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a b s t r a c t

This paper presents a soft computing technique for modeling and control of nonlinear systems using
the online learning criteria. In order to obtain an accurate modeling, and therefore a controller with
good performance, a method based on the fundamentals of the artificial intelligence algorithm, called
LAMDA (Learning Algorithm for Multivariate Data Analysis), is proposed, with a modification of its
structure and learning method that allows the creation of an adaptive approach. The novelty of this
proposal is that for the first time LAMDA is used for fuzzy modeling and control of complex systems,
which is a great advantage if the mathematical model is not available, partially known, or variable.
The adaptive LAMDA consists of a training stage to establish initial parameters for the controller,
and the application stage in which the control strategy is computed and updated using an online
learning that evaluates the closed-loop system. We validate the method in several control tasks:
(1) Regulation of mixing tank with variable dead-time (slow variable dynamics), (2) Regulation of a
Heating, Ventilation and Air-Conditioning (HVAC) system (multivariable slow nonlinear dynamics), and
(3) trajectory tracking of a mobile robot (multivariable fast nonlinear dynamics). The results of these
experiments are analyzed and compared with other soft computing control techniques, demonstrating
that the proposed method is able to perform an accurate control through the proposed learning
technique.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The evolution of artificial intelligence has allowed the devel-
pment of very powerful techniques, useful for modeling non-
inear systems whose dynamics are complex and unknown [1].
he development of these techniques has increased considerably
ue to the computational power of the computers, allowing the
mplementation of learning algorithms with high accuracy and
ast in processing terms, considering the inherent uncertainty and
hanging conditions of the systems [2]. Due to the versatility of
hese methods, it is possible to perform offline and online system
odeling [3], which are very useful in control schemes, especially
hen the mathematical model of the system is unknown or
ariable. Specifically, in the case of online learning, the main
dvantage is the adaptation to changes in the dynamics of the
ystem to be modeled/controlled, since it learns constantly the
ehavior of the process based on the input and output data. Many
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of the applications related to industrial processes, aeronautics,
robotics and power systems require the incorporation of artificial
intelligence into the control schemes, due to the adaptive fea-
ture that it provides when the mathematical model is complex,
unknown or inaccurate. The most used approaches for modeling
and control of systems are Artificial Neural Networks (ANN) [4–
6], Fuzzy Logic [7], and the hybrid models between the ANNs and
the Fuzzy Inference Systems [8,9]. This approach is considered
as a universal approximator [10], with the ability to represent
any parameterized model. The adaptive neuro-fuzzy inference
systems (ANFIS) are schemes that combine characteristics of both
models (neuronal and fuzzy), with a fixed structure of nodes
and layers, using the criteria of the neural networks for the
learning process to perform the parametric adjustment, showing
excellent results in different application fields related to model
and control [11–15].

The aforementioned approaches are generally used in schemes
of Adaptive Inverse Control (AIC). This control methodology has
been studied for the last three decades, in which different re-
searchers have made interesting proposals, applied to unknown
plant dynamics [16]. Neural networks are used for this purpose,

finding a great deal of information in the literature (for more
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detail, see [3,17–22]). One of the works where the potential of
these methods is presented is [23]. In this work, an AIC strategy
is proposed for variable speed wind turbine, which is a clear
example of applying intelligent algorithms to model and control
complex systems. The neural networks are used for inverse learn-
ing of the wind turbine, and additionally, this proposal requires as
information the sensitivity of the process to the control input. The
main problem of this methodology is that an additional neural
network is required to estimate the process sensitivity, which
increases the complexity and computational cost of the control
scheme. The two neural networks are firstly offline trained; then,
they are online updated with a backpropagation algorithm. A
similar approach is presented in [24] based on support vector
machines (SVM) for the excitation system with changing param-
eters in the actuator, improving the performance in the transient
and system damping. Recurrent Neural Networks (RNN) are a
variation of the previous ones used in the design of identifiers and
controllers; however, they are difficult to train due to the prob-
lem of fading gradients computed with backpropagation through
time [25]. An interesting solution to this issue is proposed by
the reservoir computing paradigm, whose main idea is that only
the output weights of the network are trained and the internal
connections are randomly initialized, such that the dynamics of
the network are at the edge of stability [6]. The main problem
with this proposal is the stability analysis and the definition of the
number of neurons in the reservoir, which must be heuristically
calibrated.

Fuzzy logic is an excellent tool for modeling systems, it is gen-
erally rule-based and has had a wide field of application in system
control, facilitating the design of applicable nonlinear controllers
from simple systems to complex chaotic systems [26,27]. Fuzzy
logic has also been used in the design of AIC schemes based on
the creation of rules whose parameters can adapt automatically
through learning criteria. For instance, in [28], to compensate
the motion inaccuracies of a gripper rotating system owing to
dead zones of unknown characteristics via the Takagi–Sugeno (T–
S) fuzzy model. The adaptive updating is based on the gradient
projection technique to update the inverse dead-zone parameters
online, which improves the performance of the entire control sys-
tem. A similar work applies T–S models to model and compensate
for unknown dead zones in actuators [29].

Finally, the neuro-fuzzy systems have also been developed
in AIC. In [30], the position control of a switched reluctance
motor is presented. The proposed method, based on type-2 fuzzy
neural networks, could realize high precise position control for
the SRM under different working conditions. In [31], a neuro-
fuzzy inference system with learning based on a particle swarm
optimization algorithm has been developed, compared with AN-
FIS, and applied to control of the temperature of a water system.
The use of hybrid AIC schemes, combined with PID, has been
implemented to regulate an exothermic Continuous Stirred-Tank
Reactor (CSTR) to eliminate the static error, which is trained
through an improved nearest-neighborhood clustering algorithm
and a gradient descent algorithm [32]. The authors of [33] have
implemented the learning of the neuro-fuzzy model based on the
global evolutionary Big Bang-Big Crunch (BB-BC) optimization al-
gorithm. The model is used to generate the optimal fuzzy inverse
model output as the control signal at every sample time, applying
their method in two slow dynamic systems. However, no varia-
tion of plant parameters is observed to analyze the potential of
the proposal. AIC based on neuro-fuzzy approaches are also used
in the field of robotic, since kinematic, and especially dynamic
models, are often complex to obtain due to the forces that inter-
act in each degree of freedom, being adaptive models useful to
compensate the errors in modeling the dynamics [34] . In this
work, the authors demonstrate that the proposed adaptive in-
verse dynamics control scheme is effective to improve the control
performance of the system with uncertainties. In the literature,
several works have made efforts to improve the performance
of neuro-fuzzy models through the use of hybrid learning [8],
self-tuning ANFIS based in genetic programming [35], learning
based on square-root cubature Kalman filter (SCKF) or recursive
least squares (RLS) [36], or learning techniques that use input
space partitioning through sub-clustering for higher dimensional
regression problems (extreme learning [37]).

The background that has been analyzed related to AIC based
on different learning methods, and the advantages that these
systems present when working with systems of unknown or
uncertain characteristics, have motivated in this work to propose
a new approach based on fuzzy logic features. The technique we
take as a starting point for our work is LAMDA (Learning Algo-
rithm for Multivariate Data Analysis) [38], which has presented
interesting results for both classification [39] and clustering [40]
problems. Our research contribution consists in proposing an
adaptive learning method for the LAMDA parameters update,
which allows to control a system through the detection of func-
tional states, the theory on which this algorithm is based, without
requiring the process model.

The LAMDA algorithm can be considered as a white box be-
cause it involves simple mathematical operations, which reduce
the complexity in the programming. The proposed approach has
the additional advantage of handling a set of fixed hidden lay-
ers, which is usually a drawback because the designer must
specify this parameter, as in the case of conventional neural
networks. This algorithm originally adjusts its internal param-
eters in the learning stage, handling the concept of adequacy
degree, for which is required the computation of two parameters.
The first one is called the Marginal Adequacy Degree (MAD),
which is calculated through the contribution of all descriptors of
an individual using fuzzy probability functions [41]. The MADs
of an individual in each class are combined through the use
of fuzzy aggregation operators, resulting a second parameter,
called Global Adequacy Degree (GAD), which corresponds to the
membership degree of the individual to a class. Then, the GADs
allow identifying the class or cluster where the individual must
be assigned.

LAMDA has been used in several applications, especially in
the identification of functional states of systems, with satisfac-
tory results in classification and clustering tasks [40,42–47]. In
the most recent works, we have proposed for the first time
LAMDA as a non-adaptive controller, adding to the algorithm
a T–S inference stage, obtaining a class-based controller. This
proposal was tested in two different systems, the first, in a SISO
system corresponding to the temperature control of a mixing
tank with variable dynamics [48]. The second, in a MIMO sys-
tem corresponding to a Heating, Ventilation and Air-Conditioning
(HVAC) system for regulation of Temperature and Humidity [49].
In both studies, the proposal presented promising results, without
considering the mathematical model of the plants for its design.
The class-based controllers were defined and calibrated by an
expert who has knowledge of the behavior of the systems. In
general, the design of these controllers can be a complex and
time-consuming process, depending on the system to be con-
trolled. Another disadvantage is that the controllers have not
the ability to automatically learn or be adaptive, because their
internal values (class centers, exigency degree, and consequent
parameters) are set at the design stage, and they do not change
during the operation of the control in the processes, which is
useful in applications where the system dynamics is unknown or
variable.

In order to solve the problems of defining the LAMDA classes,
calibration of input and output scaling gains, and non-adaptability
of controller parameters, in this work, we propose a novel ap-
proach that consists in creating an Adaptive LAMDA model that
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allows making an online modeling of the plant and its control,
for which the learning strategy of LAMDA is enhanced to repli-
cate the behavior of the plant. The adaptability feature through
online learning avoids performing the calibration stage that is
time-consuming and often complex.

The proposed Adaptive LAMDA model adjusts its internal pa-
rameters, so that the output of the algorithm is as similar as
possible to the real output data, based on the input data (de-
scriptors/features). For this, it is essential to expand the LAMDA
model, and give it an optimization criterion (a different learning
technique) to adjust its internal parameters. A proper fit allows
a high accuracy modeling, which will result in a good control
system performance. Offline modeling schemes are suitable when
considering invariant-time plants and without disturbances, since
in the presence of these factors, the offline control scheme will
result in an inappropriate behavior in the computed control ac-
tions, presenting steady-state error [50]. For this reason, the
online learning scheme is appropriate in most control objec-
tives. Regarding previous works, the contributions, novelties and
advantages of our proposal are the following:

• Unlike LAMDA without self-learning presented in [49], the
model parameter adjustment is proposed, avoiding the cal-
ibration stage and class parameterization.

• The implementation of LAMDA as an identifier is proposed
for the first time, handling the concept of self-adjustment
of the exigency (α) and the antecedent parameters used for
the GADs calculation.

• A stability analysis of the learning algorithm is proposed
to guarantee a rapid convergence of the estimated output
towards the desired output.

• Our scheme, with respect to approaches such as those pre-
sented in [23,24,51], does not required to compute the out-
put/input gradient of the system to be controlled, which
reduces the computational cost.

• Our approach has a known number of hidden layers, which
is an advantage with respect to algorithms such as those
presented in [6,25], avoiding the heuristic definition of the
number of internal layers.

• The proposed learning for LAMDA is based on a hybrid learn-
ing, which allows a quick convergence to the desired output,
improving the learning time and preventing that solutions
be trapped in local minima. This is a great advantage over
learning methods that only work with gradient descent,
which is generally slow [52].

• The modeling and control of nonlinear systems are based on
the concept of classes or functional states established by the
LAMDA theory.

