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Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants.
PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNAof
Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), be-
tween this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was be-
tween nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed
probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with
B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus
megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus
sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Bacillus sp. are commonly investigated and commercialized as plant
growth-promoting bacteria (PGPB/PGPR) for several crops (Broggini
et al., 2005; Idris et al., 2007; Laux et al., 2003; Ramirez and Kloepper,
2010; Zhang et al., 2010). The major difficulties in evaluation the effect
of species of bacilli is that someare systematically closely related to each
other and can be identify solely by detailed analysis of their 16S rRNA
gene or only by other geneswithin species (Borriss, 2011). For example,
strains of two closely related bacilli, Bacillus subtilis and Bacillus
amyloliquefaciens can be either saprophytic, common PGPB, or both
(Calvo et al., 2014; Kloepper et al., 2004; Pérez-García et al., 2011;
Tumbarski et al., 2014). Colonization with one species of PGPB can be
masked by saprophytic rhizosphere dwellers of the other species. Con-
sequently, a failure in inoculation with a successful laboratory-proven
strain cannot specifically pinpoint a deficiency in colonization capacity
of the strain as a PGPB or to a technical failure in the inoculationmethod
or to micro-environmental conditions. This genetic relatedness among
bacilli creates major difficulties in building molecular detection tools,
such as fluorescence in situ hybridization (FISH) for monitoring coloni-
zation of the PGPB after application. FISH probes specific for bacilli spe-
cies are not available and the available probes are for clusters of several
species of bacilli (http://probebase.csb.univie.ac.at/pb_results/2/).
ce, 1730 Post Oak Ct., AL 36830,
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Our hypothesis was that a detailed analysis of the 16s rRNA gene of
closely related bacilli PGPB species in the rhizosphere will locate a
unique sequence long enough for a FISH probe that is not shared by
the two species. Based on this sequence, we will be able to construct
an efficient probe that allows differential detection of each strain. To
test this hypothesis, we tested 18 strains of bacilli and two strains that
served as negative controls, using five molecular probes. We searched
the GenBank for matches of the probe for other bacilli.
2. Materials and methods

2.1. Microorganisms and culture conditions

Bacillus subtilis EA-CB0575, the principal microorganism in this
study, was isolated from the rhizosphere of banana plants at Urabá,
Antioquia, Colombia (7°51′58.6″ N, 76°37′39.0″ W) in September
2009 and was identified using almost all of the 16s rDNA gene
(1428 bp) sequenced with 8F and 1492 R primers and also with 8F
and 907 R primers (performed at Macrogen, Seoul, South Korea). The
strainwas stored in tryptic soy broth (105,459,Merck & Co, Kenilworth,
NJ) and 20% glycerol V/V (GenBank, accession number KC170988,
Instituto Alexander von Humboldt, Collection of Microorganisms
#191, Bogotá, Colombia). Strains of the following species were com-
pared: B. subtilis EA-CB0015, EA-CB0575, EA-CB1121, 168, and NTC-
3610; B. amyloliquefaciens EA-CB0158, FZB42, and EA-CB0959; Bacillus
altitudinis EA-CB0686; Bacillus cereusMP1AC4 and EA-CB0131; Bacillus
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Table 1
Strains tested in this study.

Strain Species Isolation source Reference

168 Bacillus subtilis Culture of B. subtilis Marburg subjected to X-ray. Bacillus Genetic Stock Center (BGCS, Ohio
University, USA): 1 A1.

Burkholder and Giles (1947), Zeigler
et al. (2008)

AB-CD1 Azospirillum
brasilense

Cynodon dactylon. American Type Culture Collection (ATCC): 29,710. Eskew et al. (1977)

