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Abstract
This work presents the development of the Particle Finite Element Method (PFEM) for the modelling of 3D solid mechanics
problems under cutting conditions. The study and analysis of numerical models reproducing the cut of a material is a
matter of interest in several areas; namely, the improvement of the material properties, the optimization of the process and
tool geometries and the prediction of unexpected failures. The analysis of bi-dimensional (2D) models is the most common
approach for different reasons. Just focusing on the simulation point of view, it is the simplest procedure, the cheapest in terms
of computational cost and sometimes the only feasible numerical solution. However, many industrial machining processes,
such as cutting, blanking, milling and drilling have not a possible simplification to 2D models. Actually even a simple turning
processes for non-orthogonal cuts can not be simplified to 2D. This work present an upgrade of the PFEM techniques in order
to deal with the 3D machining problems. We present recent improvements in the finite element formulation, the meshing
re-connections and the contact detection. By applying these developments the PFEM has the capability for modelling a wide
range of practical machining processes. In this paper the capacity of the formulation and the accuracy of the results are
analyzed and validated with some representative examples.

Keywords Machining · Three-dimensional modelling · Contact mechanics · Particle finite element method · PFEM

1 Introduction

Metal cutting is one of the most important operations for
the manufacturing of components in various industries. For
mechanical engineers it represents a challenging problem. It
has fascinated researchers and practitioners for decades who
have been investigating for the best possible characterization
of the problem.

Several modelling techniques have been developed for the
simulation of metal cutting problems during last years. Sum-
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marizing, they can be classified into methods supported by a
mesh, and methods based in particles or mesh-free meth-
ods. The first group includes the Finite Element Method
(FEM) in a Lagrangian, Eulerian and Arbitrary Lagrangian
Eulerian formulations (ALE), the Multi-material Eulerian
Method (MMEM), the Volume of Solid (VOS), the Material
Point Method (MPM)and the Point in Cell (PiC). The second
group of the particle-based methods includes: the Smoothed
Particle Hydrodynamics (SPH), the Finite Point Method
(FPM), the Constrained Natural Element Method (CNEM),
theDiscrete ElementMethod (DEM), theMaximumEntropy
MeshFree method, and the Particle Finite Element Method
(PFEM). Similar techniques with other names can be found
in the literature. They represent themost important numerical
approaches to the modelling of metal cutting problems. An
extended review of the mentioned techniques can be found
in [28]. The common denominator for most of the modelling
techniques is the FEM, like it happens in the PFEM, which is
the numericall technique object of study in the present work.

The Particle Finite Element Method (PFEM, www.cimne.
com/pfem) has been widely studied in recent years. The gen-
eral conclusion is that it is a good numerical method for
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the treatment of large deformation problems in continuum
mechanics. There are many of examples of application of
the PFEM in the field of fluid dynamics [15–17] and some
in solid mechanics [14,21–27]. Several of the cited works
present examples in 2D and some of them include particu-
lar 3D applications also. In most papers, nevertheless, it is
taken for granted the easy extrapolation of the PFEM formu-
lation for 3D problemswithout much details. Although there
exist papers describing some details on the 3D aspects of the
PFEM, as in [6,16,17], most of them are in the field of fluid-
structure interaction. Some important particularities appear
when treating 3Dcases and theymust be resolved for a proper
functioning of the PFEM. In this work, the PFEM is applied
to the simulation of 3D machining problems involving large
deformations, contact conditions and thermal coupling situ-
ations.

1.1 Motivation

The motivation of this research comes from previous works
of the authors in the field of forming and metal cutting
problems (see for example [19,26]). Most of the cutting
techniques employed in industry (i.e. milling and drilling
in machining processes) have not a possible simplification
to 2D. Advanced 3D modeling capabilities are needed for
the numerical simulation of these problems. In this work we
show that the PFEM is an excellent candidate for analysis of
this class of complex metal forming processes.

Some of the numerical challenges related to the exten-
sion of the PFEM for 3D machining problems are related to
geometrical aspects and other to numerical ones. The usual
difficulties are the existence of a constrainedDelaunay tessel-
lation for 3D geometries, the poor accuracy of linear 4-noded
tetrahedra elements, the computational cost of the numerical
solution and the uncertain possibility of parallelize some of
their parts. In this paper we address the solution to several of
these challenges.

1.2 Objectives

This work aims to show that the PFEM is a good numerical
technique that canbe applied to awide rangeof 3Dmachining
problems, aswell as tomany other complex problems in solid
mechanics. In the paper we detail the mathematical formula-
tion of the PFEM for non linear solid mechanics problems,
the treatment of thermo-mechanical coupling , necessary for
the material behaviour characterization, and the formulation
used in contact situations in order to reproduce the tool-
workpiece interaction. The remeshing techniques have been
redesigned and extended with the use of adaptive meshre-
finement processes in order to improve robustness in 3D
simulations. The purpose is to show that the PFEM can be
applied satisfactorily to the 3D modelling and simulation of

practical machining problems. In the present work we are not
dealing with the contact interactions that take into account
friction, tool deformation and heat interchange in the contact
area.

The paper is organized in three main sections. Section 2,
introduces the basis of the PFEM and the PFEM solution
flowchart. The PFEM formulations for thermal-mechanical
coupled problems are explained in Sect. 2.2. The develop-
ment of mixed formulation for linear simplex elements is
presented in Sect. 2.3. The general settings for the modelling
of a thermo-elasto-plasticmaterial are introduced inSect. 2.4,
and the 3Dmesh regeneration processes is explained in Sect.
2.5. In Sect. 3, the numerical techniques used for the contact
detection and to impose the contact constraint are presented.
Here the cutting tools are treated as rigid boundaries. In the
last part of the paper (Sect. 4), validation examples are pre-
sented. The examples check the numerical behaviour of the
3D formulation, compare the solution of a cutting problem
using 2D and 3D approaches, and show the capabilities of
the PFEM for the 3D analysis of a machining problem with
a complex material behaviour.

2 Three-dimensional PFEM

ThePFEMhas been broadly used in the field of fluidmechan-
ics. Examples of 3D modeling of fluid dynamics with the
PFEM can be found in [11,15,18]. The relevant aspects that
can bementioned when comparing 2D and 3D PFEM formu-
lations are not very encouraging for the 3Dcase.Although3D
simulations are more impressive, the accuracy of the results
is typically worse. This usually happens because 3D simula-
tions are carried out using a smaller number of elements and
a non-optimal distribution of them in the zones of interest
which leads to a lower accuracy. The computational cost of
a 3D computation is huge and the complexity of all related
processes increase substantially. All operations related with
geometry manipulations are crucial in the PFEM due to the
remeshing steps involved in the technique. Some examples of
3Dmodeling of excavation problems using the solidmechan-
ics version of the PFEM can be found in [6–8]. No other
relevant applications are known for solving 3D problems in
solid mechanics using the PFEM. In this type of problems,
frictional contact situations are present which is an added
complexity for the numerical simulation.

