ANÁLISIS DE LA RESPUESTA DINÁMICA ESTRUCTURAL

CONSIDERANDO LOS EFECTOS DE LA INTERACCIÓN SUELO

ESTRUCTURA LIMITADA A LOS REQUISITOS DE LA NEC-SE-DS-2015

DIEGO SANTIAGO LÓPEZ LÓPEZ.

Universidad EAFIT
Escuela de Ingeniería.
Maestría en Ingeniería
Asesor: PhD. Juan Carlos Botero P.
El análisis sísmico y la modelación de estructuras con programas de cómputo comúnmente utilizados en el diseño de edificios, generalmente considera estructuras con base empotrada.

Cuando se consideran las propiedades y el tipo de suelo, en el caso de un estrato blando, éste influye en la atenuación o en la amplificación de la onda, la cual produce variaciones sobre los efectos dinámicos.

Se evalúan los efectos en la respuesta dinámica de un edificio considerando efectos de interacción suelo estructura (ISE) examinando los cambios en el período y el amortiguamiento del sistema, realizando un símil entre la estructura empotrada y la que incluye ISE, de esta manera se pueden comparar las deformaciones y derivas obtenidas en ambos casos.

Este análisis se realiza con el fin de establecer las derivas de piso al tener en cuenta los efectos inerciales, los cuales se considera en las estructuras analizadas con base empotrada.

Se propone además la aplicación de los lineamientos establecidos por la Norma Ecuatoriana de Construcción como apoyo al diseño de proyectos a construirse en el Ecuador sobre esta base normativa.

Se realizó un análisis en varios edificios utilizando relaciones paramétricas y cuyo cálculo se basa en la geometría de la edificación, esto a priori, nos permite conocer si la incidencia de los efectos ISE es significativa.

Se seleccionaron dos edificios con cimentación tipo cajón, en cuyo caso se evalúa paso a paso los efectos sobre el amortiguamiento y el período, producto de la ISE.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Contenidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCCIÓN</td>
</tr>
<tr>
<td>2.</td>
<td>OBJETIVOS</td>
</tr>
<tr>
<td>2.1</td>
<td>General</td>
</tr>
<tr>
<td>2.2</td>
<td>Específicos</td>
</tr>
<tr>
<td>3.</td>
<td>MARCO TEÓRICO</td>
</tr>
<tr>
<td>3.1</td>
<td>Interacción Suelo Estructura</td>
</tr>
<tr>
<td>3.2</td>
<td>Efectos de la Interacción Suelo Estructura</td>
</tr>
<tr>
<td>3.3</td>
<td>Efectos cinemáticos</td>
</tr>
<tr>
<td>3.4</td>
<td>Efectos inerciales</td>
</tr>
<tr>
<td>3.5</td>
<td>Interacción total</td>
</tr>
<tr>
<td>3.6</td>
<td>Suelo Rígido y Suelo Blando</td>
</tr>
<tr>
<td>3.7</td>
<td>Módulo de cortante G</td>
</tr>
<tr>
<td>3.8</td>
<td>Coeficiente de Poisson υ</td>
</tr>
<tr>
<td>3.9</td>
<td>Densidad del suelo ρ</td>
</tr>
<tr>
<td>3.10</td>
<td>Velocidad de onda de corte Vₚ</td>
</tr>
<tr>
<td>3.11</td>
<td>Estratos</td>
</tr>
<tr>
<td>3.12</td>
<td>Propiedades de respuesta sísmica del suelo</td>
</tr>
<tr>
<td>3.13</td>
<td>Amortiguamiento</td>
</tr>
<tr>
<td>3.14</td>
<td>Deriva</td>
</tr>
<tr>
<td>3.14.1</td>
<td>Límites permisibles de las derivas de los pisos según NEC-SE-DS -2015</td>
</tr>
<tr>
<td>3.14.3</td>
<td>Control de la deriva de piso (derivas inelásticas máximas de piso ∆M) en la NEC-SE-DS-2015</td>
</tr>
<tr>
<td>3.15</td>
<td>Desplazamiento de diseño</td>
</tr>
<tr>
<td>3.16</td>
<td>Desplazamientos horizontales totales</td>
</tr>
<tr>
<td>3.17</td>
<td>Deformaciones</td>
</tr>
<tr>
<td>3.18</td>
<td>Masa</td>
</tr>
<tr>
<td>3.19</td>
<td>Rigidez</td>
</tr>
<tr>
<td>3.20</td>
<td>Periodo fundamental de la estructura</td>
</tr>
<tr>
<td>3.21</td>
<td>Altura equivalente</td>
</tr>
<tr>
<td>4.</td>
<td>METODOLOGÍA</td>
</tr>
<tr>
<td>4.1</td>
<td>Cálculo de las propiedades del suelo</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Cálculo de Vₛ y G a partir de N spt</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Pesos específicos y proporción de Poisson</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Período del sitio a través de un estrato equivalente</td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>Método de formas modales</td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Método de Rayleigh</td>
</tr>
<tr>
<td>4.1.3.3</td>
<td>Método del recíproco de las lentitudes</td>
</tr>
<tr>
<td>4.2</td>
<td>Propiedades de la estructura con base empotrada (sin ISE), utilizando el programa ETABS 2016 ®</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Propiedades de los Materiales</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Hormigón</td>
</tr>
<tr>
<td>4.2.1.1.1</td>
<td>Masa por unidad de volumen del hormigón</td>
</tr>
<tr>
<td>4.2.1.1.2</td>
<td>Módulo de elasticidad del hormigón</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Acero</td>
</tr>
<tr>
<td>4.2.1.2.1</td>
<td>Límite de fluencia y otras propiedades</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Cálculo de masa de la estructura considerando la sobrecarga por acabados y mampostería.</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Periodo fundamental y porcentajes de masa participante</td>
</tr>
</tbody>
</table>
4.4.1 Cálculo aproximado del período fundamental de vibración aproximado Ta 21
4.2.3.1 Cálculo del período fundamental y frecuencia circular de vibración usando Etabs. ... 22
4.2.3.2 Cálculo del período fundamental y frecuencia circular de vibración usando Etabs. ... 22
a) Periodo fundamental ... 22
b) Frecuencia circular de la estructura ... 22
c) Porcentaje de masa participante y masa equivalente \(m_e \) ... 22
4.2.3.3 Rigidez equivalente de la estructura ... 23
4.2.3.4 Amortiguamiento ... 23
a) Amortiguamiento de la estructura ... 23
4.3 Propiedades de la cimentación ... 23
4.3.1 Profundidad y base ... 24
4.3.2 Desplante ... 24
4.3.3 Radio horizontal ... 24
4.3.4 Radio de cabeceo ... 24
4.4 Interacción suelo estructura ... 24
4.4.1 Valores Paramétricos ... 25
a) Relación de masas ... 25
b) Relación de inercias ... 25
c) Densidad relativa ... 25
d) Profundidad relativa ... 25
e) Profundidad de desplante ... 26
f) Relación de esbeltez ... 26
g) Rigidez relativa ... 26
4.4.1 Cálculo del período y amortiguamiento de la estructura con efectos ISE por el método
función de transferencia ... 27
4.4.1.1 Valores Paramétricos ... 28
a) Valores Paramétricos ... 28
b) Valores Paramétricos ... 28
c) Valores Paramétricos ... 28
d) Valores Paramétricos ... 28
4.4.2 Factores de rigidez y amortiguamiento ... 29
a) Frecuencia adimensional del estrato de vibración lateral, \(a_c \) ... 29
b) Frecuencia adimensional del estrato de vibración vertical, \(a_p \) ... 29
4.4.2.1 Factores de rigidez y amortiguamiento ... 30
a) Rigidez estática horizontal ... 30
b) Rigidez estática de cabeceo ... 30
c) Rigidez estática de acoplamiento ... 30
4.4.4.2 Factores de rigidez y amortiguamiento ... 31
a) Rigidez horizontal ... 31
b) Rigidez de cabeceo ... 31
4.4.4.5 Factores de amortiguamiento ... 32
a) Factores de amortiguamiento horizontal, \(C_h \) ... 32
b) Factores de amortiguamiento de cabeceo \(C_c \) ... 32
4.4.6 Rigideces dinámicas ... 33
a) Rigidez dinámica horizontal ... 33
b) Rigidez dinámica de cabeceo ... 33
4.4.7 Constantes dinámicas de amortiguamiento ... 34
a) Amortiguamiento dinámico horizontal ... 34
b) Amortiguamiento dinámico de cabeceo ... 34
4.4.8 Dinámica de estructuras ... 35
a) Ecuación matricial dinámica de estructuras ... 35
b) Solución de una matriz compleja ... 35
5. CASO PRÁCTICO

