ley de la Termodinámica. Este método, al ser de carácter netamente matemático puede arrojar HEN que tengan sentido desde el punto de vista económico, pero es posible que desde el punto de vista mecánico o de uso de servicios industriales no sean factibles.

CRITERIO DEL DISEÑADOR.

Por último, en un buen ejercicio de diseño, el problema no puede ser del todo resuelto por un algoritmo, el criterio del diseñador juega un rol muy importante en la obtención de un resultado óptimo. Particularmente en el diseño de HEN el criterio del ingeniero (diseñador) y la experiencia acumulada a lo largo de su práctica, en conjunto con las herramientas expuestas en este trabajo llevan a un resultado muy cercano al óptimo.
4 METODOLOGÍA DE CÁLCULO

Para comparar las metodologías evaluadas se resolvió una serie de casos de estudio utilizando las herramientas desarrolladas en el presente trabajo. Para la evaluación se utilizan los siguientes criterios:

- Área total de transferencia de calor:

Se calculó cómo la sumatoria de las áreas de cada intercambiador en la red, utilizando la ecuación de diseño para su cálculo. Para simplificar estas estimaciones y realizarlas todas en igualdad de condiciones se decidió asumir que todos los intercambiadores son de tubos concéntricos, por lo que su ecuación de diseño queda:

\[Q = A \ U \Delta T_{im} \]

U, coeficiente global de transferencia de calor, se calcula cómo:

\[\frac{1}{U} = \frac{1}{h_1} + \frac{1}{h_2} \]

Para evitar los problemas de continuidad que puede presentar la forma convencional de la diferencia de temperatura logarítmica media en la metodología de optimización matemática, su cálculo se realiza por medio de la aproximación de Chen (Chen, 1987):

\[\Delta T_{im} \approx \left((dt_{in})(dt_{out})(dt_{in} + dt_{in})/2 \right)^{1/3} \]
- Consumo de servicios industriales:

Este ítem se calcula directamente dentro de cada metodología y permite una comparación directa, sin embargo, para cuantificar su costo y poder determinar los costos totales, se asume un valor de 100 $/kW para el servicio industrial caliente y de 10 $/kW para el frío. (Ponce Ortega, et al., 2008)

- Costos de capital:

Los costos de capital para cada intercambiador se toman como el valor de su compra e instalación y cómo es de esperarse están compuestos por un valor fijo y una fracción variable que depende del área de transferencia necesaria. Se estiman según la fórmula (Yee, Grossmann, 1990):

\[
Costo = 8600 + 670 \times (Área \ [m^2])^{.83}
\]

- Costo total anualizado:

Cómo su nombre lo indica, se trata de la sumatoria de los diferentes costos que aparecen en la red. Costos de los servicios industriales y costos fijos anualizados. Estos costos fijo se amortizan en un periodo de 10 años con una tasa de descuento del 10%, lo que arroja un factor de anualización de 0.16.
5 CASOS DE ESTUDIO

Consideraciones

- Para todos los casos de estudio se tomo como diferencia de temperatura mínima (HRAT) un valor de 10 K.
- Los servicios industriales son los mismos en todos los ejemplos.

5.1 2 Corrientes calientes, 2 corrientes frías, no corrientes isotérmicas

Ejemplo clásico utilizado por el profesor Miguel Bagajewicz para presentar el método de diseño PINCH, consta de un par de corrientes calientes y frías. Se presenta como un caso hipotético en el cual se tiene el siguiente esquema:

Figura 20. Caso de estudio 1

(Adaptado de Bagajewicz, 2007).

Se tiene un par de reactores para los cuales es necesario precalentar la mezcla de alimentación y posteriormente enfriar los productos para prepararlos para la
secuencia de separación. Los datos necesarios de las corrientes se presentan a continuación:

<table>
<thead>
<tr>
<th>Corriente</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>FCp (kW/K)</th>
<th>h (kW/(m² K))</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>523</td>
<td>313</td>
<td>0.15</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>H2</td>
<td>473</td>
<td>353</td>
<td>0.25</td>
<td>0.81</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>293</td>
<td>453</td>
<td>0.2</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>413</td>
<td>503</td>
<td>0.3</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td>HU</td>
<td>627</td>
<td>627</td>
<td></td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>CU</td>
<td>303</td>
<td>315</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Solución PDM

Utilizando la herramienta desarrollada se obtuvo la red mostrada en la figura 21.

Que arroja también la información presentada en la tabla 2.
Tabla 2. Resultados caso de estudio 1

SOBRE EL PINCH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C2</td>
<td>12.5</td>
<td>473</td>
<td>423</td>
<td>443</td>
<td>454.67</td>
<td>0.23</td>
<td>13.74</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C2</td>
<td>7</td>
<td>523</td>
<td>476.33</td>
<td>454.67</td>
<td>478</td>
<td>0.20</td>
<td>31.91</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>8</td>
<td>476.33</td>
<td>423</td>
<td>413</td>
<td>453</td>
<td>0.27</td>
<td>15.72</td>
<td>1.90</td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.86</td>
</tr>
</tbody>
</table>

DEBAJO DEL PINCH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>12</td>
<td>423</td>
<td>343</td>
<td>293</td>
<td>413</td>
<td>0.27</td>
<td>24.66</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>12</td>
<td>423</td>
<td>375</td>
<td>293</td>
<td>413</td>
<td>0.23</td>
<td>33.54</td>
<td>1.53</td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.345166</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>CU</td>
<td>4.5</td>
<td>343</td>
<td>313</td>
<td>303</td>
<td>318</td>
<td>0.35</td>
<td>16.36</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
<td>5.5</td>
<td>375</td>
<td>353</td>
<td>303</td>
<td>318</td>
<td>0.45</td>
<td>53.42</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.71</td>
</tr>
</tbody>
</table>

Tabla 3. Resultados económicos caso 1 PDM

EJEMPLO 1

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q (kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos>HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SOBRE EL PINCH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q (kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos>HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C2</td>
<td>3.88</td>
<td>12.5</td>
<td>10663.89</td>
<td>1706.22</td>
<td>0.00</td>
<td>0.00</td>
<td>1706.22</td>
<td>4755.17</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C2</td>
<td>1.08</td>
<td>7</td>
<td>9313.49</td>
<td>1490.16</td>
<td>0.00</td>
<td>0.00</td>
<td>1490.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>1.90</td>
<td>8</td>
<td>9742.45</td>
<td>1558.79</td>
<td>0.00</td>
<td>0.00</td>
<td>1558.79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.86</td>
</tr>
</tbody>
</table>

DEBAJO EL PINCH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q (kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos>HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>CU</td>
<td>0.16</td>
<td>7.5</td>
<td>8747.74</td>
<td>1999.64</td>
<td>0.00</td>
<td>0.00</td>
<td>1999.64</td>
<td>2149.64</td>
<td>2149.64</td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
<td>0.55</td>
<td>4.5</td>
<td>9153.41</td>
<td>1645.55</td>
<td>0.00</td>
<td>0.00</td>
<td>1645.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>CU</td>
<td>0.23</td>
<td>5.5</td>
<td>8797.87</td>
<td>1407.66</td>
<td>0.00</td>
<td>0.00</td>
<td>1407.66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Total sobre y bajo (US$/año)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.71</td>
</tr>
</tbody>
</table>

Total (US$/año)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12957.41</td>
</tr>
</tbody>
</table>

Total sobre y bajo (US$/año)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4755.17</td>
</tr>
</tbody>
</table>

Total (US$/año)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3080.40</td>
</tr>
</tbody>
</table>

Total sobre y bajo (US$/año)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2972.21</td>
</tr>
</tbody>
</table>

Total (US$/año)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

63
Solución Heurística

En la siguiente figura se presenta la red diseñada utilizando el algoritmo H/H de Ponton y Donaldson.

Figura 22. Red diseñada por H/H para el caso de estudio 1

Con las siguientes características técnicas y económicas:

Tabla 4. Resultados caso 1 H/H

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C2</td>
<td>3</td>
<td>523</td>
<td>503</td>
<td>493</td>
<td>503</td>
<td></td>
<td>0.20</td>
<td>14.42</td>
<td>1.02</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>24</td>
<td>503</td>
<td>343</td>
<td>333</td>
<td>453</td>
<td></td>
<td>0.27</td>
<td>24.66</td>
<td>3.64</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>8</td>
<td>473</td>
<td>441</td>
<td>293</td>
<td>333</td>
<td></td>
<td>0.32</td>
<td>143.96</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>4.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COOLERS

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>CU</td>
<td>4.5</td>
<td>343</td>
<td>313</td>
<td>303</td>
<td>318</td>
<td>4.5</td>
<td>0.35</td>
<td>16.36</td>
<td>0.79</td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
<td>22</td>
<td>441</td>
<td>353</td>
<td>303</td>
<td>318</td>
<td>22</td>
<td>0.45</td>
<td>81.03</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>26.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HEATERS

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>C2</td>
<td>24</td>
<td>649.85</td>
<td>649.85</td>
<td>413</td>
<td>493</td>
<td>24</td>
<td>0.29</td>
<td>194.10</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 24 Total 0.42
Este ejemplo es una muy buena oportunidad de demostrar la debilidad antes mencionada de este método, pues si se observa detenidamente luego de realizar la segunda asignación, la corriente fría con la temperatura objetivo más alta es la dos pero dado que su temperatura y su FCp son mayores que los de la caliente, se descarta esa asignación, si no se hiciera así, la red quedaría como sigue.

Tabla 5. Resultados económicos caso 1 H/H

<table>
<thead>
<tr>
<th>H5</th>
<th>CS</th>
<th>Area (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C2</td>
<td>1.02</td>
<td>3</td>
<td>9282.65</td>
<td>1485.22</td>
<td>0.00</td>
<td>0.00</td>
<td>1485.22</td>
<td>4575.18</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>3.64</td>
<td>24</td>
<td>10557.12</td>
<td>1689.14</td>
<td>0.00</td>
<td>0.00</td>
<td>1689.14</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>0.17</td>
<td>12.5</td>
<td>8755.07</td>
<td>1400.81</td>
<td>0.00</td>
<td>0.00</td>
<td>1400.81</td>
<td>4575.18</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4.83</td>
<td>39.50</td>
<td>28594.85</td>
<td>4575.18</td>
<td>0.00</td>
<td>0.00</td>
<td>4575.18</td>
<td>11532.58</td>
</tr>
</tbody>
</table>

Figura 23. Red diseñada por H/H-RPS para el caso de estudio 1

EJEMPLO 1

CORRIENTES

<table>
<thead>
<tr>
<th>H1</th>
<th>CU</th>
<th>0.79</th>
<th>4.5</th>
<th>9153.41</th>
<th>1464.55</th>
<th>0.00</th>
<th>45.00</th>
<th>1509.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>CU</td>
<td>0.35</td>
<td>22</td>
<td>8879.85</td>
<td>1420.78</td>
<td>0.00</td>
<td>220.00</td>
<td>1640.78</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.14</td>
<td>26.50</td>
<td>18033.26</td>
<td>2885.32</td>
<td>0.00</td>
<td>265.00</td>
<td>3150.32</td>
</tr>
</tbody>
</table>

COOLERS

<table>
<thead>
<tr>
<th>H1</th>
<th>C2</th>
<th>0.23</th>
<th>24</th>
<th>8794.27</th>
<th>1407.08</th>
<th>2400.00</th>
<th>0.00</th>
<th>3807.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C2</td>
<td>0.23</td>
<td>24</td>
<td>8794.27</td>
<td>1407.08</td>
<td>2400.00</td>
<td>0.00</td>
<td>3807.08</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.23</td>
<td>24.00</td>
<td>8794.27</td>
<td>1407.08</td>
<td>2400.00</td>
<td>0.00</td>
<td>3807.08</td>
</tr>
</tbody>
</table>

HEATERS

<table>
<thead>
<tr>
<th>H1</th>
<th>C2</th>
<th>0.23</th>
<th>24</th>
<th>8794.27</th>
<th>1407.08</th>
<th>2400.00</th>
<th>0.00</th>
<th>3807.08</th>
</tr>
</thead>
</table>
Que cómo se verá más adelante, resulta ser mejor desde el punto de vista de recuperación de calor que la anterior.