The modelling of cutting problems needs for a set of
specific ingredients. Usually, materials are treated like con-
tinuummedia, therefore the characterization of the behaviour
is needed. The use of standard finite elements for the reso-
lution of large deformation problems is a major advantage.
However, the desirable description of the material domain
must be calculated on a good shaped discretization. In the
PFEM, the re-shaping of the computational domain is fun-
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Fig. 1 Sequence of steps to update in time a “cloud” of nodes representing a workpiece in a progressively machining operation using the PFEM

damentally done via Delaunay tessellations from a cloud of
particles, as described in Sect. 2.5. The original idea of the
PFEM was to improve the mesh quality by performing a
local re-tessellation of the domain only when is needed. This
allows to capture large changes in the continuum domain and
avoid global remeshing and interpolation frommesh tomesh.

2.1 PFEM solution flowchart

The PFEM uses a updated Lagrangian formulation for
describing of the particle motion. From a current configu-
ration of particles at time t a new or updated configuration is
calculated at time t + �t (Fig. 1). In each new configuration
a mesh discretizing the domain is generated for solving the
governing equations in the standard FEM fashion. Therefore
the FEM is used to solve the continuum equations that will
be presented in Sect. 2.2. The nodes discretizing the anal-
ysis domain are treated as material particles which motion
is tracked during the transient solution. The quality of the
numerical solution depends on the discretization chosen as
in the standard FEM. Adaptive mesh refinement techniques
are used to improve the solution as described in Sect. 2.5.

For clarity purposes we will define the collection or cloud
of nodes (C) belonging to the analysis domain, the volume (V)
defining the analysis domain and the mesh (M) discretizing

the domain. The solution of the PFEMdeveloped in this work
involves the following steps:

1. At each time step there is an initial cloud of points
defining the updated configuration of the domains. For
instance Cn denotes the cloud at time t = tn (see Fig. 1).

2. The boundaries of the domains are identified as Vn . In
this work, this step requires a refinement of the boundary
faces from the previous configuration. Some boundaries
may be severely distorted during the solution, including
separation and re-entering of nodes. In these cases the
α-shapemethod [42] is used for the boundary definition.

3. Discretize the continuum domains with a finite element
mesh Mn . Perform a constrained Delaunay tessellation
(Sect. 2.5).

4. Solve the Lagrangian equations of motion in the new
mesh. Compute the state variables at the next updated
configuration for t + �t : displacements, pressure, tem-
perature, stresses and strains, etc.

5. Move themesh nodes to a new positionCn+1 where n+1
denotes the time tn+�t . The updated positions are conse-
quence of the solution process calculated in the previous
step.

6. Go back to the first step and repeat the solution process
for the next time step to obtain Cn+2.
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Figure 1 shows a conceptual example of application of the
PFEM to model the progressive cut of a solid mass (work-
piece) under the action of an external object (cutting tool).

In the next sections we describe the solid mechanics for-
mulation, the finite element discretization and the material
models used.

2.2 Multiple field formulations

The problems under analysis here are characterized by the
coupling of the mechanical and thermal part. Consequently,
the equations describing the initial boundary value prob-
lem, are the ones which characterize large deformations of a
material in a coupled thermo-mechanical situation. In solid
mechanics, the balance equations are: the momentum, the
mass conservation and the energy equations.

In order to improve the finite element accuracy in the
modelling of complex material behaviours, mixed field
formulations are considered. To keep the simplicity only two-
field mixed formulations are used in this work. The most
common one is the two-field displacement-pressure (u-p)
finite element formulation. The quasi-static mixed u-p lin-
ear momentum equation in an updated Lagrangian scheme
(i.e. expressing all quantities and their derivatives int the
deformed configuration) may be written in its weak form
as

∫
Vt

∇ηi j si j dVt +
∫
Vt

∇ηi j p δi j dVt −
∫
Vt

ηi bi dVt −
∫

�N

ηi t
p
i d� = 0

(1)∫
Vt
q (p − 1

3
σi i ) dVt = 0 (2)

An analogous mixed two-field form having the displace-
ment u and the volumetric deformation φ as independent
variables (the u-φ formulation) can be expressed as

∫
Vt

∇ηi j σ̆i j dVt −
∫
Vt

ηi bi dVt −
∫

�N

ηi t
p
i d� = 0 (3)

∫
Vt
q (J − φ) dVt = 0 (4)

where u(x, t) the displacement field in the current configu-
ration x at time t and p(x, t) the pressure. Vt is the volume
occupied by the solid in the current configuration, σi j is the
Cauchy stress tensor and si j is its deviatoric part. bi are the
external body forces and t pi the prescribed surface forces,
∇ηi j is a virtual strain field and ηi are the space weighting
functions for the displacement field.

For the u-φ formulation, J = det(F) is the determinant
of the deformation gradient, φ is the volumetric deformation
and σ̆σσ = σσσ(F̆) is the Cauchy stress evaluated via the defor-
mation gradient F̆. q are the space weighting functions for

the pressure or for the volumetric deformation respectively.
The deformation gradient is defined as

F̆ = FvFd = φ
1
31 (det(F)−

1
3F) =

(
φ

J

) 1
3

F (5)

being Fd = J− 1
3F the volumetric deviatoric part of the

deformation gradient and the volumetric part Fv = φ
1
31 is

replaced by the independent volumetric deformation.
Themass conservation equation is expressed by ρ0 = Jρ.

The energy equation may be written in weak form as

∫
Vt

ŵρ c
dθ

dt
dVt +

∫
Vt

∂ŵ

∂xi
(k

∂θ

∂xi
) dVt −

∫
Vt

ŵDint dVt

+
∫

�Nθ

ŵ qn d� = 0 (6)

where θ(x, t) is the temperature field, ρ is the density, c the
specific heat, and k the thermal conductivity.Dint is the term
that accounts for the mechanical dissipation, the structural
elastic heating and the possible thermal source and qn is the
flux in the boundary. Finally, ŵ are the space weighting func-
tions for the temperature.

The initial conditions are prescribed by assigning the
initial displacement u0(x), the initial velocity v0(x) and
the initial temperature `0(x) at the Dirichlet and Neumann
boundaries �D and �N for the mechanical part, respectively,
as appropriate, i.e.

u(x, t) = ū(x, t) ∀x ∈ �D

v(x, t) = v̄(x, t) ∀x ∈ �D

σ(x, t) · n = h̄(x, t) ∀x ∈ �N (7)

here ū(x, t), v̄(x, t) and h̄(x, t) are prescribed fields, n
denotes the out-ward normal to the boundary and�D∪�N =
∂� . The boundary conditions for the thermal part are
imposed as

θ(x, t) = θ̄(x, t) ∀x ∈ �Dθ

−k∇θ · n = q̄(x, t) ∀x ∈ �Nθ (8)

where θ̄(x, t) and q̄(x, t) are prescribed fields assigning tem-
perature and flux, n denotes the out-ward normal to the
boundary and�Dθ and�Nθ with�Dθ ∪�Nθ = ∂� represent
the Dirichlet and Neumman boundaries for the thermal part.