6. CRITERIOS DE DISEÑO.
6.1.1 Pasos del método .. 56
6.1.1.1 Determinación del espectro de diseño Sa(T) 56
6.1.1.2 Período fundamental Ta, T o Te y respuesta elástica de aceleración Sa (Ta) 57
6.1.1.3 Determinación del cortante de base V con los resultados de los pasos anteriores. .. 57
6.1.1.4 Representación y determinación de la carga sísmica horizontal: 57
6.1.1.5 Cálculo de las fuerzas horizontales aplicando la NEC-SE-DS-2015 58
6.1.1.6 Cálculo del cortante basal por medio de la herramienta Etabs® de la estructura empotrada: ... 58
6.2 Dirección de aplicación de las fuerzas sísmicas y verificación de que los índices de deriva no sobrepasen el valor permitido... 60
6.3 Aplicación de los criterios de diseño para el edificio A (empotrado) sentido X........ 61
6.3.1 Espectro de diseño ... 61
6.3.2 Respuesta elástica de aceleración Sa .. 63
6.3.3 Cortante Basal ... 63
6.3.4 Cálculo de las fuerzas horizontales .. 63
a) Aplicando las expresiones de la NEC-SE-DS-2015 63
b) Cálculo con Etabs ® .. 64
6.3.5 Dirección de aplicación de las fuerzas sísmicas y verificación de que los índices de deriva no sobrepasen el valor permitido................................. 65
6.4 Distribución de fuerzas horizontales y derivas calculadas con ISE. ..66
6.4.1 S4 para un TISE en sentido X...66
6.4.2 Patrón de carga sísmica (Load Pattern) incluyendo efectos ISE67
6.4.3 Cortante Basal con ISE..68
6.4.4 Desplazamientos máximos y derivas...68
6.4.5 Reducción de los desplazamientos horizontales máximos por efectos ISE en el sentido X ..68
6.5 Aplicación de los criterios de diseño para el edificio A (empotrado) sentido Y70
6.5.1 S4 para un TISE en sentido Y..70
6.5.2 Patrón de Cargas sentido Y ..70
6.5.3 Cortante Basal y distribución de fuerzas horizontales en el sentido Y70
6.5.3 Desplazamientos máximos y derivas sentido Y, estructura empotrada.71
7. Efectos ISE en estructura A con características de suelo blando, caso hipotético74
7.1 Parámetros para estructura A, tipo de suelo D con Vs=180 m /s (hipotético)74
7.2 Análisis de efectos ISE ..74
7.3 Desplazamientos máximos y derivas..75
7.3.1 Reducción de los desplazamientos horizontales máximos por efectos ISE en el sentido X suelo hipotético. ..76
8. Ejemplo de edificación B ...77
8.1.1 Descripción, geometría y ubicación del proyecto ...77
8.1.2 Cálculo de las propiedades del suelo edificio B ...79
8.1.3 Cálculo de las propiedades de la estructura con base empotrada del edificio B ...80
8.1.3.1 Modelación del edificio ...80
8.1.3.2 Resultados del análisis modal de la estructura B empotrada.81
8.1.4 Parámetros de la fundación ...81
8.1.4.1 Geometría de la fundación tipo cajón edificio B81
8.1.4.2 Radio Horizontal y Radio de cabeceo en el sentido X81
8.1.5 Criterios de diseño para edificación B. ..82
8.1.5.1 Espectro elástico de diseño para la ciudad de Guayaquil para suelo tipo E ...82
8.1.5.2 Cortante Basal calculado para estructura empotrada sentido X83
8.1.5.3 Derivas y desplazamientos máximos para estructura B con base empotrada en el sentido X ..83
8.1.6 Análisis de efectos ISE en el sentido X para edificación B84
8.1.7 Cortante Basal calculado para estructura con efectos ISE sentido X86
8.1.8 Derivas y desplazamientos máximos para edificio B con efectos ISE en el sentido X ...86
8.2 Reducción de los desplazamientos horizontales máximos por efectos ISE en el sentido X edificio B ..87
9. Valores paramétricos ...88
 a) Relación de masas ..88
 b) Relación de inercias ...88
c) Densidad relativa ..88
d) Profundidad relativa ...88
e) Profundidad de desplante ...88
f) Relación de esbeltez ...88
g) Rigidez relativa ...88
 a) Profundidad relativa ...88
 b) Profundidad de desplante ...89
c) Relación de esbeltez ...89
d) Rigidez relativa...89
9.3 Relación entre Rigidez relativa y variación del TISE89
9.3 Número de pisos de estructuras que se ubicarían en la curva descendente del espectro elástico de diseño.. 91
10. Conclusiones y Recomendaciones... 93
 10.1 Conclusiones... 93
 10.2 Recomendaciones.. 94
Lista de referencias.. 95
Listado de tablas

Tabla 1. Clasificación de los perfiles de suelo (NEC-SE-DS, 2015) ... 6
Tabla 2. Valores típicos de velocidad de onda de corte y módulo de cortante 7
Tabla 3. Valores de ΔM máximos, expresados como fracción de la altura de piso 10
Tabla 4. Derivas máximas como porcentaje de \(hpi \) ... 10
Tabla 5. Correlaciones entre valores de N y Vs ... 14
Tabla 6. Valores de pesos específicos típicos ... 14
Tabla 7. Valores o rangos para la proporción de Poisson ... 14
Tabla 8. Valores calculados de Ec para algunos f’c ... 19
Tabla 9. Mass Summary by Group ... 21
Tabla 10. Valores de C\(t \) y α .. 21
Tabla 11. Periodos y porcentaje de Participación modal .. 22
Tabla 12. Distribución de plantas en altura edificio A .. 36
Tabla 13. Secciones de columnas y muros edificio A ... 36
Tabla 14. Ensayo de penetración estándar (SPT) .. 38
Tabla 15. Valores de Vs y G para P-33 ... 39
Tabla 16. Valores de Vs y G para P-34 ... 39
Tabla 17. Valores de G a partir de Vs en el método de las formas modales 40
Tabla 18. Matrices de masa y rigidez por estrato ... 40
Tabla 19. Matriz de masa del sistema .. 40
Tabla 20. Matriz de rigidez del sistema ... 41
Tabla 21. Cálculo del periodo del estrato equivalente (edificio A) 41
Tabla 22. Método de Rayleigh ... 41
Tabla 23. Valores de G y Vs en el método del recíproco de las lentitudes 42
Tabla 24. Cálculo del periodo aproximado de edificio A .. 43
Tabla 25. Periodos y porcentaje de Participación modal .. 44
Tabla 26. Masa equivalente ... 44
Tabla 27. Resultados de las propiedades de la estructura ... 45
Tabla 28. Resumen de parámetros de la fundación ... 47
Tabla 29. Resumen de parámetros de edificio A ... 47
Tabla 30. Valores de Rigideces Estáticas, Factores de Rigidez y amortiguamiento 48
Tabla 31. Valores de los Parámetros variables para algunos Ti. .. 48
Tabla 32. Factores adimensionales de rigidez ... 49
Tabla 33. Factores adimensionales de amortiguamiento .. 49
Tabla 34. Matrices K, M y C para un Ti = 0.3 s .. 49
Tabla 35. Matrices K, M y C para un Ti = 2.873 s .. 49
Tabla 36. Matrices K, M y C para un Ti = 4.0 s .. 49
Tabla 37. Vector f componente de \{F\} .. 50
Tabla 38. Matrices A y B para un Ti = 0.3 s .. 50
Tabla 39. Matrices A y B para un Ti = 2.873 s ... 50
Tabla 40. Matrices A y B para un Ti = 4.0 s ... 50
Tabla 41. Cálculo de Matriz C para un Ti = 0.3 s .. 51
Tabla 42. Cálculo de Matriz C para un Ti = 2.873 s ... 51
Tabla 43. Cálculo de Matriz C para un Ti = 4.0 s .. 51
Tabla 44. Matriz D para un Ti = 0.3 s ... 51
Tabla 45. Matriz D para un Ti = 2.873 s .. 52
Tabla 46. Matriz D para un Ti = 4.0 s ... 52
Tabla 47. Matriz \(Z^{-1} \) para un Ti = 0.3 s ... 52
Tabla 48. Matriz \(Z^{-1} \) para un Ti = 2.873 s ... 52
Tabla 49. Matriz \(Z^{-1} \) para un Ti = 4.0 s ... 52
Tabla 50. Vector de desplazamientos para un Ti = 0.3 s ... 53
Tabla 51. Vector de desplazamientos para un $T_i = 2.873$ s..............................53
Tabla 52. Vector de desplazamientos para un $T_i = 4.0$ s..............................53
Tabla 53. Valores de $\frac{\omega_2.\omega_i g}{\tan \gamma}$ para estructura A..54
Tabla 54. Factor K..59
Tabla 55. Tipo de perfil de suelo ...61
Tabla 56. Valores paramétricos para determinar el espectro de diseño61
Tabla 57. Valores del espectro generado por Etabs® ...62
Tabla 58. Fuerzas cortantes por piso cálculo manual ...64
Tabla 59. Fuerzas horizontales obtenidas en Etabs® ...64
Tabla 60. Control de derivas, aplicando las fuerzas horizontales en el sentido X estructura empotrada, parámetros de suelo reales...66
Tabla 61. Control de derivas, aplicando las fuerzas horizontales en el sentido X considerando efectos ISE, parámetros de suelo reales...68
Tabla 62. Reducción de desplazamientos por efecto ISE en estructura A, parámetros de suelo reales..69
Tabla 63. Coeficientes para cálculo de Cortante Basal y FHEY..........................70
Tabla 64. Control de derivas, aplicando las fuerzas horizontales en el sentido Y sin considerar efectos ISE..71
Tabla 65. Parámetros para cálculo de período ISE en el sentido Y, estructura A.......72
Tabla 66. Función de transferencia, sentido Y, edificio A......................................72
Tabla 67. Parámetros estructura A, caso hipotético ..74
Tabla 68. Función de transferencia edificio A, suelo con $Vs=180$m/s..............74
Tabla 69. Coeficientes para cálculo de Cortante Basal y FHEX, suelo $Vs=180$ m/s 75
Tabla 70. Control de derivas, aplicando las fuerzas horizontales en el sentido X con efectos ISE, para suelo hipotético $Vs=180$m/s, edificio A.................................75
Tabla 71. Reducción de desplazamientos por efecto ISE en estructura A, parámetros de suelo más blando..76
Tabla 72. Distribución de plantas en altura edificio A...78
Tabla 73. Secciones edificio tipo B...78
Tabla 74. Parámetros del suelo edificio B...80
Tabla 75. Masa de la estructura B ..81
Tabla 76. Período y participación modal de estructura B....................................81
Tabla 77. Radio horizontal y radio de cabeceo fundación edificio B....................81
Tabla 78. Espectro elástico de diseño suelo tipo E, zona 582
Tabla 79. Coeficientes para cálculo de cortante basal y FHEX estructura B83
Tabla 80. Control de derivas, aplicando las fuerzas horizontales en el sentido X sin considerar efectos ISE, edificio B...84
Tabla 81. Parámetros para cálculo de efectos ISE estructura B, sentido X84
Tabla 82. Función de transferencia edificio B, sentido X....................................85
Tabla 83. Coeficientes para cálculo de cortante basal y FHEX con ISE estructura B 86
Tabla 84. Control de derivas, aplicando las fuerzas horizontales en el sentido X con efectos ISE, edificio B...87
Tabla 85. Reducción de desplazamientos por efecto ISE en edificio B sentido X....87
Tabla 86. Relación de Rigidez vs % aumento Te..89
Tabla 87. Número de pisos mínimo aproximado que se ubican en la zona descendente del espectro, en suelos blandos, ciudades importantes..........................91
Tabla 88. Coeficientes según tipo de edificio..92
Lista de figuras

