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ABSTRACT
This manuscript reports a geometrical and a topological methods to segment a closed triangular
2-manifold mesh M ⊂ R3. The mesh M does not self-intersect) and has no border (i.e. watertight.
Geometrical and topological segmentation methods require a Boundary Representation (BRep)
from M . Building the BRep for M uniforms the triangle orientations, and makes explicit triangle and
edge - counter edge adjacency. In the context of Reverse Engineering, the sub-meshes produced
by the segmentation are subsequently used to fit parametric surfaces, which are in turn trimmed by
the sub-mesh boundaries (forming FACEs). A Full Parametric Boundary Representation requires
a seamless set of FACEs, to build watertight SHELLs. The fitting of parametric surfaces to the
triangular sub-meshes (i.e. sub-mesh parameterization) requires quasi-developable sub-meshes.
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As a result, our geometric segmentation places 2 neighboring triangles in the same sub-mesh
if their dihedral angle is π ± η for a small η (angle between their triangle normal vectors is a
small η angle). On the other hand, our topological segmentation heuristic classifies triangles in
a common sub-mesh if the value of the First eigenfunction of the triangulation graph Laplacian
in these triangles falls in the same bin of a histogram formed with the eigenfunction values. The
segmentation will obviously depend on the histogram bin distribution. The data sets processed
indicate that geometrical segmentation is more convenient for mechanical parts with analytical
surfaces. Conversely, topological segmentation works better for organic or artistic shapes. Future
work is needed on the tuning of both the dihedral threshold η (for geometrical segmentation) and
on the bin distributions of the eigenfunction (for topological segmentation).

Keywords: Computational geometry 3D mesh segmentation; spectral graph theory; boundary
representation (BRep).

Glossary
M : Triangular Mesh in R3. M = {t1, t2, ...}, with ti= i-th triangle in M

∂M : Boundary of a mesh M . ∂M is a closed LOOP in R3.
S : Partition or Segmentation of M
G : Connectivity Graph of M with G = (V,E), V : vertices, E: edges.
W : Adjacency matrix of graph G.
D : Degree matrix of graph G.
K : Laplacian matrix of graph G.
U : Eigenvectors of graph Laplacian K.
Λ : Eigenvalues of graph Laplacian K.
bin : Given a sequence a0 < a1 < a2 < ... < af , with ai ∈ R, the bins are the

intervals [ai, ai+1].
η : Threshold of the Dihedral angle between two adjacent triangles in M .
BRep : Boundary Representation (BODY, LUMPs, SHELLs, FACEs, LOOPs, EDGEs,

VERTEX) of a solid object in R3. The parametric surfaces that carry the FACEs
of a BRep are usually smooth (C1, C2, unless the model specifically requires a
flat FACE).

Tr-BRep : BRep whose FACEs are exclusively triangles. In this case, the FACEs have no
holes.

FACE : A connected region on a parametric surface S ⊂ R3 (BRep context).
LOOP : Closed piecewise smooth curve in R3 (BRep context).
BFS : Breadth First Search.
CCW : counter-clockwise.
RE : Reverse Engineering.

1 INTRODUCTION

This manuscript presents two implementations
(geometrical and topological) for the
segmentation of a 2-manifold watertight
triangular Tr-Brep.

1.1 Problem Specification

• Given: A closed connected triangular 2-
manifold M in R3. M is the C0-continuous
approximation (M ≈ ∂B ) or tessellation
of the boundary (∂B ) of a solid B ⊂ R3
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• Goal: A partition S of M , such that:
S = {M1,M2, ...,Mw} is a set of sub-
meshes such that Mi ∩ Mj = Φ and
w∪

i=1

Mi = M . Therefore, S covers the

entire triangulation M .

1.2 Context
A triangular mesh M usually is the clean,
processed result of digitizing a 3D surface or
3D object B and adding neighboring information
to such a point sample. After a meshing process,
M is a 2-manifold, which means that all its local
neighborhoods are isomorphic to the 2D unit
disk. It is desirable that the triangles of M be as
equilateral as possible.

