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Abstract In this work, a novel algorithm for trajec-
tory tracking in mobile robots is presented. For the
purpose of tracking trajectory, a methodology based
on the interpolation of trigonometric functions of
the wheeled mobile robot kinematics is proposed. In
addition, the convergence of the interpolation-based
control systems is analysed. Furthermore, the opti-
mal controller parameters are selected through Monte
Carlo Experiments (MCE) in order to minimize a
cost index. The MCE is able to find, the best set of
gains that minimizes the tracking error. Experimental
results over a mobile robot Pionner 3AT are conclu-
sive and satisfactory. In addition, a comparative study
of control performance is carried out against another
controllers.
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1 Introduction

Tracking control of wheeled mobile robots (WMR) is
one of the most attractive research areas for several
decades [4, 8, 20, 42] . As a part of research interests,
the trajectory tracking problem is particularly relevant
in practical applications. The use of WMR is extensive
in fields where transportation, inspection and opera-
tion tasks are required (industry, assembly, mining,
safety). Another promising application is the design of
robotic systems for the assistance of disabled, handi-
capped or elderly people. Trajectory tracking is impor-
tant also in cooperative tasks. In formation problems,
two or more robots must fulfill together a particu-
lar task, such as moving a load or inspect an area
[32, 36].

Many researchers have been working on this field
for a long period, they have proposed control tech-
niques for target tracking problems, which consist
of state feedback control, fuzzy logic control [9, 16,
33, 39], potential field [10], neural network [11], etc.
Many WMR models and control schemes have been
presented for trajectory tracking purposes. The aim of
such schemes is either to utilize a kinematic trajec-
tory tracking controller [4, 30, 38] or to construct an
integrated kinematic and dynamic controller [22, 25,
26] for the robot to track a desired trajectory. In order
to utilize kinematic trajectory tracking controllers, the
kinematics of the nonholonomic WMR are used to
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generate linear and angular velocity references applied
to the robot.

Finite-time tracking control method [27, 40, 41,
44] is a fast control technique, which achieves the
desired trajectory in finite time. The authors in Zhang
et al. [44] proposes a class of control laws based on
cascaded control design. By using cascaded control
design, they obtain two subsystems. One subsystem
is stabilized by an improved global finite-time control
law to relax the strict constraints on the desired veloci-
ties. The other subsystem is stabilized by a finite-time
sliding mode control law. However, the low efficiency
is still a problem of these methods, and the strong
constraints on the desired velocities should be strictly
satisfied.

Fuzzy logic control can be considered as an effec-
tive tool for nonlinear controller design [5, 18, 19,
28]. Traditionally, the fuzzy logic controller has been
applied to the development of a complete navigation
problem of a mobile robot [1, 13]. In Resende et al.
[28] propose a controller that combines the heuris-
tic knowledge of the problem, the sector non linearity
approach and the inverse kinematic of the mobile plat-
form. In Li et al. [14] propose a fuzzy target tracking
control unit (FTTCU), which comprises a behavior
network for each action of the tracking control and
a gate network for combining all the information of
the infrared sensors. The disadvantages of these meth-
ods relies on the amount of information that must be
retrieved from the system in order to construct the
knowledge base for the control laws.

Furthermore, there are many results that are based
on the look-ahead methods [6, 20], where, instead of
the center of mass in the wheeled mobile robots, the
intersection point of a straight line passing through the
middle of the vehicle and an axis of the two wheels is
chosen in the configuration of the posture to make use
of the feedback linearization technique. However, this
approach has the following problem: as the distance
between the center of mass and the intersection point
becomes larger, the tracking performance will deteri-
orate. On the other hand, when it becomes smaller,
the control input tends to become much larger as it
involves the inverse of almost the singular matrix.
Thus, it is also desirable to develop the analytic uncer-
tain kinematic model that adopts the center of mass as
the configuration of the posture.

All the previous works have reported good results,
but the implementation of their controllers can become

a not so simple task, due to the prior knowledge
that one should have in order to design these algo-
rithms. One different direction in the controller design
have been delimited by the use of interpolation meth-
ods applied over the kinematic model of the vehicle,
combined with numerical methods such as Euler and
Runge-Kutta to solve the equations between sample
time [29, 30].