Tabla 6. Resultados caso 1 H/H-RPS

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C2</td>
<td>3</td>
<td>523</td>
<td>503</td>
<td>493</td>
<td>503</td>
<td></td>
<td>0.20</td>
<td>14.42</td>
<td>1.02</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>24</td>
<td>503</td>
<td>343</td>
<td>333</td>
<td>453</td>
<td></td>
<td>0.27</td>
<td>24.66</td>
<td>3.64</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>12.5</td>
<td>473</td>
<td>423</td>
<td>413</td>
<td>454.667</td>
<td></td>
<td>0.23</td>
<td>13.75</td>
<td>3.88</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>8</td>
<td>423</td>
<td>391</td>
<td>293</td>
<td>333</td>
<td></td>
<td>0.32</td>
<td>93.94</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Total 8.80

Tabla 7. Resultados económicos caso 1 H/H-RPS

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C2</td>
<td>1.02</td>
<td>3</td>
<td>9282.65</td>
<td>1485.22</td>
<td>0.00</td>
<td>0.00</td>
<td>1485.22</td>
<td>6291.92</td>
<td>6291.92</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>3.64</td>
<td>24</td>
<td>10557.12</td>
<td>1689.14</td>
<td>0.00</td>
<td>0.00</td>
<td>1689.14</td>
<td>11878.17</td>
<td>11878.17</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>3.88</td>
<td>12.5</td>
<td>10663.72</td>
<td>1706.20</td>
<td>0.00</td>
<td>0.00</td>
<td>1706.20</td>
<td>3025.32</td>
<td>3025.32</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>0.26</td>
<td>8</td>
<td>8821.01</td>
<td>1411.36</td>
<td>0.00</td>
<td>0.00</td>
<td>1411.36</td>
<td>2560.92</td>
<td>2560.92</td>
</tr>
</tbody>
</table>

Total 8.80 47.50 39324.51 6291.92 0.00 0.00 6291.92

| EJEMPLO 1 |
| CORRIENTES |
H1	C2	1.02	3	9282.65	1485.22	0.00	0.00	1485.22	6291.92	6291.92
H1	C1	3.64	24	10557.12	1689.14	0.00	0.00	1689.14	11878.17	11878.17
H2	C2	3.88	12.5	10663.72	1706.20	0.00	0.00	1706.20	3025.32	3025.32
H2	C1	0.26	8	8821.01	1411.36	0.00	0.00	1411.36	2560.92	2560.92

Total 8.80 47.50 39324.51 6291.92 0.00 0.00 6291.92

Tabla 7. Resultados económicos caso 1 H/H-RPS

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C2</td>
<td>1.02</td>
<td>3</td>
<td>9282.65</td>
<td>1485.22</td>
<td>0.00</td>
<td>0.00</td>
<td>1485.22</td>
<td>6291.92</td>
<td>6291.92</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>3.64</td>
<td>24</td>
<td>10557.12</td>
<td>1689.14</td>
<td>0.00</td>
<td>0.00</td>
<td>1689.14</td>
<td>11878.17</td>
<td>11878.17</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>3.88</td>
<td>12.5</td>
<td>10663.72</td>
<td>1706.20</td>
<td>0.00</td>
<td>0.00</td>
<td>1706.20</td>
<td>3025.32</td>
<td>3025.32</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>0.26</td>
<td>8</td>
<td>8821.01</td>
<td>1411.36</td>
<td>0.00</td>
<td>0.00</td>
<td>1411.36</td>
<td>2560.92</td>
<td>2560.92</td>
</tr>
</tbody>
</table>

Total 8.80 47.50 39324.51 6291.92 0.00 0.00 6291.92

Tabla 7. Resultados económicos caso 1 H/H-RPS

| EJEMPLO 1 |
| COOLERS |
| H1 | CU | 0.79 | 4.5 | 9153.41 | 1464.55 | 0.00 | 45.00 | 1509.55 | 3025.32 | 3025.32 |
| H2 | CU | 0.35 | 9.5 | 8879.85 | 1420.78 | 0.00 | 95.00 | 1515.78 | 3025.32 | 3025.32 |

Total 1.14 14.00 18033.26 2885.32 0.00 140.00 3025.32

Tabla 7. Resultados económicos caso 1 H/H-RPS

| EJEMPLO 1 |
| HEATERS |
| HU | C2 | 0.26 | 11.5 | 8818.27 | 1410.92 | 1150.00 | 0.00 | 2560.92 | 2560.92 | 2560.92 |

Total 0.26 11.50 8818.27 1410.92 1150.00 0.00 2560.92
Solución Matemática

Al resolver el modelo propuesto para minimizar la función objetivo definida utilizando GAMS se obtiene la siguiente red cómo la más económica embebida dentro de la superestructura planteada.

Figura 24. Red diseñada por superestructura para el caso de estudio 1

<table>
<thead>
<tr>
<th>ETAPA 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>CS</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

COLD UTILITY

| HS | CS | Q (kW) | Tin H (K) | Tout H (K) | Tin C (K) | Tout C (K) | Utility (kW) | U (m² K)/kW | ΔTlm (K) | Área (m²) |
|---|---|---|---|---|---|---|---|---|---|
| H1 | CU | 31.5 | 523 | 313 | 303 | 318 | 31.5 | 0.35 | 60.40 | 1.51 |
| Total | Total | 31.5 | Total | 1.51 |

HOT UTILITY

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>C1</td>
<td>2</td>
<td>627</td>
<td>627</td>
<td>443</td>
<td>453</td>
<td>2</td>
<td>0.44</td>
<td>178.95</td>
<td>0.03</td>
</tr>
<tr>
<td>HU</td>
<td>C2</td>
<td>27</td>
<td>627</td>
<td>627</td>
<td>413</td>
<td>503</td>
<td>27</td>
<td>0.29</td>
<td>164.91</td>
<td>0.56</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>29</td>
<td>Total</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
De las 4 metodologías PINCH arroja la red más costosa a pesar de presentar el consumo más bajo en servicios industriales, su elevado costo se debe a la cantidad de intercambiadores de calor que se utilizan en la red para garantizar la máxima recuperación de energía. Por el contrario, en el caso de superestructura se obtiene la red con menor costo ya que resulta más económico la utilización de servicios industriales para cumplir los requerimientos de energía de las corrientes que el aprovechamiento de la energía de las mismas, prueba de esto es el único intercambiador de superestructura contra los 5 que se presentan en PINCH y el elevado costo de servicios industriales respecto a las otras metodologías. Para el caso de las soluciones heurísticas ambas se encuentran en niveles de costo muy similares y bastante competitivos con superestructura. Son también una excelente demostración del *trade-off* existente entre costos de operación y de capital pues H/H-RPS presenta menor consumo de servicios al involucrar un intercambiador más pero el costo fijo de este hace que el ahorro no sea realmente visible. Todo esto se puede ver claramente en la gráfica 1 que resume los resultados de los métodos en forma comparativa.
Grafica 1. Comparación resultados caso 1

<table>
<thead>
<tr>
<th>Número de intercambiadores por zona - Ejemplo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Área de intercambio de calor (m²) - Ejemplo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>6.201</td>
</tr>
<tr>
<td>4.232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo HU (US$/Año) - Ejemplo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>2400</td>
</tr>
<tr>
<td>2900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo CU (US$/Año) - Ejemplo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>265</td>
</tr>
<tr>
<td>315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo capital anualizado (US$/Año) - Ejemplo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>8867.58</td>
</tr>
<tr>
<td>7505.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo total anualizado (US$/Año) - Ejemplo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>11532.58</td>
</tr>
<tr>
<td>10720.15</td>
</tr>
</tbody>
</table>
5.2 3 Corrientes calientes, 4 corrientes frías, no corrientes isotérmicas

Para observar mejor el comportamiento de las metodologías y obtener mayores elementos de juicio, se resuelve ahora un caso un poco más elaborado. Consistente de 3 corrientes calientes y 4 corrientes frías. A continuación se resume la información necesaria de las corrientes, tomado del artículo donde se propone el modelo de superestructuras aquí estudiado (Yee & Grossmann, 1990):

<table>
<thead>
<tr>
<th>Corriente</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>FCp (kW/K)</th>
<th>h (kW/(m² K))</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>626</td>
<td>586</td>
<td>9.802</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td>H2</td>
<td>620</td>
<td>519</td>
<td>2.931</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>H3</td>
<td>528</td>
<td>353</td>
<td>6.161</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>497</td>
<td>613</td>
<td>7.179</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>389</td>
<td>576</td>
<td>0.641</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>C3</td>
<td>326</td>
<td>386</td>
<td>7.627</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td>C4</td>
<td>313</td>
<td>566</td>
<td>1.69</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>HU</td>
<td>650</td>
<td>650</td>
<td>-</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>CU</td>
<td>293</td>
<td>308</td>
<td>-</td>
<td>3.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Solución PDM

Figura 25. Red diseñada por PDM para el caso de estudio 2

Tabla 11. Resultados caso 2 PDM

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>C1</td>
<td>93.891</td>
<td>528</td>
<td>507</td>
<td>497</td>
<td>510.0786</td>
<td>0.54</td>
<td>13.58</td>
<td></td>
<td>12.80</td>
</tr>
<tr>
<td>H5</td>
<td>C4</td>
<td>35.49</td>
<td>528</td>
<td>507</td>
<td>497</td>
<td>518</td>
<td>1.60</td>
<td>10.00</td>
<td></td>
<td>2.22</td>
</tr>
<tr>
<td>H3</td>
<td>C1</td>
<td>296.031</td>
<td>620</td>
<td>519</td>
<td>510.079</td>
<td>551.3142</td>
<td>0.05</td>
<td>28.76</td>
<td></td>
<td>221.73</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>176</td>
<td>626</td>
<td>586</td>
<td>551.314</td>
<td>575.8302</td>
<td>0.05</td>
<td>41.95</td>
<td></td>
<td>90.36</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>216.08</td>
<td>626</td>
<td>586</td>
<td>575.83</td>
<td>605.9291</td>
<td>0.43</td>
<td>14.56</td>
<td></td>
<td>34.71</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>361.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>C2</td>
<td>69.23</td>
<td>507.00</td>
<td>399.00</td>
<td>389.00</td>
<td>497.00</td>
<td>0.23</td>
<td>42.27</td>
<td></td>
<td>7.06</td>
</tr>
<tr>
<td>H3</td>
<td>C5</td>
<td>310.96</td>
<td>507.00</td>
<td>450.67</td>
<td>313.00</td>
<td>497.00</td>
<td>1.60</td>
<td>164.22</td>
<td></td>
<td>1.18</td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>240.00</td>
<td>450.67</td>
<td>407.19</td>
<td>326.00</td>
<td>386.00</td>
<td>0.30</td>
<td>101.37</td>
<td></td>
<td>7.91</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>217.62</td>
<td>407.19</td>
<td>367.76</td>
<td>326.00</td>
<td>386.00</td>
<td>0.30</td>
<td>59.29</td>
<td></td>
<td>12.27</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3</td>
<td>CU</td>
<td>81.5</td>
<td>367.76449</td>
<td>353</td>
<td>303</td>
<td>318</td>
<td>0.76</td>
<td>57.06</td>
<td></td>
<td>1.87</td>
</tr>
<tr>
<td>H4</td>
<td>CU</td>
<td>29.486</td>
<td>399</td>
<td>353</td>
<td>303</td>
<td>318</td>
<td>0.76</td>
<td>70.50</td>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110.986</td>
</tr>
</tbody>
</table>
Tabla 12. Resultados económicos caso 2 PDM