Figura 1. Modificación del movimiento del campo libre ... 4
Figura 2. Sistema equivalente de n grados de libertad para n estratos 15
Figura 3. Esquema de superposición de matrices .. 16
Figura 4. Sistema de n grados de libertad a sistema de un grado de libertad 17
Figura 5. Propagación de ondas en n estratos ... 18
Figura 6. Estrato equivalente, período para el primer modo 18
Figura 7. Imagen de ETABS 2016, propiedades para concreto de 35 MPa 20
Figura 8. Imagen de ETABS 2016, propiedades acero de refuerzo fy=4200 kg/cm² 20
Figura 9. Vista en planta de cimentación tipo cajón .. 23
Figura 10. Desplante en cimentación tipo cajón ... 24
Figura 11. Rígidez horizontal ... 29
Figura 12. Rígidez de cabeceo .. 30
Figura 13. Amortiguamiento horizontal ... 30
Figura 14. Función de transferencia. ... 35
Figura 15. Mapa de la ubicación del Resort Playa Azul ... 36
Figura 16. Arquitectura de Torre, vista lateral ... 36
Figura 17. Planta tipo A .. 37
Figura 18. Planta tipo B .. 37
Figura 19. Perfil del suelo según los sondeos P-33 .. 39
Figura 20. Propiedades asignadas para losa de edificio A 42
Figura 21. Modelación del edificio A en ETABS 2016 ... 43
Figura 22. Planta de cimentación .. 46
Figura 23. Cimentación sentido X-X ... 46
Figura 24. Cimentación sentido Y-Y .. 46
Figura 25. Función de transferencia edificio A ... 54
Figura 26. Espectro de diseño ... 56
Figura 27. Ventanas de patrón de carga sísmica en Etabs® 59
Figura 28. Fuerzas horizontales y cortante Basal .. 59
Figura 29. Máximos desplazamientos por piso ... 60
Figura 30. Espectro elástico de diseño ... 62
Figura 31. Espectro elástico de diseño en Etabs® .. 62
Figura 32. Espectro elástico de diseño ... 63
Figura 33. Cortantes por piso sentido X-X ... 65
Figura 34. Desplazamientos máximos para FHEX, estructura A, empotrada 65
Figura 35. S_a para T_ISE sentido x ... 67
Figura 36. Distribución de fuerzas horizontales Estructura A con efectos ISE 68
Figura 37. S_a para T_ISE en sentido Y, estructura A .. 70
Figura 38. Patrón de carga sísmica estructura A sentido Y, empotrada 70
Figura 39. Distribución de fuerzas horizontales en sentido Y, estructura A, empotrada 70
Figura 40. Desplazamiento máximo aplicando las fuerzas horizontales en el sentido Y sin considerar efectos ISE ... 71
Figura 41. Función de transferencia, sentido Y, edificio A 72
Figura 42. Función de transferencia edificio A, suelo con Vs=180m/s 74
Figura 43. S_a para T_ISE en sentido X, estructura A suelo Vs=180m/s 75
Figura 44. Edificio Malena, Edificio B ... 77
Figura 45. Plantas tipo de edificio B ... 77
Figura 46. Planta Tipo C ... 78
Figura 47. Secciones de vigas planta tipo A, edificio B .. 79
Figura 48. Secciones de vigas, planta tipo B, edificio B .. 79
Figura 49. Secciones de vigas planta tipo C, edificio B .. 79
Figura 50. Modelo de edificio B ... 80
Figura 51. Cimentación edificio B ... 81
Figura 52. Espectro elástico de diseño para suelo tipo E zona V .. 82
Figura 53. Sa para Te estructura B sentido X ... 83
Figura 54. Distribución de cortante para sentido X, estructura B 83
Figura 55. Desplazamientos máximos para FHEX, estructura B 83
Figura 56. Función de transferencia, edificio B, sentido X .. 85
Figura 57. Sa para Tise estructura B, sentido X ... 86
Figura 58. Distribución de cortante para sentido X, estructura B con ISE 86
Figura 59. Desplazamientos máximos para FHEX con ISE, estructura B 86
Figura 60. Rigidez relativa vs. % Aumento Te (relación de esbeltez $R_E = 5.40$) 90
Figura 61. Rigidez relativa vs. % disminución ξ_e (relación de esbeltez $R_E = 5.40$) 90
Figura 62. Tc, Período que limita la zona plana del espectro .. 91
1. INTRODUCCIÓN

Los diseñadores generalmente han considerado para el análisis de una estructura el supuesto que las fuerzas estáticas horizontales equivalentes o el movimiento que se aplica en su base son independientes de su cimentación. Usualmente, se analizan las estructuras considerando modelos con base empotrada; sin embargo, la influencia que tiene un estrato blando resulta importante en la variación producida sobre los efectos dinámicos.

A través de este documento se busca evaluar los efectos en la respuesta dinámica de varios edificios considerando los efectos de interacción suelo estructura (ISE) enfocándose en las variaciones del período del sistema y el amortiguamiento del mismo, haciendo una comparación entre el modelo de la estructura empotrada y la que incluye ISE, con el fin de evaluar las diferencias en deformaciones y en derivas.

Se propone además la aplicación de los límites establecidos por la Norma Ecuatoriana de Construcción con respecto a las derivas de piso, aportando a los diseños estructurales de proyectos a construirse en el Ecuador.

Por lo extenso del tema y por el enfoque dado a la investigación, no se profundiza en el desarrollo del cálculo de las propiedades dinámicas de la estructura sin ISE, el marco teórico detrás de los cálculos de período fundamental, amortiguamiento, formas modales etc., el cual se podrá encontrar en la bibliografía de referencia.

La determinación de las propiedades del suelo tales como el módulo de cortante, velocidad de onda de corte y densidad del material se deben realizar a través de ensayos de laboratorio señalados por la mecánica de suelos. El presente trabajo no incluye la literatura detrás de la obtención de estas propiedades; sin embargo, ciertas ecuaciones se irán incluyendo a medida que se requieran.

El objetivo es hacer un análisis que determine si aumentan o disminuyen las derivas de piso cuando se toma en cuenta los efectos inerciales producidos por la ISE con referencia a cuando estos no son considerados y se buscará hacer una comparación entre estas dos condiciones.

Según la NEC-SE-DS-2015 (Norma Ecuatoriana de Construcción) se debe incluir en el cálculo de las derivas de piso los efectos de segundo orden de efectos P-delta por lo que los resultados finales de esta comparación aún no se podrán usar en un diseño final.
Se pretende aplicar esta secuencia del análisis dentro del marco de la Norma Ecuatoriana de Construcción vigente, la aplicación práctica se enfocará en las ciudades de Quito y Atacames; pero se señalarán los factores que varíen de acuerdo a las NEC-SE-DS-2015 y poder aplicarlos en diferentes zonas, tipo de suelo distinto o variables dependientes del tipo de estructura o su uso, a fin de poder emplearla en distintas ciudades y para estructuras que por materiales y por metodología constructiva han ido creando un diseño típico ecuatoriano.
2. OBJETIVOS

2.1 General

Analizar la respuesta dinámica estructural incluyendo los efectos de interacción suelo estructura compararla con una estructura empotrada y limitar los resultados con requisitos de la NEC-SE-DS-2015 para su aplicabilidad.

2.2 Específicos

- Determinar las estructuras en las que los efectos de ISE son relevantes.
- Realizar análisis dinámico sin considerar efectos de Interacción Suelo Estructura (base empotrada).
- Calcular las propiedades del suelo tomando Atacames como ciudad específica para el estudio.
- Establecer las propiedades de la cimentación.
- Establecer las propiedades de la estructura con ISE.
- Definir el concepto de deriva según la NEC-SE-DS-2015
- Encontrar las derivas por el método Fuerza Horizontal Equivalente regido por la Norma Ecuatoriana de la Construcción (NEC-SE-DS-2015) y NSR-10 sin ISE y con ISE.
- Encontrar las derivas por el método Análisis Modal Espectral regido por la Norma Ecuatoriana de la Construcción (NEC-SE-DS-2015) y NSR-10 sin ISE y con ISE.
- Valorar los resultados basándonos en las derivas y en la relación de rigidez.
3. MARCO TEÓRICO

3.1 Interacción Suelo Estructura

La respuesta de una estructura frente a terremotos depende además de la estructura, del suelo adyacente y del terreno en movimiento.