This paper provides a positive answer to the above
challenging problem. In this work a tracking con-
troller design way based on interpolation methods
for trajectory tracking on a wheeled mobile robot is
presented. First, the kinematic robot model is approx-
imated through an interpolation method using a series
of Taylor with zero order for the trigonometric func-
tions. Then, a controller based on a proportional
tracking error approach is proposed. Therefore, the
control signals are obtained by solving a system of lin-
ear equations. One of the advantages of the proposed
approach is that the methodology is based upon eas-
ily understandable concepts, and that there is no need
of complex calculations to attain the control signal.
The trajectory tracking controller structure arises nat-
urally derived through a handcrafted procedure that
is inferred by analyzing the continuous mathematical
model of the system.

The main contribution of this paper is a method-
ology for trajectory tracking in mobile robots. In
addition, in this work the Monte Carlo (MC) based
sampling experiment is implemented for tuning the
proposed controllers. The controller parameters can be
computed to minimize a cost index, here being deter-
mined in simulations using the Monte Carlo Exper-
iment (MCE). In addition, an empirical analysis is
included and the theoretical results are validated. The
proposed technique is implemented in real time in
a Pionner 3-AT robot with good results. The results
obtained showed an improvement compared to others
controllers of the literature [12, 21, 28]. Another con-
tribution of this paper is the analysis of convergence
of the interpolation-based control system.

The paper is organized as follows: Section 2
describes the interpolation based controller design.
Section 3 present the convergence analysis of the Pro-
posed Control Algorithm. In Section 4, simulation for
tunning parameters through Monte Carlo Experiment
are presented. Section 5 presents the experimental
results using a mobile robot Pionner 3-AT. Finally,
Conclusions are detailed in Section 6.
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2 Interpolation Based Controller

Now a method based on interpolation and algebraic
conditions for design trajectory tracking controllers
is presented. The design method is introduced with a
simple interpolation and afterward the order of this is
increased as a sort of design parameter. This design
does not require any a-priori information of dynamics
parameters and model linearization.

To this end, consider the coordinate system in Fig. 1
and the kinematic robot model from Eq. 1, thus⎡
⎣

ẋ

ẏ

ψ̇

⎤
⎦ =

⎡
⎣

cos (ψ) 0
sin (ψ) 0

0 1

⎤
⎦

[
u

r

]
(1)

where x, y represents the cartesian position of the
mobile robot; ψ is the robot orientation; u represents
the linear velocity of the mobile robot and r is the
angular velocity of the mobile robot. This model has
been used in several recent papers [15, 28, 31, 37, 43].

The goal is to find the values of u and r so that
the mobile robot may follow a pre-established trajec-
tory (xref , yref ) with a minimum error. Then, if the
reference trajectory xref , yref , ψref is known, ẋ, ẏ, ψ̇

in Eq. 1 can be substituted assuming an approaching
proportional to the tracking error as in Eq. 2. Where,
kx, ky and kψ are positive constants that allow us to
adjust the performance of the proposed control sys-
tem, and fulfill: kx > 0 ky > 0 and kψ > 0 to the
tracking errors tends to zero, see convergence analysis
in Section 3.⎡
⎣

cos (ψ) 0
sin (ψ) 0

0 1

⎤
⎦

[
u

r

]
=

⎡
⎣

ẋref + kx(xref − x)

ẏref + ky(yref − y)

ψ̇ref + kψ(ψref − ψ)

⎤
⎦ ;

e(t) =
⎡
⎣

ex

ey

eψ

⎤
⎦ =

⎡
⎣

xref − x

yref − y

ψref − ψ

⎤
⎦ (2)

Fig. 1 Geometric description of the mobile robot

As the matrix columns in Eq. 1 are orthonor-
mal, the kinematic state vector can be decomposed
as a linear combination in the column b as is space
and in the null space associated. From it can be
deduced the control action u and r that must be
applied such that the mobile robot reaches the desired
trajectory.

Considering the above idea, we propose replaced
the orientation ψref by ψez,where ψez represents the
necessary orientation to make the mobile robot tend
to the reference trajectory (see Section 3). Then, the
trajectory tracking problem is set as solving a system
of linear equations,

⎡
⎣

cos (ψ) 0
sin (ψ) 0

0 1

⎤
⎦

︸ ︷︷ ︸
B

[
u

r

]
=

⎡
⎣

ẋref + kx(xref − x)

ẏref + ky(yref − y)

ψ̇ez + kψ(ψez − ψ)

⎤
⎦

︸ ︷︷ ︸
b

(3)

Equation 3 is a system with three equations and
two unknown variables. The optimum solution of it
from mean squares is obtained from normal equation
(Eq. 3) (see Strang [34]).