<table>
<thead>
<tr>
<th>H5</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(I/W)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4</td>
<td>C1</td>
<td>12.80</td>
<td>93.891</td>
<td>14160.34</td>
<td>2265.65</td>
<td>0.00</td>
<td>0.00</td>
<td>2265.65</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>C4</td>
<td>2.22</td>
<td>35.49</td>
<td>9897.91</td>
<td>1583.66</td>
<td>0.00</td>
<td>0.00</td>
<td>1583.66</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C1</td>
<td>221.73</td>
<td>296.031</td>
<td>67907.76</td>
<td>10865.24</td>
<td>0.00</td>
<td>0.00</td>
<td>10865.24</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>90.36</td>
<td>176</td>
<td>36753.85</td>
<td>5880.62</td>
<td>0.00</td>
<td>0.00</td>
<td>5880.62</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>34.71</td>
<td>216.08</td>
<td>21323.45</td>
<td>3411.75</td>
<td>0.00</td>
<td>0.00</td>
<td>3411.75</td>
<td></td>
</tr>
</tbody>
</table>

Total

- **SOBRE EL PINCH**
 - Total: 361.82
 - Total sobre: 24006.93
 - Total bajo: 24006.93

- **BAJOS EL PINCH**
 - Total: 28.43
 - Total sobre: 7626.03
 - Total bajo: 7626.03

Solución Heurística

Figura 26. Red diseñada por HH para el caso de estudio 2

EJEMPLO 2

SOBRE EL PINCH

BAJOS EL PINCH

Total

- **Total sobre:** 24006.93
- **Total bajo:** 7626.03
- **Total:** 31688.96
Tabla 13. Resultados caso 2 HH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>392.08</td>
<td>626</td>
<td>586</td>
<td>558.39</td>
<td>613</td>
<td>0.43</td>
<td>19.39</td>
<td>47.29</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>119.87</td>
<td>620</td>
<td>579.107</td>
<td>389</td>
<td>576</td>
<td>0.04</td>
<td>99.30</td>
<td>28.97</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
<td>176.16</td>
<td>579.107</td>
<td>519</td>
<td>461.76</td>
<td>566</td>
<td>0.05</td>
<td>29.77</td>
<td>120.20</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>251.41</td>
<td>528</td>
<td>487.194</td>
<td>313</td>
<td>461.76</td>
<td>1.60</td>
<td>111.52</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>457.62</td>
<td>487.194</td>
<td>412.9171</td>
<td>326</td>
<td>386</td>
<td>0.30</td>
<td>93.87</td>
<td>16.30</td>
<td></td>
</tr>
</tbody>
</table>

| Total | | 214.17 | | | | | | | | |

Tabla 14. Resultados económicos caso 2 HH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>47.29</td>
<td>392.08</td>
<td>25047.38</td>
<td>4007.58</td>
<td>0.00</td>
<td>0.00</td>
<td>4007.58</td>
<td>18202.01</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>28.97</td>
<td>119.87</td>
<td>19552.42</td>
<td>3128.39</td>
<td>0.00</td>
<td>0.00</td>
<td>3128.39</td>
<td>69795.95</td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
<td>120.20</td>
<td>176.16</td>
<td>44278.77</td>
<td>7084.60</td>
<td>0.00</td>
<td>0.00</td>
<td>7084.60</td>
<td>18202.01</td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>1.41</td>
<td>251.41</td>
<td>9496.53</td>
<td>1518.49</td>
<td>0.00</td>
<td>0.00</td>
<td>1518.49</td>
<td>18202.01</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>16.30</td>
<td>457.62</td>
<td>13394.46</td>
<td>2462.95</td>
<td>0.00</td>
<td>0.00</td>
<td>2462.95</td>
<td>18202.01</td>
</tr>
</tbody>
</table>

| Total | | 214.17 | | 113762.56 | 18202.01 | 18202.01 | 69795.95 | | |

<table>
<thead>
<tr>
<th>EJEMPLO 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>COOLERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEATERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
</tr>
</tbody>
</table>
Figura 27. Red diseñada por HH-RPS para el caso de estudio 2

Tabla 15. Resultados caso 2 HH-RPS

<table>
<thead>
<tr>
<th>H5</th>
<th>C5</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m2 K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>392.08</td>
<td>626.00</td>
<td>586.00</td>
<td>586.39</td>
<td>613.00</td>
<td></td>
<td>0.43</td>
<td>19.39</td>
<td>47.29</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>119.87</td>
<td>620.00</td>
<td>579.10</td>
<td>579.00</td>
<td>579.00</td>
<td></td>
<td>0.04</td>
<td>99.30</td>
<td>28.97</td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
<td>176.16</td>
<td>579.10</td>
<td>519.00</td>
<td>461.76</td>
<td>461.76</td>
<td></td>
<td>0.05</td>
<td>29.77</td>
<td>120.20</td>
</tr>
<tr>
<td>H3</td>
<td>C1</td>
<td>129.38</td>
<td>528.00</td>
<td>507.00</td>
<td>497.00</td>
<td>515.02</td>
<td></td>
<td>0.54</td>
<td>11.42</td>
<td>20.96</td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>251.41</td>
<td>507.00</td>
<td>466.19</td>
<td>313.00</td>
<td>461.76</td>
<td></td>
<td>1.60</td>
<td>88.26</td>
<td>1.78</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>457.62</td>
<td>466.19</td>
<td>391.92</td>
<td>326.00</td>
<td>386.00</td>
<td></td>
<td>0.30</td>
<td>72.82</td>
<td>21.01</td>
</tr>
</tbody>
</table>

Total 240.21

COOLERS

<table>
<thead>
<tr>
<th>H5</th>
<th>C5</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Utility (kW)</th>
<th>ΔTlm (K)</th>
<th>Área (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3</td>
<td>CU</td>
<td>239.77</td>
<td>391.92</td>
<td>353.00</td>
<td>239.768</td>
<td>0.76</td>
<td>5.14</td>
</tr>
</tbody>
</table>

Total 239.77

HEATERS

<table>
<thead>
<tr>
<th>H5</th>
<th>C5</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Utility (kW)</th>
<th>ΔTlm (K)</th>
<th>Área (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>C1</td>
<td>311.3</td>
<td>627</td>
<td>627</td>
<td>515.02</td>
<td>558.39</td>
<td>6.82</td>
</tr>
</tbody>
</table>

Total 311.303

Total 6.82
Tabla 16. Resultados económicos caso 2 HH-RPS

<table>
<thead>
<tr>
<th>H5</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>47.29</td>
<td>392.08</td>
<td>25047.38</td>
<td>4007.58</td>
<td>0.00</td>
<td>0.00</td>
<td>4007.58</td>
<td>21203.21</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>28.97</td>
<td>119.87</td>
<td>19552.42</td>
<td>3128.39</td>
<td>0.00</td>
<td>0.00</td>
<td>3128.39</td>
<td>58427.90</td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
<td>120.20</td>
<td>176.16</td>
<td>44278.77</td>
<td>7084.60</td>
<td>0.00</td>
<td>0.00</td>
<td>7084.60</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C1</td>
<td>20.96</td>
<td>129.38</td>
<td>16972.78</td>
<td>2715.64</td>
<td>0.00</td>
<td>0.00</td>
<td>2715.64</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>1.78</td>
<td>251.41</td>
<td>9681.36</td>
<td>1549.02</td>
<td>0.00</td>
<td>0.00</td>
<td>1549.02</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>21.01</td>
<td>457.62</td>
<td>16987.38</td>
<td>2717.98</td>
<td>0.00</td>
<td>0.00</td>
<td>2717.98</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>240.21</td>
<td>1526.52</td>
<td>132520.09</td>
<td>21203.21</td>
<td>0.00</td>
<td>0.00</td>
<td>21203.21</td>
<td></td>
</tr>
</tbody>
</table>

Solución Matemática

Figura 28. Red diseñada por superestructuras para el caso de estudio 2
<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C4</td>
<td>206.65</td>
<td>620</td>
<td>549.496</td>
<td>443.72</td>
<td>566</td>
<td>0</td>
<td>0.05</td>
<td>76.99</td>
<td>54.52</td>
</tr>
<tr>
<td>H3</td>
<td>C3</td>
<td>457.62</td>
<td>528</td>
<td>453.723</td>
<td>326</td>
<td>386</td>
<td>0</td>
<td>0.30</td>
<td>134.74</td>
<td>11.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Total</td>
<td>65.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>392.08</td>
<td>626</td>
<td>586</td>
<td>497</td>
<td>551.615</td>
<td>0</td>
<td>0.43</td>
<td>81.47</td>
<td>11.25</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>89.383</td>
<td>549.496</td>
<td>519</td>
<td>389</td>
<td>528.443</td>
<td>0.04</td>
<td>0.04</td>
<td>59.13</td>
<td>36.28</td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>220.92</td>
<td>453.723</td>
<td>417.865</td>
<td>313</td>
<td>443.723</td>
<td>1.60</td>
<td>1.60</td>
<td>39.20</td>
<td>3.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Total</td>
<td>51.06</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3</td>
<td>CU</td>
<td>399.63</td>
<td>417.865</td>
<td>353</td>
<td>303</td>
<td>318</td>
<td>399.633</td>
<td>0.76</td>
<td>72.06</td>
<td>7.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>399.633</td>
<td>Total</td>
<td>7.28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>C1</td>
<td>440.68</td>
<td>627</td>
<td>627</td>
<td>551.62</td>
<td>613</td>
<td>440.684</td>
<td>0.52</td>
<td>36.13</td>
<td>23.64</td>
</tr>
<tr>
<td>HU</td>
<td>C2</td>
<td>30.484</td>
<td>627</td>
<td>627</td>
<td>528.44</td>
<td>576</td>
<td>30.484</td>
<td>0.23</td>
<td>72.17</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>471.168</td>
<td>Total</td>
<td>25.50</td>
<td></td>
</tr>
</tbody>
</table>
Nuevamente, no es de sorprender que el resultado con menor consumo de servicios industriales sea el obtenido a través de PINCH, este también presenta el número mayor de intercambiadores para recuperación de energía pero esta vez la red no resulta ser la más costosa; en esta ocasión es HH, que presenta 5 unidades de recuperación y alto consumo de servicios industriales, por lo que los costos no se compensan como en el caso de PINCH. La red menos costosa es la obtenida por HH-RPS pues con un intercambiador más que HH logra que la recuperación aumente, reduciendo considerablemente el consumo de servicios. Un resumen de los resultados se presenta en la gráfica 2.
Grafica 2. Comparación resultados caso 2

Número de intercambiadores por zona - Ejemplo 2

Área de intercambio de calor (m²) - Ejemplo 2

Costo HU (US$/Año) - Ejemplo 2

Costo CU (US$/Año) - Ejemplo 2

Costo capital anualizado (US$/Año) - Ejemplo 2

Costo total anualizado (US$/Año) - Ejemplo 2
5.3 2 corrientes calientes, 2 corrientes frías, con corrientes isotérmicas

Ahora, para atender al objetivo del proyecto, se trata un problema en el cual algunas de las corrientes presentan cambio de fase. En este ejemplo se tiene un par de corrientes calientes y otro de corrientes frías, de las cuales una de cada grupo presenta transferencia de calor sensible y calor latente en el intervalo entre la temperatura de entrada y la temperatura deseada. Obtenido a partir de una modificación a uno de los ejemplos de Ponce Ortega (Ponce Ortega, et al., 2008), los datos necesarios se presentan en la tabla 19.