2.3 3-Simplex elements

One of the fundamentals of the PFEM is the use of sim-
plices for the discretization of theweak formof the governing
equations. For 3D problems the 3-simplex element is a tetra-
hedron. The use of simplices in the PFEM implies using
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linear interpolations for approximating the fields describing
the primary variables u - p - θ or u -φ - θ for the formulations
presented in Sect. 2.2. From the point of view of efficiency,
using 3-simplices with linear interpolation has some advan-
tages: linear tetrahedra are computationally cheaper and
geometrically simpler. However, it can turn to a penaliza-
tion when the modelling demands for high accuracy.

In order to improve the well known weaknesses of linear
tetrahedra, we have focused on formulations with multiple
fields. These formulations solve some numerical deficien-
cies of the mentioned elements but need extra mathematical
considerations in order to get coherent and stable solutions.
In our approach, linear shape functions are used for all the
primary variables of the mixed formulations and this creates
a numerical inconsistency in the variational formulation [3]
which has to be attended via stabilized techniques. The for-
mulations presented in Sect. 2.2, are stabilized using is the
polynomial pressure projection (PPP) approach introduced
by Bochev [4], previously applied to stabilize Stokes Eqs.
[4,10]. The PPP approach is probably the simpler way to find
out a stable solution for a mixed equal-order interpolation of
the scalar and vector fields. Its main ingredient is to use a L2

projection of the scalar variables (volumetric deformation or
pressure variables).

The method modifies the mixed variational equation (i.e.
the pressure continuity equation) using local L2 polynomial
pressure projections of the pressure variable. The applica-
tion of the projections in conjunction with the minimization
of the problem field mismatch, eliminates the inconsistency
of equal-order approximations and leads to a stabilized and
consistent variational formulation.

One of the advantages of the PPP approach is that it does
not require specification of a mesh-dependent stabilization
parameter, or the calculation of higher order derivatives.

The PPP method uses a projection on a discontinuous
space and can be implemented at element level. As a con-
sequence, the implementation of this stabilization scheme
reduces to a simple modification of the weak form of the
continuity equation (the incompressibility constraint).

Given a function φ ∈ L2 (being φ the volumetric defor-
mation), the L2 projection operator φ̆ : L2 → Q0 is defined
by

∫
Vt
q̆ (φ − φ̆)dVt = 0 ∀q̆ ∈ Q0 (9)

where φ̆ is the best approximation of the scalar variable φ in
the space of polynomials of order O(Q0). Vt is the volume
of the domain at the current configuration.

To stabilize the mixed form given by Eqs. (1) and (2) and
Eqs. (3) (4), we add the following projection operator to Eq.
(2) and (4):

∫
Vt

(q − q̆)
αs

μ
(φ − φ̆)dVt = 0 (10)

where αs is the stabilization parameter (usually αs = 1) and
μ is the shear modulus. Note that αs does not depend on
the mesh, it is only a parameter to increase of decrease the
amount of diffusion added by the stabilisation procedure. The
stabilisation therm can be formulated for the pressure field
replacing the volumetric deformation φ by the pressure p. In
Eq. (10), q are the spaceweighting functions for the pressure,
or for the volumetric deformation, and q̆ the projection of the
weighting functions.

Adding the PPP stabilization to the u-p formulation into
Eqs. (1) and (2), the weak form of the balance equations can
be written as :

Fu,int(u, p) − Fu,ext = 0 (11)

Fp,pres(p) − Fp,vol(u) + Fp,stab(p) = 0 (12)

where

Fu,int (u, p) =
∫
Vt

Bu
T (s + p) dVt (13)

Fu,ext =
∫
Vt

NT b dVt −
∫
�σ

Nt p d�σ (14)

Fp,pres(p) =
∫
Vt

1

k
NNT p dVt (15)

Fp,vol (u) =
∫
Vt

NT
(
1

3
1 : σσσ

)
dVt (16)

Fp,stab(p) =
∫
Vt (e)

αs

μ
p(e)

(
N(e)NT (e) − Ñ(e)ÑT (e)

)
dVt

(e)

(17)

where k is the material bulk modulus, N are the global
shape functions andBu is the strain-displacement matrix that
contains the derivatives of the shape functions used in the
interpolation of the problem variables. Ñ(e) contain the set
of polynomials of order 0.

Analogously, the discrete form of the stabilized Eqs. (3)
for the u-φ formulation, can be written as :

Fu,int(u, φ) − Fu,ext = 0 (18)

FJ ,J (φ) − FJ ,φ(u) + Fφ,stab(φ) = 0 (19)

where

Fu,int (u, φ) =
∫
Vt

Bu
T σ̆σσ dVt (20)

FJ ,J (φ) =
∫
Vt

NNT φ

J
dVt (21)

FJ ,φ(u) =
∫
Vt

NT J dVt (22)
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Fφ,stab(φ) =
∫
Vt (e)

αs

μ
φφφ(e)

(
N(e)NT (e) − Ñ(e)ÑT (e)

)
dVt

(e)

(23)

Inserting the finite element interpolation into ((6)) yields

Fθ,dyn(θ̇) − Fθ,int (θ) + Fθ,ext = 0 (24)

where

Fθ,int (θ) =
∫
Vt
kBθ

TBθ dVt −
∫
Vt
NT Q dVt (25)

Fθ,ext =
∫

�q

NT (qp · n) d�q (26)

Fθ,dyn(θ̇) =
∫
Vt

ρcNNT θ̇ dVt (27)

whereBθ is the global gradient-temperature that contains the
derivatives of the shape functions used in the interpolation
of the temperature field.

A Backward Euler method is used to discretize Eq. ((24))
in time, giving

Fθ,dyn(θ̇n+1) − Fθ,int (θn+1) + Fθ,ext = 0 (28)

where

θ̇n+1 = θn+1 − θn

�t
(29)

and �t is the size the length of the time interval
In finite element computations, the force vectors presented

in Eqs. (11), (18) are obtained as the assemblies of element
vectors. The isothermal split method is used to couple the
mechanical and thermal parts of the problem [32]. In the
PFEM, force vectors are evaluated in the support mesh of
linear tetrahedra using standard Gaussian quadratures. For
dynamic analyses implicit time integration of the kinematic
variables are used via the standard Newmark-β method. In
some problems a line-search strategy is utilized to ensure
convergence of the solution.

2.4 Material models

The state of the art inmaterialmodelling of large deformation
elasto-plasticity has two main frameworks [30–33]. One is
based on an additive decomposition of the plastic and elastic
strains; this is possible employing the use of hypo-elastic
rate constitutive models. They are based in an extension of
the small strain formulation adding some necessary terms
in order to deal with rigid body rotations. These terms are
also needed to ensure the objectivity of the resulting stress
increment [1,33]. Usually this is a good approach for finite
element methods using velocity formulations [1,33].