El efecto de interacción suelo-estructura (ISE) es “el mecanismo por el cual la presencia de la estructura influye en el movimiento del terreno” (Soriano, 1989) y consiste en la diferencia entre la respuesta de un punto donde está situada una estructura y la respuesta que debería experimentar ese punto si la estructura no estuviera (Espinoza, 1999), tal como se ilustra en la Figura 1 donde sí difieren los movimientos en el punto A, debido a interacción suelo-estructura (Rosenblueth, 1992).

![Figura 1. Modificación del movimiento del campo libre](image)

La interacción modifica las propiedades dinámicas relevantes que tendría la estructura supuesta con base indeformable, así como las características del movimiento del terreno alrededor de la cimentación (Avilés y Pérez-Rocha, 2004).

3.2 Efectos de la Interacción Suelo Estructura

El efecto de interacción dinámica suelo-estructura consiste en un conjunto de efectos cinemáticos e inerciales producidos en la estructura y el suelo, como resultado de la flexibilidad de este ante solicitudes dinámicas. (Kausel et al., 1978)

3.3 Efectos cinemáticos

La excitación efectiva de la cimentación está compuesta tanto de traslaciones como de rotaciones. Debido al efecto promediador de la cimentación, las traslaciones sufren reducciones y las rotaciones aparecen.

1 Considerando un cambio de aceleración (=a) mostrada en la gráfica de a vs. t, y (b) una aceleración a* que cambia debido a la presencia de estructuras (Soriano, 1989)
Si la amplificación del sitio es considerada para determinar el movimiento sísmico en la superficie del terreno y esta se asigna como la excitación de diseño aplicada a nivel de la cimentación, en general esta excitación resulta ser más desfavorable que el movimiento efectivo que se obtiene de un análisis de interacción cinemática. Una excitación que no considera efectos de interacción cinemática suelo-cimentación es un efecto conservador.

Se puede decir que hay interacción cinemática cuando la base experimenta algún desplazamiento horizontal promedio y un cabeceo, llamado movimiento de entrada efectiva a la cimentación (Espinoza, 1999).

3.4 Efectos inerciales

Si consideramos el período fundamental de un sistema suelo-estructura, este se ve incrementado con respecto a un hipotético empotramiento sobre un medio indeformable, esto debido a que el conjunto tiene una flexibilidad mayor que la de una estructura desplantada sobre este medio.

Si hablamos del amortiguamiento generalmente aumenta debido a una disipación adicional de energía producto de los amortiguamientos material y geométrico del suelo. Sin embargo, como la interacción disminuye la efectividad del amortiguamiento estructural, se puede presentar una reducción del sistema cuando la disipación adicional de energía brindada por el suelo no compense dicha disminución. (Avilés)

La modificación por interacción del período fundamental, el amortiguamiento y la ductilidad pueden dar lugar a respuestas estructurales mayores o menores, dependiendo de la posición de los periodos resonantes del espectro de respuesta y de los niveles de amortiguamiento y ductilidad.

3.5 Interacción total

La suma de la interacción producida por efectos cinemáticos e inerciales nos da como resultado la Interacción total.

3.6 Suelo Rígido y Suelo Blando

La Norma Ecuatoriana de Construcción NEC-SE-DS-2015, señala los siguientes perfiles de suelo para el diseño sísmico:

Se definen seis tipos de perfil de suelo los cuales se presentan en la Tabla 1.

Los parámetros utilizados en la clasificación son los correspondientes a los 30 m superiores del perfil para los perfiles tipo A, B, C, D y E. Aquellos perfiles que tengan estratos claramente diferenciables deben subdividirse, asignándoles un subíndice i que va desde 1 en la superficie, hasta n en la parte inferior de los 30 m superiores del perfil.
Para el perfil tipo F se aplican otros criterios, como los expuestos en la sección 10.5.4 y la respuesta no debe limitarse a los 30 m superiores del perfil en los casos de perfiles con espesor de suelo significativo.

Tabla 1. Clasificación de los perfiles de suelo (NEC-SE-DS, 2015)

<table>
<thead>
<tr>
<th>TIPO DE PERFIL</th>
<th>DESCRIPCIÓN</th>
<th>DEFINICIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Perfil de roca competente</td>
<td>Vs ≥ 1500 m/s</td>
</tr>
<tr>
<td>B</td>
<td>Perfil de roca de rigidez media</td>
<td>1500 m/s > Vs ≥ 760 m/s</td>
</tr>
<tr>
<td>C</td>
<td>Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de corte, o perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios</td>
<td>760 m/s > Vs ≥ 360 m/s</td>
</tr>
<tr>
<td>D</td>
<td>Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de corte, o Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones</td>
<td>360 m/s > Vs ≥ 180 m/s</td>
</tr>
<tr>
<td>E</td>
<td>Perfil que cumpla el criterio de velocidad de la onda de corte, o Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas</td>
<td>Vs < 180 m/s IP > 20 w ≥ 40% Su < 50 kPa</td>
</tr>
<tr>
<td>F</td>
<td>Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el sitio por un ingeniero geotecnista. Se contemplan las siguientes subclases:</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensibles, suelos dispersivos o débilmente cementados, etc.</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Turba y arcillas orgánicas y muy orgánicas (H > 3 m para turba o arcillas orgánicas y muy orgánicas).</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>Arcillas de muy alta plasticidad (H > 7.5 m con indice de Plasticidad IP > 75)</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H > 30 m)</td>
<td></td>
</tr>
<tr>
<td>F5</td>
<td>Suelos con contrastes de impedancia α ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca, con variaciones bruscas de velocidades de ondas de corte</td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>Rellenos colocados sin control ingenieril</td>
<td></td>
</tr>
</tbody>
</table>

3.7 Módulo de cortante G

Se define como la pendiente de la línea que une los extremos de la curva cíclica de esfuerzo cortante y deformación angular.

Para tener una relación entre el módulo G y la velocidad de onda de corte se tiene la siguiente ecuación:
\[V_s = \sqrt{\frac{G}{\rho}} \] \hspace{2cm} (1)

Donde:

- \(G \): Módulo de cortante del suelo
- \(\rho \): Peso unitario del suelo

Para estimar el valor de \(G \) existen una gran cantidad de correlaciones con base en otras propiedades de los suelos o resultados de ensayos de campo. Se indican algunos valores de \(G \). Como vemos en la Tabla 2 el rango es muy amplio para cada tipo de suelo lo que limita el uso de esta, pero servirá para tener una idea del valor de lo que los estudios de suelo deberían mostrar.

<table>
<thead>
<tr>
<th>Tabla 2. Valores típicos de velocidad de onda de corte y módulo de cortante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de suelo</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Arcilla suave</td>
</tr>
<tr>
<td>Arcilla dura</td>
</tr>
<tr>
<td>Arena suelta</td>
</tr>
<tr>
<td>Arena densa y grava</td>
</tr>
<tr>
<td>Suelos residuales (PWR, IGM)</td>
</tr>
<tr>
<td>Rocas metamórficas e igneas de piedemonte (alta y moderadamente desgastadas)</td>
</tr>
<tr>
<td>0 < RQD < 50 RQD** = 65(1)</td>
</tr>
<tr>
<td>RQD = 80(1)</td>
</tr>
<tr>
<td>RQD = 90(1)</td>
</tr>
<tr>
<td>RQD = 100(1)</td>
</tr>
<tr>
<td>Rocas sedimentarias (moderadamente desgastadas a intactas)</td>
</tr>
</tbody>
</table>

\(^{(1)} \) Valores típicos, interpolación lineal entre valores de RQD. \(^{*} \) Libras por pie cúbico, \(^{**} \) Rock Quality Designation. (Hunt, 1984 y Kavazanjian, 1998).

3.8 Coeficiente de Poisson \(\nu \)

Es la relación entre la deformación lateral y la axial. El coeficiente de Poisson se puede medir como: la razón entre el acortamiento de una longitud situada en un plano perpendicular.
a la dirección de la carga aplicada, dividido en el alargamiento longitudinal producido. Este valor coincide igualmente con el cociente de deformaciones, de hecho, la fórmula usual para el coeficiente de Poisson es (Ortiz, 1998):

$$\nu = -\frac{\varepsilon_{\text{trans}}}{\varepsilon_{\text{long}}}$$ \hspace{1cm} (2)

Donde:

$\varepsilon_{\text{trans}}$ Deformación transversal

$\varepsilon_{\text{long}}$ Deformación longitudinal

3.9 Densidad del suelo ρ_s

Se define como la relación entre la masa del suelo y el volumen ocupado.

3.10 Velocidad de onda de corte V_s

Velocidad con que se propagan las ondas S, las cuales están controladas por el módulo de corte y la densidad del suelo.

3.11 Estratos

Son franjas de suelo que presentan propiedades similares. Estos modifican las ondas sísmicas en sus límites de contacto, generando efectos de difracción múltiple, produciendo amplificaciones y atenuaciones. Lo anterior dado según las características del estrato, las cuales determinan el período del sitio y el amortiguamiento del suelo.