B

[
u

r

]
= b ⇒ BT B

[
u

r

]
= BT b; BT B =

[
1 0
0 1

]

BT b =
[

Δx cos ψ + Δy sin ψ

Δψ

]
;

where

⎧⎨
⎩

Δx = ẋref + kx(xref − x)

Δy = ẏref + ky(yref − y)

Δψ = ψ̇ez + kψ(ψez − ψ)

(4)

In order to guarantee that the system shown in Eq. 3
has exact solution, constants B1 and B2 in Eq. 5 must
exist. In other words, b ECB (Column Space of B),
then:

B1

⎡
⎣

cos(ψ)

sin(ψ)

0

⎤
⎦ + B2

⎡
⎣

0
0
1

⎤
⎦ =

⎡
⎣

Δx

Δy

Δψ

⎤
⎦

B1, B2 ∈ �

(5)

Thus, from Eq. 5,

B1

⎡
⎣

cos(ψ)

sin(ψ)

0

⎤
⎦ =

⎡
⎣

Δx

Δy

0

⎤
⎦ ⇒ sin(ψ)

cos(ψ)
= Δy

Δx

(6)
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Fig. 2 Trajectory cost of C1 for the 1000 trials

The orientation ψ in Eq. 6 ensures that the system
(3) has exact solution, this orientation will be called
ψez and is computed according to Eq. 7.

ψez = atan2
(
Δy, Δx

)
(7)

Next, the control actions, that make that the mobile
robot reaches and follows the reference trajectory, can
be computed solving the system (3) by least squared

[
u

r

]
=

[
Δx cos (ψ) + Δy sin (ψ)

ψ̇ez + kψ(ψez − ψ)

]
(8)

Now, an improvement based on a numerical
approach is introduced. Using a series of Taylor with

zero order for the trigonometric functions in Eq. 8
about ψez, it is valid exactly, for instance, for

cos (ψ) = cos (ψez) − sin
(
ψez + ζeψ

)
eψ (9)

with eψ = ψ − ψez and 0 < ζ < 1. So, the con-
trol vector in Eq. 8 is constructed with cos(ψ) ≈
cos(ψez) and sin(ψ) ≈ sin(ψez) and referred to as an
interpolation of order zero.

Finally, the control action which fulfills the track-
ing goal of this work is:
[

u

r

]
=

[
Δx cos (ψez) + Δy sin (ψez)

ψ̇ez + kψ(ψez − ψ)

]
(10)

The control system with controller laws (10) is
asymptotic stable as proved later. This controller of
order zero is in future referred to as controller 1 (C1).
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Fig. 3 Trajectory cost of C2 for the 1000 trials
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Fig. 4 Trajectory cost of C3 for the 1000 trials

Similarly, if the Taylor expansion for the cos(ψ)

and sin(ψ) is truncated at the second term, thus, for
instance

cos (ψ) = cos (ψez) − sin (ψez) eψ

− cos
(
ψez + ζeψ

) e2
ψ

2
(11)

then the control action vector (8) can be redefined as

u = Δx

[
cos (ψez) − sin (ψez) eψ

]
+Δy

[
sin (ψez) − cos (ψez) eψ

]
r = ψ̇ez + kψ(ψez − ψ)

(12)

where ψez is calculated numerically using explicit
equations as

sin (ψez) + cos (ψez) (ψ − ψez)

cos (ψez) − sin (ψez) (ψ − ψez)
= Δy

Δx

(13)

This controller of first order with Eq. 12 is called
controller 2 (C2).