Tabla 19. Datos de las corrientes para el ejemplo 3

<table>
<thead>
<tr>
<th>Corriente</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>Temperatura cambio de fase (K)</th>
<th>Flujo calórico (kW/K)</th>
<th>Flujo de vaporización (kW)</th>
<th>Normal</th>
<th>SupH</th>
<th>IsoT</th>
<th>SubC</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>620</td>
<td>420</td>
<td>440</td>
<td>38</td>
<td>18002.5</td>
<td>0.52</td>
<td>1.5</td>
<td>0.73</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>590</td>
<td>450</td>
<td>-</td>
<td>30.42</td>
<td>-</td>
<td>0.58</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>350</td>
<td>450</td>
<td>370</td>
<td>34.08</td>
<td>13220.2</td>
<td>0.56</td>
<td>2.1</td>
<td>0.87</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>350</td>
<td>450</td>
<td>-</td>
<td>49.98</td>
<td>-</td>
<td>0.83</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>627</td>
<td>627</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>303</td>
<td>315</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Para los esquemas de las redes de transferencia de calor presentados en este ejemplo, una corriente representada por una línea punteada se refiere a que se encuentra en equilibrio líquido vapor.
Solución PDM

Debido a la conocida imposibilidad del PDM para manejar corrientes isotérmicas se recurre a la alternativa seleccionada, dividir las corrientes isotérmicas en 3 segmentos: uno para el intervalo en el que se encuentra como líquido e intercambia calor sensible, uno para el intervalo donde se encuentra como gas y también intercambia sólo calor sensible y por último un segmento donde se presenta el cambio de fase, representándola como un corriente con un cambio de sólo un grado en su temperatura. Realizando dichas modificaciones se crean algunas corrientes ficticias y se obtiene la siguiente tabla de corrientes:

<table>
<thead>
<tr>
<th>Corriente Original</th>
<th>Corriente Modificada</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>Flujo calórico (kW/K)</th>
<th>h (kW/(m² K))</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>H1</td>
<td>620</td>
<td>440</td>
<td>38</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td>440</td>
<td>439</td>
<td>18002.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H3</td>
<td>439</td>
<td>420</td>
<td>38</td>
<td>0.73</td>
<td>1</td>
</tr>
<tr>
<td>H2</td>
<td>H4</td>
<td>590</td>
<td>450</td>
<td>30.42</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>C1</td>
<td>350</td>
<td>370</td>
<td>34.08</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>370</td>
<td>371</td>
<td>13220.2</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>371</td>
<td>450</td>
<td>34.08</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>C4</td>
<td>350</td>
<td>450</td>
<td>49.98</td>
<td>0.83</td>
<td>1</td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td>627</td>
<td>627</td>
<td>2.5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CU</td>
<td></td>
<td>303</td>
<td>315</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Que al ingresarla al programa desarrollado este arroja, luego de analizar los resultados obtenidos y unificar de nuevo las corrientes divididas, la red ilustrada en la figura 29.
Figura 29. Red diseñada por PDM para el caso de estudio 3

Tabla 21. Resultados caso 3 PDM

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C2</td>
<td>13220.2</td>
<td>440.00</td>
<td>439.27</td>
<td>370.00</td>
<td>371.00</td>
<td>0.88</td>
<td>69.13</td>
<td>218.55</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>681.6</td>
<td>439.27</td>
<td>439.23</td>
<td>350.00</td>
<td>370.00</td>
<td>0.55</td>
<td>78.83</td>
<td>15.70</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C5</td>
<td>3800</td>
<td>620.00</td>
<td>520.00</td>
<td>350.00</td>
<td>450.00</td>
<td>0.32</td>
<td>170.00</td>
<td>69.92</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C3</td>
<td>2692.32</td>
<td>520.00</td>
<td>449.15</td>
<td>371.00</td>
<td>450.00</td>
<td>0.27</td>
<td>74.00</td>
<td>134.94</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
<td>1198</td>
<td>590.00</td>
<td>550.62</td>
<td>350.00</td>
<td>450.00</td>
<td>0.34</td>
<td>168.49</td>
<td>20.83</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H1</th>
<th>CU</th>
<th>347.68</th>
<th>439.27</th>
<th>440.00</th>
<th>303.00</th>
<th>318.00</th>
<th>347.68</th>
<th>0.34</th>
<th>128.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>CU</td>
<td>4101.2</td>
<td>439.27</td>
<td>681.6</td>
<td>303.00</td>
<td>318.00</td>
<td>4101.2</td>
<td>0.60</td>
<td>128.49</td>
</tr>
<tr>
<td>H3</td>
<td>CU</td>
<td>722</td>
<td>620.00</td>
<td>520.00</td>
<td>303.00</td>
<td>318.00</td>
<td>722</td>
<td>0.42</td>
<td>118.99</td>
</tr>
<tr>
<td>H4</td>
<td>CU</td>
<td>3060.8</td>
<td>550.62</td>
<td>3800</td>
<td>47871.80</td>
<td>7659.49</td>
<td>3060.8</td>
<td>0.37</td>
<td>186.53</td>
</tr>
</tbody>
</table>

Total 8231.68 Area (m²) 120.16

Tabla 22. Resultados económicos caso 3 PDM

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJEMPLO 3</td>
<td>BAJO EL PINCH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>218.55</td>
<td>13220.2</td>
<td>67200.07</td>
<td>10752.01</td>
<td>0.00</td>
<td>0.00</td>
<td>10752.01</td>
<td>28566.8</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>15.70</td>
<td>681.6</td>
<td>15188.03</td>
<td>2430.08</td>
<td>0.00</td>
<td>0.00</td>
<td>2430.08</td>
<td>123375.63</td>
</tr>
<tr>
<td>H1</td>
<td>C5</td>
<td>69.92</td>
<td>3800</td>
<td>31355.27</td>
<td>5016.84</td>
<td>0.00</td>
<td>0.00</td>
<td>5016.84</td>
<td>3476.8</td>
</tr>
<tr>
<td>H1</td>
<td>C3</td>
<td>134.94</td>
<td>2692.32</td>
<td>47871.80</td>
<td>7659.49</td>
<td>0.00</td>
<td>0.00</td>
<td>7659.49</td>
<td>12492.03</td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
<td>20.83</td>
<td>1198</td>
<td>16927.33</td>
<td>2708.37</td>
<td>0.00</td>
<td>0.00</td>
<td>2708.37</td>
<td>94808.83</td>
</tr>
</tbody>
</table>

Total 8231.68 120.16

<table>
<thead>
<tr>
<th>H1</th>
<th>CU</th>
<th>7.88</th>
<th>347.68</th>
<th>3476.80</th>
<th>5447.59</th>
<th>0.00</th>
<th>0.00</th>
<th>5447.59</th>
<th>12856.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>CU</td>
<td>53.20</td>
<td>4101.2</td>
<td>41012.00</td>
<td>45289.87</td>
<td>0.00</td>
<td>0.00</td>
<td>45289.87</td>
<td>94808.83</td>
</tr>
<tr>
<td>H3</td>
<td>CU</td>
<td>14.38</td>
<td>722</td>
<td>7220.00</td>
<td>9575.79</td>
<td>0.00</td>
<td>0.00</td>
<td>9575.79</td>
<td>44955.58</td>
</tr>
<tr>
<td>H4</td>
<td>CU</td>
<td>44.70</td>
<td>3060.8</td>
<td>34495.58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>34495.58</td>
<td>94808.83</td>
</tr>
</tbody>
</table>

Total 8231.68 94808.83
Solución Heurística

Para abordar este problema desde la herramienta heurística propuesta, se toma la decisión de dividir las corrientes del mismo modo que se realiza en PDM, lo que permite abordar de manera lógica las diferencias en las propiedades de la corriente a lo largo de la red. Pero requiere entonces mayor análisis al obtener los resultados del método pues es necesario interpretarlos correctamente al unificar de nuevo las corrientes con cambio de fase y posteriormente corregir errores en el diseño que hayan podido ser ocasionados por esto (equipos redundantes, por ejemplo).

Figura 30. Red diseñada por HH para el caso de estudio 3

Tabla 23. Resultados caso 3 HH

<table>
<thead>
<tr>
<th>CORRIENTES</th>
<th>COOLERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>CS</td>
</tr>
<tr>
<td>H1</td>
<td>C3</td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
</tr>
<tr>
<td>H1</td>
<td>C2</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
</tr>
<tr>
<td>H3</td>
<td>CU</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>
Luego de procesar los resultados de la metodología y de unificar nuevamente las corrientes que fueron divididas al presentar cambio de fase se observa que aparecen ciertos equipos aparente redundantes, pues intercambian calor entre las mismas corrientes de forma consecutiva (3, 4 y 5 por ejemplo). Esto se debe precisamente a la división realizada a las corrientes y será corregido posteriormente.

Tabla 24. Resultados económicos caso 3 HH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C3</td>
<td>57.38</td>
<td>2692.30</td>
<td>27912.82</td>
<td>4466.05</td>
<td>0.00</td>
<td>0.00</td>
<td>4466.05</td>
<td>30122.22</td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
<td>113.06</td>
<td>4258.80</td>
<td>42508.80</td>
<td>6801.41</td>
<td>0.00</td>
<td>0.00</td>
<td>6801.41</td>
<td>6801.41</td>
</tr>
<tr>
<td>H1</td>
<td>C2</td>
<td>86.42</td>
<td>4147.70</td>
<td>35731.76</td>
<td>5717.08</td>
<td>0.00</td>
<td>0.00</td>
<td>5717.08</td>
<td>0.00</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>149.40</td>
<td>9072.50</td>
<td>51335.95</td>
<td>8213.75</td>
<td>0.00</td>
<td>0.00</td>
<td>8213.75</td>
<td>0.00</td>
</tr>
<tr>
<td>H2</td>
<td>C1</td>
<td>15.65</td>
<td>681.60</td>
<td>15170.53</td>
<td>2427.28</td>
<td>0.00</td>
<td>0.00</td>
<td>2427.28</td>
<td>0.00</td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
<td>16.91</td>
<td>739.20</td>
<td>15603.98</td>
<td>2496.64</td>
<td>0.00</td>
<td>0.00</td>
<td>2496.64</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>438.82</td>
<td>21592.10</td>
<td>188263.85</td>
<td>30122.22</td>
<td>0.00</td>
<td>0.00</td>
<td>30122.22</td>
<td>30122.22</td>
</tr>
</tbody>
</table>

EJEMPLO 3

<table>
<thead>
<tr>
<th>CORRIENTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 C3</td>
</tr>
<tr>
<td>H4 C4</td>
</tr>
<tr>
<td>H1 C2</td>
</tr>
<tr>
<td>H2 C2</td>
</tr>
<tr>
<td>H2 C1</td>
</tr>
<tr>
<td>H2 C4</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COOLERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2 CU</td>
</tr>
<tr>
<td>H3 CU</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Solución Matemática

Figura 31. Red diseñada por superestructuras para el caso de estudio 3
En la red presentada en la figura 31 para la corriente C1 se presenta un cruce donde ésta aparentemente “se devuelve”, esto con el fin de representar adecuadamente los intercambiadores de calor ya que se presenta el siguiente caso: la parte sobrecalentada de la corriente H1 intercambia calor con la parte subenfriada de la corriente C1 y luego la sección en equilibrio de H1 intercambia con la sección en equilibrio de C1. Esto lleva a mostrar la corriente de esta forma para lograr una representación donde los intercambiadores no se crucen.