EA-CB0015 B. subtilis Musa AAA var. Valery (banana) phyllosphere. Urabá, Colombia. Ceballos et al. (2012)
EA-CB009 B. pumilus Musa AAA var. Gran Enano rhizosphere. Urabá, Colombia. Microbial collection, EAFIT. Colombia
EA-CB0131 B. cereus Musa AAA var. Valery, rhizosphere. Urabá, Colombia. Microbial collection, EAFIT. Colombia
EA-CB0158 B. amyloliquefaciens Musa balbisiana rhizosphere. Urabá, Colombia. Microbial collection, EAFIT. Colombia
EA-CB0575 B. subtilis Musa AAA var. Valery rhizosphere. Urabá, Colombia. Posada-Uribe et al. (2015).
EA-CB0579 B. gibsonii Musa AAA var. Gran Enano rhizosphere. Urabá, Colombia. Microbial collection, EAFIT. Colombia
EA-CB0686 B. altitudinis Musa AAA var. Gran Enano rhizosphere. Urabá, Colombia. Shivaji et al. (2006); microbial

collection, EAFIT. Colombia
EA-CB0784 B. megaterium Musa AAA var. Valery rhizosphere. Urabá, Colombia. Microbial collection, EAFIT. Colombia
EA-CB0840 Paenibacillus

pasadenensis
Musa AAA var. Valery. Urabá rhizosphere, Colombia. Ceballos et al. (2012)

EA-CB0888 Paenibacillus
pasadenensis

Musa AAA var. Valery phyllosphere. Urabá, Colombia. Ceballos et al. (2012)

EA-CB0959 B. amyloliquefaciens Musa balbisiana rhizosphere. Urabá, Colombia. Ceballos et al. (2012)
EA-CB1121 B. subtilis Musa AAA var. rhizosphere. Gran Enano. Urabá, Colombia. Microbial collection, EAFIT. Colombia
ES4 B. pumilus Cardon. La Paz, BCS, México. GenBank accession number: FJ032017 de-Bashan et al. (2010)
FZB42 B. amyloliquefaciens Infested soil in sugar beet field, Brandenburg, Germany.10 A6 del BGSC (Ohio University, USA) Fan et al. (2012), Idris et al. (2007)
M01 Micrococcus lylae Mangrove bacteria. La Paz, BCS, Mexico. Holguin and Bashan (1996)
MEG03 B. megaterium Cardon. La Paz, BCS, Mexico. Culture collection, CIBNOR, Mexico.
MP1AC4 B. cereus Cardon. La Paz, BCS, Mexico. Culture collection, CIBNOR, Mexico.
NCTC-3610 B. subtilis Isolated from blood of phenylketonuria patient, assessment by Ehrenberg, 1835. ATCC: 6051. Nakamura et al. (1999); Zeigler et al.

(2008)
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gibsonii EA-CB0579; Bacillus megaterium EA-CB0784 and BMEG03; Ba-
cillus pumilus EA-CB0009 and ES4; and the external phylogenetic strains
Azospirillum brasilense Cd,Micrococcus sp.M01, and Paenibacillus sp. EA-
CB0840 and EA-CB0888 (Table 1).

Bacillus and Paenibacillus strainswere inoculated in TSB;A. brasilense
andMicrococcus sp. were inoculated in nutrient broth (105443,Merck&
Co.). All cultures were incubated for 24–48 h at 150 rpm and 30 ± 2 °C.

2.2. Probe design for fluorescence in situ hybridization (FISH)

The probe sequence bsub-ss-0463-aA-22A for detecting B. subtilis by
FISHwas designed (Table 2), and the name assigned is based onprobe no-
menclature rules (Alm et al., 1996). It was labelled with two different
fluorophores at the 5′ end: 56-FAM (fluorescein, wavelength absorption/
emission 495 nm/520 nm) and Cy3 (cyanine, wavelength absorption/
emission 552 nm/565 nm). A universal probe for eubacteria, an equimolar
mix of probes EUB338 (Amann et al., 1990), EUB338-II, and EUB338-III
(EUBMIX) (Daims et al., 1999), was used and labelled with the cyanine
Cy3 at the same end. All probeswere purchased (IntegratedDNATechnol-
ogy, Coralville, IA). Probe sequences are listed in Table 2. The working so-
lution concentration for each probe (in TE buffer (10mM Tris HCl, pH 7.2,
1 mM EDTA) was 50 ng μL−1 for FAM labelled probe and 30 ng mL−1 for
Cy3 probe. They were stored at−20 °C in the dark.