For a second-order representation of cos(ψ) and
sin(ψ) it is valid, for instance,

cos (ψ) = cos (ψez) − sin (ψez) eψ

− cos (ψez)
e2
ψ

2
+ sin

(
ψez + ζeψ

) e3
ψ

6
(14)

and hence

u =
Δx

[
c(ψez)−s(ψez)eψ−c(ψez)

e2
ψ
2

]
+Δy

[
s(ψez)−c(ψez)eψ−s(ψez)

e2
ψ
2

]

1+ e4
ψ
4

r = Δψ

(15)

with c() = cos(.) and s() = sin(.). The computation
of ψez is performed numerically by solving (16),

sin (ψez) + cos (ψez) eψ − sin (ψez)
e2
ψ

2

cos (ψez) − sin (ψez) eψ − cos (ψez)
e2
ψ

2

= Δy

Δx

(16)

Fig. 5 Minimum cost
obtained for each controller
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Analogously, this controller with control action vector
(15) is denoted by controller 3 (C3) in future.

3 Convergence Analysis

To prove convergence of the interpolation-based con-
trol systems, let us, for the sake of simplicity, take the
case of controller 1 for analysis. Combining (1) and
(10) one achieves the following tracking error system
dynamics
⎡
⎣

ėx

ėy

ėψ

⎤
⎦ =

⎡
⎣

−kx 0 0
0 −ky 0
0 0 −kψ

⎤
⎦

⎡
⎣

ex

ey

eψ

⎤
⎦ − δe (17)

δe =
⎡
⎣

− (
Δx cos (ψez) + Δy sin (ψez)

)
sin

(
ψξ

)
− (

Δx cos (ψez) + Δy sin (ψez)
)

cos
(
ψξ

)
0

⎤
⎦ eψ

(18)

where δe represents a state-dependent perturbation
originated in the Taylor approximation of bounded
functions. Assuming the reference paths xref and yref

are smooth, it is clear from Eq. 17 that for kψ > 0 it
holds lim

t→∞ eψ = 0. However, the asymptotic behavior

of the perturbation δe is not so evident. By introducing
the reference variables of Eq. 1 in Eq. 18, one attains

δe = eψD

⎡
⎣

ex

ey

eψ

⎤
⎦ + eψF

where,

D =
⎡
⎣

−kxs (ψ0) c
(
ψξ

) −kys (ψ0) s
(
ψξ

)
0

kxc (ψ0) c
(
ψξ

)
kys (ψ0) c

(
ψξ

)
0

0 0 0

⎤
⎦

F =
⎡
⎣

−ẋrs (ψ0) c
(
ψξ

) − ẏrs (ψ0) s
(
ψξ

)
−ẋrc (ψ0) c

(
ψξ

) + ẏrs (ψ0) c
(
ψξ

)
0

⎤
⎦

(19)

with c() = cos(.) and s() = sin(.). Clearly, by uni-
formly bounded references and eψ tending asymptot-
ically to zero, δe also vanishes in time asymptotically,
and by selected gains kx > 0 and ky > 0, also the
errors ex and ey tend exponentially to zero. The analy-
sis of convergence with Controllers 2 and 3 is, though
more complex, similar as previously. The error eψ

Table 1 Simulations summary of the Monte Carlo experiment

Controller Minimum cost Controller parameters

C1 CΦ = 0.173 kx = 0.99

ky = 1.04

kψ = 1.98

C2 CΦ = 0.124 kx = 1.18

ky = 0.99

kψ = 2.11

C3 CΦ = 0.072 kx = 1.06

ky = 1.12

kψ = 1.95

appears in a form of higher powers in δe as long the
order of the approximation increases. Consequently,
the asymptotic convergence of δe occurs faster for this
control systems than by the lowest-order controller,
and so the exponential convergence of all tracking
errors is ensured.

4 Simulation Results

The simulation results for the performance evalua-
tion of the trajectory tracking controllers proposed in
the previous section are presented in this section. The
simulations are performed using MatLab� software
platform and Mobile Sim program provided by the
manufacturer Pioneer Mobile Robot.

The controlled system behavior depends on the
parameters kx , ky and kψ . Thus, in this work, and in
order to determine values of the controller’s parameters,

Fig. 6 The pionner 3AT mobile robot and the laboratory
facilities
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Table 2 controladoresTrajectory tracking controllers

Controller Formulation

Resende. C.Z. [28]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C =
[

cos ψ −a sin ψ

sin ψ a cos ψ

]

[
u

r

]
= C−1

([
ẋref

ẏref

]
+

[
vx

vy

])

Michalek, M. [21]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

hx = kpex + ẋ

hy = kpey + ẏ

r = hx cos ψ + hy sin ψ

u = kψ

(
ψref − ψ

) + ψ̇ref

Kanayama, Y. [12]

{
u = uref cos ψe + kxxe

r = rref + uref

(
kyye + kψ sin ψe

)

the MC method used in Cheein and Scaglia [4], is
applied.