3.12 Propiedades de respuesta sísmica del suelo

Determinación de las propiedades de respuesta sísmica del suelo en laboratorio según NEC-SE-GC-2015:

Las propiedades dinámicas del suelo, y en particular el módulo de rigidez al cortante, G, y el porcentaje de amortiguamiento con respecto al crítico, ζ, a diferentes niveles de deformación, se determinan en el laboratorio mediante ensayos de columna resonante, ensayo triaxial cíclico, corte simple cíclico u otro similar técnicamente sustentado (NEC-SE-GC-2015) / técnicamente reconocido (NSR-10). Los resultados de estos ensayos se interpretarán siguiendo métodos y criterios reconocidos, de acuerdo con el principio de operación de cada uno de los aparatos.

En todos los casos, se deberá tener presente que los valores de G y ζ obtenidos están asociados a los niveles de deformación impuestos en cada aparato y pueden diferir de los prevalecientes en el campo. Si es que no se cuenta con los equipos mencionados, se podría utilizar modelos de estimación (correlación) de las curvas de degradación de rigidez y
amortiguamiento con el nivel de deformación por cortante unitaria que cumplan con las características geotécnicas de los suelos analizados, considerando la incertidumbre en la aplicación de los modelos de estimación.

NOTA: En todo caso se debería de averiguar las propiedades de respuesta sísmica de suelo de acuerdo con la Sección 10.6 de la NEC-SE-DS.

Revisando en paralelo las NEC-SE-GC-2015 con la NSR 10, el procedimiento para la caracterización geomecánica se detallada de manera igual, cambiando únicamente la frase señalada en negrita.

3.13 Amortiguamiento

Es la propiedad del material que permite disipar energía, produciendo que la amplitud de la vibración disminuya de manera constante. Con el amortiguamiento, la energía del sistema de vibración se disipa por diversos mecanismos y, con frecuencia, más de un mecanismo puede estar presente al mismo tiempo. La mayor parte de la disipación de la energía puede ser asociada al efecto térmico del esfuerzo elástico repetido del material y de la fricción interna que se produce en un sólido cuando se deforma. Sin embargo, en las estructuras reales existen muchos otros mecanismos que también contribuyen a la disipación de la energía. (Chopra, 2014)

3.14 Deriva

Norma ecuatoriana:

“Diferencia relativa del desplazamiento de diseño entre la parte superior e inferior de un piso, dividido por la altura del piso” (NEC-SE–HM, 2010).

Norma colombiana:

“Se entiende por deriva el desplazamiento horizontal relativo entre dos puntos colocados en la misma línea vertical, en dos pisos o niveles consecutivos de la edificación” (NSR-10, 2010).

3.14.1 Límites permisibles de las derivas de los pisos según NEC-SE-DS-2015

La deriva máxima para cualquier piso no excederá los límites de deriva inelástica establecidos en la tabla 3, en la cual la deriva máxima se expresa como un porcentaje de la altura de piso: Valores de ΔM máximos, expresados como fracción de la altura de piso:
Tabla 3. Valores de ΔM máximos, expresados como fracción de la altura de piso

<table>
<thead>
<tr>
<th>Estructuras de:</th>
<th>ΔM máxima (sin unidad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormigón armado, estructuras metálicas y de madera</td>
<td>0.02</td>
</tr>
<tr>
<td>De mampostería</td>
<td>0.01</td>
</tr>
</tbody>
</table>

La deriva máxima para cualquier piso determinada de acuerdo con el procedimiento de A.6.3.1, no puede exceder los límites establecidos en la tabla A.6.4-1, en la cual la deriva máxima se expresa como un porcentaje de la altura de piso h_{pi}:

Tabla 4. Derivas máximas como porcentaje de h_{pi}

<table>
<thead>
<tr>
<th>Estructuras de:</th>
<th>Deriva máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto reforzado, metálicas, de madera, y de mampostería que cumplen los requisitos de A.6.4.2.2</td>
<td>$1.0% (\Delta_{max}^i \leq 0.010 \ h_{pi})$ (3)</td>
</tr>
<tr>
<td>De mampostería que cumplen los requisitos de A.6.4.2.3</td>
<td>$0.5% (\Delta_{max}^i \leq 0.005 \ h_{pi})$ (4)</td>
</tr>
</tbody>
</table>

3.14.3 Control de la deriva de piso (derivas inelásticas máximas de piso ΔM) en la NEC-SE-DS-2015

Para este apartado se trasladó exactamente el contenido del control de la deriva y su respectivo cálculo de la NEC-SE-DS-2015, con el fin de aclarar nomenclatura, pasos, reglas y demás.

Se hará un control de deformaciones, a través del cálculo de las derivas inelásticas máximas de piso. El diseñador deberá comprobar que la estructura presentará deformaciones inelásticas controlables, mejorando substancialmente el diseño conceptual.

Los valores máximos se han establecido considerando que el calculista utilizará secciones agrietadas, véase la (sección 6.1.6-b NEC-SE-DS-2015) sobre agrietamiento e inercia I_g).
Para la revisión de las derivas de piso se utilizará el valor de la respuesta máxima inelástica en desplazamientos ΔM de la estructura, causada por el sismo de diseño.

Las derivas obtenidas como consecuencia de la aplicación de las fuerzas laterales de diseño reducidas por el método DBF (Diseño Basado en Fuerzas) sean estáticas o dinámicas, para cada dirección de aplicación de las fuerzas laterales, se calcularán, para cada piso, realizando un análisis elástico de la estructura sometida a las fuerzas laterales calculadas.

El cálculo de las derivas de piso incluirá:

- Las deflexiones debidas a efectos traslacionales y torsionales (véase en la sección 6.3.7 de NEC-SE-HM,2015)
- Los efectos de segundo orden $P-\Delta$ (véase en la sección 6.3.8 de NEC-SE-HM,2015)

Adicionalmente, en el caso de pórticos con estructura metálica, debe considerarse la contribución de las deformaciones de las zonas de conexiones a la deriva total de piso.

Límites de la deriva: la deriva máxima inelástica ΔM de cada piso debe calcularse mediante:

$$\Delta M = 0.75R\Delta E$$ \hspace{1cm} (5)

Dónde:

- ΔM Deriva máxima inelástica.
- R Factor de reducción de resistencia (véase la sección 6.3.4 NEC-SE-HM,2015)
- ΔE Desplazamiento obtenido en aplicación de las fuerzas laterales de diseño reducidas.

Regla: ΔM no puede superar los valores establecidos en la Tabla 3, los cuales deben satisfacerse en todas las columnas del edificio.

Se verificará que:

$$\Delta M < \Delta M \text{ máxima}$$ \hspace{1cm} (6)

Dónde:

ΔM Máxima se determina conforme a la sección 3.14.1

3.15 Desplazamiento de diseño

Desplazamiento lateral total esperado para el sismo de diseño, según lo requerido por la NEC-SE-HM,2015

3.16 Desplazamientos horizontales totales

Los desplazamientos horizontales, se determinan por medio del análisis estructural realizado utilizando el método de análisis definido en A.3.4 (NSR,2010) y con las rigideces indicadas según el criterio del ingeniero diseñador. Los desplazamientos totales horizontales,
\(\delta_{\text{tot},j} \), en cualquiera de las direcciones principales en planta, j, y para cualquier grado de libertad de la estructura, se obtienen de la siguiente suma de valores absolutos:

\[
\delta_{\text{tot},j} = |\delta_{cm,j}| + |\delta_{t,j}| + |\delta_{pd,j}|
\]

Donde:
\(\delta_{cm,j} \) corresponde al desplazamiento horizontal del centro de masa en la dirección bajo estudio, j.
\(\delta_{t,j} \) el desplazamiento adicional causado por los efectos torsionales en la dirección bajo estudio cuando el diafragma sea rígido, j.
\(\delta_{pd,j} \) al desplazamiento adicional causado por el efecto P-Delta en la dirección bajo estudio, j.

Cuando se utilicen los procedimientos de interacción suelo-estructura, o cuando el método de análisis a utilizar así lo requiera porque se realizó el análisis de la estructura suponiéndola empotrada en su base, deben incluirse dentro de los desplazamientos totales, los desplazamientos adicionales obtenidos de acuerdo con el procedimiento del Capítulo A.7. (NSR, 2010)

3.17 Deformaciones

Limitación de daños como lo define la NEC-SE-DS-2015:

La estructura presentará las derivas de piso, ante las fuerzas especificadas por esta norma, inferiores a los admisibles definidos en la sección 4.2.2. (Límites permisibles de las derivas de los pisos).

\[
\Delta M < \Delta M \text{ máxima}
\]

Donde:

\(\Delta M \) Deriva de piso máxima horizontal inelástico

3.18 Masa

Es la propiedad de un sistema estructural que permite cuantificar la cantidad de materia del sistema físico en estudio.

3.19 Rigidez

Propiedad de un sistema estructural que mide la fuerza necesaria para generar un desplazamiento unitario.
3.20 Periodo fundamental de la estructura

Todas las estructuras poseen diferentes modos de vibración. El modo principal es el "fundamental". Se puede definir como el período de la oscilación que domina la respuesta. El periodo fundamental es el periodo del modo que tiene mayor porcentaje de participación de la masa. Es el mayor período de vibración de la estructura en la dirección horizontal de interés. (NEC-SE-DS, 2015)

3.21 Altura equivalente

De acuerdo a NSR-10, puede estimarse simplificadamente como:

\[h_e = 0.75h_n \]

Donde:

\(h_n \) es la altura de la edificación

La norma ecuatoriana denomina la altura efectiva como \(H_{eff} \) y esta define el centroide de las fuerzas inertiales generadas por el primer modo de vibración (NEC-SE-DS, 2015):

\[H_{eff} = \frac{\sum_{i=1}^{n} (m_i \Delta_i H_i)}{\sum_{i=1}^{n} (m_i \Delta_i)} \]

Donde:

\(H_i \) Altura del nivel i del edificio
\(H_{eff} \) Altura efectiva
\(\Delta_i \) Desplazamiento de diseño para el piso i
\(m_i \) Masa del piso i
4. METODOLOGÍA.