In the second approach, a multiplicative decomposition
of the deformation gradient and a hyper-elastic response are
assumed. This approach is best suited to problems involving
both large displacements and large deformations [30–33] and
is the one adopted for the PFEMwhen the displacement vec-
tor is one of the primary variables.

The total deformation gradient, F, is decomposed mul-
tiplicatively into an elastic and plastic part: F = FeFp.
The elastic part applies to an intermediate configuration of
irreversible (plastic) deformation. The elastic deformation
gradient may itself be decomposed into a volumetric and
deviatoric part: Fe = Fe

vF
e
d . The volumetric part is given by

Fe
v = (J e)

1
31 and the deviatoric part by Fe

d = Fe(J e)− 1
31

where J e = det(Fe) is the elastic Jacobian. Note that in the
u -φ formulation the decomposition of the elastic deforma-

tion gradient is F̆e = (φ/J e)
1
3 Fe, shown in Eq. (5).

Elastic deformation is assumed to be hyper-elastic, with
uncoupled volumetric and deviatoric responses. The hyper-
elastic stress-strain realationship is expressed as

τττ = 2 ρ0 be ∂beψ(be) = 2 ρ0 be ∂be (U (J e) + W (b̄e)) (30)

where τττ if the Kirchhoff stress tensor, be = FeFeT and
b̄e = Fe

dF
eT
d are the elastic left Cauchy Green tensor and

its deviatoric part, respectively. The elastic part of the free
energy ψ(be) is uncoupled into the volumetric and devia-
toric response described by the functionsU (J e) andW (b̄e),
respectively.

When temperature effects must be considered, a function
describing the thermo-mechanical coupling is needed. This is
M(θ, J e)which is added as a part of the free-energy function
and provides the potencial for the associated elastic structural
entropy. Thus the expression of the energy function ψ(be) is

ψ(be) = U (J e) + W (b̄e) + M(θ, J e) (31)

Extending the formulation to thermo-plasticity, the plas-
tic response must be characterized by a function K (ē p, θ),
which is a nonlinear function of the equivalent plastic strain
ē p and the temperature θ . This function describes the
isotropic strain hardening via the relationβ=−∂ē p K (ē p, θ).
The potential for the purely thermal entropymust be also con-
sidered by adding a function T (θ). The complete form of the
stored energy for the characterization of the stress response
can be written as

ψ = U (J e) + W (b̄e) + M(θ, J e) + T (θ) + K (ē p, θ)

(32)

In general the plastic part also requires the specification
of a yield criterion, �(τ, h), a hardening law, h(ē p, θ) and a
flow rule, g, in addition to the Kuhn-Tucker conditions [33].
Explicit forms of these functions can be found in [13,32].
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In the examples presented in this workwe have considered
the classicalMises-Hubber yield function, expressed in terms
of the Kirchhoff stress tensor, as:

�(τ, ē p, θ) = ‖dev(τ )‖ −
√
2

3

(
σy + β

) ≤ 0 (33)

where σy is the flow stress and β = −K ′(ē p, θ) is the
isotropic nonlinear hardening modulus.

Numerous empirical and semi-empirical flow stress mod-
els have been proposed. The strain-rate dependent phe-
nomenological model developed by Johnson and Cook [13]
and the rate independent model developed by Voce [34] will
be used in this work.

The Johnson-Cook model describes the flow stress of the
material as the product of several terms involving a constant
A, the initial yield strength of the material at room tempera-
ture and a reference strain rate, i.e.

(
σy + β

) = A

(
1 + B

A
εn

) (
1 + C ln ε̇∗) (

1 − θ
′m)

(34)

where ε is the equivalent plastic strain, ε̇∗ = ε̇/ε̇0 is the strain
rate non-dimensionalized by the reference strain rate, and B,
C , m and n are fitting constants.

Voce [34] proposed an exponential form for hardening.
The strain hardening law interrelating true stress

(
σy + β

)
and true plastic strain ε̄p is expressed as

(
σy + β

) = (Kinf − (Kinf − σ0)e
−δε̄p + H ε̄) ∗ (1 − w0(θ − θ0))

(35)

where Kin f is the saturation stress, σ0 is the true stress at the
onset of plastic deformation and H is the linear hardening
modulus. The constant δ determines the rate at which the
stress σ0 moves from its initial value tends to reach steady
state or saturation stress Kin f . The material property w0

describes the thermal softening of the material of interest
and θ and θ0 are the current and the reference temperature
respectively. It is important to remark that if n = 1, m = 1
and C = 0, the Johnson-Cook material model recovers the
Voce model.

Extended information of these isotropic hardening laws
can be found in [23,26,32,36].

Alternatives to the use of phenomenological models for
the treatment of plasticity has been investigated. In order
to get a more realistic description of the deformation, the
underlying the physics of the micro-structural evolution are
introduced as a part of the constitutive model equations.
These are called physically-based models. One of the advan-
tages they exhibit is that they can be extrapolated outside the
calibration range. In this work we have used the physically-
based plasticity model based on dislocation density and

vacancy concentration. This model was previously used in
2D metal cutting simulations in [24,35].

2.5 3D delaunay tessellation

In Sect. 2.3 we introduced the 3-simplex element that the
PFEM typically uses for computing the continuum solution.
One of the reasons for using this element type is the need for
the continuous remeshing required by the method in order to
adapt the domain geometry to the solution. In the PFEM the
domain is seen as a set of lagrangian points, called particles.
These particles store the information needed to determine the
geometrical limits the domain, and the values of the material
and kinematic variables (Fig. 1).

All the characteristics described by the particles are pre-
served after the tessellation of the domain every time a new
mesh is sought. In our work we use a 3D Delaunay tessella-
tion that will provide us with a thetraedral mesh discretizing
the analysis domain [5,9,12,29]. The Delaunay tessellation
has the properties of reconnecting a set of points maximizing
the dihedral angles of the tetrahedral planes for the resultant
mesh. Using this algorithm, a continuous re-connection of
the particles configuring the domain is performed. In every
remeshing step a finite element mesh with optimal shape is
obtained for the discretization and resolution of the weak
form of the governing equations.

One of the particular advantages of the PFEM is the con-
cept of particle container. When the continuum domain is
rebuilt, the information transfer is minimized because the
particles are not modified. There is only transfer of infor-
mation when the domain is refined and new particles are
considered. This concept of particles container is modified
when elemental information is needed for the solution of the
material behaviour. Thus, in solid mechanics, the essence of
the PFEM is modified versus fluid dynamics applications,
where almost every model feature is intrinsically stored in
the particles.