The experiments carried out have demonstrated the ability to
learn the control actions, for different dynamic behaviors. Due to
this, our proposal can be applied to a wide variety of nonlinear
systems. This paper is organized as follows, Section 2 presents
a brief review of the fundamentals and operations performed in
the original LAMDA for classification and clustering. Section 3
formalizes the proposed scheme and the established learning
process, detailing the parameter adjustment methods for the
Adaptive LAMDA. Section 4 shows in detail the proposed Adaptive
LAMDA approach applied to control systems. Section 5 presents
the test and results in three different case studies with different
dynamics, to solve regulation and tracking trajectory problems,
in order to validate our online control scheme. Finally, Section 6
concludes the paper.
2. LAMDA

In this section, we present a brief review of the theoretical
framework of LAMDA. This algorithm is a fuzzy approach fo-
cused on the concept of the adequacy degree that can be used
for classification and clustering. In supervised learning context,
LAMDA performs a similarity evaluation (adequacy degree) of an
individual X =

[
x1, . . . , xj, . . . , xn

]T (where n is the number of
descriptors) to each class C = {C1, . . . , Ck, . . . , Cm} (where m is
the number of classes), to define where the individual should be
assigned.

To initialize the learning process, the descriptors are normal-
ized xj ∈ [0, 1]. This procedure is performed considering the
maximum xjmax and minimum xjmin values as:

xj =
xj − xjmin

xjmax − xjmin
(1)

The normalized individual X represented for the normalized de-
scriptors computed by (1) is used for calculating the adequacy
degrees for each class.

2.1. Marginal Adequacy Degree (MAD)

This parameter computes the degree of similarity between the
descriptor of an individual and the same descriptor in each class.
To compute this parameter are considered probability density
functions [53], one of the most used is the Gaussian function (2),
which assumes a normal distribution of the descriptor.

MADk,j(xj, ρk,j, σk,j) = e
−

1
2

(
xj−ρk,j
σk,j

)2

(2)

where ρk,j is the average value of the descriptor j that belongs to
the class k, and σk,j is the standard deviation of the descriptor j
that belongs to the class k.

2.2. Global Adequacy Degree (GAD)

The Global Adequacy Degree (GAD) is computed combining
the MADs for each individual X in each class, using fuzzy logic
connectors as aggregation operators. These connectors can be of
intersection (t-norm ‘‘T ’’) or union (t-conorm ‘‘S’’). Thus, different
aggregation operators can be used, among them, the Product-
Probabilistic sum (see Eq. (3)) or Dombi (see Eq. (4)).

T (a, b) = ab; S (a, b) = a + b − ab (3)

T (a, b) =
1

1 +
p
√( 1−a

a

)p
+
( 1−b

b

)p ;

S (a, b) = 1 −
1

1 +
p
√( a

1−a

)p
+
( b
1−b

)p (4)

To classify the data in a strict or permissible manner, the exigency
parameter α ∈ [0, 1] is required to calibrate the fuzzy partition
data. If α = 1, then the fuzzy partition data is calculated only by
the t-norm. It means that the classification is stricter. If α = 0,
then the fuzzy partition data is calculated by the t-conorm. It
means that classification is more permissible, therefore, samples
are assigned to a class despite not having enough similarity with
the individuals belonging to it. The exigency parameter produces
a linear interpolation between the t-norm and t-conorm for the
GADs, which are computed by:

GADX,k

(
MADk,1, . . . ,MADk,j, . . . ,MADk,n, α

)
= αT

(
MADk,1, . . . ,MADk,j, . . . ,MADk,n

)
+ (1 − α) S

(
MADk,1, . . . ,MADk,j, . . . ,MADk,n

)
(5)
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LAMDA, with respect to other classifiers, has the capability to
create new classes after the training stage, for which it is based on
a threshold known as the Non-Informative Class (NIC). The possi-
bility of finding MAD depends on how the data are distributed
in each class. For the NIC, it is considered ρNIC,j = 0.5, and
σk,j = 0.25.

The algorithm compares all the GADs, and assign the object to
he class with the highest value (6). If the GAD of the NIC has the
ighest value, then a new class or cluster is created.

ndex = max
(
GADX,1,GADX,k, . . . ,GADX,m,GADX,NIC

)
(6)

he LAMDA operation scheme for classification is presented in
ig. 1, in which the steps described above are shown. They are
equentially interconnected from the acquisition of the standard-
zed descriptors to determine the class to which the individual is
ssigned.
In control applications, the importance of the self-adjustment

f parameters of each class of the original model is detailed
n [49]. Furthermore, the exigency parameter α affects the con-
roller output in terms of performance, especially if the dynamic
f the plant is variable.
As seen in the LAMDA procedure, the functioning as a classifi-

ation model is quite simple, however, in online learning control
asks an adaptive model is required. Hence, we propose the
esign of an Adaptive LAMDA, whose internal parameters are
pdated online based on the data of the system to be controlled,
t implies the implementation of a learning method different from
he one proposed for classification and clustering.

. Adaptive LAMDA model

In this section, we formalize our proposed scheme and the
earning process, detailing the modifications to the original struc-
ure of LAMDA and the parameter adjustment process of the
odel.
3.1. Structure of the proposed adaptive LAMDA

The original LAMDA presents a fairly good performance in
classification and clustering applications, however, for modeling
and control, the algorithm needs to work as a regressor with the
feature of online self-adjustment of parameters, for which the
addition of layers and a different learning method is required. In
this paper, the addition of a first-order T–S fuzzy inference system
to LAMDA is proposed, due to the excellent results that this
method presents for systems modeling and control. This method-
ology establishes that the output of each class is represented
as a linear combination of input descriptors, plus a constant
parameter. Finally, the last output is the weighted average of each
class output.

The implementation of the T–S fuzzy inference system applied
to LAMDA requires the addition of layers 3, 4 and 5 to the
original model presented in Fig. 1. Fig. 2 shows the proposed
scheme for the adaptive model, which takes an individual X for
the computation of the outputs from Layer 1 to Layer 5.

The scheme of Fig. 2 corresponds to a MISO (Multiple-Input
Single-Output) system, with 5 layers, each one with a specific
function:

Layer 1 each node in this layer corresponds to compute the
MADk,j(xj, ρk,j, σk,j) of each descriptor j in each class k, as de-
cribed in the fundamentals of LAMDA (see Eq. (2)). The set of
arameters ρk,j, σk,j must be optimized, changing the bell shape
y adjusting the classes of the model. These parameters are
nown as the premise parameters of the LAMDA structure.
Layer 2: Each node in this layer computes the GADX,k(MADk,1,

. . . ,MADk,n, α) of each class k through the aggregation functions
and the exigency parameter α. This parameter must be opti-
mized, changing the exigency degree for the classes of the model,
and therefore, the linear interpolation between the t-norm and
t-conorm, which affects the behavior of the GADs.

Layer 3: In this node, the normalization of each GAD is com-
puted, with respect to the sum of all the GAD for each class. The
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normalization is performed by:

NGADX,k

(
GADX,1, . . . ,GADX,k, . . . ,GADX,m

)
=

GADX,k∑m
k=1 GADX,k

(7)

Layer 4: Each node of this layer corresponds to the result of
multiplying the NGADX,k with a first-order T–S function Hk (·) for
the class k that uses the descriptors of the analyzed individual,
and it is defined by Eq. (8). This function has n + 1 parameters,
that is, it depends on the number of descriptors of X . These values
re known as consequent parameters.

k
(
X, hk1, . . . , hkj, . . . , hkn, hk

)
= x1hk1 + · · · + xjhkj + · · · + xnhkn + hk (8)

and the output of layer 4 is computed by:

fk
(
NGADX,k,Hk

)
= NGADX,kHk (9)

Layer 5: This layer has only one node, which computes the
sum of all the inputs, giving as a product the value OL:

L (f1, . . . , fk, . . . , fm) =

m∑
k=1

fk (10)

Using the previous expressions, the construction of an Adaptive
LAMDA algorithm based on the T–S inference is proposed. This
model must adjust the premise parameters that correspond to
the calculation of the MADk,j, such as: ρk,j, σk,j, the exigency
parameter α, and the consequent parameters in the functions:
H1, . . . ,Hk, . . . ,Hm.

The number of nodes in each layer depends on the number
of descriptors/features and their fuzzy sets (set by the designer).
Based on the fact that all descriptors are considered to have the
same number of classes "s", the total number of classes is m = sn,
nd the number of nodes in each layer is, for layer 1: (ns)nodes,

for layers 2, 3, 4: m nodes, and for layer 5: 1 node.

3.2. Hybrid learning algorithm

In the adaptive LAMDAmodel, each node fulfills an established
function in a unidirectional manner. Some of these nodes have
parameters that are adapted as a result of the learning process
based on the input and output data. In this process, the method
called hybrid learning [12,13] has been considered. It consists of
a step forward and a step backward that considerably improves
the learning time, preventing that solutions be trapped in local
minima [54,55].

The proposed learning has been well studied in different
works where adaptive networks are designed [13,14]. In the
first stage, a forward pass is carried out with the least-squares
estimate (LSE) method to adjust the consequent parameters, then
a backward pass is performed using the gradient descent (GD)
algorithm to adjust the antecedent parameters. The scheme of
the hybrid learning algorithm is presented in Fig. 3, detailing the
two steps for parameters update.

3.2.1. Forward pass
In the forward pass, the learning algorithm keeps fixed the

antecedent parameters ρk,j, σk,j, α required for the calculation of
MADk,j and GADX,k in the layers 1 and 2, respectively, and the
process goes forward until the calculation of the nodes NGADX,k
n layer 3.

Layer 4 requires the consequent parameters for all the classes
= {C1, . . . , Ck, . . . , Cm}. Here, the LSE method is used for their

djustment, considering that the function Hk (·) is linear in the
onsequent parameters. To demonstrate this, we develop Eq. (9),
onsidering the dth individual X

d
=

[
xd1, . . . , x

d
j , . . . , x

d
n

]
that

produces the output odL :

odL = f1 + · · · + fk + · · · + fm (11)

xpressing (11) on the terms of H (·) :
d
L = NGAD

Xd
,1
H1 + · · · + NGAD

Xd
,k
Hk + · · · + NGAD

Xd
,m
Hm (12)

eplacing (8) in (12) for the dth individual:

d
L =

(
NGAD

Xd
,1
xd1
)
h11 + · · · +

(
NGAD

Xd
,1
xdj
)
h1j + · · ·

+

(
NGAD

Xd
,1
xdn
)
h1n +

(
NGAD

Xd
,1

)
h1

+

(
NGAD

Xd
,k
xd1
)
hk1 + · · · +

(
NGAD

Xd
,k
xdj
)
hkj + · · ·

+

(
NGAD d xd

)
h +

(
NGAD d

)
h

X ,k n kn X ,k k
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+

(
NGAD

Xd
,m
xd1
)
hm1 + · · · +

(
NGAD

Xd
,m
xdj
)
hmj + · · ·

+

(
NGAD

Xd
,m
xdn
)
hmn +

(
NGAD

Xd
,m

)
hm (13)

The parameters {h11, . . . ,h1j, . . . , h1, hk1, . . . , hkj, . . . , hk, hm1,
. . , hmj, . . . , hm} ∈ R are constants, and the expression (13)
hows that function Hk(·) is linear in the consequent, for all the
esired values at the output O =

[
o1 . . . od . . . oD

]T . Eq. (13) can be
ewritten as:

= Ah (14)

n this case, the matrix A is invertible, and Eq. (15) can be used;
therwise, the pseudoinverse must be computed with (16), which
inimize the difference

(
∥Ah − O∥

2):
= A−1O (15)

=
(
ATA

)−1
ATO (16)

he fact that an inverse matrix must be calculated makes Eqs. (15)
nd (16) computationally expensive. For this reason, a sequential
ethod is used to calculate h.
The recursive method applied to time-varying systems uses

he dth row vector of matrix A, defined by aT , and the dth element
f O, defined by od. Then, h is iteratively computed using the
ovariance matrixP(t + 1) as follows:

(k + 1) =
1
λ

[
P(k) −

P(k)a(k + 1)aT (k + 1)P(k)
λ+ aT (k + 1) P (k) a (k + 1)

]
;

0 < λ ≤ 1 (17)

is the forgetting factor and is chosen close to 1 to achieve good
tability [56].
Finally, h(k + 1) is computed by:

(k + 1) = h (k)+ P (k + 1) a (k + 1)

×
[
o (k + 1)− aT (k + 1) h (k)

]
; d = {1, . . . ,D − 1}

(18)

.2.2. Backward pass
According to our LAMDA model, if a data output set O =

o1 . . . od . . . oD
]T is available, then a supervised learning process
an be carried out, propagating backward the error from layer
to layer 1 by the chain rule, after computing the consequent
arameters h(t + 1), with Eq. (19). Considering that od is the dth
ata of the desired outputs O, and odL the output calculated by
he LAMDA model corresponding to the individual X

d
, the error

in layer 5 is defined as:

Ed(k) =
1
2

[
od(k) − odL (k)

]2
(19)

For online learning, the aim is to propagate backward the
rror Ed, through each layer and each node, until obtaining the
erivative of the error Ed with respect to each of the adjustment
erms θ =

{
ρk,j, σk,j, α

}
required in Eqs. (2) and (4) to compute

ADs and GADs, respectively.
In this way, the adjustment of θ in an instant of time (k + 1)

y the gradient descent method is done through Eq. (20), and the
pdated with (21):

θ (k) = −η
∂Ed(k)
∂θ (k)

(20)

(k + 1) = θ (k)+∆θ (k)+ β (θ (k)− θ (k − 1))

= θ (k)− η
∂Ed
∂θ

+ β (θ (k)− θ (k − 1)) (21)

here η ∈ [0, 1] corresponds to the learning rate, and β ∈ [0, 1]
s the momentum term.

The learning process using the gradient descent method
hrough the backpropagation of the error Ed from layer 5 to layer
is:
Layer 5:

(5)
=
∂Ed
∂odL

=
∂

∂odL

[
1
2

(
od − odL

)2]
= −

(
od − odL

)
(22)

Layer 4: From (10), the derivative of odLwith respect to ∂ fk is:

∂odL
∂ fk

=
∂[f1 + · · · fk + · · · fm]

∂ fk
= 1; ∀k = 1, . . . ,m (23)

ϵ
(4)
k =

∂Ed
∂odL

∂odL
∂ fk

= ϵ(5) (24)

Layer 3: From (9), the derivative is:

∂ fk
=
∂
[
NGADX,k × Hk

]
= Hk; ∀k = 1, . . . ,m (25)
∂NGADX,k ∂NGADX,k
Fig. 3. Hybrid Learning Scheme.
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Fig. 4. Block diagram of the inverse control method: a) Learning stage, (b) Application Stage.
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b
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ϵ
(3)
k =

∂Ed
∂odL

∂odL
∂ fk

∂ fk
∂NGADX,k

= ϵ(5)Hk; ∀k = 1, . . . ,m (26)

Layer 2: In this layer, the partial derivatives of layer 3 are
calculated with respect to the outputs of layer 2. Because each
nodek of layer 3 depends on all the outputs of layer 2, as is shown
in (7), the term k2 is used to refer to the nodes of layer 2.

∂NGADX,k

∂GADX,k2

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∑m
k2=1 GADX,k2

)
− GADX,k2(∑m

k2=1 GADX,k2

)2 if : k2 = k

−
GADX,k[∑m

k=1 GADX,k2

]2 if : k2 ̸= k

(27)

(2)
k =

∂Ed
∂odL

∂odL
∂ fk

∂ fk
∂NGADX,k

m∑
k=1

∂NGADX,k

∂GADX,k2

(28)

(2)
k = ϵ(5)Hk

m∑
k=1

∂NGADX,k

∂GADX,k2

; ∀k = 1, . . . ,m (29)

Layer 1: The partial derivatives of layer 2 are computed with
respect to the outputs of layer 1. Because the GADs are calculated
recursively by Eq. (5), we use the term j1 to refer to each of
the nodes of the layer 1, in order to facilitate the mathematical
expression of the derivative.

∂GADX,k

∂MADk,j
= αT

(
MADk,1, . . . ,MADk,j1 , . . . ,MADk,n

)
+ (1 − α)

(
1 − S

(
MADk,1, . . . ,MADk,j1 , . . . ,MADk,n

))
;

∀j1 ̸= j (30)

In (30), the derivative of GADX,k respect to MADk,j is equal to the
alculation of the GAD without considering this term. Now, the
ropagated error in layer 1 is:

(1)
k = ϵ

(2)
k

∂GADX,k

∂MADk,j
(31)

The parameters ρk,j, σk,j are adjusted in each class k and each
escriptor jwith Eqs. (32) and (33), respectively, and α is adjusted

for all the model with (34).

∂MADk,j

∂ρk,j
=

(
xj − ρk,j

)(
σk,j
)2 ∂MADk,j H⇒

∂Ed
∂ρk,j

= ϵ
(1)
k
∂MADk,j

∂ρk,j
(32)

∂MADk,j

∂σk,j
=

(
xj − ρk,j

)2(
σk,j
)3 ∂MADk,j H⇒

∂Ed
∂σk,j

= ϵ
(1)
k
∂MADk,j

∂σk,j
(33)

∂GADX,k
=
[
T
(
MADk,1, . . . ,MADk,j, . . . ,MADk,n

)

∂α

o

−S
(
MADk,1, . . . ,MADk,j, . . . ,MADk,n

)]
H⇒

∂Ed
∂α

=

m∑
k=1

ϵ
(2)
k

∂GADX,k

∂α
(34)

inally, the terms are updated as:

k,j (k + 1) = ρk,j (k)+ η

(
−
∂Ed
∂ρk,j

)
+ β(ρk,j (k)− ρk,j (k − 1))

(35)

k,j (k + 1) = σk,j (k)+ η

(
−
∂Ed
∂σk,j

)
+ β(σk,j (k)− σk,j (k − 1))

(36)

(k + 1) = α (k)+ η

(
−
∂Ed
∂α

)
+ β(α (k)− α (k − 1)) (37)

The proposed procedure for online learning is performed at every
sample time.

4. Design of the control with Adaptive LAMDA

As background, we have been used the AIC strategy [9]. This
method requires an offline learning by using random values as
training output, but also, the plant response to these values as
training input, as is shown in Fig. 4a. Here, we propose to use the
Adaptive LAMDA as an identifier, applying a random input u(k)
to the plant and taking the output x(k + 1), its previous values
[x (k) ; . . . ; x(k−q)], and the delayed values [u (k − 1) ; . . . ; u(k−

p)] as descriptors. The reason for this delayed network input is
to allow in the application stage the desired plant output and
the current plant feedback as the network input. With training,
the internal parameters of the LAMDA model are updated to
minimize the error eu(k) through the process detailed in Sec-
tion 3.2. After the training, the application stage is implemented
with the trained LAMDA model, as is shown in Fig. 4b. This
model takes as inputs the desired reference xref (k + 1), the
states of the plant [x (k) ; . . . ; x(k − q)], and the delayed values
[u(k − 1), . . . , u(k − p)]. The main idea of this method is to es-
imate the inverse plant model based on past and current plant
utputs and inputs, to obtain the feedback control. The selection
f p and q depends on an estimation of the order of the plant.

.1. Proposed feedback control with Adaptive LAMDA

To obtain online control with the Adaptive LAMDA, the feed-
ack control scheme presented in Fig. 5 is proposed. Once the
odel has been trained, as shown in Fig. 4a, initial parameters
re set in the identifier. In the application, the identifier is trained

nline in a supervised manner with the hybrid learning of Fig. 3.
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Fig. 5. Block diagram of the online inverse learning control with Adaptive LAMDA.
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Υ
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A

h

duplicate LAMDA is used as controller, considering now the
esired reference xref (k + 1), updating its internal parameters
n each sample time based on the learning performed by the
dentifier.

Due to the online learning feature, the proposed scheme is
ble to bring the system output to the desired reference even in
he presence of disturbances, or when the dynamic of the plant
s variable. To validate the proposed controller, different control
asks have been simulated: (1) Regulation of mixing tank with
ariable dead-time (slow variable dynamic), (2) Regulation of an
VAC system (slow multivariable nonlinear dynamic), and (3)
rajectory tracking of a mobile robot (fast multivariable nonlinear
ynamic).

.2. Convergence of the learning algorithm

For online learning, we use the proposed hybrid algorithm
resented in Section 3. In each iteration of the closed-loop of
ig. 5, the antecedent and consequent parameters are adjusted
ith the aim that the LAMDA output converges to a desired value.
hen GD and RLS are used to update the model parameters, then

hey are rapidly and effectively modified in order to minimize the
rror. From Eq. (19), we define the error Ed(k) as:

Ed(k) =
1
2

[
od(k) − odL (k)

]2
=

1
2
e (k)2 (38)

To demonstrate the convergence of the algorithm, we use Lya-
punov’s theory. The selected Lyapunov function is:

V (k) = Ed (k) (39)

Then, the change of V (k) is computed as:

∆V (k) = V (k + 1)− V (k) = Ed (k + 1)− Ed (k)

=
1
2

(
e(k + 1)2 − e(k)2

)
V (k) =

1
2
(e (k + 1)− e (k)) (e (k + 1)+ e (k))

V (k) =
1
2
∆e (k) (∆e (k)+ 2e (k)) (40)

rouping all the terms of the antecedent in vector form Υ (k) for
he centers and Ψ (k) for the standard deviation of the classes, we
ave:

Υ (k) =
[
ρ1,1 (k) , . . . , ρ1,j (k) , . . . , ρ2,1 (k) , . . . , ρ2,j (k) , . . . ,

ρk,1 (k) , . . . , ρk,j (k) , . . . , ρm,n (k)
]T (41)

Ψ (k) =
[
σ1,1 (k) , . . . , σ1,j (k) , . . . , σ2,1 (k) , . . . , σ2,j (k) , . . . ,

σk,1 (k) , . . . , σk,j (k) , . . . , σm,n (k)
]T (42)

and the consequent parameters in the matrix h(k), from Eq. (18):

h(k) =

[h11 . . . h1j . . . h1n h1
hk1 . . . hkj . . . hkn hk
hm1 . . . hmj . . . hmn hm

]
(43)

he change in error ∆e (k)can be approximated by [54]:

∆e (k) =

(
∂e (k)
Υ (k)

)T

∆Υ (k)+

(
∂e (k)
∂Ψ (k)

)T

∆Ψ (k)

+

(
∂e (k)
∂α (k)

)
∆α (k)+ tr

((
∂e (k)
∂h (k)

)
∆h (k)

)
(44)

pdating the centers by the gradient descent method:

(k + 1) = Υ (k)+ η

(
−
∂Ed (k)
∂Υ (k)

)
+ β (Υ (k)− Υ (k − 1))

(45)
∂Ed (k)
∂Υ (k)

=
∂Ed (k)
∂e (k)

∂e (k)
∂odL (k)

odL (k)
∂Υ (k)

= −e (k)
∂odL (k)
∂Υ (k)

(46)

he change of Υ (k), replacing (46) in (45), is:

∆Υ (k) = ηe (k)
∂odL (k)
∂Υ (k)

+ β∆Υ (k − 1) (47)

pplying the same procedure of (45)–(47) for Ψ (k) and α(k), we
have:

∆Ψ (k) = ηe (k)
∂odL (k)
∂Ψ (k)

+ β∆Ψ (k − 1) (48)