4.1 Cálculo de las propiedades del suelo

Preliminarmente se calculan en base a correlaciones la velocidad de onda, módulo de cortante, peso específico y módulo de Poisson, necesarias en la aplicación de las metodologías para obtener los periodos del sitio a través de un estrato equivalente compuesto por n estratos, discretizados en la dirección vertical.

4.1.1 Cálculo de V_s y G a partir de N_{spt}

Tabla 5. Correlaciones entre valores de N y V_s

<table>
<thead>
<tr>
<th>INVESTIGADORES</th>
<th>ECUACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAI Y YOSHIMURA (1990)</td>
<td>$V_s = 76 N^{0.33}$ (11)</td>
</tr>
<tr>
<td>OHBA Y TORIUMI (1970)</td>
<td>$V_s = 84 N^{0.31}$ (12)</td>
</tr>
</tbody>
</table>

4.1.2 Pesos específicos y proporción de Poisson.

Tabla 6. Valores de pesos específicos típicos

<table>
<thead>
<tr>
<th>Tipo de suelo</th>
<th>Clasificación SUCS (ASTM D2487)</th>
<th>Sobre el nivel freático (KN/m3)</th>
<th>Bajo el nivel freático (KN/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravas mal gradadas</td>
<td>GP</td>
<td>17.5-20.5</td>
<td>19.5-22.0</td>
</tr>
<tr>
<td>Gravas bien gradadas</td>
<td>GW</td>
<td>17.5-22.0</td>
<td>19.5-23.5</td>
</tr>
<tr>
<td>Gravas limosas</td>
<td>GM</td>
<td>16.0-20.5</td>
<td>19.5-22.0</td>
</tr>
<tr>
<td>Gravas arcillosas</td>
<td>GC</td>
<td>16.0-20.5</td>
<td>19.5-22.0</td>
</tr>
<tr>
<td>Arenas mal gradadas</td>
<td>SP</td>
<td>15.0-19.5</td>
<td>19.0-21.0</td>
</tr>
<tr>
<td>Arenas bien gradadas</td>
<td>SW</td>
<td>15.0-21.0</td>
<td>19.0-23.0</td>
</tr>
<tr>
<td>Arenas limosas</td>
<td>SM</td>
<td>12.5-21.0</td>
<td>17.5-22.0</td>
</tr>
<tr>
<td>Arenas arcillosas</td>
<td>SC</td>
<td>13.5-20.5</td>
<td>17.5-21.0</td>
</tr>
<tr>
<td>Limos de baja plasticidad</td>
<td>ML</td>
<td>11.5-17.5</td>
<td>12.5-20.5</td>
</tr>
<tr>
<td>Limos de alta plasticidad</td>
<td>MH</td>
<td>11.5-17.5</td>
<td>11.5-20.5</td>
</tr>
<tr>
<td>Arcillas de baja plasticidad</td>
<td>CL</td>
<td>12.5-17.5</td>
<td>11.5-20.5</td>
</tr>
<tr>
<td>Arcillas de alta plasticidad</td>
<td>CH</td>
<td>12.5-17.5</td>
<td>11.0-19.5</td>
</tr>
</tbody>
</table>

Fuente: Principios de ingeniería de cimentaciones, Braja Das, (2001)

Tabla 7. Valores o rangos para la proporción de Poisson.

<table>
<thead>
<tr>
<th>TYPE OF SOIL</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay, saturated</td>
<td>0.4-0.5</td>
</tr>
<tr>
<td>Clay, unsaturated</td>
<td>0.1-0.3</td>
</tr>
<tr>
<td>Sandy clay</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>Silt</td>
<td>0.3-0.35</td>
</tr>
</tbody>
</table>
Sand, gravelly sand
Commonly used

rock 0.1-0.4 (depends somewhat on type of rock)
loess 0.1-0.3
ice 0.36
concrete 0.15
steel 0.33

<table>
<thead>
<tr>
<th>µ</th>
<th>SOIL TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4-0.5</td>
<td>Most clay soils</td>
</tr>
<tr>
<td>0.45-0.50</td>
<td>Saturated clay soils</td>
</tr>
<tr>
<td>0.3-0.4</td>
<td>Cohesionless-medium and dense</td>
</tr>
<tr>
<td>0.2-0.35</td>
<td>Cohesionless-loose to medium</td>
</tr>
</tbody>
</table>

4.1.3 Período del sitio a través de un estrato equivalente

4.1.3.1 Método de formas modales

Esta metodología sigue el mismo principio de la dinámica estructural de un sistema de varios grados de libertad en el cual se concentran las masas de cada piso en un solo punto, de esta manera se generan n grados de libertad para n pisos, solo que en este caso no se tienen pisos sino estratos de suelo (figura 2), los cuales tienen propiedades como peso específico, módulo de cortante, altura del estrato, entre otros.

![Figura 2. Sistema equivalente de n grados de libertad para n estratos.](image)

El método consiste en obtener las sub matrices de masa \([M]\) y rigidez \([K]\) como se muestra a continuación:

\[
[M_i] = \frac{\gamma_i H_i}{g} \begin{bmatrix}
\frac{1}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{3}
\end{bmatrix}
\]

\[
[K_i] = \frac{G_i}{H_i} \begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix}
\]

Donde:

\(\gamma\) Peso específico de cada estrato

\(H\) Altura del cada estrato

\(g\) Constante de la gravedad

\(G_i\) Módulo de cortante de cada estrato
A partir de las sub matrices podemos elaborar la matriz de masa y rigidez del depósito de suelo $[M]$, $[K]$:

![Diagrama de matrices](image)

Figura 3. Esquema de superposición de matrices

Una vez realizada la superposición se eliminan la última fila y columna para considerar que el sistema está fijo en el contacto del depósito con el basamento rocoso, quedando:

$$
[M] = \begin{bmatrix}
M_{311} & M_{312} & 0 \\
M_{321} & M_{322} + m_{211} & M_{212} \\
0 & M_{221} & M_{222} + M_{111}
\end{bmatrix}
$$

(15)

$$
[K] = \begin{bmatrix}
K_{311} & K_{312} & 0 \\
K_{321} & K_{322} + K_{211} & K_{212} \\
0 & K_{221} & K_{222} + K_{111}
\end{bmatrix}
$$

(16)

Una vez construidas las matrices se soluciona como un problema de vibración libre no amortiguada, variando la frecuencia angular hasta que se cumpla la siguiente ecuación:

$$
det| [K] - \omega^2 [M] | = 0
$$

(17)

Resuelto el problema de valores y vectores propios, se puede calcular el periodo del sitio a partir de la frecuencia circular de vibración del primer modo.
4.1.3.2 Método de Rayleigh

El método de Rayleigh puede utilizarse para estimar la frecuencia de vibración natural más baja o fundamental de un sistema, se basa en el principio de la conservación de la energía.

Para usar este método se numerarán los estratos empezando desde el más superficial hasta el más profundo.

\[
T_s = \frac{4}{\sqrt{g}} \sqrt{\left(\sum_{i=1}^{n} H_i G_i \right) \left(\sum_{i=1}^{n} \gamma_i H_i (W_i^2 + W_i W_{i-1} + W_{i-1}^2) \right)}
\]

(19)

\[
W_i = \frac{\sum_{j=1}^{i} H_j / G_j}{\sum_{j=1}^{n} H_j / G_j}
\]

(20)

Donde:

\(i\) número de estrato.
\(n\) total de estratos.
\(H_i\) Altura del estrato i.
\(G_i\) Modulo de cortante del estrato i.
\(W_i\) Término para cada estrato de acuerdo con ecuación 20.

4.1.3.3 Método del recíproco de las lentitudes

El método consiste en calcular la velocidad de propagación de onda de un estrato equivalente basándose en las velocidades de onda y altura correspondientes a cada estrato individual.

\[
V_{si} = \frac{G}{\sqrt{\rho_{si}}}
\]

(21)
Donde:

- V_{si}: Velocidad de propagación de onda de cada estrato
- H_i: Altura de cada estrato
- n: Número de estratos
- H_s: Altura total
- V_s: Velocidad de propagación de onda para estrato equivalente

Una vez obtenida la velocidad de onda del estrato equivalente, es posible evaluar el período del sitio, con base en la teoría de propagación de ondas unidimensionales.

\[
T_n = \frac{1}{(2n-1)} \frac{4H_s}{V_s}
\]

Para $n=1$

\[
T_1 = \frac{4H_s}{V_s}
\]

\[
V_s = \frac{4H_s}{T_s}
\]
Donde:

\(T_n \) Período para un modo \(n \)
\(H_s \) Profundidad de los depósitos firmes profundos en el sitio de interés
\(V_s \) Velocidad de propagación de onda para estrato equivalente
\(T_s \) Período del estrato equivalente

4.2 Propiedades de la estructura con base empotrada (sin ISE), utilizando el programa ETABS 2016 ®

4.2.1 Propiedades de los Materiales

4.2.1.1 Hormigón

4.2.1.1.1 Masa por unidad de volumen del hormigón

Según la región en la que se elabore el proyecto, la densidad del hormigón depende de la composición química, las densidades y granulometría de los agregados finos y gruesos que ahí se encuentren. Se puede estimar mientras tanto una densidad que oscile entre 2400 kg/m3.