In the literature of the PFEM for solid mechanics, there
are several approaches to manage the transfer of information
between mesh elements and particles [6,8,23]. The goal is to
minimize the loss of information due to continuous remesh-
ing. Following this objective a particular transfer scheme for
solid mechanics problems has been designed. The proce-
dure is based in the following steps: (1) add particles where
needed, (2) remove not needed or collapsing particles, (3)
reconnect the cloud of particles, (4) improve collocation and
set information to new elements. All steps are described
in detail in Box 1. The previous mesh information is not
dismissed until the process ends and all information is trans-
ferred from the mesh to the particles.

Themesh generation steps in Box 1 include new enhanced
processes which improve the geometry of the boundary,
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reduce the computational cost and increase the mesh quality.
From these processes we can remark:

• Boundary improvement: When particles are inserted in a
curved boundary, neighbour node distances and surface
normals are used to perform Hermite interpolation and
correct the particle insertion position.

• Reducing number of mesh elements: Particles are usu-
ally removed when they get too close to each other. In
order to reduce the computational cost, particles can also
be removed if the error in the solution is small. This is
performed by computing error estimators in patches of
elements surrounding a node. The error estimator is cal-
culated for each element of the patch as εσ = ‖σ − σh‖
(see Zienkiewicz and Zhu [43,44]). The values chosen
for the variable σ are the norm of the isochoric-stress or
the equivalent plastic strain. When the mean value of this
error, for all elements surrounding a particle, is smaller
than a given tolerance (ε̄σ < εtol ≈ 2%) the particle is
removed.

• Increase mesh elements quality: Elements in plastic-
ity regions suffer large distortions. The reconnection of
particles using a Delaunay tesselation solve this effect
partially. The quality of the elements in these areas is
improved by performing a local Laplacian smoothing
[20] of the updated particle positions after the tessella-
tion. The Laplacian smoothing process is applied when
particles are inserted to themodel at the reconnection step
and themeanvalue of the equivalent plastic strain is larger
than a threshold value, a common value is ē p ≥ 0.5.
This means that re-collocation of particles only applies
to plasticity zones. When modelling metal cutting prob-
lems, these zones are the ones close to the tool tip.

We remark that in this work the transfer is made straight
from the previous Gauss points to the Gauss points of the
new elements. When the mesh does not change this transfer
ensures that equilibrium is preserved after the tetrahedraliza-
tion without adding diffusion to the results. When the mesh
changes, the equilibrium is perturbed locally in areas where
introduction and deletion of particles occur and the transfor-
mation of the information is unavoidable. FEM and PFEM
solutions applying this transfer scheme were compared in
previous works showing negligible effects in the final results
[23,27].

One of the main advantages of the proposed strategy is
that it is not necessary to create a complete newmesh at each
time step. During the remeshing process the quality of the
previous discretization can be improved with the addition
and removal of particles using a local Delaunay tessellation.

PFEM: Computing Domain generation steps

Reference mesh elements Mn
re f and nodes (cloud of particles)

P n
re f at t

n .

1. Refine reference mesh → using mesh elements Mn
re f .

• Refine body elements. Insert new particles inside the
domain.

• Refine distorted boundary. Insert new particles and recon-
nect surface boundary faces (important for conforming
boundaries).

*Criterion: based on size, plastic dissipation or mean stress
values
*Position: new particles are inserted in the middle of the largest
edge; particles at boundary must preserve surface curvature.
(Note: other positions are the center of the largest triangular
face or in the center of the tetrahedron).

2. Remove particles that are too close→ using particle distances
P n
re f .

*Optional: remove particles using error estimators. Error esti-
mators based on plastic strain values or on the norm of the
isochoric stresses. A particle is removed if all previous finite
elements joined to that particle have an error value less or equal
to a given tolerance (see Zienkiewicz and Zhu [43,44]).

3. Nodal variables are interpolated to the new particles using ele-
mental shape functions.

Updated cloud of particles P n
cur and boundary faces F n

cur at t
n .

• Perform a constrained Delaunay tetrahedralization using the
updated boundary facesF n

cur and the updated cloud of particles
P n
cur .

*Note: if the “constrained” Delaunay tetrahedralization is not
possible, auxiliary boundary points are added P n

cur → P̂ n
cur ,

boundary faces are regenerated
F n
cur → B̂ n

cur , and F n
cur := F̂ n

cur , P n
cur := P̂ n

cur .

Current mesh elements Mn
cur and particles P n

cur at t
n

1. Estimate the mesh quality. If mesh quality is less or equal than a
given tolerance, apply a local Laplacian smoothing [20] of the
updated particle positions.

(a) Find smoothed distribution of particles in the new mesh.
(b) Transfer particle information (displacement, pres-

sure/volumetric deformation, temperature) to the new
particle positions by interpolation with the shape func-
tions.

(c) Calculate the global coordinates of the integration points
in the new mesh.

2. Update the internal variables → using the reference mesh
Mn

re f .
*Criterion: the local information of finite element in the new
mesh is given by the closest finite element of the referencemesh.

*Note: step 1 in the current mesh Mn
cur is optional.

Updated mesh elements Mn
cur → compute next step tn+1 →

Mn+1
re f :=Mn+1

cur .

Box 1: Flowchart of the domain regeneration process for the
PFEM.
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Fig. 2 Linear cutting test model

3 Treatment of themechanical contact

Modelling of machining processes needs for the treatment
of the interaction of a cutter and a solid piece. Seeking for
simplicity, the cutter will be considered as a rigid boundary
contacting the solid piece. The solid piece is the deformable
body that will be modelled using the PFEM. Considering the
cutter as a rigid body has certain advantages, the main one
being that the geometry is fixed and can be characterized in
an easier way. As a counterpart, when rigid tools are used
heat generation by friction and the transfer of temperature
between domains are usually not considered.

3.1 Models for rigid tools

Usually there are two ways to define a rigid cutter, the first
one is using a finite element mesh to define the cutter bound-
ary. When the tool surface is discretized with a standard
triangular mesh there is no continuity from one element to
another. This discrete interface gives a non-smooth contact
force profile. The lack of continuity typically degrades the
convergence of the solution. In order to avoid this problem,
we have chosen another alternative. The rigid boundary is
defined by the mathematical description of the surface. With
this approximation the drawbacks coming from the treatment
of contact between discrete face elements are overcome. This
also allows to obtain a good definition of the contact forces
and a good characterization of the contacting geometry. The
mathematical description of the rigid boundary surface is
given by a parametrization of the cutter surface.

This approach is valid for the linear cutting test mod-
els that we analyse in this work. The model is depicted in
Fig. 2, it is ease to see that the tool can be considered as a
rigid wall described by a two planes and a tip semi-circle.

3.2 Contact detection

The geometry descring a cutting tool can be characterized
with three parameters: the tip radius, the angle of the rake

Fig. 3 Rigid tool definition

face (rake angle) and the angle of the flank face (flank angle)
(Fig. 3). These three parameters define a circle (or a cylinder
in 3D) and two planes tangent to that circle and the geometry
is mathematically determined. For the contact detection, one
must identify what are the exterior and the interior parts of
the tool. With these characteristics the contact detection is
straightforward:when a particle belonging to the boundary of
the workpiece is going to exceed the described rigid contour,
that particle is assumed to be in contact with the tool.