Tabla 25. Resultados caso 3 superestructura

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAPA 1</td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>CS</td>
<td>Q (kW)</td>
<td>Tin H (K)</td>
<td>Tout H (K)</td>
<td>Tin C (K)</td>
<td>Tout C (K)</td>
<td>Utility (kW)</td>
<td>U (m² K)/kW</td>
<td>ΔTlm (K)</td>
<td>Área (m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C3</td>
<td>2385.6</td>
<td>620</td>
<td>557.221</td>
<td>371</td>
<td>441</td>
<td>0.27</td>
<td>182.59</td>
<td>48.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>13220</td>
<td>440</td>
<td>439.266</td>
<td>370</td>
<td>371</td>
<td>0.88</td>
<td>69.13</td>
<td>218.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
<td>4258.8</td>
<td>590</td>
<td>450</td>
<td>355.79</td>
<td>441</td>
<td>0.34</td>
<td>119.51</td>
<td>104.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 371.38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| ETAPA 2 | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>681.6</td>
<td>557.221</td>
<td>539.284</td>
<td>350</td>
<td>370</td>
<td>0.33</td>
<td>188.25</td>
<td>11.12</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>289.38</td>
<td>439</td>
<td>431.385</td>
<td>350</td>
<td>355.79</td>
<td>0.39</td>
<td>82.29</td>
<td>9.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total 20.18</td>
</tr>
</tbody>
</table>

<p>| COLD UTILITY | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>CU</td>
<td>3772.8</td>
<td>539.284</td>
<td>440</td>
<td>303</td>
<td>318</td>
<td>3772.8</td>
<td>0.34</td>
<td>175.77</td>
<td>62.74</td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
<td>4782.3</td>
<td>439.266</td>
<td>439</td>
<td>303</td>
<td>318</td>
<td>4782.3</td>
<td>0.60</td>
<td>128.49</td>
<td>62.03</td>
</tr>
<tr>
<td>H3</td>
<td>CU</td>
<td>432.62</td>
<td>431.385</td>
<td>420</td>
<td>303</td>
<td>318</td>
<td>432.62</td>
<td>0.42</td>
<td>115.18</td>
<td>8.90</td>
</tr>
<tr>
<td></td>
<td>Total 8987.72 Total 62.74</td>
</tr>
</tbody>
</table>

<p>| HOT UTILITY | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU</td>
<td>C3</td>
<td>306.72</td>
<td>627</td>
<td>627</td>
<td>441</td>
<td>450</td>
<td>306.72</td>
<td>0.46</td>
<td>181.46</td>
<td>3.69</td>
</tr>
<tr>
<td>HU</td>
<td>C4</td>
<td>449.82</td>
<td>627</td>
<td>627</td>
<td>441</td>
<td>450</td>
<td>449.82</td>
<td>0.62</td>
<td>181.46</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>Total 756.54 Total 7.67</td>
</tr>
</tbody>
</table>

84
Es bastante particular que en el caso de HH, HH-RPS y PINCH los costos totales sean similares a pesar de presentar diferencias en el número de unidades totales, siendo mayores para PINCH (gráfica 3). Esto se debe en esta ocasión a que a pesar de presentar la misma recuperación de calor y consumo de servicios el número de unidades, el coeficiente de transferencia de calor y las diferencias de temperatura actúan simultáneamente de tal forma que el costos total resulta ser bastante similar. He aquí una nueva demostración de la imposibilidad de tomar decisiones de diseño observando únicamente cifras económicas, pues varias redes que sobre el papel muestren costos similares pueden ser bastante diferentes en configuración, construcción y mantenimiento. En cuanto al particular comportamiento del modelo matemático, sobre este se discutirá en el siguiente capítulo.
Grafica 3. Comparación resultados caso 3

<table>
<thead>
<tr>
<th>Número de intercambiadores por zona - Ejemplo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolers</td>
</tr>
<tr>
<td>HH</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Área de intercambio de calor (m²) Ejemplo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
</tr>
<tr>
<td>550.558</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo HU (US$/Año) Ejemplo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo CU (US$/Año) Ejemplo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
</tr>
<tr>
<td>82317</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo capital anualizado (US$/Año) - Ejemplo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
</tr>
<tr>
<td>38646.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo total anualizado (US$/Año) - Ejemplo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
</tr>
<tr>
<td>120963.18</td>
</tr>
</tbody>
</table>
5.4 3 corrientes calientes, 3 corrientes frías, con corrientes isotérmicas

Finalmente, un problema con los 3 tipos posibles de corrientes, las que intercambian sólo calor sensible, las que intercambian sólo calor latente y las que intercambian ambos tipos de calor. Ejemplo tomado del artículo de Ponce Ortega et al. (2008).

Tabla 27. Datos de las corrientes para el ejemplo 4

<table>
<thead>
<tr>
<th>Corriente</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>Temperatura cambio de fase (K)</th>
<th>Flujo calórico (kW/K)</th>
<th>Flujo de vaporización ΔH (kW)</th>
<th>Δvap (kJ/kg)</th>
<th>Normal</th>
<th>SupH</th>
<th>IsoT</th>
<th>SubC</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>590</td>
<td>380</td>
<td>-</td>
<td>44.109</td>
<td>-1062.89</td>
<td>0.53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>H2</td>
<td>480</td>
<td>480</td>
<td>480</td>
<td>-</td>
<td>16997.4</td>
<td>2130</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>H3</td>
<td>500</td>
<td>320</td>
<td>400</td>
<td>34.272</td>
<td>15348.9</td>
<td>-6168.96</td>
<td>1881</td>
<td>0.52</td>
<td>2.1</td>
<td>0.71</td>
<td>3</td>
</tr>
<tr>
<td>C1</td>
<td>450</td>
<td>600</td>
<td>-</td>
<td>38.87</td>
<td>5830.5</td>
<td>-</td>
<td>0.54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>452</td>
<td>452</td>
<td>452</td>
<td>-</td>
<td>11997.8</td>
<td>2251</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>C3</td>
<td>330</td>
<td>550</td>
<td>380</td>
<td>23.754</td>
<td>11074.5</td>
<td>-7000.96</td>
<td>1725</td>
<td>0.62</td>
<td>1.9</td>
<td>0.8</td>
<td>3</td>
</tr>
<tr>
<td>HU</td>
<td>627</td>
<td>627</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CU</td>
<td>303</td>
<td>315</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Al realizar las modificaciones necesarias para el PDM a esta tabla de corrientes se obtiene lo siguiente:

Tabla 28. Datos de las corrientes modificadas para el ejemplo 3

<table>
<thead>
<tr>
<th>Corriente Original</th>
<th>Corriente Modificada</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>Flujo calórico (kW/K)</th>
<th>Flujo de vaporización ΔH (kW)</th>
<th>Δvap (kJ/kg)</th>
<th>h (kW/(m² K))</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>H1</td>
<td>590</td>
<td>380</td>
<td>44.109</td>
<td>0.53</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H2</td>
<td>H2</td>
<td>480</td>
<td>479</td>
<td>16997.4</td>
<td>1.8</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H3</td>
<td>H3</td>
<td>500</td>
<td>400</td>
<td>34.272</td>
<td>0.52</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H4</td>
<td>H4</td>
<td>400</td>
<td>399</td>
<td>15348.9</td>
<td>2.1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H5</td>
<td>H5</td>
<td>399</td>
<td>320</td>
<td>34.272</td>
<td>0.71</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>H1</td>
<td>450</td>
<td>600</td>
<td>38.87</td>
<td>0.54</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>H2</td>
<td>452</td>
<td>453</td>
<td>11997.8</td>
<td>2.3</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C3</td>
<td>H3</td>
<td>310</td>
<td>380</td>
<td>23.754</td>
<td>0.8</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td>380</td>
<td>381</td>
<td>11074.5</td>
<td>1.9</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H5</td>
<td>381</td>
<td>550</td>
<td>23.754</td>
<td>0.62</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HU</td>
<td></td>
<td>627</td>
<td>627</td>
<td>-</td>
<td>2.5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td></td>
<td>303</td>
<td>315</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Al igual que en el ejemplo 3 una corriente representada por una línea punteada se refiere a que se encuentra en equilibrio líquido vapor.
Figura 32. Red diseñada por PDM para el caso de estudio 4

Tabla 29. Resultados caso 4 PDM.

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>$U (m^2 \cdot K)/kW$</th>
<th>ΔT_{lm} (K)</th>
<th>Área (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C5</td>
<td>1425.24</td>
<td>590</td>
<td>500</td>
<td>490</td>
<td>550</td>
<td>0.29</td>
<td>21.54</td>
<td>231.52</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>2544.57</td>
<td>590</td>
<td>500</td>
<td>490</td>
<td>555.46</td>
<td>0.27</td>
<td>19.74</td>
<td>481.93</td>
<td></td>
</tr>
</tbody>
</table>

| HU | C5 | 1731.1 | 627 | 627 | 555.46 | 600 | 0.50 | 45.66 | 76.32 |

H4	C4	11075	400.00	399.28	380.00	381.00	1.00	19.14	580.11
H4	C3	1662.8	399.28	399.17	310.00	380.00	0.58	45.34	63.30
H2	C2	11998	480.00	479.29	452.00	453.00	1.01	27.15	437.70
H3	C5	2589.2	500.00	424.45	381.00	490.00	0.58	22.65	404.29
H1	C1	1554.8	500.00	464.75	450.00	490.00	0.27	12.22	475.62

H1	CU	3738.28	464.75	380	303	318	3738.28	0.35	108.13
H2	CU	4999.6	479.29	479	303	318	4999.6	0.64	168.54
H3	CU	838.014	424.45	400	303	318	838.014	0.34	101.65
H4	CU	2611.62	399.17	399	303	318	2611.62	0.68	88.38
H5	CU	2707.5	399	320	303	318	2707.5	0.42	40.71

Total 14895.01 Total 373.84
Tabla 30. Resultados económicos caso 4 PDM

<table>
<thead>
<tr>
<th>H5</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(KW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Annualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C5</td>
<td>231.52</td>
<td>1425.24</td>
<td>70072.42</td>
<td>11211.59</td>
<td>0.00</td>
<td>0.00</td>
<td>11211.59</td>
<td>11211.59</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>481.93</td>
<td>2544.57</td>
<td>121566.34</td>
<td>19450.61</td>
<td>0.00</td>
<td>0.00</td>
<td>19450.61</td>
<td>19450.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>713.44</td>
<td>3969.81</td>
<td>30662.20</td>
<td>0.00</td>
<td>0.00</td>
<td>30662.20</td>
<td>30662.20</td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
<td>580.11</td>
<td>11075</td>
<td>140362.32</td>
<td>22457.97</td>
<td>0.00</td>
<td>0.00</td>
<td>22457.97</td>
<td>22457.97</td>
</tr>
<tr>
<td>H4</td>
<td>C3</td>
<td>63.30</td>
<td>1662.8</td>
<td>29553.86</td>
<td>4728.62</td>
<td>0.00</td>
<td>0.00</td>
<td>4728.62</td>
<td>4728.62</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>437.70</td>
<td>11997.8</td>
<td>18062.64</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>18062.64</td>
<td>18062.64</td>
</tr>
<tr>
<td>H3</td>
<td>C5</td>
<td>404.29</td>
<td>2389.2</td>
<td>16998.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>16998.54</td>
<td>16998.54</td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>475.62</td>
<td>1554.8</td>
<td>19254.11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>19254.11</td>
<td>19254.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>1961.03</td>
<td>28879.80</td>
<td>81501.89</td>
<td>0.00</td>
<td>0.00</td>
<td>81501.89</td>
<td>81501.89</td>
</tr>
<tr>
<td>H1</td>
<td>CU</td>
<td>99.80</td>
<td>3738.28</td>
<td>39175.31</td>
<td>6268.05</td>
<td>0.00</td>
<td>0.00</td>
<td>6268.05</td>
<td>6268.05</td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
<td>46.14</td>
<td>4999.6</td>
<td>24717.30</td>
<td>3954.77</td>
<td>0.00</td>
<td>0.00</td>
<td>3954.77</td>
<td>3954.77</td>
</tr>
<tr>
<td>H3</td>
<td>CU</td>
<td>24.10</td>
<td>838.014</td>
<td>17999.66</td>
<td>2879.95</td>
<td>0.00</td>
<td>0.00</td>
<td>2879.95</td>
<td>2879.95</td>
</tr>
<tr>
<td>H4</td>
<td>CU</td>
<td>43.62</td>
<td>2611.62</td>
<td>23982.74</td>
<td>3837.24</td>
<td>0.00</td>
<td>0.00</td>
<td>3837.24</td>
<td>3837.24</td>
</tr>
<tr>
<td>H5</td>
<td>CU</td>
<td>160.18</td>
<td>1707.5</td>
<td>53878.25</td>
<td>8620.52</td>
<td>0.00</td>
<td>0.00</td>
<td>8620.52</td>
<td>8620.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>373.84</td>
<td>14895.01</td>
<td>174510.66</td>
<td>0.00</td>
<td>0.00</td>
<td>174510.66</td>
<td>174510.66</td>
</tr>
</tbody>
</table>