2.3. Sample preparation and fixation

Vegetative cell cultures were centrifuged at 3260 × g for 15min. Su-
pernatants were discarded and the biomass was washed twice with
0.85% saline solution. Optical density was adjusted at 1.0 (O.D600 nm),
Table 2
Probes used in this study.

Probe Sequence Tm*

bsub-ss-0463-aA-22-FAM 5′−/56-FAM/TAC CGC CCT ATT CGA ACG GTA C-3′ 58.5
bsub-ss-0463-aA-22-Cy3 5′−/Cy3/TAC CGC CCT ATT CGA ACG GTA C-3′ 58.5
EUB338-Cy3 5′−/5Cy3/GCT GCC TCC CGT AGG AGT-3′ 59.4
EUB338 II-Cy3 5′−/Cy3/GCA GCC ACC CGT AGG TGT-3′ 60.5
EUB338 III-Cy3 5′−/Cy3/GCT GCC ACC CGT AGG TGT-3′ 60.5

*Tm: Melting temperature (°C), ** MW: Molecular weight (Da), *** % G-C: Guanine-cytosine p
corresponding to ~108 CFU mL−1 for Bacillus, Paenibacillus, and Micro-
coccus strains, and ~109 CFU mL−1 for A. brasilense. The counts were
verified by plate count method on tryptic soy agar (#105458, Merck &
Co) and nutrient agar (#105450 Merck & Co), respectively.

Pellets of Gram-positive cells were fixed with a solution of 500 μL
0.85% NaCl and 500 μL 96% ethanol at 4 °C. Pellets of Gram-negative
cells were fixed in 4% paraformaldehyde (#158127, Sigma-Aldrich, St.
Louis, MO) and incubated for 3 h at 4 °C. Ten microliters of Gram-
positive fixed cell suspension and 4 μL of Gram-negative suspension
were placed on gelatinized slides (0.1% w/v gelatine [#G2500, Sigma-
Aldrich] and 0.01% w/v chromium potassium sulphate (#243361,
Sigma-Aldrich) (Daims et al., 2005). Slides were dehydrated using suc-
cessive 50, 80, and 96% ethanol rinsing (3min each), then dried at 37 °C.
Lysozyme (#L-7651, Sigma-Aldrich, 10 mg mL−1) was applied over
Gram-positive samples and incubated at 37 °C for 20 min and then
dehydrated again, as described earlier and dried. Slides were stored at
4 °C until hybridization.
2.4. Fluorescence in situ hybridization (FISH)

Hybridization buffer was prepared from 360 μL 5 M NaCl, 40 μL 1 M
Tris-HCl (#10812846001, Sigma-Aldrich) at pH 8.0; 2 μL 10% SDS
(#L3771, Sigma-Aldrich); 700 μL deionized formamide (#F9037,
Sigma-Aldrich); and 900 μL ultrapure water. The amount of formamide
and water depended on the stringency of the probe. In this case, probe
stringency was 35%. A solution of 40 μL of the hybridization buffer,
4 μL EUBmix probe, and 10 μL of the designed probe was added to
each sample. This process was done in the dark to reduce bleaching of
the fluorophore. Slides were place into 50 mL Falcon tubes with a
MW** % G-C*** Nucleotides Reference

7192.8 54.5 22 This study
7161.9 54.5 22 This study
5998.2 66.6 18 Amann et al. (1990), Daims et al. (1999)
6007.2 66.6 18
5998.2 66.6 18

ercentage.

ncbi-n:FJ032017
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piece of paper towel impregnated with the remnant hybridization buff-
er (hybridization chambers), and heated in darkness in a hybridization
oven (model 5430, VWR International, Radnor, PA) at 46 °C for 2 h. Af-
terward, slides were washed with a buffer of 1 mL 1 M Tris-HCl at
pH 8.0, 500 μL 0.5 M EDTA at pH 8.0, 700 μL 5 M NaCl solution (to
meet stringency of 35%), 50mL ultrapure water, and 50 μL 10% SDS. Fal-
con tubes with this buffer were preheated to 48 °C and slides were put
inside the tubes in a water bath for 15 min. The slides were rinsed for a
few seconds with deionized water at 4 °C and then air-dried at room
temperature in the dark. Experiments were independently repeated
twice using two slides with two replicated samples per strain.