4.1 Monte Carlo Randomized Algorithm

In the field of systems and control, probabilistic meth-
ods have been found useful especially for problems
related to robustness of uncertain systems [35]. One
of these methods, the Monte Carlo Randomized Algo-
rithm, is widely used in many fields such as the
radioactive decay, systems of interacting atoms, the
traffic on roads, etc [2]. In the control area, Monte
Carlo methods allow to estimate an expectation value
and they provide effective tools for the analysis of
probabilistically robust control schemes.

Because of its nature, these types of algorithms can
give an erroneous result with a non zero probabil-
ity. So, it could be posed the natural question of how
many simulations must be performed to be sure of
finding the correct answer. Under a sufficiently large

sample size N , a probabilistic statement can be made
as shown below:

Theorem 1 [35] Let ε, δ ∈ (0, 1), where ε is an a pri-
ori specified accuracy, and δ, the confidence interval.
If

N ≥
[

log 1
δ

log 1
1−ε

]
(20)

then, the empirical maximum satisfies the following
inequality with probability greater than 1 − δ,

ProbΔ

{
J (Δ) ≤ Ĵmax

}
≥ 1 − ε (21)

That is,

ProbΔ(1,...,N)

{
ProbΔ

{
J (Δ)≤ Ĵmax

}
≥1−ε

}
>1−δ

(22)

where J is the performance function and Ĵmax, the
empirical maximun. For further details, see Tempo and
Ishii [35].

The theorem says that the empirical maximum is
an estimate of the true value within an a priori speci-
fied accuracy ε with confidence, δ if the sample size
N satisfies (20). The algorithm may not produce an
approximately correct answer, but the probability of
this event is no greater than δ. It is worthy to empha-
size that, in Theorem 1, the sample size N is finite and
moreover is not dependent on the size of the uncertain
set B, the structured set of uncertainty matrices, and
the probability density function fΔ (Δ), but only on ε

and δ. In the next Section, Eq. 20 is used to estimate
the number of simulations.

Fig. 7 Tracking trajectory
of the mobile robot
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Fig. 8 Cost of the
trajectory tracking
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4.2 Monte Carlo Experiment

In this subsection, the Monte Carlo method is applied
to select an optimal set of controller parameters.
Although the optimum is not guaranteed, the Monte
Carlo Experiment (MCE) provides an approximate
solution based on a large number of trials (M). In this
paper, it is adopted a confidence value (δ) of 0.01,
and an accuracy of 0.007 (ε). Then, from Eq. 20, it
is necessary to make 1,000 simulations. Hence, 1,000
values of each parameter ranging from 0 to 5 were
simulated.

The aim of MCE is to find the parameter values (kx

, ky and kψ ) optimizing a defined cost function. An
idea widely used in the literature is to consider the cost
incurred by the error [4]. Let Φ be a desired trajec-
tory, where tf is the time duration of the trajectory. Let

CΦ
x = 1

2

tf∫
o

(
xref (t) − x(t)

)2
dt the quadratic error in

the x-coordinate; and CΦ
y = 1

2

tf∫
o

(
yref (t) − y(t)

)2
dt

the quadratic error in the y-coordinate. Thus, the cost

function can be represented by the combination of
both quadratic errors,

CΦ = 1
2

(
tf∫
o

(
xref (t) − x(t)

)2
dt+

tf∫
o

(
yref (t) − y(t)

)2
dt

)

(23)

Thus, the objective is to find kx , ky and kψ in such
way that CΦ is minimized. The MC experiment allows
finding empirically the parameter values minimizing
the cost function.

The MCE considerations:

– The simulations are performed with all controllers
developed in Section 2, C1, C2 and C3, respec-
tively. For each controller 1000 simulations are
run.

– All simulations are implemented with the same
desired trajectory Φ. In this section, a sinusoidal
trajectory is considered.