∆α (k) = ηe (k)
∂odL (k)
∂α (k)

+ β∆α (k − 1) (49)

Now, rewriting Eq. (18) to compute the consequent parameters
h(k + 1):

k + 1 = h k + P k + 1 a k + 1 e k (50)
( ) ( ) ( ) ( ) r ( )
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with:

er (k) = o (k + 1)− aT (k + 1) h (k) (51)

From (50), the change of h(k) is computed by:

∆h (k) = P (k + 1) a (k + 1) er (k) (52)

hus, the estimated output of LAMDA for the d-th sample from
q. (18) is:
d
L (k + 1) = aT (k + 1) h (k) (53)

rom Eqs. (38) and (53), we have the derivative:

∂e (k)
∂h (k)

=
∂e (k)
∂odL (k)

∂odL (k)
∂h (k)

= −aT (k + 1) (54)

eplacing (16), (47)–(49) and (54) in (44), we can compute ∆e (k)
s:

e (k) =

(
−
∂odL (k)
∂Υ (k)

)T (
ηe (k)

∂odL (k)
∂Υ (k)

+ β∆Υ (k − 1)
)

+

(
−
∂odL (k)
∂Ψ (k)

)T (
ηe (k)

∂odL (k)
∂Ψ (k)

+ β∆Ψ (k − 1)
)

+

(
−
∂odL (k)
∂α (k)

)(
ηe(k)

∂odL (k)
∂α (k)

+ β∆α (k − 1)
)

− aT (k + 1) P (k + 1) a (k + 1) er (k) (55)

e (k) = −ηe (k)
(∂odL (k)∂Υ (k)


2

)2

−

(
∂odL (k)
∂Υ (k)

)T

β∆Υ (k − 1)

− ηe (k)
(∂odL (k)∂Ψ (k)


2

)2

−

(
∂odL (k)
∂Ψ (k)

)T

β∆Ψ (k − 1)

− ηe (k)
(
∂odL (k)
∂α (k)

)2

−

(
∂odL (k)
∂α (k)

)
β∆α (k − 1)

− aT (k + 1) P (k + 1) a (k + 1) er (k) (56)

ow, the following norms are replaced with the terms NΥ ,NΨ ,
Nα:

NΥ =

(∂odL (k)∂Υ (k)


2

)2

,NΨ =

(∂odL (k)∂Ψ (k)


2

)2

,Nα =

(
∂odL (k)
∂α (k)

)2

(57)

Replacing (57) in (56):

∆e (k) = −ηe (k)NΥ −

(
∂odL (k)
∂Υ (k)

)T

β∆Υ (k − 1)− ηe (k)NΨ

−

(
∂odL (k)
∂Ψ (k)

)T

β∆Ψ (k − 1)

− ηe (k)Nα −

(
∂odL (k)
∂α (k)

)
β∆α (k − 1)

− aT (k + 1) P (k + 1) a (k + 1) er (k) (58)

e (k) = −e (k)

[
ηNΥ +

(
∂odL (k)
∂Υ (k)

)T
β

e (k)
∆Υ (k − 1)

+ ηNΨ +

(
∂odL (k)
∂Ψ (k)

)T
β

e (k)
∆Ψ (k − 1)

+ ηNα +

(
∂odL (k)
∂α (k)

)
β

e (k)
∆α (k − 1)

+ aT (k + 1) P (k + 1) a (k + 1)
er (k)
e (k)

]
(59)
Replacing (59) in the equation of ∆V (k) presented in (40):

∆V (k) =
1
2
e2 (k)

[
η (NΥ + NΨ + Nα)

+
β

e (k)

((
∂odL (k)
∂Υ (k)

)T

∆Υ (k − 1)+

(
∂odL (k)
∂Ψ (k)

)T

∆Ψ (k − 1)

+

(
∂odL (k)
∂α (k)

)
∆α (k − 1)

)
+ aT (k + 1) P (k + 1) a (k + 1)

er (k)
e (k)

]
×

[
η (NΥ + NΨ + Nα)

+
β

e (k)

((
∂odL (k)
∂Υ (k)

)T

∆Υ (k − 1)+

(
∂odL (k)
∂Ψ (k)

)T

∆Ψ (k − 1)

+

(
∂odL (k)
∂α (k)

)
∆α (k − 1)

)
+ aT (k + 1) P (k + 1) a (k + 1)

er (k)
e (k)

− 2
]

(60)

From (60), the following equalities are considered:

A(k) = η (NΥ + NΨ + Nα) (61)

B(k) =
β

e (k)

((
∂odL (k)
∂Υ (k)

)T

∆Υ (k − 1)

+

(
∂odL (k)
∂Ψ (k)

)T

∆Ψ (k − 1)+

(
∂odL (k)
∂α (k)

)
∆α (k − 1)

)
(62)

C(k) = aT (k + 1) P (k + 1) a (k + 1)
er (k)
e (k)

(63)

Replacing (61)–(63) in (60), to guarantee the convergence and
stability, ∆V (k)must meet the condition:

∆V (k) < 0

⇒
1
2
e2 (k) [A(k) + B(k) + C(k)] [A(k) + B(k) + C(k) − 2] < 0

⇒ 0 < A(k) + B(k) + C(k) < 2 (64)

is always positive, while the signs of B(k) and C(k) must
e evaluated to meet the condition presented in (64), if
(k) > 0:

β

e (k)

((
∂odL (k)
∂Υ (k)

)T

∆Υ (k − 1)+

(
∂odL (k)
∂Ψ (k)

)T

∆Ψ (k − 1)

+

(
∂odL (k)
∂α (k)

)
∆α (k − 1)

)
> 0 (65)

Because P(k+1) is Hermitanian semidefinite positive [54] , then:
er (k)
e (k)

> 0 H⇒ C(k) > 0 (66)

For stability, it is sufficient to consider the same weights for all
the terms in (64):

0 < A(k) <
2
3
; 0 < B(k) <

2
3
; 0 < C(k) <

2
3

(67)

Thus, from (61) and (65)–(67), we obtain (68)–(70) given in
Box I.

Considering the property: XYXT
= tr(YXTX), and applying it in

(70):

0 < aT k + 1 P k + 1 a k + 1
( ) ( ) ( )
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0 < η <
2

3 (NΥ + NΨ + Nα)
(68)

0 < β <
2e (k)

3

((
∂odL (k)
∂Υ (k)

)T

∆Υ (k − 1)+

(
∂odL (k)
∂Ψ (k)

)T

∆Ψ (k − 1)+

(
∂odL (k)
∂α(k)

)
∆α (k − 1)

) (69)

0 < aT (k + 1) P (k + 1) a (k + 1)
er (k)
e (k)

<
2
3

(70)

Box I.
p
s

•

•

= tr
(
P (k + 1) a (k + 1) aT (k + 1)

)
<

2e (k)
3er (k)

(71)

Applying the property W , Z ∈ H+

0 (n), then 0 ≤ trWZ ≤ trW tr Z ,
in (71), we have:

0 < tr (P (k + 1)) tr
(
a (k + 1) aT (k + 1)

)
<

2e (k)
3er (k)

< tr (P (k + 1)) (∥a (k + 1)∥F )
2 <

2e (k)
3er (k)

< tr (P (k + 1)) <
2e (k)

3er (k) (∥a (k + 1)∥F )
2 (72)

ow, if B(k) < 0:, we have (73) and (74) given in Box II.
From Eq. (63), if C(k) < 0:

er (k)
e (k)

< 0 (75)

0 < −C(k) <
2
3

(76)

Considering the same procedure from (71)–(72), in (76) we
have:

0 < −aT (k + 1) P (k + 1) a (k + 1)
er (k)
e (k)

<
2
3

> −aT (k + 1) P (k + 1) a (k + 1) >
2
3

e (k)
er (k)

< aT (k + 1) P (k + 1) a (k + 1) < −
2
3

e (k)
er (k)

< tr (P (k + 1)) <
−2e (k)

3er (k) (∥a (k + 1)∥F )
2 (77)

ased on the Lyapunov function of Eq. (39), are obtained the
qs. (68), (69), (72), (74) and (77), which guarantee the con-
ergence of the error e (k) −→ 0 in the training stage for a
ontrollable system independent of the application, system order,
umber of inputs, and number of classes.
As mentioned in [6], analyzing controller stability based on

nline learning is a complex task that is still an open field in
daptive inverse learning schemes that we will address in a future
aper. However, the following aspects can be considered for local
tability:

Bounded Input–Bounded Output (BIBO) Stability: BIBO stability
is guaranteed. The normalization of the GADs, through the
computation of the normalized NGADX,k ≤ 1 and the
introduced limiter shown in Fig. 5, ensure that the adaptive
LAMDA model is bounded for all inputs.

We assume that the learning algorithm in the LAMDA Identifier
has converged because a constant change in the parame-
ters would make it hard to analyze stability. Under this as-
sumption, we only need to take the LAMDA controller into
account. If the error of the learning converges e (k) −→ 0,
then the LAMDA model is an identical copy of the real
process, so it is guaranteed that there is a solution to the
inverse model, allowing to calculate a control action u(k),
which satisfies x (k + 1) ∼= xref (x + 1).

4.3. Computational complexity

We proceed to analyze the computational complexity of the
fuzzy Adaptive LAMDA in terms of memory usage, computation
time and number of operations [57] required to compute the
learning and control output at each sample time. Our program
is implemented in Matlab R2020a, running on an Intel (R) Core
(TM) i7-8750H @ 2.2 GHz microprocessor. The computational
complexity is computed based on the number of inputs of the
algorithm, these are:

• n: The number of descriptors (inputs)

• s: The number of classes in each descriptor

• m: The number of total classes of the model

4.3.1. Memory usage
In this subsection, the permanent usage of memory is counted.

The number of parameters to be computed by the algorithm
in the learning stage for the antecedent and the consequent is
based on the number of inputs and number of classes in each
0 < −B(k) <
2
3

(73)

0 < β <
−2e (k)

3

((
∂odL (k)
∂Υ (k)

)T

∆Υ (k − 1)+

(
∂odL (k)
∂Ψ (k)

)T

∆Ψ (k − 1)+

(
∂odL (k)
∂α(k)

)
∆α (k − 1)

) (74)

Box II.
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Table 1
Computation time in seconds (s) of adaptive LAMDA for learning and control.

Number of classes ‘‘s’’ in each descriptor

2 3 4 5

Learning Control Learning Control Learning Control Learning Control

Number of Descriptors ‘‘n’’

2 1.40e−4 s 4.08e−5 s 1.69e−4 s 4.48e−5 s 4.90e−4 s 5.13e−5 s 8.82e−4 s 5.65e−5 s
3 2.08e−4 s 5.24e−5 s 1.10e−3 s 6.43e−5 s 1.71e−3 s 1.18e−4 s 10.7e−3 s 1.09e−3 s
4 7.56e−4 s 5.67e−5 s 6.64e−3 s 7.85e−4 s 93.5e−3 s 7.84e−3 s 1.02e1 s 46.5e−3 s
5 1.87e−3 s 9.07e−5 s 162e−3 s 11.6e−3 s 852e−3 s 182e−3 s NT NT
6 6.70e−3 s 8.74e−4 s 624e−3 s 134.9 NT NT NT NT
7 45.1e−3 s 4.70e−3 s NT NT NT NT NT NT
8 343e−3 s 25.8e−3 s NT NT NT NT NT NT
#

#

W
l

w
o

#

T
s
b
a
(

#

#

#

#

input, n and s, respectively. As we mentioned in Section 3.1., in
ayer 1 there are ns nodes, and at each node, two parameters
re required (ρ, σ ). Additionally, the parameter α is required in
ayer 2, therefore the number of parameters in the antecedents
parametersθ(k) and #parametersθ(k−1) are:

parametersθ(k) = 2ns + 1 (78)

parametersθ(k−1) = 2ns + 1 (79)

he number of parameters of the consequent in the vector h(k) is
parametersh(k), and the number of parameters of the covariance
atrix is #parametersP(k). These values are computed based on
qs. (13) and (17), respectively, as:

parametersP(k) = [m (n + 1)]2 (80)

#parametersh(k) = m (n + 1) (81)

t is assumed that each value is stored in 2 bytes of memory [57].