Solución Heurística

Figura 33. Red diseñada por HH para el caso de estudio 4.
Tabla 31. Resultados caso 4 HH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>5053.00</td>
<td>590.00</td>
<td>475.00</td>
<td>450.00</td>
<td>580.00</td>
<td>0.27</td>
<td>16.36</td>
<td>1155.06</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C5</td>
<td>2589.00</td>
<td>500.00</td>
<td>424.00</td>
<td>381.00</td>
<td>490.00</td>
<td>0.28</td>
<td>22.50</td>
<td>406.82</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>11998.00</td>
<td>480.00</td>
<td>479.00</td>
<td>452.00</td>
<td>453.00</td>
<td>1.01</td>
<td>36.56</td>
<td>440.08</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C4</td>
<td>5000.00</td>
<td>479.00</td>
<td>479.00</td>
<td>381.00</td>
<td>381.00</td>
<td>0.92</td>
<td>36.56</td>
<td>55.20</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>C4</td>
<td>838.00</td>
<td>424.00</td>
<td>400.00</td>
<td>380.00</td>
<td>380.00</td>
<td>0.41</td>
<td>36.56</td>
<td>248.09</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C4</td>
<td>1477.00</td>
<td>400.00</td>
<td>380.00</td>
<td>380.00</td>
<td>380.00</td>
<td>1.00</td>
<td>36.56</td>
<td>74.04</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>C3</td>
<td>1663.00</td>
<td>400.00</td>
<td>380.00</td>
<td>380.00</td>
<td>380.00</td>
<td>0.58</td>
<td>36.56</td>
<td>62.05</td>
<td></td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
</table>

Tabla 32. Resultados económicos caso 4 HH

<table>
<thead>
<tr>
<th>H5</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>1155.06</td>
<td>5053.00</td>
<td>241965.26</td>
<td>38714.44</td>
<td>0.00</td>
<td>0.00</td>
<td>38714.44</td>
<td>0.00</td>
<td>104870.65</td>
</tr>
<tr>
<td>H3</td>
<td>C5</td>
<td>406.82</td>
<td>2589.00</td>
<td>106747.65</td>
<td>17079.62</td>
<td>0.00</td>
<td>0.00</td>
<td>17079.62</td>
<td>0.00</td>
<td>506081.35</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>440.08</td>
<td>11998.00</td>
<td>113361.94</td>
<td>18137.91</td>
<td>0.00</td>
<td>0.00</td>
<td>18137.91</td>
<td>0.00</td>
<td>174997.71</td>
</tr>
<tr>
<td>H2</td>
<td>C4</td>
<td>55.20</td>
<td>5000.00</td>
<td>27301.14</td>
<td>4368.18</td>
<td>0.00</td>
<td>0.00</td>
<td>4368.18</td>
<td>0.00</td>
<td>226212.99</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>H5</th>
<th>CS</th>
<th>Área (m²)</th>
<th>Q(kW)</th>
<th>Costo Capital (US$/año)</th>
<th>Costos de Capital Anualizados (US$/año)</th>
<th>Costos HU (US$/año)</th>
<th>Costos CU (US$/año)</th>
<th>Costos totales (US$/año)</th>
<th>Total sobre y bajo (US$/año)</th>
<th>Total (US$/año)</th>
</tr>
</thead>
</table>

| H1 | C1 | 29.53 | 777.4 | 19726.45 | 3156.23 | 0.00 | 0.00 | 3156.23 | 0.00 | 226212.99 |
| HU | CS | 52.03 | 2202.6 | 37206.17 | 5952.99 | 0.00 | 0.00 | 5952.99 | 0.00 | 226212.99 |

Total
Solución Matemática

Figura 34. Red diseñada por superestructuras para el caso de estudio 4

Tabla 33. Resultados caso 4 superestructura

<table>
<thead>
<tr>
<th>CORRIENTES</th>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOT UTILITY</td>
<td></td>
</tr>
<tr>
<td>H1 C1</td>
<td></td>
<td></td>
<td>2782.1</td>
<td>500</td>
<td>500</td>
<td>495</td>
<td>566.4</td>
<td>0.27</td>
<td>11.91</td>
<td></td>
<td>873.67</td>
</tr>
<tr>
<td>H1 C3</td>
<td></td>
<td></td>
<td>1187.7</td>
<td>500</td>
<td>500</td>
<td>495</td>
<td>545</td>
<td>0.29</td>
<td>17.78</td>
<td></td>
<td>233.72</td>
</tr>
<tr>
<td>H1 C1</td>
<td></td>
<td></td>
<td>1753.6</td>
<td>500</td>
<td>460.2</td>
<td>450</td>
<td>495</td>
<td>0.27</td>
<td>7.29</td>
<td></td>
<td>899.19</td>
</tr>
<tr>
<td>H3 C3</td>
<td></td>
<td></td>
<td>15469</td>
<td>500</td>
<td>400</td>
<td>310</td>
<td>495</td>
<td>0.45</td>
<td>27.75</td>
<td></td>
<td>1250.40</td>
</tr>
<tr>
<td>H2 C2</td>
<td></td>
<td></td>
<td>11997.8</td>
<td>480</td>
<td>480</td>
<td>452</td>
<td>452</td>
<td>1.01</td>
<td>28.00</td>
<td></td>
<td>424.35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3681.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COLD UTILITY</th>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m² K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 CU</td>
<td></td>
<td></td>
<td>3539.4</td>
<td>460.2</td>
<td>380</td>
<td>303</td>
<td>318</td>
<td>3539.4</td>
<td>0.35</td>
<td>106.27</td>
<td>96.15</td>
</tr>
<tr>
<td>H2 CU</td>
<td></td>
<td></td>
<td>4999.4</td>
<td>480</td>
<td>480</td>
<td>303</td>
<td>318</td>
<td>4999.4</td>
<td>0.64</td>
<td>169.39</td>
<td>45.91</td>
</tr>
<tr>
<td>H3 CU</td>
<td></td>
<td></td>
<td>6049.5</td>
<td>400</td>
<td>320</td>
<td>303</td>
<td>318</td>
<td>6049.5</td>
<td>0.63</td>
<td>41.02</td>
<td>235.74</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14588.3</td>
<td>Total</td>
<td>96.15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOT UTILITY</th>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
<th>U (m³ K)/kW</th>
<th>ΔTlm (K)</th>
<th>Área (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU C1</td>
<td></td>
<td></td>
<td>1309.7</td>
<td>566.4</td>
<td>600</td>
<td>441</td>
<td>450</td>
<td>1309.7</td>
<td>0.4441</td>
<td>136.5929</td>
<td>21.5915</td>
</tr>
<tr>
<td>HU C3</td>
<td></td>
<td></td>
<td>118.7</td>
<td>545</td>
<td>550</td>
<td>441</td>
<td>450</td>
<td>118.7</td>
<td>0.4968</td>
<td>101.8396</td>
<td>2.3462</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1428.4</td>
<td>Total</td>
<td>23.9377</td>
<td></td>
</tr>
</tbody>
</table>
En este punto se debe realizar una aclaración, la red resultante es tomada del artículo de Ponce Ortega (Ponce Ortega, 2008) debido a inconvenientes con la solución del modelo planteado en este trabajo, es por eso que en este ejemplo la solución por este método se obtiene con un HRAT de 5 K, el resto de los cálculos realizados son llevados a cabo con los parámetros expuestos anteriormente.

Los menores costos se presentan en el diseño obtenido por superestructura ya que la recuperación de energía está por encima de las demás metodologías, por consiguiente el costo de los servicios es menor. En cuestión de intercambiadores de calor tiene menor número que las demás pero de manera curiosa los costos de capital para esta red son los mayores, debido a que las áreas de transferencia de calor son mayores porque la diferencia de temperatura es muy baja. Además, no presenta violaciones a los lineamientos de la segunda ley. Posee una ventaja muy grande sobre las demás redes diseñadas y es que a pesar de tener la mayor inversión en costos de capital, compensa con un costo relativamente bajo de servicios, que en el largo plazo tras haber cubierto el costo de los equipos es el costo de operación el que prima sobre los costos de la red.
Grafica 4. Comparación resultados caso 4

<table>
<thead>
<tr>
<th>Número de intercambiadores por zona</th>
<th>Área de intercambio de calor (m²) - Ejemplo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH RPS PINCH Superestructura</td>
<td>HH RPS PINCH Superestructura</td>
</tr>
<tr>
<td>Coolers Heaters Corrientes</td>
<td></td>
</tr>
<tr>
<td>3 3 5 2 2 1 2 8 8 7 5</td>
<td>2941.339 2965.388 3124.640 4083.072</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo HU (US$/Año) Ejemplo 4</th>
<th>Costo CU (US$/Año) Ejemplo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH RPS PINCH Superestructura</td>
<td>HH RPS PINCH Superestructura</td>
</tr>
<tr>
<td>220260 220260 173110 142840</td>
<td>153660 153660 148950 145883</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Costo capital anualizado (US$/Año) - Ejemplo 4</th>
<th>Costo total anualizado (US$/Año) - Ejemplo 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH RPS PINCH Superestructura</td>
<td>HH RPS PINCH Superestructura</td>
</tr>
<tr>
<td>132161.35 133329.94 143016.15 158647.57</td>
<td>506081.35 507249.94 465076.29 447370.57</td>
</tr>
</tbody>
</table>
5.5 Revisión de las redes obtenidas

Posteriormente, con el fin de auditar las redes obtenidas a la luz de la segunda ley, se revisaron los diseños obtenidos poniendo en práctica el algoritmo expuesto. En general, los errores identificados fueron relacionados con el número de unidades y la pertinencia de algunas de ellas, pues en muchos casos se obtuvo más unidades de las realmente necesarias.

En el caso del PDM, debido a las exigencias en las relaciones entre los flujos calóricos de las corrientes frías y calientes en algunos casos fue necesario dividir corrientes para asignarlas dos veces, esto no tiene mucho sentido ya que exige incluir una unidad extra que puede suprimirse al realizar ambos intercambios en el mismo equipo, siempre que se cumpla con la diferencia mínima de temperatura en los extremos.

Así mismo, en el caso de los problemas con cambio de fase, se presentó en varias ocasiones que se asignó consecutivamente el mismo par de corrientes pero en estados diferentes. Esto resulta lógico cuando se analizan las corrientes de forma aislada, pero al unificarlas de nuevo y plantear la construcción de la red no resulta razonable incluir varias unidades para realizar el mismo trabajo.

Luego de esta revisión, no para todos los casos se obtuvo una mejora en la red. Además para el caso de HH y HH-RPS los resultados fueron iguales en dos de los problemas y por lo tanto se evaluaron sólo los de H/H. Se presentan ahora los casos en que si se obtuvo una mejora a la red:
2 corrientes calientes, 2 corrientes frías, no corrientes isotérmicas

PDM

Figura 35. Red obtenida tras revisión de Segunda ley para el ejemplo 1 PDM

3 corrientes calientes, 4 corrientes frías, no corrientes isotérmicas

PDM

Figura 36. Red obtenida tras revisión de Segunda ley para el ejemplo 2 PDM
2 corrientes calientes, 2 corrientes frías, con corrientes isotérmicas

PDM

Figura 37. Red obtenida tras revisión de Segunda ley para el ejemplo 3 PDM

Heurística

Figura 38. Red obtenida tras revisión de Segunda ley para el ejemplo 3 HH
Matemática

Figura 39. Red obtenida tras revisión de Segunda ley para el ejemplo 3 Matemática

3 corrientes calientes, 3 corrientes frías, con corrientes isotérmicas

PDM

Figura 40. Red obtenida tras revisión de Segunda ley para el ejemplo 4 PDM
Resultados:

Luego de realizar los cambios necesarios se puede reportar, efectivamente, una reducción en los costos totales de la red.
Una vez más se muestra la utilidad de la auditoría de segunda ley de la termodinámica, las gráficas 5, 6, 7 muestran los casos en los que tuvo lugar una reducción de costos debido a acciones tomadas bajo sus lineamientos. La reducción de costos por acción de la segunda ley para los ejemplos estudiados se encuentra en el rango del 2% al 8%.