En proyectos de importancia es necesario el diseño de hormigón para conocer sus propiedades mecánicas.

4.2.1.1.2 Módulo de elasticidad del hormigón

En los modelos elásticos de estructuras que se diseñan para acciones sísmicas, de acuerdo con los métodos de la NEC-SE-DS-2015, el módulo de elasticidad de hormigón \(E_c \) (GPa), será calculado para hormigones de densidad normal como:

\[
E_c = 4.7 \times \sqrt{f'_c} \quad (26)
\]

Donde:
\(E_c \) Módulo de elasticidad para el hormigón (GPa)
\(f'_c \) Resistencia a la compresión del hormigón (MPa)

<table>
<thead>
<tr>
<th>(f'_c) (Mpa)</th>
<th>(E_c) (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>21538.10</td>
</tr>
<tr>
<td>24</td>
<td>23025.20</td>
</tr>
<tr>
<td>28</td>
<td>24870.06</td>
</tr>
<tr>
<td>30</td>
<td>25742.96</td>
</tr>
<tr>
<td>35</td>
<td>27805.58</td>
</tr>
</tbody>
</table>

4.2.1.1.3 Módulo de Poisson y Coeficiente de expansión térmica

Del mismo modo que la densidad del concreto, estos valores dependen del diseño de hormigón, en este trabajo no se profundiza la obtención de estos. Se usan valores estimados.
En la parte correspondiente se define el material llenando los campos como se muestra en la figura 7.

Figura 7. Imagen de ETABS 2016, propiedades para concreto de 35 MPa

4.2.1.2 Acero

4.2.1.2.1 Límite de fluencia y otras propiedades

En cuanto a las propiedades del acero para análisis: peso, módulo de elasticidad, coeficiente térmico de expansión, se ingresan las proporcionadas por los distribuidores de varilla corrugada en Ecuador, cuyas especificaciones corresponden a aceros comerciales con límite de fluencia $f_y = 4200 \, \text{kg/cm}^2$

Figura 8. Imagen de ETABS 2016, propiedades acero de refuerzo $f_y=4200 \, \text{kg/cm}^2$
4.2.2 Cálculo de masa de la estructura considerando la sobrecarga por acabados y mampostería.

El diseñador calculará los valores de sobrecarga de acuerdo con la arquitectura de cada proyecto, no se pretende profundizar en el tema de modelación de la estructura, para los casos a ser presentados estimaremos las siguientes cargas.

Carga Viva = 2 KN/m² (La mínima sobrecarga según NEC-SE-CG apéndice 4.2)

Carga muerta (sobrecarga, elementos no estructurales y acabados) = 3KN/m² (Según NSR-10 Tabla B.3.4.3-1, valores mínimos alternativos de elementos no estructurales cuando no se efectúe un análisis más detallado)

Para obtener la masa equivalente se genera la tabla Mass Summary by Group

Tabla 9. Mass Summary by Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Self Mass</th>
<th>Self Weight</th>
<th>Mass X</th>
<th>Mass Y</th>
<th>Mass Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kN</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>All</td>
<td>5041921.96</td>
<td>0</td>
<td>6588973.97</td>
<td>6588973.97</td>
<td>0</td>
</tr>
</tbody>
</table>

Masa = (Mass X / 9810) [t-s²/m] \hspace{1cm} (27)

4.2.3 Periodo fundamental y porcentajes de masa participante.

4.2.3.1 Cálculo aproximado del período fundamental de vibración aproximado \(T_a \)

Se puede definir el período de la edificación previamente con el siguiente cálculo:

Para estructuras de edificación, el valor de \(T \) puede determinarse de manera aproximada mediante la expresión:

\[
T = C_t h_n^2
\] \hspace{1cm} (28)

Dónde:

\(C_t \) y \(\alpha \) Coeficiente que depende del tipo de edificio

\(h_n \) Altura máxima de la edificación de \(n \) pisos, medida desde la base de la estructura, en metros.

La tabla 10 muestra los valores para determinar el período de vibración \(T \)

Tabla 10. Valores de \(C_t \) y \(\alpha \)

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>(C_t)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estructuras de acero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin arriostramientos</td>
<td>0.072</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Nota: por el método 1, Norma Ecuatoriana de la Construcción (NEC-SE-DS, 6.3.3, 2015)

4.2.3.2 Cálculo del período fundamental y frecuencia circular de vibración usando Etabs

a) Período fundamental

Para este punto el modelo debe estar elaborado con las secciones de elementos que generen un porcentaje de participación de masa alto en las direcciones X e Y según la norma, hay que verificar que el modelo no se encuentre acoplado o que el Modo 1 no sea el rotacional.

Se genera la tabla Modal Participating Mass Ratios, el periodo en el modo 1 es el período fundamental en la dirección correspondiente.

De esta manera se consigue un período fundamental para la dirección X y otro para la dirección Y; a diferencia del valor único calculado con la ecuación 28.

Tabla 11. Períodos y porcentaje de Participación modal

<table>
<thead>
<tr>
<th>Case</th>
<th>Mode</th>
<th>Period</th>
<th>UX</th>
<th>UY</th>
<th>UZ</th>
<th>Sum UX</th>
<th>Sum UY</th>
<th>Sum UZ</th>
<th>RX</th>
<th>RY</th>
<th>RZ</th>
<th>Sum RX</th>
<th>Sum RY</th>
<th>Sum RZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal 1</td>
<td>2.873</td>
<td>0.7683</td>
<td>0.0004</td>
<td>0</td>
<td>0.7683</td>
<td>0.0004</td>
<td>0</td>
<td>0.0004</td>
<td>0.2379</td>
<td>0.0009</td>
<td>0.0004</td>
<td>0.2379</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>Modal 2</td>
<td>2.243</td>
<td>0.0002</td>
<td>0.7169</td>
<td>0</td>
<td>0.7684</td>
<td>0.7173</td>
<td>0</td>
<td>0.2938</td>
<td>0.0004</td>
<td>0.0008</td>
<td>0.2938</td>
<td>0.2383</td>
<td>0.0017</td>
<td></td>
</tr>
<tr>
<td>Modal 3</td>
<td>2.08</td>
<td>0.0024</td>
<td>0.0009</td>
<td>0</td>
<td>0.7708</td>
<td>0.7182</td>
<td>0</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.7528</td>
<td>0.2941</td>
<td>0.2384</td>
<td>0.7546</td>
<td></td>
</tr>
<tr>
<td>Modal 4</td>
<td>0.887</td>
<td>0.1136</td>
<td>0.0002</td>
<td>0</td>
<td>0.8844</td>
<td>0.7184</td>
<td>0</td>
<td>0.002</td>
<td>0.4718</td>
<td>0.0001</td>
<td>0.2961</td>
<td>0.7102</td>
<td>0.7546</td>
<td></td>
</tr>
</tbody>
</table>

b) Frecuencia circular de la estructura

A partir del período, se calcula:

$$\omega_e = \frac{2\pi}{T_e}$$

Donde:

T_e Período fundamental en el sentido de análisis

c) Porcentaje de masa participante y masa equivalente m_e

Los valores UX, UY y RZ para los diferentes modos de la tabla 11 señalan el porcentaje de masa participante, multiplicando el valor correspondiente al porcentaje de masa participante del modo 1 por la masa de la estructura tenemos la masa equivalente m_e.

2 Los valores mostrados en la tabla son solo explicativos.
4.2.3.3 Rigidez equivalente de la estructura

Una vez calculado el periodo fundamental de la estructura se puede calcular su rigidez equivalente.

\[
K_e = \frac{4 \cdot m_e \cdot \pi^2}{T_e^2}
\]

Donde:

\(m_e\) Masa equivalente de la estructura

\(T_e\) Período fundamental en el sentido de análisis

4.2.3.4 Amortiguamiento

a) Amortiguamiento de la estructura

Se calcula como:

\[
C_e = m_e \cdot \xi \cdot \omega_e
\]

Donde:

\(m_e\) Masa de la estructura

\(\xi\) Factor de amortiguamiento crítico de la estructura.

\(\omega_e\) Frecuencia circular de la estructura

4.3 Propiedades de la cimentación

La cimentación enlaza a la superestructura con el suelo, es la encargada de transmitir la excitación del suelo a la misma. A partir de las dimensiones según se muestra en las figuras 9 y 10 se determinan las siguientes propiedades:

Figura 9. Vista en planta de cimentación tipo cajón
4.3.1 Profundidad y base

La profundidad \(a \) es la dimensión paralela al sentido en el que se realiza el análisis, en tanto que la base \(b \) es perpendicular a dicho sentido.

4.3.2 Desplante

El desplante \(D \) es la altura medida desde la superficie del terreno hasta el nivel de fundación.

Figura 10. Desplante en cimentación tipo cajón

4.3.3 Radio horizontal

Es el radio con el cual se consigue una cimentación circular de área equivalente a la original.

\[
R_h = \left(\frac{A}{\pi} \right)^\frac{1}{2} \tag{32}
\]

\[
A = a \times b \quad \text{(cajón de cimentación)} \tag{33}
\]

4.3.4 Radio de cabeceo

Es el radio de la cimentación circular equivalente con el que se produce una inercia igual a la de la cimentación original.

\[
R_c = \left(\frac{4I}{\pi} \right)^\frac{1}{4} \tag{34}
\]

\[
I = \frac{bx^3}{12} \quad \text{(a sentido del análisis)} \tag{35}
\]

4.4 Interacción suelo estructura

Los efectos de interacción se tendrán en cuenta sólo en el modo fundamental de vibración; la contribución de los modos superiores se determinará como se establece para estructuras sin interacción. La respuesta del sistema a la excitación con ISE se determina en
base a una variación de sus propiedades dinámicas como estructura empotrada, interactuando con las propiedades dinámicas del terreno enlazadas por el tipo de cimentación.