.3.2. Computation time
The temporal complexity is a parameter that allows us to

erify the increase of the operations performed in each itera-
ion. Table 1 shows the computation time of the proposed adap-
ive LAMDA in the control and learning stage of the proposed
ethodology.
As observed, the computation time of the Adaptive LAMDA

n the learning block increases considerably with respect to the
ontroller block. For these tests, eight system inputs have been
onsidered, which corresponds to a high order system, for which
t would be recommended to work with two classes per de-
criptor, so as not to affect machine time. NT (not-tested) cells
ave not been evaluated due to the high computation time re-
uired, especially for learning. Generally, real systems can be
pproximated to first or second-order systems [58], which im-
lies working with a maximum of 4 or 5 inputs (descriptors), each
ith up to 4 classes, although based on the tests carried out, 2 or
classes per descriptor are enough to have a good performance

n the control system.

.3.3. Number of operations
The temporal complexity depends on the type of processor

nd memory characteristics in which the program is executed,
or this reason, it is most appropriate to evaluate the number
f arithmetic operations (arithmetic complexity) used to solve a
roblem. Subtraction, addition, multiplication, division, squared
nd exponent are considered as basic operations. To obtain the
ontroller output (LAMDA controller block of Fig. 5), several op-
rations are performed sequentially in each layer. Particularly,
qs. (2), (3), (7), (9) and (10) are used, and their arithmetic
omplexity are determined in Eqs. (82) to (86), respectively.

opLAYER1c = 5ns (82)

opLAYER2c = 4mn (83)
2
opLAYER3c = m (84)
opLAYER4c = m(2n + 2) (85)

opLAYER5c = m − 1 (86)

here #opLAYER1c is the number of operations of the controller in
ayer 1, and so on for the rest of layers, until layer 5 (#opLAYER5c).

Finally, adding and simplifying the equations from (82) to (86),
e have the number of operations used to calculate the controller
utput:

opcontrol = m2
+ 6mn + 3m + 5ns − 1 (87)

he hybrid learning process, as mentioned in Section 3, corre-
ponds to the ‘‘LAMDA identifier’’ block shown in Fig. 5. In the
ackward pass is calculated the gradient descent. The number of
rithmetic operations in each layer is computed considering Eqs.
19)–(37):

opLAYER5gd = 2 (88)

opLAYER4gd = 0 (89)

opLAYER3gd = m (90)

opLAYER2gd = m3
+ 3m2

− 2m (91)

#opLAYER1gd = m(4n + 1) (92)

#opupdateρ = 4(ns + 5) (93)

#opupdateσ = 4(ns + 5) (94)

#opupdateα = 3mn − 2m + 5 (95)

Where #opLAYER5gd is the number of operations of the identifier in
layer 5 for the gradient descent process, and successively, until
layer 1 (#opLAYER1gd), and #opupdateρ is the number of operations
to update ρ, and the same for σ (#opupdateσ ) and α(#opupdateα ).

Adding and simplifying the equations from (88) to (95), the
number of arithmetic operations used for computing the gradient
descent in the learning stage is:

#opgd = m3
+ 3m2

− 2m + n (7m + 8s)+ 47 (96)

In the learning, the forward pass is calculated using RLS. In this
step, matrix operations are performed, which involve the addition
and multiplication of elements. Considering that the dimension of
the vector a(k + 1) depends on the inputs, we have:

Ω (m, n) = dim (a (k + 1)) = m (n + 1) (97)

The number of arithmetic operations performed by the RLS with
Eqs. (17)–(18) is:

#opP(k+1) = 4Ω3
+ 4Ω2

+Ω + 1 (98)

#oph(k+1) = 2Ω2
+ 3Ω (99)

Adding and simplifying the equations from (98) to (99), the num-
ber of arithmetic operations used for RLS in the learning stage
based on the number of inputs is:

3 2
#opRLS = 4Ω + 6Ω + 4Ω + 1 (100)
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Table 2
Arithmetic complexity of the fuzzy control algorithms.

Arithmetic complexity

Conventional fuzzy [57] 4089m + 37mn + 31ns + 59n + 21
LAMDA without learning (87) m2

+ 6mn + 3m + 5ns − 1
Adaptive ANFIS [8] m3

(
4n3

+ 12n2
+ 12n + 5

)
+ m2

(
6n2

+ 12n + 10
)
+ 8ns + 46

Adaptive LAMDA (87)+(101) m3
(
4n3

+ 12n2
+ 12n + 5

)
+ m2

(
6n2

+ 12n + 9
)
+ m (11n + 2)+ 8ns + 48
Fig. 6. Implementation scheme of the online learning adaptive controllers.
I
d

5

e
d
a

eplacing Ω = m(n + 1) in (100), adding and simplifying
qs. (96)–(100), the total number of arithmetic operations in the
earning process of the identifier is:

opiden = m3 (4n3
+ 12n2

+ 12n + 5
)
+ m2 (6n2

+ 12n + 9
)

+ L (11n + 2)+ 8ns + 48 (101)

onsidering Eq. (87), the complexity order of the controller is
uadratic in the total number of classes, while for the identifier,
ased on Eq. (101), is cubic, considering the term with the highest
xponent. It is concluded then that the controller has a low
rithmetic complexity that strongly depends on the number of
lasses established in each descriptor. On the other hand, in the
ase of the arithmetic complexity of the identifier, the growth rate
f the operations in the algorithm increases rapidly, depending on
he number of descriptors and the number of classes in a similar
roportion, being this term the one that should be set to a low
alue to avoid carrying out a large number of operations.
The computational complexity of our algorithm, compared to

roposals such as conventional Fuzzy (number of discretization of
utput universe of discourse suggested (MOD) = 32 [57]), LAMDA
ithout learning [49], and ANFIS, are presented in Table 2.
It is evident that the adaptive proposals are the most complex

n computational terms, which is logical due to the learning
lgorithm that they incorporate, these being of cubic order with
espect to the number of classes. Our proposal is quite similar
o ANFIS when analyzing the number of operations that these
equire for the learning and the control output computation, the
ifference lies in the linear term m, so it cannot be considered
relevant difference. As it has been observed in the results of
able 1, when working with a low number of classes in each
escriptor, the algorithm is more efficient and requires less com-
utation time. Therefore, it can be applied in systems with 8
escriptors at a speed of 0.4 s in the worst case, which shows
he viability in the use of our controller.

Finally, to summarize in this section the design criteria of
ur proposal, the designer must take into account the following
oints:

• Choose the number of inputs (n descriptors) of the object X

for the LAMDA Identifier and the LAMDA controller. r
Fig. 7. Studied Process (Mixing Tank).

• Define the number of classes in each descriptor, generally
2 or 3, in order to obtain an efficient algorithm, capable
of using a low machine time to solve learning and control
operations.

• Carry out an offline training stage defining the learning
parameters η, β , and λ with the scheme shown in Fig. 4a,
which is trained using the proposed hybrid learning.

• With the initial values of the model obtained offline, and
maintaining the previously defined learning parameters, im-
plement the scheme of Fig. 5 in the system to be controlled.

n the next section, we present several examples to show the
esign and implementation of the proposed scheme

. Tests and results

To validate the proposed controller, we address three tasks,
ach with different interesting properties. In the experiments, we
emonstrate that our control strategy is experimentally stable
nd can be applied in systems with different dynamics. The
esults of these experiments are analyzed and compared with
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ther intelligent controllers that do not require the exact model
f the plant to be designed, such as Fuzzy-PI (rule-based) and the
ecent LAMDA-PI (class-based [48,49]). These two methods are
tatic (non-adaptive) and are designed and calibrated based on
he designer’s expertise, which is generally a complex and time-
onsuming process. The aforementioned process is not required
y our adaptive method, which is the main advantage, especially
hen the system has unknown or variable dynamics. Addition-
lly, the comparison is made with the online inverse learning
ontrol with ANFIS [13]. Comparative analysis allows identifying
he advantages of our proposed method in the different systems.
n the case of the adaptive schemes of LAMDA and ANFIS, the
rocedure for the validation is shown in Fig. 6, which summarizes
he training and application stages of the controllers based on
he schemes of Figs. 4 and 5. The black dashed lines represent
he learning and controller configuration parameters, and the
efinition of the inputs. The solid lines represent the sequential
peration of our proposal in the tests.

.1. Case study 1: Mixing tank with variable dead time

The process consists of the mixing of two fluids in a tank
ith a constant liquid volume (Fig. 7). The system has a hot
tream W1(t) that mixes with a cold stream W2(t), controlled
with the valve position FC (u(t)). The resulting mixture requires to
remain at a desired temperature T4 = 150[◦F ]. The temperature
transmitter is installed at a distance of 125[ft] from the tank
outlet, and has been calibrated to operate in a range of 100 to
200[◦F ]. The distance between the tank outlet and the location
f the temperature transmitter generates a dead time in the
easurement. The equations of the complete nonlinear model
nd the operating conditions of this process are presented by
amacho and Smith [59].
The dead time t0 changes as:

0 (t) =
LAρ

W1 (t)+ W2 (t)
(102)

Where, W1 (t) is the mass flow of hot stream (lb/min), W2 (t)
is the mass flow of cold stream (lb/min), ρ = 62.4lb/ft3 is the
ensity of the mixing tank contents, A = 0.2006ft2 is the pipe
ross-section, and L = 125ft is the pipe length. This system
as been used to test different types of controllers due to the
ariable dead time. In general, the model can be approximated
o a FOPDT [59]:

x(s)
u(s)

=
Ke−tos

τ s + 1
(103)

The dead time can be modeled using a first-order Taylor series
approximation as [59]:

e−tos ∼=
1

t0s + 1
(104)

Substituting (104) into (103), we have:
x(s)
u(s)

∼=
K

(τ s + 1) (t0s + 1)
(105)

Resulting in a second-order system, in a discrete-time of the
form:
x(z)
u(z)

∼=
az + b

cz2 + dz + f
(106)

here a, b, cd and f are functions dependent on K , τ , t0. The
iscrete-time model is variable and dependent on these param-
ters. Developing (106), according to the time k, we obtain:

u (k) = (1/a) [cx (k + 1)+ dx (k)+ fx (k − 1)− bu (k − 1)]
(107)

It is important to clarify that if the plant model is completely
unknown, the number of previous states (p and q) of both x
and u could be taken experimentally, until obtaining an adequate
adjustment in the training stage.

For the initial training process, the algorithm parameters have
been set with the following values η = 0.00025, β = 0.001,
λ = 1, and a sampling period Ts = 0.4 min. The inputs
are [x (k + 1) ; x (k) ; x (k − 1) ; u(k − 1)], each with two classes.
A random input is generated for the plant that consists of a
sinusoidal signal from 0 to 200 min, and 100different random
step values of 143.6 min duration. Fig. 8 presents a comparison
between the two techniques that require a training stage (ANFIS
and Adaptive LAMDA). It is observed that LAMDA presents less
error with better adjust to the actual data u(t) applied to the
system.