For Reverse Engineering purposes, it is
additionally convenient to have homogeneously
sized triangles over the mesh M . RE requires at
some stage to have a parametric, as opposed to
a triangular Boundary Representation of M . In
such BReps, FACEs are mounted on smooth
parametric surfaces, and may have internal
holes, thus producing internal LOOPs, in addition
to the external LOOP of the FACE. In triangular
Tr-BReps, all FACEs are triangular and the have
no holes. The segmentation of the mesh M is
a requisite for reaching a full BRep for M . In
turn, a parametric BRep is required for re-design,
manufacturing, finite element analysis, among
other processes.

The need for parametric BReps influences
the mesh segmentation, as follows. Opposite
heuristics compete to define the size of a sub-
mesh Mi: (1) few triangles per sub-mesh lead
to BReps with high FACE fragmentation, but
the parameterizations are easier and closer
to isometries. (2) large sub-meshes are
more likely to have no parameterization. RE
segments a mesh M , attempts parameteri -
zation of the sub-meshes Mi, and re-arranges
the segmentation if the parameterization for Mi

does not exist or is a significant departure from
isometric parameterizations. Actual usage of
the resulting Parametric BReps is by no means
straightforward. The sole import of BReps into
Finite Element Analysis or CAM packages is full
of obstacles, due to the semantic and numeric
limitations of either the BRep itself or of the

standard (IGES, STEP, SAT) used to convey the
BRep. A B-rep may look correct in the CAD
stage, but its shortcomings surface at the CAM
or FEA stages, thus forcing to re-take the mesh
segmentation / parameterization steps. This
process is, at the present time, highly interactive,
and time - consuming. The process of point
sampling, mesh cleaning, mesh segmentation
and parameterization, BRep creation, exporting
to FEA, FEA mesh creation takes weeks of highly
- trained user interaction.

RE presents applications ranging from design,
virtually test, produce and modify the designs
of challenging devices or shapes (e.g. bones,
medical devises, sculptures, mechanical
components, and Mandelbrot - like actual
objects, such as filigree jewelry [1]).

An important notation observation for this
manuscript is that Tr-BRep is a Boundary
Representation for objects whose FACEs are flat
and triangular. On the other hand, (Full) BReps
are the ones whose FACEs are mounted on flat
or smooth parametric surfaces (i.e. the usual
meaning for BRep term).

2 LITERATURE REVIEW

Mesh segmentation is usually analyzed with two
taxonomies: (1) part vs. surface , and (2)
topology vs. geometry approaches. Part vs.
Surface (survey in [2]) taxonomy establishes 2
categories: (a) part-type, which uses mesh’s
volumetric attributes (concavity, convexity, etc.),
and (b) surface-type, which is based on attributes
such as dihedral angles, planarity, curvature, etc.
This taxonomy relies on feature identification,
which is a very vulnerable approximation (Ref.
[3]). Because of this reason, we prefer to use
the taxonomy (2) above. Thus, we survey and
implement two methods: Dihedral Angle and
Graph Laplacian segmentation.

2.1 Dihedral Segmentation
Ref. [3] reports difficulty in recognizing
depression / protrussion features in a 3D mesh
and therefore proposes a hybrid segmentation
algorithm that use the dihedral angle for the sharp
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feature edges, and the shape of the triangles
to identify the non sharp feature edges. The
importance of such feature edges is that they are
used in the identification of the boundaries of a
region and thus they separate the interest region
from the surrounding neighborhoods.

Ref. [4] presents 3 steps: (1) Extraction of
analytic geometric primitives, (2) intersection
between primitives in (1) resulting in LOOPs
or wires bounding the BReps FACEs, and (3)
BRep model creation. The first step is enhanced
with a pre-segmentation stage based on the
dihedral angle between pairs of triangles. The
pre-segmentation step improves the precision
therefore, the resultant geometric primitives are
closer to real world objects. Ref. [3] only
works with planes, spheres and cylinders. In ou
approach, we prefer not to make pre-judgement
on the nature of the feature underlying a sub-
mesh since in many cases the feature is not an
analytic one.

2.2 Graph Laplacian
Segmentation

The survey [5] expresses that geometrical (e.g.
dihedral angle) segmentation of meshes is a
particular case of spectral mesh processing. This
particular case is stated if the connectivity matrix
of the mesh graph is replaced by a dihedral angle
connectivity matrix. The manuscript starts with a
arbitrary A operator (matrix) that relates vertices i
and j of the mesh. An eigen-decomposition A =
U ∗ Λ ∗ UT follows, which finds the eigenvectors
U and eigenvalues Λ of A. The mesh can be
approximated with the k leading eigenvectors
Ṽ = Uk ∗ UT

k ∗ V . k produces a (k − 1) -
Dimensional approximation of V .