Gráfica 6. Reducción de costos para las redes revisadas

Gráfica 7. Reducción de costos para las redes revisadas
6 ANÁLISIS DE RESULTADOS

Antes que nada es necesario reconocer que las metodologías aquí empleadas no cuentan desde su fundamentación con la habilidad para tratar corrientes isotérmicas o con cambio de fase y para poder tratar este tipo de problemas fue necesario aplicar la simplificación antes expuesta. Entonces, para comenzar, se analizarán las implicaciones observadas al dividir las corrientes con cambio de fase.

El primer elemento que salta a la vista es que la presencia de un flujo calórico que involucre el cambio entálpico de vaporización distorsiona considerablemente las curvas compuestas pues su valor puede ser órdenes de magnitud mayor que el de los flujos calóricos sensibles de las demás corrientes. Esto, junto con el incremento de temperatura hipotético de un grado que se les asigna hace que aparezcan como largas líneas rectas horizontales que dificultan un poco la ubicación del punto PINCH, pues hay que recordar que el PDM se desarrolló considerando únicamente intercambios de calor sensible. Esto puede observarse fácilmente en la figura 42.

Adicionalmente, un problema particular que se presentó en estos ejemplos al dividir las corrientes es que en este caso en los enunciados sólo se presentaba un dato de capacidad calórica, de modo que al definir los diferentes segmentos los correspondientes al líquido y al vapor terminaron con el mismo flujo calórico (FCp), lo cual no es del todo correcto y podría modificar los resultados en una aplicación real, sin embargo, para efectos de análisis en el presente trabajo no se considera esto una perturbación significativa.
No obstante, esta simplificación realiza un gran aporte al proceso de diseño preliminar de la red y es que implica que el intercambio de cada tipo de calor se lleve a cabo en equipos distintos, facilitando considerablemente los cálculos para estos. Posteriormente, tal como se hizo aquí, las inconsistencias o redundancias pueden ser depuradas para obtener una red factible.

Ahora, en cuanto a las metodologías, se puede empezar comparando el desempeño general de todas ellas usando como criterio el valor de la función objetivo definida. En las gráficas 8-11 se presenta el valor de los costos totales anualizados correspondientes a las redes diseñadas para los cuatro ejemplos por las diferentes metodologías.
Gráfica 8. Resultados ejemplo 1

Costo total anualizado (US$/Año)
Ejemplo 1

HH HH-RPS PINCH Superestructura
11532.58 11878.17 12957.41 10720.15

Gráfica 9. Resultados ejemplo 2

Costo total anualizado (US$/Año)
Ejemplo 2

HH HH-RPS PINCH Superestructura
69795.95 58427.90 58894.26 64802.05

Gráfica 10. Resultados ejemplo 3

Costo total anualizado (US$/Año)
Ejemplo 3

HH HH-RPS PINCH Superestructura
120963.18 120963.18 123375.63 146970.15
Es evidente cómo en la mayoría de los casos, los métodos heurísticos utilizados resultaron ser bastante competitivos, arrojando resultados muy buenos desde el punto de vista económico resolviendo el problema de diseño con gran facilidad y rapidez, por lo que se constituyen en excelentes herramientas para obtener diseños preliminares que luego pueden ser evaluados o mejorados utilizando los demás métodos. O en el peor de los casos brindan por lo menos una idea inicial del orden de magnitud del costo de la red a diseñar, pues, dentro de los resultados obtenidos, la máxima desviación obtenida entre la red diseñada por H/H y la red con el menor costo fue del 16%, aceptable para una estimación preliminar.

Sin embargo, como su principal debilidad es que no consideran directamente el flujo calórico, por lo que pueden presentarse dificultades para cumplir con la diferencia mínima de temperatura, con la demanda calórica o con la recomendación de segunda ley que hace referencia a esta característica. En cuanto a la comparación del desempeño de las dos técnicas heurísticas evaluadas sorprende a primera vista que los resultados de H/H-RPS no sean por lo menos apreciablemente menores en la mayoría de los ejemplos pero, al observar detenidamente se puede notar que en el caso de los ejemplos 3 y 4 no puede haber diferencia pues no ocurre la situación que obliga al uso de RPS. En cambio,
en los ejemplos 1 y 2, donde sí se presenta esto, los resultados son contradictorios pues en uno de ellos los costos de RPS son levemente mayores mientras que en el otro son considerablemente menores. Esto se debe a que en el primer caso, el costo del nuevo equipo resultaba mayor que el de suplir las necesidades térmicas de las corrientes con servicios industriales mientras que en el segundo se presenta la situación inversa con resultados bastante positivos. Así, queda claro que la principal ventaja de H/H-RPS sobre H/H simple es que el primero asegura una mayor recuperación de energía en los casos en que el FCp de la corriente fría sea mayor que el de la caliente.

Cómo segunda medida, en busca de la red MER (*Maximum Energy Recovery*) en las gráficas 12-15 se compara la cantidad de calor obtenido de cada tipo de corriente (proceso, *heaters*, *coolers*) y se confirma que efectivamente, PDM garantiza la red de máxima recuperación de energía que equivale a mínimo consumo de utilities.

Gráfica 12. Resultados ejemplo 1

Calor transferido por zona - Ejemplo 1

- **Coolers**
 - HH: 26.5
 - HH-RPS: 14
 - PINCH: 10
 - Superestructura: 31.5

- **Heaters**
 - HH: 24
 - HH-RPS: 11.5
 - PINCH: 7.5
 - Superestructura: 29

- **Corrientes**
 - HH: 39.5
 - HH-RPS: 47.5
 - PINCH: 51.5
 - Superestructura: 30
Gráfica 13. Resultados ejemplo 2

Calor transferido por zona - Ejemplo 2

<table>
<thead>
<tr>
<th></th>
<th>Coolers</th>
<th>Heaters</th>
<th>Corrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>369.149</td>
<td>440.684</td>
<td>1397.137</td>
</tr>
<tr>
<td>HH-RPS</td>
<td>239.768</td>
<td>311.303</td>
<td>239.768</td>
</tr>
<tr>
<td>PINCH</td>
<td>110.586</td>
<td>182.521</td>
<td>182.521</td>
</tr>
<tr>
<td>Superestructura</td>
<td>311.303</td>
<td>471.168</td>
<td>311.303</td>
</tr>
</tbody>
</table>

Gráfica 14. Resultados ejemplo 3

Calor transferido por zona - Ejemplo 3

<table>
<thead>
<tr>
<th></th>
<th>Coolers</th>
<th>Heaters</th>
<th>Corrientes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>8231.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HH-RPS</td>
<td>8231.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PINCH</td>
<td>8231.68</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Superestructura</td>
<td>377.8</td>
<td>20835.58</td>
<td>756.54</td>
</tr>
</tbody>
</table>
Respecto al método de diseño PINCH, puede decirse que a pesar de su antigüedad, demuestra porque es aún la técnica más recurrida para el diseño de redes de transferencia de calor. Pues contrario a lo esperado al iniciar este proyecto, aún para los problemas con cambio de fase, resultó ser bastante competitivo llegando incluso a superar los resultados arrojados por el método de superestructura. Sin embargo, la herramienta PDM desarrollada es bastante interactiva y no ofrece una solución única del problema pues permite que el usuario decida paso a paso qué asignaciones y divisiones realizar. Esto permite por encima de los demás que el diseñador utilice su criterio, guiado por ciertas restricciones básicas, para obtener redes factibles. No obstante, estás restricciones pueden llevar a elecciones equívocas y es el caso de los ejemplos 1 y 2 donde fue necesario dividir una corriente para cumplir con la restricción para FCp y asignarla dos veces con la misma corriente del otro conjunto. Esto, a nivel práctico no es necesario pues tendría más sentido usar sólo un intercambiador entre las dos corrientes a no ser que las condiciones de proceso exijan lo contrario. Esto se debe a que la exigencia de la relación entre los flujos calóricos aplica únicamente en el PINCH, donde la diferencia de temperatura entre...
corrientes en uno de los extremos es igual a HRAT; para puntos alejados del PINCH, el único criterio sería entonces que se respete la diferencia mínima de T.

Superestructura, paradójicamente, resultó no ser en algunos casos la más económica de todas. Esto puede parecer una sorpresa pero se puede justificar fácilmente. Es cierto que al resolver el modelo propuesto se halla la solución óptima para el problema planteado, pero hay que tener en cuenta que éste no es el único “óptimo” posible, de hecho, se trata únicamente del óptimo matemático embebido dentro de la superestructura planteada así que pueden existir otras redes con una configuración que resulte más barata. Por ejemplo, las mayores restricciones de este modelo son la exigencia del mezclado isotérmico y que no considera by-pass o varias asignaciones de una misma corriente (o división de esta) en la misma etapa. De este modo, se obliga a que las subdivisiones de las corrientes (si es que existen) alcancen todas la misma temperatura en cada punto de medición con una sola asignación. Lo que restringe bastante los modelos posibles. PDM, por ejemplo, no tiene este problema y por eso, junto con el criterio del diseñador puede llegar a soluciones más económicas en algunos casos.

Con el fin de hacer los resultados más comparables, se tomó la decisión de utilizar las mismas corrientes de servicios industriales en todos los ejercicios pero esto podría ser diferente en la realidad. Por ejemplo, en el primer caso de estudio la diferencia de temperatura entre el servicio caliente y las corrientes a calentar es muy alta, de modo que las áreas de transferencia de calor serán menores que el valor “real”. Además, generar vapor a esta elevada temperatura será más costoso que lo que sería hacerlo a una más baja. Tomar en cuenta estos factores podría modificar completamente la respuesta pues alteran bastante el balance en los costos pero eso se sale del alcance de este trabajo.
Otra restricción que podría modificarse para buscar mejores resultados es el número de etapas pues en este caso este parámetro se fijó en 2 para ofrecer una comparación directa con el método PINCH.

En general, todas las técnicas utilizadas resultan bastante sensibles a un parámetro que no fue objeto de estudio de este trabajo: la diferencia mínima de temperatura (HRAT). Éste determina la factibilidad y la máxima cantidad de calor que se puede transmitir en las asignaciones al limitar las temperaturas de las corrientes, por lo que puede modificar considerablemente el diseño de una red. Sin embargo, estudios previos (Sama, 1995) han demostrado que la función objetivo “costo total anualizado” resulta ser casi plana en las cercanías del punto óptimo (Figura 43), por lo que puede compararse las soluciones que arrojan los métodos para el valor de HRAT aquí presentado sin esperar que las conclusiones cambien mucho para valores diferentes de ésta.

![Figura 43. Influencia de la HRAT en los costos totales anualizados](adaptado de Sama, 1995)
En el caso de estudio 3 sucede algo bastante particular que puede ilustrar el comportamiento y una desventaja del método de superestructura. Cómo puede observarse en la figura 44 la curva compuesta de las corrientes calientes cubre completamente a la de las corrientes frías, de donde se deduce que hay suficiente energía disponible en las corrientes calientes para suplir completamente las demandas de las corrientes frías. Así, no sería necesario entonces el empleo de servicios industriales de calentamiento y las metodologías heuristic y PDM reflejan esta situación, pero, en el caso de la optimización matemática si se considera una cantidad apreciable de calentamiento utilizando servicio industrial.

Figura 44. Curvas compuestas caso de estudio 3
Esto muestra dos cosas, una ventaja y una desventaja del modelo: la forma como tiene en cuenta los *trade-offs* entre costos de capital y costos de operación (servicios industriales) y lo peligroso que es considerar como función de respuesta y criterio de decisión factores puramente económicos. En primer lugar, se presenta aquí calentamiento pues seguramente resulta económicamente menos costoso calentar cierto segmento de una corriente con servicios industriales que construir el intercambiador necesario para recuperar el calor de otra corriente, ventaja.