2.5. Visualization

Citifluor AF1 mountant (Electron Microscopy Sciences, Hatfield, PA)
was applied to dried hybridized slides. Slices were visualized under oil
Fig. 1. FISH evaluation for Bacillus species: B. subtilis, B. amyloliquefaciens, and B.megaterium, and
all strains, other than B. subtilis, was barely seen, which did not allow distinguishing the cells fro
light was introduced in these images. Several original faded green images are presented as Fig. S
the bacterial strains. Images shown are representative images.
immersion with the 100× objective on a fluorescence microscope
(Olympus BX41 Tokyo, Japan) or on an Axioscope A1 (Carl Zeiss,
Oberkochen, Germany) microscope equipped with filters Cy3, and
FITC, for samples hybridized with the fluorochrome FAM. Sample pic-
tures were takenwith cameras (Axiocam CC5 or Evolution V) and proc-
essed with imaging software (ImagePro Plus 6.3, Media Cybernetics,
Silver SpringMDor ZEN2012 Blue edition, Carl Zeiss). Two identical im-
ages were taken, each with the two probes, yielding green (for the spe-
cific probe, bsub-ss-0463-aA-22) and red (for the universal probe for
eubacteria) images. The two images were combined by the software,
and when the two probes hybridized with the sample, they yield a
green-yellow-orange tone, depending on the intensity of the individual
colour channels (de-Bashan et al., 2011). This identified the strain as
B. subtilis. If hybridization occurred only with the universal probe for
eubacteria, the images stayed red, even when combined with the
green images. Some images were stained green because of interference
the phylogenetic foreign strainAzospirillum brasilense CD. The non-specific green signal of
m the background. To demonstrate that the bacterial cells are present, additional artificial
5. Assays were done by duplicate, where each replicate consisted of two samples of each of
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of natural low autofluorescence of somemicroorganisms under fluores-
cent light; however, the hybridization signal was always greater (Moter
and Gobel, 2000).

3. Results

For future detection andmonitoring of the PGPB B. subtilis strain EA-
CB0575 in plants, a probe based on the 16 s rRNA of the strain was de-
signed. This was done by using nucleotides sequences differentiating
B. amyloliquefaciens and B. subtilis. These two bacilli are closely related
and both are PGPB and saprophytes of the same habitat (Reva et al.,
2004). The selected section for the probe was between nucleotides
465 and 483 of the gene, where three different nucleotides can be iden-
tified (Fig. S1).

B. subtilis strain EA-CB0575 was positively identified by FISH by
using a combination of the probe designed for this species and the uni-
versal probe for eubacteria. When green and red images (Fig. 1a,
b) were combined, they yielded the distinctive yellow colour that iden-
tified the strain as B. subtilis (Fig. 1c). The other two Bacillus species, the
very closely related B. amyloliquefaciens 158, the distant B. megaterium
784, and the PGPB A. brasilense Cd, serving as negative controls, were
not recognized as B. subtilis. An additional 14 strains of Bacillus sp. and
Micrococcus sp. (negative control) were tested. Only strains of
B. subtilis could be identified by the developed probe, while all the
other strains hybridized with the universal probes for eubacteria
(Figs. S2, S3, S4).

A BLAST program search through the GenBank for potential Bacilli,
having the same sequence of our probe, and therefore, theoretically
can also hybridize with our probe, yielded 25 strains (Table 3).

4. Discussion

Successful root colonization after inoculationwith any PGPB is an al-
most universal requisite when testing the effect of a PGPB/PGPR strain
on performance of plants (Bashan et al., 2004; Kloepper and
Beauchamp, 1992; Lugtenberg et al., 2001). Numerous methods were
developed employing microbiological, immunological, cultural, and
molecular approaches. A contemporary successful method to address
this fundamental requirement is FISH (de-Bashan et al., 2010). The
Table 3
List of species from the GenBank (search February 2016) that may interact with Bacillus
subtilis 16S FISH probe developed in this study.