Ref. [6] bisects the graph mesh representation
into balanced parts having approximately the
same number of vertices, by using a minimum
number of edges (cut size) to split the mesh.
The Fiedler vector of the spectrum of the graph
Laplacian is obtained. The sign of each entry
in the Fiedler Vector serves as criterion to
partition the mesh. Another alternative is to
use eigenvectors 2nd and 3rd, not only the 2nd
(i.e. Fiedler) of the graph Laplacian. For our
purposes, however,we require to split the mesh

in more than 2 parts.

Ref. [7] uses Geometric and Laplacian spectral
analysis for mesh segmentation. The geometric
operator M measures the curvatures at vertices
iand j of the edge (i, j). The Laplacian
operator L is usual one, determined by the mesh
connectivity. In either case (M or L), the mesh is
projected in 2D via the first 3 eigenvectors. The
outer contour of the 2D projection is extracted,
and its extremes determine the limbs of the
object. However, the segmentation is basically
manual, by using the mentioned M and L
indicators.

Ref. [8] uses spectral graph theory to
approximate the eigenvalues - eigenfunctions
of the Laplace-Beltrami operator of a compact
Riemannian manifold. This reference runs
experiments showing that the eigenvector of the
first nonzero eigenvalue is a Morse function
with minimal number of critical points for the
given manifold. In the present article, we use
the Laplace operator for the Topology - based
segmentation.

An important characteristic of all the discussed
methods is the need for manual input to use
the spectral decomposition to materialize the
segmentation.

2.3 Theory vs. Practice in
Reverse Engineering

The actual mesh segmentation practice in
Reverse Engineering (RE) presents significant
departures from the numerous published
theoretical approximations. Fig. 1 presents
the main processes, all of which are currently
user - intensive. Assuming as input a point
sample, the processing follows: (1) Addition
of connectivity, to generate a manifold, faithful-
to-object triangular mesh. (2) Re-meshing to
ensure quality measures (quasi - equilateral
triangles, curvature - sensitive size, etc.), (3)
Triangular B-Rep generation (consistency of
triangle orientation, neighborhood and border
information, SHELL, LUMP, BODY information),
(4) Triangular BRep segmentation. (5) Mesh
parameterization to form trimmed FACEs. (6)
Promotion of FACE set to full BRep. (7) Export of
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BRep to CAD or FEA software and usage (e.g.
FEA meshing and analysis). All these processes
use intensive user input in actual engineering
practice. In addition, it is normal that, for
example, step 7 above fails, causing iteration in
any or all of 1 to 6 processes, until FEA meshing
or Tool Path can be successfully completed. In
particular, Fig. 2 presents a mesh segmentation
proposed by Geomagic software, which still
required (as with all comparable commercial
tools) intensive user cleaning, to achieve correct
patch fairing and manifold conditions. Such
segmentations are completely different from the
ones proposed in literature. It is not in the
capacity or goal of this manuscript to research
why the academic meshing is not applied in the
real practice. Such a departure also indicates
that mesh segmentation is far away of being a
closed topic.

Fig. 2 shows that current industrial mesh
partition for RE basically (1) uses a highly
granulated triangle set (i.e. small triangles), (2)
approximately rectangular regions are formed
with the small triangles sets. (3) cylindrical or
conical FACEs are avoided, since a discontinuity
in the parameter θ = 2π impedes a (bijective)
parameterization. Therefore, geometrical
or topological segmentations that produce
cylinders, cones or similar non-bijections are
avoided. Each case study in Fig. 2 takes approx
150 hours for the process displayed in Fig. 1.

2.4 Conclusions of the Literature
Review

The contrast between the theoretical articles and
the industrial practice in Mesh Segmentation (for
RE) shows that, whichever the reason, theoretical
spectral segmentation is not industrially applied.
The results of segmentation by commercial
cutting-edge software present sub-meshes much
smaller as compared with the ones prescribed by
spectral methods.

We do not intend in this manuscript to explain the
distance between spectral methods and industrial
practice. Instead, we seek to evaluate the
application of geometrical dihedral angle vs.
topological (spectral) methods with respect to the
piece at hand.