Once LAMDA has been trained, the proposed controller is
tested in the plant under disturbances produced by varying hot
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Fig. 9. Change of: (a) W1 and (b) dead time.
Fig. 10. Adaptive control structure for the Mixing Tank.

tream W1(t). As is shown in Eq. (102), the dead time changes
epending on W1. The changes of the hot stream are shown in
ig. 9a, and the dead time variations are presented in Fig. 9b.
he variable dead time causes the dynamics of the system also
hanges, as is presented in Eq. (106), so it is appropriate to use
n adaptive method for the control.
The complete control scheme for the mixing tank with variable

ynamic, is presented in Fig. 10, which shows the online identi-
ication block and the control block. The LAMDA identifier inputs
ased on Eq. (107) are [x (k + 1) ; x (k) ; x (k − 1) ; u(k − 1)], and

in the LAMDA controller the inputs are [xref (k) ; x (k) ; x (k − 1) ;
u(k − 1)].

The tests are carried out for the controllers Fuzzy-PI, LAMDA-
PI, ANFIS and the Adaptive LAMDA. Fig. 11 shows qualitatively the
effectiveness of our proposal. Here, Adaptive LAMDA convergence
to the reference is faster when W1 changes abruptly, taking into
account that the controller design has not required the plant
model or a calibration stage, as in the case of the Fuzzy-PI and
LAMDA-PI controllers. It has been observed that our learning
algorithm with two classes per descriptor has presented very
good results, with the advantage that the computational time is
less with respect to the use of more classes. Although techniques
without learning respond well to the control of this system, they
have an oscillatory response with higher overshoot, especially in
the case of the disturbance at time 450 min, which causes the
system dead time to change abruptly (see Fig. 11a). At this point,
our proposal corrects it in less time without requiring additional
calibration, since it adapts to these changes automatically with
the LAMDA identifier block that learns online. Disturbances at
time 10 min, 120 min and 250 min are quickly corrected with
minimal overshoot by our method, with excellent performance.
Additionally, it can be observed that the non-learning methods
(Fuzzy-PI and LAMDA-PI) degrade their response considerably as
the plant changes, which is an important aspect of the perfor-
mance of the system. Adaptive LAMDA does not degrade, and
its control action is smoother than the other controllers, which
is an important advantage since in the real system the actuator
is not overstressed (see Fig. 11b). In the case of ANFIS, it is
observed that it maintains an error in a steady-state, that is, the
algorithm is not able to reach the reference. One solution would
be to place an additional integration stage to correct it, which
would increase the computational time and the complexity of the
controller design.
Table 3
IAE of the controllers applied to the mixing tank process.
Index Fuzzy PI LAMDA PI ANFIS Adaptive LAMDA

IAE 5.719 5.185 34.82 2.809
∆ 68.25% 59.44% 170.1% –

The effectiveness of the obtained results is quantitatively eval-
uated by the computation of the Integral Absolute Error (IAE), an
index used to determine the performance of the controllers. The
IAE reflexes the cumulative error, i.e., how far the response is
with respect to the applied reference. Therefore, the controller
with the minimum index is the best in terms of performance.
Additionally, the percentage change ∆ from the best IAE value
is computed to observe the improvement in performance terms
(see Table 3).

The index with the lowest value is Adaptive LAMDA, because
it reaches the reference quickly and with lower overshoot. In
the presence of disturbances, it can be seen that the adaptive
proposal is better at around 60%, with respect to Fuzzy-PI and
LAMDA-PI, and in 170% with respect to ANFIS (the most similar
approach) since this method is not able to reach the reference.
These percentages show the potential of our learning algorithm
in these types of systems.

5.2. Case study 2: Regulation of an HVAC system

HVAC systems are complex structures consisting of chillers,
heat pumps, heating/cooling coils, boilers, air handling, thermal
storage and liquid/air distribution units. It is a MIMO (Multiple-
Input Multiple-Output) system with many variables whose mod-
eling and dynamic study is complex due to its nonlinear charac-
teristics [60]. Neuro-fuzzy systems are widely used in complex
processes for modeling and control, however, its application in
the HVAC systems is very limited [61]. The adaptive approach is
simulated in the HVAC system presented by Arguello-Serrano and
Velez-Reyes [62]. The main control objective in this simulation
is to solve a regulation problem, analyzing and validating the
proposed controller to abrupt disturbances in the thermal space
variables (Zone 3 in Fig. 12), these are: Temperature (T3[◦F ]) and
Humidity Ratio (W3 [lb/lb]).

The system operation is described as follows, outdoor air flows
into the system mixing 25% of it with 75% of the returning air,
expelling the rest. The mixed air passes through a filter to the heat
exchanger, where it is conditioned to the set point. The condi-
tioned air is propelled to the thermal zone with a fan. The system
requires to control the variables T3 and W3, simultaneously, based
on thermal loads, by varying the fan speed, u1, to regulate the
airflow rate and the cold-water pumping rate, u2, from the chiller
to the heat exchanger [49]. The differential equations of energy
and mass balances known from the conventional mathematical
model of HVAC systems required for the simulations are:

Ṫ3 =
f
Vs
(T2 − T3)−

hfg

CpVs
(Ws − W3)+

1
0.25CpVs

(
Q0 − hfgM0

)

(108)
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Fig. 11. (a) Comparative response of the system (temperature) (b) Applied control actions.
a
i

Fig. 12. Block diagram of a simple HVAC system [62].

Ẇ3 =
f
Vs
(Ws − W3)+

M0

ρVs
(109)

Ṫ2 =
f
Vhe

(T3 − T2)−
0.25f
Vhe

(T0 − T3)

−
fhw
CpVhe

(0.25W0 + 0.75W3 − Ws)− 6000
gpm
ρCpVhe

(110)

W0 is the humidity ratio of outdoor air, hw is the enthalpy of
liquid water, hfg is the enthalpy of water vapor, Vhe is the volume
of the heat exchanger, Cp is the specific heat of air, Ws is the
humidity ratio of supply air, W3 is the humidity ratio of Zone 3,
T0 is the temperature of outdoor air, M0 is the moisture load, Q0
is the sensible heat load, T2 is the temperature of supply air, T3
is the temperature of Zone 3, Vs is the volume of Zone 3, ρ is the
air mass density, f is the volumetric flow rate of air (ft3/min), and
gpm is the flow rate of chilled water (gal/min).

To represent the system in state space notation for the design
of the control system, let u1 = f , u2 = gpm, x1 = T3, x2 = W3,
x3 = T2, y1 = T3, y2 = W3. The following parameters are defined
to complete the model: α1 = 1/Vs, α2 = hfg/CpVs, α3 = 1/ρCpVs,
α4 = 1/ρVs, β1 = 1/Vhe, β2 = 1/ρCpVhe, β3 = hw/CpVhe. Eqs.
(43)–(45) can be re-written as:

ẋ1 = u1α160 (x3 − x1)− u1α260 (Ws − x2)+ α3
(
Q0 − hfgM0

)
(111)

ẋ = u α 60 W − x + α M (112)
2 1 1 ( s 2) 4 0
Fig. 13. Block diagram of HVAC model (MIMO system).

Table 4
Numerical values of the system parameters.
ρ = 0.0074 [lb/ft3] Cp = 0.24 [Btu/lb◦F ] fref = 17,000 [ft3/min]
Tref = 55 [

◦F ] T3ref = 71 [
◦F ] Ws = 0.007 [lb/lb]

W3ref = 0.0088 [lb/lb] Vhe = 60.75 [ft3] Vs = 58,464 [ft3]

Table 5
Numerical values of the system parameters at the operating point.
x01 = 71 [

◦F ] x02 = 0.0092 [lb/lb] x03 = 55 [
◦F ]

T 0
0 = 85 [

◦F ] W 0
0 = 0.0018 [lb/lb] M0

0 = 166.06 [lb/hr]
u0
1 = 17,000 [ft3/min] u0

2 = 58 [gpm] Q 0
0 = 289,897.52

W 0
s = 0.007 [lb/lb]

ẋ3 = u1β160 (x1 − x3)+ u1β115 (T0 − x1)

− u1β360 (0.25W0 + 0.75x2 − Ws)− 6000u2β2 (113)

Tables 4 and 5 contain the numerical values chosen for the
simulation and the system parameters at the operating point,
respectively.

u1 and u2 are the control actions that modify the target vari-
bles T3 (x1) and W3(x2). Fig. 13 shows the interaction of the
nputs and outputs of the MIMO control problem.

G1 (·), G2 (·), and G3 (·) are the expressions (111)–(113), re-
spectively.

To implement the LAMDA controllers in each of the control
variables, it is necessary to analyze if a decoupling stage is re-
quired so that the design consists of independent controllers for
each variable. The process to identify the correlation between
inputs and outputs is based on the procedure of reaction curves
to obtain the transfer functions, applying a step at one of the
inputs, and monitoring the response at the outputs, obtaining
the numerical values in the form of FOPDT system. The detailed
procedure to obtain the transfer functions is presented in [49].
The linearized model can be represented by the G(s) matrix:

X s = G s U s (114)
( ) ( ) ( )
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Fig. 14. Adaptive control structure for the HVAC system.
G (s) =

[
g11 g12
g21 g22

]

=

⎡⎢⎣ 9.8164 × 10−4e−0.0016

0.2137s + 1
−1.3223e−0.0012s

0.2301s + 1
−1.1764 × 10−7e−0.0011s

0.0527s + 1
0

⎤⎥⎦ (115)

rom (115), the gains of the transfer function are obtained to form
he gain matrix K .

=

[
9.8164 × 10−4

−1.3223
−1.1764 × 10−7 0

]
(116)

he relative gain array RGA [63] (Bristol’s matrix) is used to
easure the interaction between the inputs and outputs in a
ultivariate process, and it is defined as:

GA (K ) = Λ (K ) ≜ K ×
(
K−1)T (117)

he operator × denotes the element-by-element multiplication:

(K ) =

[
λ11 λ12
λ21 λ22

]
=

[
0 1
1 0

]
(118)

Λ (K ) shows the dependence between the inputs and outputs.
Based on these terms, the decoupling stage is not necessary
for the control. Due to the HVAC system characteristics and
the resulting parameters of Λ (K ), the control design with two
independent LAMDA controllers, one for the temperature x1 and
another for the humidity ratio x2, is feasible.

u2 → x1 and u1 → x2 (119)

inally, to proceed with the simulation of the proposed control,
he HVAC system is discretized by applying the Euler method to
qs. (111)–(113), considering the sample time Ts:

x1 (k + 1) = Ts[u1 (k) α160 (x3 (k)− x1 (k))
− u1 (k) α260 (Ws − x2 (k))

+ α3
(
Q0 − hfgM0

)
] + x1 (k) (120)

x2 (k + 1) = Ts [u1(k)α160 (Ws − x2(k))+ α4M0] + x2 (k) (121)
x3 (k + 1) = Ts[u1(k)β160 (x1 (k)− x3 (k))

+ u (k)β 15 T − x k
1 1 ( 0 1 ( ))
− u1 (k) β360 (0.25W0 + 0.75x2 (k)− Ws)

− 6000u2(k)β2] + x3 (k) (122)

Fig. 14 shows the operational scheme of the control system
with two separated control loops in the application stage, to
regulate the two variables in the thermal space of the system.

For the training stage, the LAMDA Identifier 1 uses two in-
puts [W3 (k + 1) ;W3 (k)] (because we consider a first-order plant
based on [49]), each with two classes, the design parameters are
η1 = 0.02, β1 = 0.01, λ1 = 0.997. LAMDA Identifier 2 uses
two inputs [T3 (k + 1) ; T3 (k)], each with two classes, and the
design parameters are η2 = 0.95, β2 = 0.01, λ2 = 0.997. The
sampling period of the simulation is Ts = 1.2 min. Similar to case
study 1, a random input is generated for the plant that consists
of 60different random values of 54 min duration.