1. HQ223107 Bacillus tequilensis 10b
2. AB021191 Bacillus mojavensis IFO15718
3. AJ831843 Bacillus aerius 24 K
4. L09227 Saccharococcus thermophilus
5. AF326278 Geobacillus toebii BK-1
6. AF067651 Geobacillus caldoxylolyticus ATCC 700356
7. X76440 Bacillus clausii DSM 8716
8. X76446 Bacillus gibsonii DSM 8722
9. AB021182 Bacillus carboniphilus JCM9731
10. X76449 Bacillus pseudalcaliphilus DSM 8725
11. AF547209 Bacillus acidicola 105–2
12. AY228462 Bacillus algicola KMM 3737
13. AF541966 Bacillus hwajinpoensis SW-72
14. AY603978 Bacillus taeanensis BH030017
15. AF483625 Bacillus aquaemaris TF-12
16. AJ315075 Bacillus decolorationis LMG 19507 T
17. AJ316316 Bacillus murimartini LMG 21005
18. AJ880003 Bacillus plakortidis P203T
19. EF422411 Bacillus alkalinitrilicus ANL-iso4
20. CP000002 Bacillus licheniformis ATCC 14580
21. AB271756 Brevibacillus brevis NBRC 15304
22. FJ347755 Allobacillus halotolerans B3A
23. LN812018 Pelagirhabdus alkalitolerans S5
24. FJ746578 Streptohalobacillus salinus H96B60
25. Y319933 Tenuibacillus multivorans 28–1
FISH procedure requires development of a molecular probe, and this
probe should be as specific as possible for the inoculated species. Devel-
opment of a probe should consider the following specific characteristics
for an appropriate hybridization: (1) probe length should be a
~18–30 bp sequence of the 16s rRNA gene. Longer probes result in
poor hybridization and shorter probes generate lack of specificity.
(2) Base composition should be between 40–60% G-C, because different
G-C percentages may produce nonspecific hybridization. (3) Probe
should be a stretched sequence and not hairpin structures because
these structures inhibit hybridization. (4) Probe should not have long
stretches of the same nucleotide. (5) The probe should have a melting
temperature of 57 °C or higher because empirical analyses of other stud-
ies indicate that this temperature enhances the probability that hybrid-
ization will be successful (Hugenholtz et al., 2002).

The size of the 16s rRNA gene shared by all eubacteria and used to
identify species, while unique to every species, is too short to allow
that any short nucleotide sequence is unique to a single species. Other
species may share a specific sequence but differ in others; thus making
them different species. As a result of this difficulty, designing a probe for
detection should emphasize more in practicality and not in uniqueness
because the latter may be impossible to attain. If two related species re-
siding in the same habitat differ in a sequence, thiswill allow creation of
a technique capable of differentiating between their populations. At the
same time, this sequencemay be shared by other species not residing in
that environment. Thus, the existence of the sequence in these species,
from a practical approach, is irrelevant and does not interfere with spe-
cific detection of the species in a specific habitat.

The family Bacillaceae is highly diverse. In 2016, it contained 52 gen-
era and 570 species and is continuing to proliferate. Bacilli can be found
in any environment, including the rhizosphere of plants (Earl et al.,
2008). Few bacilli are also PGPB/PGPR, including the two species com-
pared in this study (Borriss, 2011). Almost all strains found by the
BLAST program of the GenBank are not known as PGPB or colonizers
of the rhizosphere or have any known function in the rhizosphere, the
target site of our probe. It is also doubtful if hybridization for FISH will
happen in these species at all. When we tested one of these bacilli,
B. gibsonii, by the FISH procedure, no hybridization occurred (Fig. S4).

This probewas developed for the practical purpose of distinguishing
between two common PGPB in the rhizosphere. No other probes of Ba-
cillus specifically for FISH are available. Some probes are available for
microarrays of Bacillus sp. (http://probebase.csb.univie.ac.at/pb_
results/2/). The hypothesis that other bacteria may have the same se-
quences, and perhaps can be also detected, is less relevant in this con-
text because these bacteria do not share the same habitat as the
inoculated PGPB.

In summary, this study developed a practical probe to distinguish
between the PGPB B. subtilis and B. amyloliquefaciens by fluorescence
in situ hybridization.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.mimet.2016.05.029.
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