3 METHODOLOGY

Fig. 3 shows the flowchart of the BRep
construction and segmentation processes. The
process begins with the BRep construction which
consists basically in correcting the mesh triangle
orientation and the topology reconstruction. The
next step is the construction of the structures that
hold the segmented data set and, the final step
(Laplacian and Dihedral segmentation) is the
application of the intermediate results to actually
segment the mesh.

Fig. 1. Current user role in reverse engineering
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(a) Grazing Horse Data Set ([9]). (b) Elephant Data Set ([10]).

Fig. 2. Actual industrial segmentation with geomagic TM ([9], [10])
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Fig. 3. Synthesis of the BRep construction and segmentation processes

3.1 BRep Construction

To perform a segmentation the surface must be
a 2-manifold M embedded in E3. Informally, this
means for all point p ∈ M there exists a small
enough ball B(p, r) around p such that B(p, r) ∩
M is isomorphic to the 2D disk S2. When M
is not completely closed, there are points (called

boundary or border points) at the edge of M for
which the disc D is homeomorphic to half of S2

(half - disk). In such case it is said that M is a
2-manifold with border, embedded in E3 ([11]).

The simplest representation for M ia an
undirected graph G = (V,E) with V = set of
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mesh vertices and E ⊆ V × V = set of edges
e = (vivj).

In our segmentation process, M is promoted
to be a Boundary Representation (Fig. 4),
therefore having consistent FACE orientation,
information of neighboring triangles, mesh
border, vertex incidente set, etc. This is
a Boundary Representation having exclusively
triangular FACEs (Tr-BRep). As in the general
BRep, the FACEs have orientation. If the
SHELL is closed, each EDGE receives 2 FACEs
and the EDGEs in all FACES are in counter-
clockwise (CCW) sense with respect to the
outwards normal vector. This fact causes that
the same segment (vivj) be traversed in opposite
directions in the two FACEs in which it appears. If
the SHELL is open, the outward normal direction
is ambiguous. However, all the FACEs still
have consistent normal vector orientation. In an
open SHELL, the border EDGEs are precisely
the ones that receive only one FACE. For the
current discussion we will make no difference
(as in usual BRep) between a VERTEX and its
position p = (x, y, z). Likewise, we will refer to
the EDGE (vivj) or (vjvi) without using the usual
additional notation (EDGE , CO-EDGE). Fig. 5

shows the Cat data set before and after the BRep
construction.

3.2 Dihedral Segmentation

3.2.1 Dihedral angle equivalence
relation

Consider the relation rη(ti, tj) as satisfied if
there exists a path of triangles in M departing
from triangle ti and reaching triangle tj so that
the normal vectors of 2 triangles sharing an
edge form an angle smaller than η. This is
an equivalence relation because: (i) rη(ti, ti)
trivially holds, (ii) rη(ti, tj) implies rη(tj , ti), and
(iii) rη(ti, tj) and rη(tj , tk) implies rη(ti, tk). This
equivalence relation rη() applied in the form
of transitive closure generates a partition or
segmentation of the mesh M , as per section
1.1. This partition is calculated with the Breadth
- First Search (BFS) algorithm using the relation
rη(). Figs. 6(f) and 6(g) show the M after the
segmentation process for different values of η.
Notice in Fig. 6(f) that η being too small is an
excessively strong criterion, defining practically
flat sub-meshes, and causing over-segmentation.
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Fig. 4. Triangular Mesh M [12]. Neighboring triangles sharing VERTICES and EDGEs are
depicted separated only for illustration purposes
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(c) Cat Data Set. (d) Raw, un-oriented
Mesh.

(e) Oriented Mesh.

Fig. 5. Cat Data Set (downloaded from [13]) before and after BRep Construction. FACE
degradee colors are proportional to the z coordinate and have no segmentation semantics

(f) Threshold η = 5 deg. causes over-
segmentation. Repeated colors are caused
by narrow palette, and not by segmentation
strategy.

(g) Threshold η = 20 deg. achieves a correct
segmentation.

Fig. 6. Ramp Data Set. Dihedric segmentation with varying threshold angle η

(h) Full View. (i) Detail.