A particle can enter to contact with the tip, the rake face
or the flank face. Depending on the contact zone, the contact
force direction changes. Therefore, it is important to detect
which contact zone a particle is going to interact with. The
spatial zones are determined by the intersection of geomet-
rical areas defined by the subgroups shown in Fig. 4. Each
subgroup is defined geometrically using the projection of
auxiliary vectors coming from the geometrical characteriza-
tion of the tool parametrization.

3.3 Imposition of the contact constraint

When an active set of contacts are determined, the mathe-
matical model of the normal contact constraint is added to
the linear momentum balance equation. For each one of the
rigid tool surfaces, the outward normal directionn is obtained
via the next rules: (1) a particle in contact with the flank or
rake faces get the normal direction from those planes; (2)
the normal direction, for a particle that is in contact with the
tool tip contour, is given by the segment that joints the tool
center with the particle. When a particle enters in contact
with one of the tool surfaces, the normal gap gN is calcu-
lated by the projection of the exceeding distance vector into
the corresponding normal direction:

gN = −(xn+1
I − x̄n+1

I ) · n (36)

where xn+1
I is the current position of the particle I and x̄n+1

I
is the corresponding position of the same particle I on the
tool surface (Fig. 4).

123



612 Computational Mechanics (2020) 66:603–624

Fig. 4 Zones of the rigid tool
with which a particle can enter
in contact

By means of a penalty approach, the constitutive equation
for the normal force Pn applied on a particle is

PN =
{

κ gN if gN < 0
0 otherwise

(37)

in the above equation, κ is the penalty coefficient and gN =
gNn . It is important tomention that κ must be proportional to
the workpiece surface area of the particle entering in contact
κ → κI . This is important in order to guarantee that the
finite elements satisfy the patch test. The contribution of the
contact constraint to the weak form of the linear momentum
equation is

∫
�cont

ηi PN ni d�cont = PNn (38)

where n is the normal vector to the contact surface and ηi
are the space weighting functions for the displacement field.
For each workpiece boundary particle the gap gN at the clos-
est point projection is calculated. This is done for each one
of the surface zones and then the surface with the minimum
gap is the selected one. The resultant contact force applied
to the particle is proportional to the gap in the direction
to the surface normal. For an implicit integration scheme,
the linearization of the contact force is needed to ensure
quadratic convergence. The contact force and the contact
stiffness matrix for a particle I entering into one of the con-
tact zones are given by:

Fc I = κI gN InI (39)

and

KcI=

⎧⎪⎪⎨
⎪⎪⎩

−κI (nI ⊗ nI ) → for rake and flank planes

κI

⎛
⎝− R∥∥∥xn+1

I − xn+1
C

∥∥∥
nI ⊗ nI+ gN∥∥∥xn+1

I − xn+1
C

∥∥∥
1

⎞
⎠ → for the tip

(40)

where the R and xn+1
C are the radius and the center position

defining the tool tip zone, respectively. For κI wemust ensure
it has a value stiffer than the deformable body κI ≥ E , being
E the elastic modulus of the material. A usual value is

κI ≥ 1000 E

(
AI

Amin
J

)
(41)

where AI is the contributory contact area associated to the
nodeof the deformable body entering in contactwith thewall.
The area Amin

J is the minimum contact surface associated
with a contact node.

Figure 5 shows the normal contact forces computed using
the explained approach.

4 Validation examples

The examples presented next have been chosen in order to
validate the modelling capabilities of the PFEM formula-
tions described in this work. The principal features that we
demand are an accurate numerical solution and non-locking
numerical effects. In order to assess the numerical behaviour
of the PFEM for 3D cases using the mixed u − p and u − φ

formulations, we have chosen validation examples involv-
ing the large deformation of metal bars. The well-known
example of the necking of a bar is presented in Sect. 4.1
and the impact of a bar in Sect. 4.2. The influence in the
results of the domain regeneration used by the PFEM is
tested in Example 4.2, and in the following cutting exam-
ples.

The contact, the elasto-plastic material modeling, and
other features of the PFEM presented in the previous sec-
tions are tested and validated in the Examples 4.3 and 4.4.
Example 4.3 shows a comparison between a 2D and a 3D
PFEM simulation of a linear cutting test of a titanium alloy.
Example 4.4 applies a physically based model for the 3D
modelling of an orthogonal cutting test of an steelwork piece.
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Fig. 5 Contact forces at
particles interacting with rigid
walls

The objective here is to show the capabilities of the PFEM
in problems which combine contact, complex geometrical
regeneration of the domain and complex constitutive behav-
ior.

The 3D PFEM developments have been implemented in
an in-house code, having a limited computational efficiency
for the calculations. For this reason we have not run large
models, and we will not put much emphasis in the com-
putational cost of the validation examples. This aspect is
indeed very important in numerical simulations of practi-
cal machining problems and will be analysed in detail in
future works. We only can say here that our computations
are in the same order of CPU time as using commercial
codes.

4.1 Necking of a rectangular bar

In this example a 3Dprismatic specimen is loaded by uniform
traction forces. The bar has a relation width/thickness/length
= 16/4/52 mm (Fig. 6). The bar is assumed to be insulated
along its lateral face (qn = 0) , while the temperature is held
constant and equal to 293.15K on the upper and lower faces.
The bar is stretched by applying a constant axial velocity 2
mm/s during 6 seconds. Taking into account the symmetry of
the geometry, only one eighth of the specimen is considered
for the simulation. The chosen values of thermo-mechanical
properties of the specimen correspond to a steel material and
are given in Table 1. For this material the Voce hardening
model presented in Eq. (35) is used.

To solve the problem we use the u − p and the u − φ

stabilized element formulations proposed in this work. The
simulations are performed under quasi-static conditions with
the isothermal implicit split approach proposed by Simo [32].
No specific features of the PFEM are used in this exam-

Fig. 6 3D analysis of a nearly adiabatic shear banding traction test
benchmark. Problem dimensions for an eighth of the model and initial
mesh of 4-noded tetrahedra with 10 × 4 × 50 divisions
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Table 1 Steel properties for the Voce model

Young modulus E 206.9 · 103 MPa

Dissipation factor χ 0.9

Thermal capacity c 0.46 · 109 mm2/s2K

Density ρ 7.8 · 10−9 Ns2/mm4

Expansion coefficient α 1 · 10−5 K−1

Yield stress σy 450 MPa

Flow stress softening w0 0.002 K−1

Reference temperature θ0 293.15 K

Linear hardening H 129.24 MPa

Hardening softening wh 0.002 K−1

Saturation hardening Kin f 715 MPa

Hardening exponent δ 16.93

ple. The purpose is to evaluate the thermo-hyperelastoplastic
model and the stabilized formulations for 3D tetrahedra.