– For each simulation, the controller parameters are
chosen in a random way, such that 0 < kx <

Fig. 9 Tracking error in x
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Fig. 10 Tracking error in y
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5, 0 < ky < 5 and 0 < kψ < 5. The
upper bound is empirically chosen considering a
trade off between the speed of convergence to
zero of tracking errors and a soft robot response.
The lower bound is chosen such that tracking
errors tends to zero (see Convergence analysis in
Section 3).

Figure 2 shows the results of the 1000 simulations
for C1 controller. The results show the values taken
by the cost function for each simulation; scattered val-
ues are obtained due to the randomness with which the
parameters were chosen in each simulation. The min-
imum cost obtained for C1 is CΦ = 0.173. Figure 3
shows that the lowest cost obtained by C2 corresponds
to CΦ = 0.124. The Fig. 4 shows the results of the
cost function for 1000 trials when using the controller
C3 proposed in this work. For this controller the low-
est cost obtained is CΦ = 0.072. By inspection can
be seen, in general all the cost obtained by C2 are
under the minimum value obtained by C1. In addition,
the cost obtained by C1 and C2 are over than those
obtained by C3. The minimum cost obtained for each
controller is resumed in Fig. 5.

The analysis of the results shows that the per-
formance of the controller improves as the order of
the representation of cos(ψ) and sin(ψ) increases.
Thus, the results obtained by the MCE to choose
the controller parameters verify the theoretical results
obtained in the previous section. Table 1 shows the
summary of the results obtained with each controller.

5 Experimental Results

To verify the performance of the proposed con-
troller, we have carried out two experiments on a
mobile robot (see Fig. 6). The experiments where per-
formed using a PIONEER 3AT mobile robot. The
PIONEER 3AT mobile robot includes an estimation
system based on odometric-based positioning system.
Updating through external sensors is necessary. This
problem is separated from the strategy of trajectory
tracking and it is not considered in this paper, [23,
24]. The PIONEER 3AT has a PID velocity controller
used to maintain the velocities of the mobile robot
at the desired value. In the implementation, the con-
trollers are programmed in MatLab� environment.

Fig. 11 Tracking trajectory
of the mobile robot
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Fig. 12 Tracking error in x
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The control actions calculated are sent to the embed-
ded computer of the PIONEER 3AT mobile robot
using ethernet communication.

Figure 6 shows the PIONEER 3AT and the labo-
ratory facilities where the experiments were carried
out. The optimal controller parameters obtained in the
previous section (Table 1) are used.

In order to compare the approaches proposed in
this work (C1, C2 and C3) the controllers devel-
oped in Resende et al. [28], Michałek et al. [21] and
Kanayama et al. [12] are also implemented in the PIO-
NEER 3AT, these will be called C4, C5 and C6 respec-
tively. The fuzzy controller proposed by Resende
et al. [28], is designed through the application of the
inverse kinematic of the mobile platform, guarantee-
ing the stability of the closed loop system. To reduce
tracking errors, caused by the difference between the
desired values of linear and angular velocities (system
inputs) and the current velocity values assumed by the
mobile platform, was used the heuristic knowledge.
The controlled structure shown in Michalek et al.
[21] results from simple geometrical interpretations
related to the unicycle kinematics, from introduction

of the so-called convergence vector field, and from
decomposition of the control process into the orienting
and pushing subprocesses. The Kanayamas controller
[12] is designed for determining vehicle’s linear and
rotational velocities. The controller is designed lin-
earizing the system’s differential equation, and then
is find a condition for critical dumping, which gives
appropriate parameters for specilic control rules.

Table 2 summarizes the formulation of the con-
trollers implemented for comparison (C4, C5 and
C6).The designing details of the controller C4, C5
and C6 can be found in its respective references
([12, 21, 28]).

5.1 Sinusoidal Trajectory

In this subsection the robot should follow a sinusoidal
trajectory following the guidelines previously pub-
lished in [7, 17]. The initial conditions for the robot
mobile position is the system origin and the trajectory
begins in the position (xref , yref ) = (1m,1m).

Figure 7 shows the trajectory and the results
obtained by implementing the controllers proposed in

Fig. 13 Tracking error in y
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Fig. 14 Cost of the
trajectory tracking
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this paper (C1, C2, and C3) and controllers imple-
mented for comparative purposes (C4, C5 and C6).
As can be seen, all controllers reach and follow
the desired trajectory without unexpected oscillations,
however the interpolation based controllers show bet-
ter performance. Figure 8 shows that C3 in the sequel
has the lowest cost error when compared with the rest
of the controller. Figures 9 and 10 show the tracking
errors for the x − coordinate and y − coordinate

respectively. By inspection of Figs. 9 and 10, when
the same reference trajectory is given, the controllers
proposed in this paper reduce the tracking errors.