Fig. 7. Hook Data Set. Fiedler Vector - based Coloring
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3.3 Graph Laplacian Segmentation
In this work, Combinatorial Graph Laplacian is
the spectral method applied to a mesh M . The
Tr-BRep contains the information of the Intrinsic
Geometry of the Graph (i.e. independent of the
embedding in R3). This method follows the steps
in [5]:

(a) Build the adjacency matrix W of M

Wij =

{
1, if (i, j) ∈ E,

0, otherwise.
(3.1)

(b) Find the degree matrix D

Dij =

{
di = |N(i)|, if i = j,

0, otherwise.
(3.2)

where the set of neighbors of a vertex i in
G is denoted by N(i) and di denotes the
degree of vertex i. W and D are m × m
matrices, where m = |V |.

(c) Build the graph Laplacian matrix K

K = D −W (3.3)

(d) Calculate the Eigen - decomposition of K :

K = U ΛUT (3.4)

(e) Find the Fiedler vector (eigenvector
corresponding to the smallest non zero
eigenvalue of Eq. 3.4). The Fiedler vector is
considered as the optimal mapping between
the real line and the main axis along the
object ([14] p. 7). Fig. 7 shows on manifold
M a linear mapping between the Fiedler
vector and a color palette. The average color
value over the 3 vertices of each triangle is
used as color for the triangle (Fig. 7(i)).

(f) Segment the Fiedler vector ( and 2-manifold
M ) as follows.

(1) Transform geometry from 3D to 2D by
the Laplacian operator. The coordinates
of the mesh vertices are represented by
V , which are also a linear combination
of the eigenvectors of K. V and be
projected onto the subspace spanned by
the k leading eigenvectors of K. The
projection is Ṽ :

Ṽ = U1...k U
T
1...k V (3.5)

where U1...k contains the first k columns
of U . Choosing k = 3, we obtain a
planar shape, since the first eigenvector
is constant [7].

(2) Segment the 2D figure. Apply (for
example) the red segmentation polygon
in Fig. 8(j) by using the segmentability of
the 3D figure transformed to the plane.

(3) Segment the 3D mesh. The 2D
partition in Fig. 8(j) determines the 3D
segmentation in Fig. 8(k). Analog 2D
partitions (e.g. with 4 regions) engender
the 3D segmentation in Fig. 8(l).

4 RESULTS

The Ramp dataset shows the effect of the
threshold estblished in the dihedral angle
partition. A dihedral angle η → 0 deg represents
a very strong condition, as basically excludes
curved faces. For example, η = 5 deg causes an
over-segmentation of the upper part of the Ramp
dataset. A higher value of η (20 deg) eliminates
the over-segmentation, rendering intuitive results
for the workpice.

Fig. 9 shows results of the dihedral
segmentation. These mechanical part meshes
are correctly segmented into meaningful sub-
meshes. These sub-meshes represent in turn
correct FACEs in a BRep. Dihedral angle partition
works correctly whenever the continuity among
the object FACEs is C0. If such a continuity is
C1 or superior, the dihedral angle partition loses
effectiveness as the angle tuning becomes more
demanding.

The Hook dataset (Fig. 8) was mapped to 2D
(Fig. 8(j)) by using the first 3 eigenvectors of the
Mesh Laplacian spectrum. A manual bisection
was performed as displayed in Fig. 8(j). The
3D effect of such a bisection appears on the
3D mesh M in Fig. 8(k). The 2D projection in
Fig. 8(j) can be segmented onto more subsets.
Such a partitions would produce a 3D mesh
segmentation such as the one shown in Fig. 8(l).

Fig. 10 shows two organic figures (Elephant,
Horse) segmented with the graph Laplacian.
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Fig. 10(p) shows the Elephant data set colored
according to the Fiedler vector (eigenvector U2).
Fig. 10(q) displays the Elephant segmentation
based on the bins of a 4 bin histogram of the

Fiedler vector. Fig. 10(r) shows the Elephant
Data Set partitioned via the manual selection
of the segmentation polygon (as explained in
section 3.3).

(j) Manual 2D Segmentation
enforcing 2 regions.

(k) 3D Segmentation Using 2D
Polygon in Fig. 8(a)

(l) 3D Segmentation Using 4
regions in 2D.

Fig. 8. Hook data set segmented using the Fiedler Eigen-vector

(m) Crankshaft. Dihedral
angle η = 40 deg.

(n) Jello Block. Dihedral
angle η = 40 deg.

(o) Ship Hull. Dihedral
angle η = 40 deg.