In Fig. 14, the online learning block (LAMDA Identifier 1) is
placed between the control action u1 and the output Humidity
Ratio W3, to learn the inverse model of the system using current
and past information. The system output W3 and its previous
state are used as inputs for the identifier, in order to minimize
the error eu1(k) = u1(k) − uL

1(k), where uL
1 is the output of the

LAMDA identifier. The minimization of eu1(k) allows adjusting
the parameters of the LAMDA model, which are updated in the
controller at every sample time. The procedure described above
is similarly applied to control the temperature T3 of the Thermal
Zone, considering the minimization of the erroreu2(k) = u2(k) −

uL
2(k), where uL

2(k) is the output of the LAMDA Identifier 2.
The performance of Adaptive LAMDA controller is analyzed by

evaluating its response in the presence of abrupt disturbances,
to test the robustness. The IAE is compared with the controllers
Fuzzy-PI, LAMDA-PI and ANFIS. Fuzzy-PI and LAMDA-PI were
designed based on the expertise of the plant. ANFIS and LAMDA
based on online learning were set with the same values for the
parameters applied to the learning stage. Two types of distur-
bances are applied to the HVAC system separately, to observe the
behavior of each control variable in the Thermal Zone 3: Heat and
Humidity Ratio (see Figs. 15a and 15b, respectively).

First, only the temperature disturbance is applied to the plant.
Fig. 16a shows that the control action u1 stays at 17000[cfm],
while the Humidity Ratio stays at 0.0092[lb/lb]. Thus, the tem-
perature disturbance does not affect W , see (120)–(122).
3
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Fig. 15. (a) Heat disturbance signal, (b) Moisture disturbance signal applied to robustness analysis.
Fig. 16. Comparative results with temperature disturbance: (a) control action u1 , (b) Humidity Ratio W3 .
Fig. 17a shows the behavior of the control action u2 and
ig. 17b shows the variation of the temperature T3 when the
emperature disturbance is applied.

The calibration of the non-adaptive methods in this system
as been complex, and it takes a lot of time for this process
ecause there are two controllers and several parameters to set,
uch as gains, the classes and their values. These methods present
ery good results in the plant when abrupt disturbances (the
orst conditions) are applied to the output temperature, as is
hown in Fig. 17. Our proposal also presents satisfactory results
n the control of this process, avoiding the problems exposed in
he design of the non-adaptive controllers. The control signal of
ur method is abrupt with respect to the Fuzzy-PI and LAMDA-
I controllers, due to the learning parameters selected for this
xperiment. See the zoom in Fig. 17, where the effectiveness of
ur proposal is evaluated qualitatively, highlighting the transient
n the response of the controllers, and observing that our method
esponds quickly without error in steady-state. The ANFIS control
eing the most similar to our proposal, has a fairly abrupt and
scillatory response, which consequently leads to greater over-
hoot. In addition, this method presents an error in a steady-state
f around ±0.5[◦F ].
In the next experiment, the moisture disturbance is applied

o the plant in order to analyze how the variables T3 and W3
are affected, and how the controllers are able to regulate them.
Fig. 18a shows the control action u , and Fig. 18b shows the
1
behavior of Humidity Ratio W3for all the analyzed controllers.
Fig. 19a shows the control action u2 and Fig. 19b shows the
behavior of the Temperature T3for all the analyzed controllers.

Figs. 18, 19 show that the abrupt moisture disturbance ap-
plied to the Humidity Ratio, affects the variables W3 and T3.
For the Humidity Ratio, it can be seen that the output of the
Adaptive LAMDA control is very good, with few oscillations in
the transient response, and quick to reach the reference (fast
convergence), without overshoot because the control action is not
abrupt. This demonstrates that the online learning performed by
the algorithm when the system is subjected to disturbances is
adequate (see the zoom in Figs. 18 and 19). The convergence of
our approach is better than the non-adaptive methods and the
transient response is faster. The calibration of the non-adaptive
methods in this case has an extra complexity degree due to
the interaction between the input and output variables, which
is avoided with our adaptive method. It is also observed that
our approach is much better than the ANFIS controller, which
is oscillatory and not able to reach the reference, presenting an
error in a steady-state of around ±0.2 × 10−3

[
◦lb/lb], especially

with the disturbances at time 6h and 13h. The selected learning
parameters of the algorithm are adequate for the HVAC system,
and the algorithm works very well with only two classes per
descriptor, reducing the computational time.

Fig. 19 shows that our approach presents a very good re-
sponse regulating the Temperature T . Control actions of Adaptive
3
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Fig. 17. Comparative results with temperature disturbance: (a) control action u2 , (b) Temperature T3 .
T
N

AMDA are less abrupt than Fuzzy-PI controller (black line), and
tabilize the system in a very short time as desired in control sys-
ems, which allows us to conclude that the selection of learning
arameters is adequate for rapid convergence without overshoot
n response, such as LAMDA-PI (method that requires a complex
alibration). ANFIS, as in the previous cases, is the controller with
he most oscillatory response. In this case, the steady-state error
s around ±0.25◦

[F ] for the two initial disturbances, and for a
isturbance at time 19h the error is zero, but reaching this value
n a longer time compared to the other proposals, which is not
seful in these systems.
A quantitative analysis, computing the IAEs after applying the

emperature and moisture disturbances to the plant, is shown in
able 6. For the temperature disturbance, the Adaptive LAMDA
ontroller is the best (minimum value). For the moisture dis-
urbance, our approach is the best to control this variable, and
he second-best to control the temperature, with the advantage
hat our proposal does not require a tuning method for the
arameters and a previous knowledge of the plant. The LAMDA-PI
ontroller has very good results due to the fact that an exhaustive
nowledge engineering has been used to establish the classes
nd rules on which the control actions are defined, which is a
able 6
umerical values for IAE for the HVAC experiments.

IAE computed with temperature disturbance

Controller Fuzzy-PI LAMDA-PI ANFIS Adaptive LAMDA

Controller 1 0 0 0 0
Controller 2 2.04 1.911 7.689 1.529

IAE computed with moisture disturbance

Controller Fuzzy-PI LAMDA-PI ANFIS Adaptive LAMDA

Controller 1 3.71 × 10−4 3.49 × 10−4 1.96 × 10−3 2.25.× 10−4

Controller 2 1.879 0.377 2.912 0.492

process that requires time and must be properly calibrated. It is

not required by Adaptive LAMDA, being this its main advantage.

In the case of the temperature disturbance, since the humidity

ratio variable is not affected, there is no reference change in

that variable, as is shown in Fig. 16b. Because of this, the IAE in

controller 1 is zero in all cases.
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Fig. 18. (a) Comparative results with moisture disturbance: (a) control action u1 , (b) Humidity Ratio W3 .
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5.3. Case study 3: Tracking the trajectory of a mobile robot

Finally, to validate the proposed controller in tracking trajec-
tory tasks, we present its application in a mobile robot. Trajectory
control of a mobile robot is one of the objectives to be achieved
in the field of autonomous robotics, due to the large number of
associated applications as: risky or hazardous tasks for the hu-
mans, defense, medical, automation of industries and processes,
among others [64]. Because the dynamic models of these systems
are complex to obtain, or could present errors, it is necessary to
design robust controllers that can compensate for these problems.
For this reason, our proposal is applied to these systems, in which
the algorithm will learn from the dynamics of the system (which
is completely unknown) for the development of the controller
based on the inverse model, without requiring previously the
dynamic robot model, in order to apply it to the task of tracking
different trajectories in a robot simulation environment.

5.3.1. Robot model
The unicycle type robot is widely used in the field of automatic

control due to its fast and nonlinear dynamics. Fig. 20 shows a
representation of the robot, where v and ω are the linear and
angular velocities, respectively, h is the point of interest with x, y
coordinates in the XY plane, ψ is the orientation of the robot, a
 c
is the distance between h and the central point of the virtual axis
B that connects the wheels, and r1 is the radius of the wheels.

The complete mathematical representation of the mobile robot
consists in the kinematic and the dynamic model. The general
discretized kinematic model, assuming that the disturbance term
is a zero vector and considering that Ts is the sample time [19],
is:[ x(k + 1)
y(k + 1)
ψ(k + 1)

]
= Ts

[cosψ(k) −a sinψ(k)
sinψ(k) a cosψ(k)

0 1

][
v(k)
ω(k)

]

+

[ x(k)
y(k)
ψ(k)

]
(123)

n [19] is proposed the application of two controllers, one of them
ased on feedback linearization for the robot kinematics, and the
ther one based on the dynamics. In our case, we consider the
ynamic model as unknown (black box), thus, its identification
nd control is done with the Adaptive LAMDA, which is the main
ontribution in this experiment.
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Fig. 19. Comparative results with relative humidity disturbance: (a) control action u2 , (b) Temperature T3 .
5.3.2. Kinematic controller
The kinematic controller (see Eq. (124)) is based on the kine-

matic model of the robot given by (123), considering the coordi-
nates of the point of interest [x, y]T . The control law is:

[
vcref (k)
ωc

ref (k)

]
=

⎡⎢⎣
cosψ (k)

Ts

sinψ (k)
Ts

−
1
a
sinψ (k)

Ts

1
a
cosψ (k)

Ts

⎤⎥⎦

×

⎡⎢⎢⎣xref (k + 1)+ lx tanh
(
kx
lx
ex (k)

)
− x (k)

yref (k + 1)+ ly tanh
(
ky
ly
ey (k)

)
− y (k)

⎤⎥⎥⎦ (124)

here a > 0,
[
vcref (k) ωc

ref (k)
]T is the output of the kinematic

ontroller, ex (k) = xref (k) − x(k), and ey (k) = yref (k) − y(k) are
he position errors in the X and Y axis respectively, kx > 0, ky > 0
re the gains of the controller, lx, ly ∈ R are saturation constants.
he tanh (·) function is added to avoid a saturation of the control
ctions in the case of large position errors [65]. In the stability
nalysis, perfect velocity tracking is considered, vcref (k) ≡ v (k)
nd ωc (k) ≡ ω k . By replacing (124) in (123), the closed-loop
ref ( )
Fig. 20. Parameters of the unicycle-like mobile robot.

equation is:

[
ex (k + 1)
ey (k + 1)

]
+

⎡⎢⎢⎣lx tanh
(
kx
lx
ex (k)

)
ly tanh

(
ky ey (k)

)
⎤⎥⎥⎦ =

[
0
0

]
(125)
ly
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Fig. 21. Comparison of learning algorithms in mobile robot (a) linear velocity, (b) angular velocity.
Fig. 22. Adaptive control structure for a mobile robot.
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Defining the output error vector as h̃(k) =
[
ex (k) ey (k)

]T , then
(125) can be written as:

h̃ (k + 1) = −

⎡⎢⎢⎣lx tanh
(
kx
lx
ex (k)

)
ly tanh

(
ky
ly
ey (k)

)
⎤⎥⎥⎦ (126)

n [19] has been selected the Lyapunov’s candidate function for
he kinematic control law as V (k) =

1
2 h̃

T (k) h̃ (k). In the cited
aper is demonstrated the stability of the kinematic controller for
racking trajectories if the parameters are set as kx < 1, ky < 1,
kx
lx
< 1 and , ky/ly < 1, then h̃ → ∞ for k → ∞.

5.3.3. Dynamic controller
The design of the dynamic controller is complex because

a large number of parameters corresponding to the actuation
mechanisms and physical variables of the robot must be con-
sidered in real-time. For this reason, non-adaptive controllers
(Fuzzy-PI and LAMDA-PI) are not tested in this experiment since
their calibration is complex and time-consuming, therefore, the
adaptive methods are appropriate in this system. The following
results are for ANFIS and Adaptive LAMDA since they are propos-
als that can learn about the dynamic of the system and do not
require parametric calibration for the design.