5.2 Curvature Test

The second experimentation is a curvature test, in
which the controllers performance using different
circle-shaped trajectories are evaluated, as recom-
mended in Batavia et al. [3]. Three circle-trajectories
are used in this work, with different radius. The inter-
nal trajectory has a radius of r = 1.5m, the medium
one r = 2.5m and the last one r = 3.5m. The initial
robot position is the system origin and the reference
trajectory begins in the position (xref , yref ) = (1m,
0.5m).

The reference trajectory and the results of the
controllers are shown in Fig. 11. As can be seen,
all controllers reach and follow the desired trajec-
tory. Figures 12 and 13 show the plots of the value
of the tracking errors in the x − coordinate and
y − coordinate according to each controller used in
the test for the three curvatures shown in Fig. 11.
Figures 12 and 13 shows that both errors (ex and ey)
remain bounded and close to zero when the robot
reaches the reference trajectory. It is interesting to note
that during the trasient behavior all controllers have

a similar performance. However, when mobile robot
reaches the reference trajectory, the controllers pro-
posed in this work (C1, C2, and C3) present a lower
tracking error. The lowest cost is obtained by C3 as
can be seen in Fig. 14. Compared with fuzzy-based
controller (C4) the cost obtained by C3 is lower to
40 %. The well-know Kanayama controller (C6) has a
cost upper to 45 % in the same control task in compar-
ison to C3. For the experiment carried out, Michałek
et al. [21] offered the worst results when compared
with the other approaches.

6 Conclusion

A novel methodology for controller design based on
the interpolation of the trigonometric functions of the
kinematic model for a wheeled robot is proposed.
The use of numerical methods to solve the equations
between sample times, allows the use of the controller
without computational issues. The main contribution
of this work is that the methodology is simple and
can be applied to the design of a large class of linear
and nonlinear systems. In addition, the convergence
of the controllers proposed was demonstrated show-
ing that the asymptotic convergence of this controller
occurs faster than the lowest order controller ensuring
the exponential convergence of the tracking errors.

Different tests were carried out to demonstrate the
effectiveness of the proposed methodology. A con-
tribution of this work involves the application of a
Monte Carlo method to controller tuning. These exper-
iments show that the tracking error decreases when
the order of Taylor’s series increases. The decrease
of tracking error also is observable during experimen-
tal tests using a PIONEER 3AT mobile robot. The



580 J Intell Robot Syst (2017) 86:569–581

performance of the proposed system is good, and the
complexity of control algorithm does not increase in
an excessive way. When the methodology proposed
in this paper is compared to others from the litera-
ture the proposed method present better performance.
The application results obtained in an experimen-
tal test have shown that the approach proposed have
significantly improved the tracking errors up to 20 %.

Finally, the possibility to include the saturation of
control signals and additive uncertainty, in the formu-
lation of problem will be addressed in future contribu-
tions. The control actions constraint in the proposed
methodology can be avoided with a low speed of con-
vergence to zero of tracking errors. This convergence
speed can be changed by modifying the values of the
parameters of the controller. On the other hand, the
effect of uncertainty in tracking errors can be reduced
if a good estimate of the uncertainty is incorporated in
the design methodology.

Acknowledgments This work was partially funded by the
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas
(CONICET - National Council for Scientific Research),
Argentina. The authors thank to the Institute of Chemical Engi-
neering of the National University of San Juan, Argentine and
the Escuela de Administración, Finanzas y Tecnologı́a, EAFIT
Bogota, Colombia.