Fig. 9. Dihedral Segmentation for Crankshaft, Jello Block and Ship Hull Datasets
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In the case of the Horse dataset the results
show the same process: Fig. 10(s) is colored
according to the Fiedler vector. In Fig. (10(t)),
the bins of the histogram are used for the
segmentation. Notice that partitions are not
connected. Both rear hoofs belong to the same

segment while the front hoofs and the head
are in another (disconnected) partition. Fig.
10(u) shows the Horse segmented via the 2D
segmentation polygon: notice that the body of the
Horse (contrary to 10(t)) is modeled in a single
partition.

(p) Laplacian Fiedler
vector.

(q) 4-bin Histogram of
Fiedler vector.

(r) 3D Result of 2D Manual
Segmentation.

(s) Laplacian Fiedler vector. (t) 4-bin Histogram of Fiedler
vector.

(u) 3D Result of 2D Manual
Segmentation.

Fig. 10. Horse and Elephant Data Sets ([9], [10])

Table 1. Data set statistics
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Table 2. Time complexity Estimation. Left: Spectral Method (m: number of Vertices in M ).
Right: Dihedral Method (n: number of triangles in M ). The number of triangles n and vertices

m of mesh M usually hold a linear relation (i.e. O(m3) = O(n3))

5 CONCLUSIONS

Table 1 shows that, although additional tests
and data sets are required, Dihedral Angle
segmentation seems to work in reasonable
way when mechanical - part C0 - continuous
meshes are segmented. The dihedral angle is
in no manner a unique tuning parameter, but
certainly captures the fact that in mechanical
parts different functionality accompanies different
parametric surfaces. In organich shapes,
however, the dihedral angle loses segmenting
power.

Reverse Engineering requires for re-design the
full Boundary Representation of the piece. In
BRep, a parametric surface may carry several
FACEs, but the contrary is not allowed: A FACE
cannot encompass several parametric surfaces.
Therefore, in mesh segmentation it is preferable
to under-estimate than to over-estimate the sub-
meshes.

The capacity to parameterize the sub-meshes
places similar priority: sub - meshes with large
area are more difficult to parameterize.

For Dihedral Angle segmentation, it is therefore
not convenient to specify a large η dihedral angle.
Obviously, what large means is matter of user
tuning. From our tests, we see that η should
not surpass 20 degrees. On the other hand, a
very η angle near 0 is not convenient, because
it will cause that the BRep be very similar to

the Tr-BRep (i.e. to favor planes -triangles- as
carries surfaces for FACEs). Dihedral angle
segmentation is more convenient for mechanical
parts, in which the continuity between FACEs
be C0 and not C1 or superior. Inter - FACEs
C0 continuity allows to use the dihedral angle
criterion for a clear cut among the sub-meshes.

Spectral - based segmentation is more
convenient where dihedral angle loses power
to bound the sub-mesh. Such cases occur when
the mesh smoothly evolves all over its extent. In
these cases, dihedral angle would extract only
one sub - mesh (i.e., the original mesh itself).

Our results using spectral segmentation are
(obviously) not complete, but they are in the
right direction, as they do not cause an over-
segmentation. The obvious step ahead is to
further segment the current sub-meshes, in
order to achieve sub - mesh parameterization.
Our current spectral results still allow for further
segmentation.

The following aspects must be kept in mind when
formulating the future work: (1) both, the scientific
geometrical and spectral approaches to mesh
segmentation require of massive user interaction.
The theoretical foundations are certanly sound,
but all algorithms discussed require a tuning.
(2) Industrial mesh segmentation is at this
time completely different from the prescribed
theoretical algorithms.
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Therefore, a necessary step is to assess why the
theoretical and industrial mesh segmentations
differ so much, and to assess whether it is worth
to approximate the two positions and how to do
so.

Computing Time Expenses. The methods
presented were decomposed in sub-tasks,
executed on diverse hardware. Also, the
execution times are obviously dependent on
the hardware power. Therefore, the time count
would not give a fair comparison of the two
alternatives. To address this issue, we have
analyzed the computational complexity of the
Spectral and Dihedral methods (Table 2). The
time complexities assigned to the sub - tasks
assume no special optimization and are the usual
ones for them. The overall time complexity of
the Spectral and Dihedral methods is equivalent
(O(n3) or O(m3)), since the number or Triangles
n and Vertices m of the mesh M keep a linear
relation.
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