In this case study, the benefits of the Adaptive LAMDA are
clearly appreciated since the algorithm learns the dynamics of
the system, which is considered as unknown and variable. Our
method is used to model it as follows: in the training stage,
 i
LAMDA is applied to learn the inverse dynamic model based on
the scheme of Fig. 4a. The controller takes as input information
the computed reference values in the output of the kinematic
controller

[
vcref ωc

ref
]T and the measured variables of the robot[

v ω
]T . With this information, the identifier updates the inter-

nal parameters of the LAMDA model in the controller (obtaining
the inverse model) in each sample time. For the training stage,
the LAMDA Identifier 1 uses two inputs [v (k + 1) ; v (k)], each
ith two classes, η1 = 0.08, β1 = 0.01, λ1 = 0.999. LAMDA

dentifier 2 uses two inputs [ω (k + 1) ;ω (k)], each with two
lasses, η2 = 0.08, β2 = 0.01, λ2 = 0.999. The sampling period of
he simulation is Ts = 0.1seg . A sinusoidal input of 670 samples
s generated for the system. Fig. 21 shows the comparison of
earning algorithms in the robot, which shows a better fit to the
eal values of linear and angular velocity of the adaptive LAMDA
ith respect to ANFIS.
In the application, the controller computes the output

vdref (k) ωd
ref (k)

]T
necessary to bring the system to the reference.

he proposed structure, with an external kinematic controller and
n internal dynamic controller based on the adaptive methods
LAMDA or ANFIS), is the cascade scheme shown in the block
iagram of Fig. 22.
In the scheme, the online learning block (LAMDA Identifier 1)

s placed between the control action computed by the dynamic
ontroller vdref (k) and the measured variable v, to learn the inverse
ynamics of the system using current and past information. The
inear velocity v and its previous state are used as inputs for the
dentifier, in order to minimize the error e (k) = vd (k) − vL (k),
v ref ref
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Fig. 23. V-REP simulation scene showing the Pioneer 3dx robot.

where vLref (k) is the output of the identifier. The minimization of
v allows adjusting the parameters of the LAMDA model that are
pdated in the controller, at every sample time. The procedure
escribed above is similarly applied to control the angular veloc-
ty ω, considering the minimization of the error eω(k) = ωd

ref (k)−
L
ref (k), where ωL

ref (k) is the output of the LAMDA Identifier 2. The
ontrol variables are the motor velocities, then we need to find
he speed for the left and right wheels ΩL and ΩR, respectively,
based on the values of

[
vd (k) ωd (k)

]T
. These relations are
ref ref
given by:

ΩL =
2vdref (k) − dωd

ref (k)

2r1
and ΩR =

2vdref (k)+ dωd
ref (k)

2r1
(127)

The proposed controllers are tested on a Pioneer 3DX robot [66]
inside a virtual 3d robot environment. A Virtual Robot Exper-
imentation Platform (V-REP) allows simulating robotic systems
considering their kinematics, dynamics and the physic of the
environment [67]. The versatility of this software is linked to the
availability of plug-ins to connect with other computational tools,
such as Matlab, where our algorithms have been programmed.
The main user interface of V-REP with the Pioneer 3DX robot is
shown in Fig. 23.

The performance of the Adaptive LAMDA controller is tested
against the ANFIS, such that the operating modes are similar
to make a fair comparison. In this case study, the aim is to
perform the trajectory control of the Pioneer 3DX applied in three
different paths, applying a load to the robot (as a disturbance)
to modify its dynamics and analyze the performance of the con-
trollers. Graphical and numerical comparisons are performed to
test the performance and effectiveness of the algorithms in this
control task (see IAE in Table 7).

Three trajectories are tested: Circular (see Eq. (128)), Lemnis-
cate curve (see Eq. (129)) and Square (see Eq. (130)). The starting
point of the robot in all cases is in the coordinate (x, y) = (0, 0)m.{
xref (k) = 2 cos (0.033πkT0) (128)

yref (k) = 2 sin (0.033πkT0)
Fig. 24. (a) Circular trajectory followed by the robot, (b) instantaneous quadratic error of the robot position, speeds of the robot and control actions (c) linear velocity
and (d) angular velocity.



L. Morales, J. Aguilar, A. Rosales et al. / Applied Soft Computing Journal 95 (2020) 106571 23

v

L
s
a
t
r
o
r
t

r
p
(
g
a
e
h

Fig. 25. (a) Lemniscate trajectory followed by the robot, (b) instantaneous quadratic error of the robot position, speeds of the robot and control actions (c) linear
elocity and (d) angular velocity.
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{
xref (k) = 1.2 sin (0.063πkT0)
yref (k) = 2 sin (0.0315πkT0)

(129)⎧⎪⎪⎨⎪⎪⎩
xref (k) = 1.5∀kTo ∈ [0, 15]; (4.5 − 0.2kTo)∀kTo ∈ [15, 30];
−1.5∀kTo ∈ [30, 45] ; (−10.5 + 0.2kTo)∀kTo ∈ [45, 60]
yref (k) = (−1.5 + 0.2kTo)∀kTo ∈ [0, 15]; 1.5∀kTo ∈ [15, 30];
(7.5 − 0.2kTo)∀kTo ∈ [30, 45] ; −1.5∀kTo ∈ [45, 60]

(130)

Figs. 24–26 show the comparative results for the Circular,
enmiscate and Square trajectories, respectively, in which the re-
ponse of the ANFIS and Adaptive LAMDA controllers are shown,
s well as the position error in each trajectory. Additionally,
he linear and angular speed references are shown, with the
espective real values reached by the robot. During the simulation
f this experiment, a 3.5 kg load is added and removed on the
obot at different time instants, affecting its dynamics to analyze
he controllers’ response.

Figs. 24a, 25a and 26a show the paths followed by the mobile
obot. The results show qualitatively that the Adaptive LAMDA
rovides finer and more efficient control with respect to ANFIS
the two methods designed with the same learning parameters),
etting a smaller distance error with respect to the references,
nd especially, under disturbances. The instantaneous quadratic
rror of the robot position controlled by the Adaptive LAMDA
as an average of 2 cm (see Figs. 24b, 25b and 26b), a value
 e
onsidered acceptable taking into account that the dynamic of the
ontroller is not based on the mathematical model of the system
or its design. In the case of the square trajectory, it is observed
hat the errors in the corners reach values of 9 cm due to the
brupt changes in the orientation of the robot, but as is observed,
hey are quickly corrected by the LAMDA controller.

The linear speed in all the tested trajectories is around 0.2m/s
see Figs. 24c, 25c and 26c), references reached by the Adaptive
AMDA controller with very good performance and fast conver-
ence, showing to be more efficient qualitatively than ANFIS due
o the softer response and better in quantitative terms if we
nalyze the IAE values in Table 7. Then, it is clear that the learn-
ng parameters set for the linear speed controller are adequate
ecause our method does not show oscillations in the control
ctions, while ANFIS presents a large number of oscillations, with
mplitudes around ±0.4 m/s, which is excessive if compared
o established references that can damage the actuators by the
pplied energy variations.
In the case of angular velocity, the tests show that the Adap-

ive LAMDA presents smooth control actions again. The ANFIS
roposals have oscillations around the reference of ±5 rad/s. This
ehavior can be seen in the Figs. 24d, 25d and 26d, where it
s observed that our proposal converges faster to the references
han ANFIS. Also, the learning parameters set for the angular
peed controller are adequate because our method does not show
xcessive oscillations in the control actions. LAMDA is much
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Fig. 26. (a) Square curve trajectory followed by the mobile robot, (b) instantaneous quadratic error of the robot position, speeds of the robot and control actions (c)
linear velocity and (d) angular velocity.
Table 7
Numerical values for IAE for the mobile robot experiments.
IAE for trajectory tracking of a mobile robot

Trajectory ANFIS Adaptive LAMDA ∆%

Circle 5.725 5.038 12.77
Lemniscate 2.495 2.101 17.15
Square 7.632 6.510 15.87

better than ANFIS because the control action is smooth, implying
that the actuators are not abruptly actuated to reach the reference
in steady-state. The reduction of the oscillations is considerable,
which is one of the strong points to be highlighted by LAMDA.
Finally, from the results obtained through this experiment, it
has been possible to observe a very good performance of our
proposed tracking controller applied to the dynamic model of the
mobile robot, demonstrating its ability to follow the established
speed references, and therefore, the desired trajectories. From
the quantitative point of view, in this experiment, it is observed
the benefits in performance terms of the Adaptive LAMDA with
respect to the ANFIS controller, as can be observed in the results
of IAE of Table 7 for all the paths. We consider that all these per-
formance improvements are the result of two important factors,
the use of aggregation operators in the GAD computation and the
adjustment of the exigency parameter, which adapts to system
variations online.

In all cases, the performance of LAMDA is better in a percent-
ge greater than 12% over the ANFIS controller, when they were
ested in the different trajectories. Under disturbances that affect
the dynamic of the system, our controller is the least affected
and the one that converges more quickly towards the reference,
which allows us to validate our method in fast dynamic robotic
systems.

6. Conclusion

In this paper, an Adaptive LAMDA approach based on the
online learning criteria for system modeling and control has
been presented. The main contribution has focused on providing
LAMDA with the capability to control systems without the need
to know its mathematical model. The proposed method can be
implemented on any system in which its inverse model can
be identified, and offers a great advantage over non-adaptive
methods as LAMDA-PI or Fuzzy-PI. These methods require the
knowledge of an expert about the plant for the design and cal-
ibration, which can be complex and time-consuming depending
on the system dynamics.

From a qualitative point of view, it has been observed that
the Adaptive LAMDA is capable to control systems better than
the other proposals in all case studies. In the mixing tank with
variable dead time system, it is observed that the algorithm is
capable of adapting to changes in the dynamics of the system
produced by the variation of the dead time, calculating a less
aggressive control action that is capable to take the system to
the reference in less time. In the case of the HVAC system, the
two variables T3 and W3 are adequately regulated, even when
moisture and temperature disturbances are added to the system;
the quality of the control action of our proposal is quite good if we
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consider that the algorithm learns directly from the behavior of
the plant and has not required calibration, which is indispensable
in the non-adaptive methods. Also, it has been observed that the
response of our method is better, especially with respect to ANFIS.
In the robot tracking trajectory, it is evident that Adaptive LAMDA
is much better than ANFIS, it is enough to observe that the control
action of our proposal is less abrupt and oscillatory, which is an
advantage since the actuators may not respond to the control
action computed by ANFIS.

In quantitative terms, the simulations have shown that the
proposed method has very good results compared to the other
intelligent proposals. In the case of the mixing tank, the results
have shown that our proposal is better in terms of performance
by 60% over non-adaptive methods (LAMDA-PI and Fuzzy-PI),
and by 170% over the more similar approach (ANFIS), which
maintains steady-state error without reaching the reference. In
the case of regulation of the HVAC system, it has been possible to
observe an excellent performance of our proposal in the control
stage, in the presence of temperature and moisture disturbances,
considerably improving performance with respect to ANFIS, as
is shown in the related results with the IAE (see Table 6). Our
proposal presents a smoother and less oscillatory control action
that eliminates the steady-state error. On the other hand, in
the application of trajectory tracking of the mobile robot, it has
been observed that LAMDA achieves the control objective with
excellent performance, but the most important characteristic to
note is the shape of the control actions produced by our method,
in which it is clearly observed that the oscillations decrease
considerably with respect to ANFIS, with errors in the trajectory
of smaller magnitude, that is, better IAE (see Table 7). The three
case studies have shown that the main advantage of the learning-
based controllers is that they do not depend on the mathematical
model of the plants, which are often complex to obtain and may
have modeling errors.

The implemented control system is stable as experiments
show fulfilling the control objective, both in the learning stage
and in the operation stage, but theoretically, it must be demon-
strated its global stability properties in future works.
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