Figures 7 and 8 show the pressure, temperature,Von-Mises
stress and plastic strain fields for the mixed u − p and u − φ

stabilized element formulations. The results are very similar
in both cases, the formulations do not block in the soften-
ing branch and predict the thermo-elastoplastic behaviour
correctly. In Fig. 9 the vertical reaction loads are depicted.
Similar forces are predicted during the strain-hardening part
of the force displacement curve. However, in the strain-
softening branch the predicted forces are different. These
differences also happen when comparing other formulations
[23,32,40,41] (Fig. 10).

The geometry and conditions of this 3D example have
been studied in [32]. In this reference the modelling is
done using hexahedra elements. The results shown are the
deformed geometry (with a concave curvature in the direc-
tion of the width and a convex curvature in the direction of
the thickness), the increment of temperature of 85.04K and
the maximum principal stress of 117.7MPa at t=6s. In our
results, the deformation obtained is the same. However we

Fig. 7 Three-dimensional analysis of a nearly adiabatic shear banding traction test benchmark. Problem results for the u − p formulation

Fig. 8 Three-dimensional analysis of a nearly adiabatic shear banding traction test benchmark. Problem results for u − φ formulation
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Fig. 9 3D nearly adiabatic shear
banding. Load/Displacement
curve for the u − p and u − φ

formulations. Bar with
dimensions = 16/4/52 mm

Fig. 10 2D Plane strain and 3D
nearly adiabatic shear banding.
Load/Displacement curve for
the several formulations and
authors [40,41]. Bar with
dimensions = 12.826/1/53.334
mm

get sligthly larger values, with a temperature increment of
97.98K and 101.39K and a maximum principal stress of
125.9MPa and 133.0MPa for the u − p and the u − φ

formulations, respectively. Most of the examples found in
the literature simulate the necking of a rectangular bar with
a width/thickness/length ratio= 12.826/1/53.334 mm using
2D plain strain models [23,40,41]. Looking for a more com-
prehensive comparison we have also simulated these cases
using 2D plain strain and 3D models. Figure 10 shows the
results obtained compared with results from the literature.
It is shown that the 2D plain strain models give a similar
response. We note that the plain strain models do not capture

the reduction of the bar thickness giving an over-prediction
of the forces comparedwith 3Dmodels. Considering this fact
we can conclude that both 3D formulations developed in this
work predict the force in the softening branch in a similar
way and in agreement with other published results.

4.2 Taylor impact test for a cylindrical bar

The test consists of the impact of a cylindrical bar with an
initial velocity of 227m/s against a rigid wall. The bar has an
initial length of 32.4mm and an initial radius of 3.2mm (Fig.
11). Material properties of the bar are typical of copper: den-
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Fig. 11 Taylor impact test. Problem dimensions and the initial struc-
tured mesh of 6 × 50 divisions

sityρ = 8930 kg/m3,Young‘smodulus E = 1.17·105MPa,
Poisson‘s ratio ν = 0.35, initial yield stress σy = 400MPa
and hardening modulus H = 100MPa. An interval of 80μs
has been analyzed, which corresponds to the neutralization
of the impact.

Starting with the same initial mesh, the problem has been
solved with the u − p and the u − φ stabilized formulations
proposed in this work. Looking at the analysis results some
parts of the mesh gets very deformed and the elements that
received first the impact experience large plastic deforma-
tions. This yields results somehow conditioned by the mesh
shape. In order to improve this aspect, in these examples
the mesh has been continuously updated during the analy-
sis using the PFEM with the procedure explained in Sect.
2.5. However, in this example, there are boundary particles
belonging to symmetric constrainedwalls that have to be pre-
served. Therefore, the boundary particles and boundary faces
connectivities have not been modified during the analysis.
The domain regeneration has been applied by reconnecting
the inside domain, removing inside particles if the distance
between them is too close, and inserting new particles if the
plastic dissipation reaches a threshod value.

The results for the displacements, the plastic strain, the
pressure and the Von-Mises stress are depicted in Figs. 12
and 13 for the u − φ and u − p the cases, respectively. The
pressure and the stress distributions are a little bit nicer for

Fig. 12 Final mesh displacement, equivalent plastic strain distribution, Pressure field, and Von-Mises Stress at 80μs after the impact for the PFEM
u-φ formulation with continuous remeshing
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Fig. 13 Final mesh displacement, equivalent plastic strain distribution, Pressure field, and Von-Mises Stress at 80μs after the impact for the PFEM
u-p formulation with continuous remeshing

the u − p formulation. The computed plastic strain, how-
ever, is almost the same in both cases. Looking at the results
of Figs. 12 and 13, the values obtained and the deformed
configuration are very similar for both formulations.

The final geometry of the bar in any of the formulations
is in good agreement with the published results [23,37–39].
No locking is not present in the solution. The final radius in
the base of the bar obtained using the u − p formulation
is 6.47mm and using the u − p formulation is 6.43mm.
The results presented in the literature [23,37–39], calculated
with 2D axisymmetric models and 3D models, vary from
a 6.99mm to 7.24mm depending on the method and the
stabilization technique used. The values for the equivalent
plastic strain and pressure fields obtained with the PFEM
coincide well with those given by FIC stabilization technique
and by the CBS formulation [37].

4.3 Linear cutting test of titanium alloy.

In order to validate the PFEM strategy with a 3D machining
test case, we have studied the cutting of a rectangular block
of Ti6Al4V alloy of at 200m/min, with a tool radius of
0.4mm, a rake angle of 0 ◦ and a cutting depth of 0.6mm.
The workpiece has a length of 3.7mm, a width of 1.8mm
and a thickness of 1mm. The model is depicted in Fig. 14.

Fig. 14 3D Linear cutting test model

The material used for the work piece is the one evaluated
by a high strain rate compression in [36]. A summary of all
the input parameters is given in Table 2. The tool has been
assumed to be mechanically rigid and the friction and the
thermal exchange between the work piece and the tool are
neglected. The problem has been modelled using a 2D and
a 3D approach. The applied boundary conditions are shown
in Fig. 14. The normal displacement for the lateral and end
walls of the work piece has been constrained. The base of the
work piece is clamped (Fig. 14).

The solution scheme used in the present example is based
on the isothermal implicit scheme [23] with the mixed u − p
formulation described in this paper. The domain regeneration
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Table 2 Ti6Al4V alloy
properties for the rate
dependend Johnson-Cook
model

Young modulus – E 210.3 · 103 MPa

Poisson ratio – ν 0.3

Density – ρ 7.9 · 10−9 Ns2/mm4

Johnson’s Cook A constant – A 782.7 MPa

Johnson’s Cook B constant – B 498.4 MPa

Johnson’s Cook C constant – C 0.028

Johnson’s Cook n constant – n 0.28

Johnson’s Cook m constant – m 1

Expansion coefficient α 1 · 10−5 K−1

Thermal capacity – c 0.445 · 109 mm2/s2K

Thermal conductivity – k 14 N/sK

Fusion temperature – θ f 1873.15 K

Reference strain rate – ε̇0 1 · 10−4 s−1

Reference temperature – θ0 293.15 K

is based on the PFEM technique presented in Sect. 2.5. Inser-
tion and removal of particles is used here to save computing
time and in order to improve the localization phenomenon.
Material separation in front of the tool has been modeled by
considering the chip formation process as a pure deforma-
tion where material flows visco-plastically around the tool
tip.