References

1. Abdessemed, F., Benmahammed, K., Monacelli, E.: A
fuzzy-based reactive controller for a non-holonomic mobile
robot. Robot. Auton. Syst. 47(1), 31–46 (2004)

2. Barat, A., Ruskin, H.J., Crane, M.: Probabilistic mod-
els for drug dissolution. part 1. review of monte
carlo and stochastic cellular automata approaches.
Simul. Model. Pract. Theory 14(7), 843–856 (2006).
doi:10.1016/j.simpat.2006.01.004

3. Batavia, P.H., Roth, S.A., Singh, S.: Autonomous cover-
age operations in semi-structured outdoor environments. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems, vol. 1, pp. 743–749. IEEE (2002)

4. Cheein, F.A., Scaglia, G.: Trajectory tracking controller
design for unmanned vehicles: a new methodology. J. Field
Rob. 31(6), 861–887 (2014)

5. Chwa, D.: Fuzzy adaptive tracking control of wheeled
mobile robots with state-dependent kinematic and dynamic
disturbances. IEEE Trans. Fuzzy Syst. 20(3), 587–593
(2012)

6. Das, T., Kar, I.N.: Design and implementation of an adap-
tive fuzzy logic-based controller for wheeled mobile robots.
IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

7. Do, K., Pan, J.: Global output-feedback path tracking
of unicycle-type mobile robots. Robot. Comput. Integr.
Manuf. 22(2), 166–179 (2006)

8. Do, K.D.: Bounded controllers for global path tracking con-
trol of unicycle-type mobile robots. Robot. Auton. Syst.
61(8), 775–784 (2013)

9. Gokkus, L., Erkmen, A.M., Tekinalp, O.: Interacting fuzzy
multimodel intelligent tracking system for swift target
manoeuvres. In: Proceedings of the 1997 IEEE/RSJ Inter-
national Conference On Intelligent Robots and Systems,
1997. IROS’97, vol. 2, pp. 766–771. IEEE (1997)

10. Guldner, J., Utkin, V., et al.: Sliding mode control for gra-
dient tracking and robot navigation using artificial potential
fields. IEEE Trans. Robot. Autom. 11(2), 247–254 (1995)

11. Jung, I.K., Hong, K.B., Hong, S.K., Hong, S.C.: Path plan-
ning of mobile robot using neural network. In: Proceedings
of the IEEE International Symposium On Industrial Elec-
tronics, 1999. ISIE’99, vol. 3, pp. 979–983. IEEE (1999)

12. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A
stable tracking control method for an autonomous mobile
robot. In: IEEE International Conference On Robotics and
Automation, 1990. Proceedings., 1990, pp. 384–389. IEEE
(1990)

13. Lee, T., Lam, H., Leung, F.H., Tam, P.K.: A practical fuzzy
logic controller for the path tracking of wheeled mobile
robots. IEEE Control. Syst. 23(2), 60–65 (2003)

14. Li, T.H.S., Chang, S.J., Tong, W.: Fuzzy target tracking
control of autonomous mobile robots by using infrared
sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

15. Luo, B., Ding, Y., Hao, K., Liu, J.: Research on mobile
robot path tracking based on color vision. In: Chinese
Automation Congress (CAC), 2015, pp. 371–375. IEEE
(2015)

16. Luo, R.C., Chen, T.M.: Autonomous mobile target tracking
system based on grey-fuzzy control algorithm. IEEE Trans.
Ind. Electron. 47(4), 920–931 (2000)

17. Maalouf, E., Saad, M., Saliah, H.: A higher level path track-
ing controller for a four-wheel differentially steered mobile
robot. Robot. Auton. Syst. 54(1), 23–33 (2006)

18. Maeda, Y., Tanabe, M., Takagi, T.: Behavior-decision fuzzy
algorithm for autonomous mobile robots. Inform. Sci.
71(1), 145–168 (1993)

19. Martı́nez, R., Castillo, O., Aguilar, L.T.: Optimization
of interval type-2 fuzzy logic controllers for a perturbed
autonomous wheeled mobile robot using genetic algo-
rithms. Inform. Sci. 179(13), 2158–2174 (2009)

20. Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho,
M., Bastos-Filho, T.F.: An adaptive dynamic controller for
autonomous mobile robot trajectory tracking. Control. Eng.
Pract. 16(11), 1354–1363 (2008)

21. Michałek, M., Kozłowski, K.: Feedback control framework
for car-like robots using the unicycle controllers. Robotica
30(04), 517–535 (2012)

22. Narendra, K.S., Han, Z.: The changing face of adaptive con-
trol: the use of multiple models. Annu. Rev. Control. 35(1),
1–12 (2011)

23. Normey-Rico, J.E., Alcala, I., Gómez-Ortega, J., Camacho,
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