Pero, esto toma en cuenta sólo el costo operacional de obtener el fluido de calentamiento necesario, una mirada un poco más cuidadosa encontraría que el empleo de este medio exige mucho más que su costo fijo pues implica la construcción de una red adicional para un servicio que puede ser evitado, además del sobrecosto en mantenimiento que este representa. Esta es la desventaja.

Así, este factor sumado al par de restricciones del método mencionadas anteriormente hacen que, para este ejemplo, la respuesta “óptima” matemática no resulte ser realmente la mejor en términos generales.

Cómo si esto fuera poco, la función objetivo depende también del medio en el que se quiera realizar el diseño, pues en ella aparecen factores para los costos de operación y de capital y su amortización que hacen que pueda variar considerablemente conforme el comportamiento del entorno económico. Además, la vida útil de una planta puede llegar a ser mucho mayor a su periodo de evaluación económica, por lo que es necesario analizar a profundidad la importancia de los costos operativos ya que después del periodo de amortización estos serán los que realmente influyan sobre la rentabilidad del proceso.
CONCLUSIONES

- El tratamiento aplicado a las corrientes que presentan cambio de fase (dividirlas para que cada estado sea una corriente por separado y asignar un cambio de un grado en la temperatura de las corrientes isotérmicas) no es totalmente correcto y no describe el verdadero comportamiento de la corriente, pero es una aproximación práctica y resulta bastante útil. Permite la aplicación de metodologías de diseño y optimización de HEN que dentro de su formulación no tienen incluido un acercamiento al manejo de éstas y arroja resultados satisfactorios.

- Un factor muy importante al momento de realizar el diseño de una red de intercambio de calor es el flujo calórico de las corrientes y su importancia está validada dentro de la auditoría de segunda ley, así que cualquier diseño realizado sin prestar atención a este factor está dejando de lado gran parte del ejercicio de diseño de HEN.

- El considerar variables como el flujo calórico o el coeficiente global de transferencia de calor constantes es un error que puede alejar la solución arrojada por cualquiera de las metodologías de la realidad, ya que estos varían a lo largo del proceso a medida que las corrientes cambian su temperatura. No obstante, se debe tener claro que al momento de realizar el diseño es necesario buscar practicidad y que realizar simplificaciones que vuelvan el problema tratable no está mal mientras se esté consciente de ellas y no se pierda de vista sus implicaciones.
• La auditoría de segunda ley de la termodinámica prueba ser una herramienta de gran utilidad durante el diseño y al hacer una revisión de redes existentes. Se comprueba que hay una reducción en el área de transferencia de calor, en los consumos de servicios industriales, en los costos de capital y los costos totales anualizados para una HEN mediante su aplicación a los casos de estudios, mostrando reducciones entre el 2% y el 8% de las variables mencionadas.

• La optimización matemática, representada por el modelo de superestructura, se ve afectada en gran medida por los parámetros del problema, los valores iniciales y los límites que se establezcan para el modelo. Estos hacen que el resultado obtenido tenga sentido física y matemáticamente, precisamente los valores iniciales y los límites de las variables involucradas fueron los que dificultaron la solución del caso 4 usando la metodología de superestructura.

• Hay que tener claro que la metodología de superestructura sólo considera las redes que cumplan con los parámetros establecidos por ella. Así, los requisitos de mezclado isotérmico y no poder realizar más de una asignación por corriente en cada etapa hacen que en algunos casos la red obtenida no sea realmente la óptima.

• Se realizó una automatización de la metodología PINCH por medio del desarrollo de una herramienta en MATLAB® y se aplicó a los casos de estudio con éxito. Pero se encontró que al momento del diseño hay escenarios que no se pueden traducir a un algoritmo con total fidelidad y sigue siendo necesario apelar a las decisiones de diseño del ingeniero.
• El diseño heurístico Hottest/Highest es una excelente aproximación inicial al diseño óptimo de la red, pero tiene una falla grave al no considerar el flujo calórico de las corrientes para seleccionar sus asignaciones, pudiendo llevar esto a cruces de temperatura si no se tiene cuidado al momento de realizar los balances involucrados.

• La aplicación de varias metodologías simultáneamente a los casos de estudio, en conjunto con los requisitos establecidos en la definición del diseño, muestra ventajas significativas respecto a la aplicación de las técnicas en forma individual porque permite comparar varias redes diseñadas según los objetivos y fortalezas de cada metodología.

• Dado que la vida útil de una planta puede llegar a ser mucho mayor que su periodo de evaluación económica, es necesario analizar a profundidad la importancia de los costos operativos ya que después del periodo de amortización estos serán los que realmente influyan sobre los costos del proceso.

• A pesar de realizar una automatización de las metodologías aquí utilizadas, es claro que la participación activa del diseñador dentro del proceso no puede ser eliminada, ya que el algoritmo no considera todos los escenarios posibles al momento del diseño y es la experiencia y conocimientos del diseñador los que llenan esos vacíos.

• No hay una metodología mejor que otra, son las características del problema de diseño las que hacen que una tenga éxito y otra no, es por eso que es de vital importancia tener claridad sobre lo que se desea obtener con el ejercicio de diseño y optimización.
BIBLIOGRAFÍA

ANEXO. EJEMPLO DE APLICACIÓN DE LA METODOLOGÍA PINCH

Tabla A.1: Datos de las corrientes para el ejemplo

<table>
<thead>
<tr>
<th>Corriente</th>
<th>Temperatura de entrada (K)</th>
<th>Temperatura objetivo (K)</th>
<th>FCp (kW/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>523</td>
<td>313</td>
<td>0.15</td>
</tr>
<tr>
<td>H2</td>
<td>473</td>
<td>353</td>
<td>0.25</td>
</tr>
<tr>
<td>C1</td>
<td>293</td>
<td>453</td>
<td>0.2</td>
</tr>
<tr>
<td>C2</td>
<td>413</td>
<td>503</td>
<td>0.3</td>
</tr>
<tr>
<td>HU</td>
<td>627</td>
<td>627</td>
<td>-</td>
</tr>
<tr>
<td>CU</td>
<td>303</td>
<td>315</td>
<td>-</td>
</tr>
</tbody>
</table>

El proceso de diseño de la red inicia con el ingreso de los datos de las corrientes o la selección de uno de los ejemplos cargados en la aplicación. A partir de estos datos se pueden obtener las curvas compuestas, mostradas en la figura A.1.

Figura A.1. Curvas compuestas

Para la aplicación desarrollada, la grafica compuesta tiene como propósito ilustrar al diseñador cual es la disponibilidad de energía en el proceso. El cálculo del punto PINCH realmente se realiza por medio de la metodología de cascada. El procedimiento para la obtención de ésta se muestra a continuación.
Para comenzar se toman las corrientes frías y se suma el HRAT a sus temperaturas de entrada y salida para acercarlas a las calientes y determinar que esta es la diferencia deseada.

Luego, se divide el rango de temperatura abarcado por las corrientes calientes y estas nuevas corrientes frías en pequeños intervalos delimitados por sus temperaturas de entrada y salida; de modo que cada intervalo encierra porciones diferentes para cada uno de ellas, como se muestra en la figura A.2.

Figura A.2. Representación de los intervalos

Tras obtener los intervalos de la cascada, se realiza un balance de energía para cada intervalo de la siguiente manera.

\[
Q_{\text{intervalo}} = \sum_{i=1}^{n_{\text{hot}}} F C p i_{\text{hot}} (T_{\text{out hot}} - T_{\text{ini hot}}) - \sum_{j=1}^{n_{\text{cold}}} F C p j_{\text{cold}} (T_{\text{out cold}} - T_{\text{ini cold}})
\]
Donde:

- nhot: Número de corrientes calientes en el intervalo
- ncold: Número de corrientes frías en el intervalo

Cada calor que se obtiene se representa en la tabla de cascada, mostrado en la figura A.3. Para cada intervalo se realiza una suma acumulada, el intervalo donde se presente el mayor déficit de calor se reconoce como el punto PINCH. Ahora para obtener los consumos mínimos de servicios industriales, se toma el valor de este punto PINCH y se inicia el proceso de suma nuevamente con este dato como primer valor de la suma.
Ya con el punto PINCH y los mínimos servicios industriales, se inicia el diseño de la HEN, siguiendo las siguientes reglas (Smith, Patel, 1987):

- No hay servicios industriales de calentamiento por debajo de la temperatura del PINCH.
- No hay servicios industriales de enfriamiento por encima de la temperatura del PINCH.
- No hay transferencia de calor desde las corrientes calientes por encima del PINCH hacia las corrientes frías por debajo del mismo.

Ahora para realizar las asignaciones se siguen los siguientes algoritmos (Bagajewicz, 2007):

Por encima del PINCH

![Figura A.4. Algoritmo de asignación por encima el PINCH](image)

La primera asignación es la caliente 2 con la fría 2, se transfiere todo el calor disponible, por lo tanto la corriente caliente alcanza su objetivo y la corriente fría se calienta hasta 454.7 K y recibe 12.5 kW.
La siguiente asignación es la corriente caliente 1 con la fría 2, se transfieren 7 kW, esto no es todo el calor disponible, por lo tanto la corriente caliente se enfria hasta 476.3 K y la fría se calienta hasta 478 K.

La última asignación sobre el PINCH se da entre la corriente caliente 1 y la fría 2. El calor disponible es igual al requerido, por lo tanto, ambas corrientes llegan a su objetivo.
Por debajo del PINCH

Figura A.8. Algoritmo de asignación por debajo del PINCH

(Bagajewicz, 2007)

Bajo el PINCH se inicia dividiendo la corriente fría 1, su FC_p es de 0.2 kW/K, la división se hace en 0.1 kW/K. Ahora la primera asignación se hace entre la corriente caliente 1 y la fría 1. La cantidad de calor requerida 12 kW es menor a la disponible, por lo tanto la corriente fría alcanza su objetivo y la caliente se enfría hasta los 343 K.

La siguiente asignación es la corriente caliente 2 con la corriente fría 2, ocurre lo de la asignación anterior, el calor transferido son igualmente 12 kW por lo tanto la fría alcanza su objetivo y la caliente se enfría hasta 375 K.
Ahora el cálculo de los requerimientos calóricos que se suplirán por los servicios industriales se realiza, por encima del PINCH, con las corrientes frías que no alcanzan su objetivo y por debajo del PINCH, con las corrientes calientes que no alcanzan su objetivo.

Los resultados del ejercicio se muestran en la tabla A.2.
Tabla A.2. Resultados del ejemplo

SOBRE EL PINCH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>C2</td>
<td>12.5</td>
<td>473</td>
<td>423</td>
<td>413</td>
<td>454.67</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C2</td>
<td>7</td>
<td>523</td>
<td>476.33</td>
<td>454.67</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>C1</td>
<td>8</td>
<td>476.33</td>
<td>423</td>
<td>413</td>
<td>453</td>
<td></td>
</tr>
<tr>
<td>HU</td>
<td>C2</td>
<td>7.5</td>
<td>627</td>
<td>627</td>
<td>478</td>
<td>503</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Total 7.5

DEBAJO DEL PINCH

<table>
<thead>
<tr>
<th>HS</th>
<th>CS</th>
<th>Q (kW)</th>
<th>Tin H (K)</th>
<th>Tout H (K)</th>
<th>Tin C (K)</th>
<th>Tout C (K)</th>
<th>Utility (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>C1</td>
<td>12</td>
<td>423</td>
<td>343</td>
<td>293</td>
<td>318</td>
<td>4.5</td>
</tr>
<tr>
<td>H2</td>
<td>C2</td>
<td>12</td>
<td>423</td>
<td>375</td>
<td>293</td>
<td>413</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>CU</td>
<td>4.5</td>
<td>343</td>
<td>313</td>
<td>303</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>CU</td>
<td>5.5</td>
<td>375</td>
<td>353</td>
<td>303</td>
<td>318</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Total 10