Figure 15 shows the results for the strain rate contours
in several time instants. A comparison of the results for
the 2D and 3D simulations is done. The value of strain-
rate is depicted on the particles in the central section of the
3D case. The 2D and the 3D solutions are not exactly the
same, although in both cases strains are concentrated near
the shear plane and along the rake face, as expected. We
remark that the boundary conditions applied in the 3D case
tried to be as close as possible to the conditions in the 2D
solution. However, a perfect matching is not possible and
there are some remarkable differences in the deformed con-
figuration. When the tool has travelled 2.2mm the 3D model
has 23814 4-noded tetrahedra and 4622 particles (i.e. nodes).
For the 2D case the model has 3163 3-noded triangles and
1696 particles (i.e. nodes). We note that the number of par-
ticles of a section corresponding to a 3D cut (1877 nodes)
is similar in the 2D case (1696 nodes), but the distribution
of the particles marks the difference in the accuracy of the
results.

The temperature field for the workpiece in the 2D and
3D cases is also depicted in Fig. 16. The maximum temper-
ature is 1539.5 K and takes place along the rake face and
tool tip. Figure 17 shows the cutting forces applied on the
tool obtained in the 2D and 3D analyses. In the 3D case the
forces are a little big larger because the boundary restrains
has a big influence on the results, as some material deforms
and accumulates behind the chip. The cutting forces reach a
steady state as expected for a continuous chip formation.

4.4 3D orthogonal cutting test of steel

In this example we simulate a 3D orthogonal cutting test of a
AISI 316L steel. A physically based plasticity model is used
to reproduce the behaviour of the workpiece. The model, ref-
erenced in Sect. 2.4, is based on the dislocation density and
vacancy concentration. The details and the material prop-
erties feeding the constitutive law can be found in [24,35].
The general material parameters for the AISI 316L steel are
summarized in Table 3.

The problem geometry and kinematics are depicted in Fig.
14, but the lateral walls of the workpiece have no imposed
displacements. These conditions do not intend to reproduce
a 2D cut like in the previous example, quite the opposite.

The deformation results for the 3D cut are shown in Fig.
18. It can be observed that the chip is being formed in the front
of the tool due to plastic deformations. However, because the
movements in the lateral walls are not restrained, thematerial
also flows towards these directions.

The deformed configuration when the tool has moved
1.98mm is shown in Fig. 19. In the same figure the tem-
peratures and the Von-Mises stress fields at this instant are
given. The plastic strain rate is depicted using a central cut of
the workpiece. The velocity of the plastic strain travels from
the tool tip to the surface of the chip formation, as expected.
At this moment the primary and secondary shear zones have
collapsed to a largest zone in front of the tool.

The distribution of damage, in terms of dislocations suf-
fered by the material, is depicted in Fig. 20. The temperature
level and the increase on the dislocation density controls the
hardening of the material.

The 3D modelling, together with the use of the material
physical model, allow a more detailed microscopic study of
the cutting zone. This contributes to a good understanding of
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Fig. 15 Strain rates are depicted
on particles at the deformed
configuration of the workpiece.
Results shown for several
positions of the tool path
showing a central cut of the 3D
model and section of the 2D
case (u is the tool displacement)

123



620 Computational Mechanics (2020) 66:603–624

Fig. 16 Temperatures are
depicted in the deformed
configuration of the workpiece.
Results shown for several
positions of the tool path
showing a central cut of the 3D
model and section of the 2D
case (u is the tool displacement)
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Fig. 17 Cutting Force versus
tool displacement

Table 3 AISI 316L steel
properties Young modulus – E 210 · 103 MPa

Poisson ratio – ν 0.3

Density – ρ 7.9 · 10−9 Ns2/mm4

Expansion coefficient α 1.55 · 10−5 K−1

Thermal capacity – c 0.445 · 109 mm2/s2K

Thermal conductivity – k 14 N/sK

Fig. 18 Deformed configuration
of the workpiece for several
instance of cutting tool path
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Fig. 19 Results at the last
deformed configuration of the
analysis when the tool has
moved 1.98mm

Fig. 20 Dislocation densities
depicted on particles at the
deformed configuration of the
workpiece. Results shown for
several positions of the tool
path. Showing a central cut of
the 3D model at the last position

the interaction between strain hardening, thermal softening
and shear localization during the chip formation.

5 Conclusions

In this work we have upgraded the Particle Finite Ele-
ment Method (PFEM) in order to face the simulation of
3D cutting problems exhibiting large deformations, thermal
coupling and tool-workpiece mechanical contact conditions.
The presented extension of the PFEM includes the use
of the mixed u − p and u − φ formulations for large
strains. These formulations are extended to the solution of
coupled thermo-mechanical problems using 3-simplex ele-

ments and elasto-plastic constitutive models. The PFEM
has been readapted to face 3D continuous domain regen-
eration with an enhanced strategy for insertion of particles
and a constrained Delaunay tetrahedralization. New pro-
cedures to improve the accuracy of the surface definition
and the elements shape via smooth re-collocation of parti-
cles have been integrated in the generation of the calculation
domain.

For the modeling of cutting problems rigid contact con-
straints have been used. The development of rigid tool tip
sub-systems for an easy contact detection and a smooth appli-
cation of the contact forces in the balance equations have
been presented. More advanced techniques can be applied
to introduce deformable and frictional contact conditions,

123



Computational Mechanics (2020) 66:603–624 623

considering thermal transfer, which will improve the results.
This improvement is an objective of the future work.

The combination of the techniquesmentioned above leads
to a PFEM able to handle the modelling of 3D metal cut-
ting processes. The modelling capacity of the mixed u − p
and u − φ formulations has been tested with two classical
large deformation problems in thermo-plasticity. The results
obtained agree with other simulation techniques.

The capabilities the PFEM formodelling 3D cutting prob-
lems, have been demonstrated with the analysis of two
representative numerical simulations of 3D orthogonal cut-
ting tests. A comparison with the 2D modelling of the cut
has beenmade in one of the examples, providing very similar
results to the 3D solution. It is interesting that the 2D solu-
tion yielded good predictions of the cutting forces, while it
simplifies substantially the actual 3D boundary constraints.

The numerical solutions obtained with the PFEM provide
accurate results for the chip thickness, the contact length,
the cutting and feed forces, the distribution of the strain rate,
strains, temperatures, and vonMises stress, among other pro-
cess variables that are very costly and difficult to measure
experimentally. The versatility of the 3D PFEM approach
developed in this work has many advantages for the simula-
tion of practical cutting problems.
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