4.4.1 Valores Paramétricos

Las siguientes relaciones permiten identificar la importancia que los efectos ISE tendrán sobre determinada estructura, siendo relevantes las que consideran: sitio – cimentación; profundidad – cimentación y estructura – cimentación.

a) Relación de masas

Generalmente varía entre 0.1 y 0.3. Este parámetro no influye en la respuesta, por lo que se puede despreciar.

$$R_M = \frac{m_c}{m_e}$$

Donde:

m_c masa de la cimentación.

m_e masa equivalente de la estructura.

b) Relación de inercias

Habitualmente son menores que 0.1. Este parámetro tampoco influye en la respuesta, por lo que se puede despreciar.

$$R_I = \frac{J_c}{J_e}$$

Donde:

J_c inercia de la cimentación.

J_e inercia de la estructura.

c) Densidad relativa

Generalmente varía entre 0.1 y 0.2. Este parámetro tiene poca influencia en la respuesta.

$$D_R = \frac{\rho_e}{\rho_s}$$

Donde:

ρ_e densidad de la estructura.

ρ_s densidad del suelo.

d) Profundidad relativa

Los efectos de sitio en la interacción inercial son parcialmente función de este parámetro. Su variación puede estar entre 2 y 10.
\[P_R = \frac{H_s}{R_h} \] \hspace{1cm} (39)

Donde:

- \(H_s \) profundidad de los depósitos firmes profundos en el sitio de interés
- \(R_h \) radio equivalente horizontal de la cimentación. Ver ecuación 32

e) **Profundidad de desplante**

El alargamiento del período y el aumento del amortiguamiento son función decreciente de este parámetro. Su variación puede estar entre 0 y 0.5.

\[P_D = \frac{D}{R_h} \] \hspace{1cm} (40)

Donde:

- \(D \) Profundidad de desplante de la cimentación.
- \(R_h \) Radio horizontal equivalente. Ver ecuación 32.

f) **Relación de esbeltez**

Sus valores típicos varían entre 2 y 5. Su influencia en la respuesta es fundamental (Botero, 2004). El período es función creciente de este parámetro, mientras que el amortiguamiento es decreciente.

\[R_E = \frac{H_e}{R_h} \] \hspace{1cm} (41)

Donde:

- \(H_e \) Altura equivalente de la estructura.
- \(R_h \) Radio horizontal equivalente. Ver ecuación 32.

g) **Rigidez relativa**

En el caso de la rigidez relativa, se considera que es el parámetro que marca si es o no relevante realizar un análisis ISE, así lo indica el profesor Avilés (2003) y el reglamento mexicano de normas técnicas complementarias para diseño por sismo (2004); en donde se encuentra que cuando la rigidez relativa es mayor o igual a 0,4 el análisis de efectos ISE adquiere importancia práctica.

Por lo general varía entre 0 y 2. Su influencia en la respuesta es tal, que con ella se mide la importancia de la interacción inercial suelo estructura.

\[R_R = \frac{H_e/T_e}{H_s/T_s} \] \hspace{1cm} (42)

Donde:

- \(H_e \) Altura equivalente de la estructura.
T_e Periodo fundamental de la estructura.
H_s Profundidad de los depósitos firmes profundos en el sitio de interés.
T_s Periodo fundamental del suelo.

4.4.2 Cálculo del período y amortiguamiento de la estructura con efectos ISE por el método función de transferencia

A continuación, el método propuesto por (Avilés López, 2003), consta en el Reglamento mexicano de normas técnicas complementarias de diseño por sismo (2004).

4.4.2.1. Rigideces Estáticas

a) Rigidez estática horizontal

Es la rigidez horizontal correspondiente al sistema suelo - cimentación.

$$K_h = \frac{8GR_h}{2 - \nu} \left[1 + \frac{R_h}{2H_s} \right] \left[1 + \frac{2D}{3R_h} \right] \left[1 + \frac{5D}{4H_s} \right]$$

(43)

Donde:

G Módulo de cortante del estrato equivalente
R_h Radio horizontal equivalente. Ver ecuación 32.
ν Módulo de Poisson del estrato equivalente
H_s Profundidad de los depósitos firmes profundos en el sitio de interés.
D Profundidad del cajón de cimentación.

b) Rigidez estática de cabeceo

Se calcula de tal manera que la relación entre la rotación de la base y el movimiento de cuerpo rígido de la estructura sea proporcional.

$$K_c = \frac{8GR_c}{3(1 - \nu)} \left[1 + \frac{R_c}{2H_s} \right] \left[1 + \frac{2D}{R_c} \right] \left[1 + \frac{0.71D}{H_s} \right]$$

(44)

Donde:

G Módulo de cortante del estrato equivalente
R_c Radio de cabeceo de cimentación circular con inercia equivalente
ν Módulo de Poisson del estrato equivalente
H_s Profundidad de los depósitos firmes profundos en el sitio de interés.
D Profundidad del cajón de cimentación.

c) Rigidez estática de acoplamiento

Representa el acoplamiento de los movimientos horizontal y de cabeceo de la estructura y de la cimentación.
\[K_{hc}^e = K_{he}R_h \left(\frac{2D}{5R_h} - 0.03 \right) \] (45)

Donde:
- \(R_h \) Radio Horizontal de cimentación circular equivalente
- \(K_{he}^e \) Rigidez estática horizontal
- \(R_h \) Radio Horizontal de cimentación circular equivalente
- \(D \) Profundidad del cajón de cimentación

4.4.2.2 Factores de rigidez y amortiguamiento

**a) Frecuencia adimensional del estrato de vibración lateral, \(a_s \):

\[a_s = \frac{\pi R_h}{2H_s} \] (46)

Donde:
- \(R_h \) Radio horizontal de cimentación circular equivalente
- \(H_s \) Profundidad de los depósitos firmes profundos en el sitio de interés.

**b) Frecuencia adimensional del estrato de vibración vertical, \(a_p \):

\[a_p = \sqrt{\frac{2(1-\nu)}{1-2\nu}} \frac{\pi R_c}{2H_s} \] (47)

Donde:
- \(R_c \) Radio de cabeceo de cimentación circular con inercia equivalente
- \(H_s \) Profundidad de los depósitos firmes profundos en el sitio de interés.
- \(\nu \) Módulo de Poisson del estrato equivalente

4.4.2.3 Parámetros variables

Se calculan los diferentes parámetros para diferentes valores de \(T_i \) (periodo de excitación); con esto se tabula para cada \(T_i \) sus parámetros y factores respectivos.

**a) Cálculo de la frecuencia de excitación

\[\omega_i = \frac{2\pi}{T_i} \] (48)

Donde:
- \(\omega_i \) Es la frecuencia i correspondiente a cada período \(T_i \)
- \(T_i \) Periodo de excitación. Variable independiente para el cálculo de los parámetros
b) Cálculo de frecuencia adimensional horizontal a_{oh} y frecuencia adimensional de cabeceo a_{oc}

$$a_{oh} = \frac{\omega_i R_h}{V_s} \quad (49)$$
$$a_{oc} = \frac{\omega_i R_c}{V_s} \quad (50)$$

Donde:

ω_i Frecuencia i correspondiente a cada período T_i
R_h Radio horizontal de cimentación circular equivalente, ver ecuación
R_c Radio de cabeceo de cimentación circular con inercia equivalente
V_s Velocidad de onda del suelo del estrato equivalente

a) Relación a_{oh}/a_s y a_{oc}/a_p:

$$\frac{a_{oh}}{a_s} \quad (51)$$
$$\frac{a_{oc}}{a_p} \quad (52)$$

Donde:

a_{oh} Frecuencia adimensional horizontal, ver ecuación 49.
a_s Frecuencia adimensional del estrato de vibración lateral, ver ecuación 46.
a_{oc} Frecuencia adimensional de cabeceo, ver ecuación 50.
a_p Frecuencia adimensional del estrato de vibración vertical, ver ecuación 47.

4.4.2.4 Factores adimensionales de rigidez (k_h, k_c)

Se calculan los factores que nos permiten determinar la rigidez dinámica y las constantes de amortiguamiento dinámico:

a) Rigidez horizontal

![Figura 11. Rigidez horizontal](image_url)

Coeficiente de rigidez para los modos de traslación horizontal para una cimentación superficial ($D/R=0$) en un estrato con $= R_c/H=2$ (línea verde), 3 (morada) y 5 (azul).

$\eta = a_{oh}$
b) Rigidez de cabeceo

Dependiendo del valor de a_{oc} tenemos:

$$K_c = \begin{cases}
1 - 0.2a_{oc} & \text{si } a_{oc} \leq 2.5 \\
0.5 & \text{si } a_{oc} > 2.5v \leq 1/3 \\
1 - 0.2a_{oc} & \text{si } a_{oc} > 2.5v \geq 0.45
\end{cases} \quad (53)$$

$$K_c = \begin{cases}
1 - 0.2a_{oc} & \text{si } a_{oc} \leq 2.5 \\
0.5 & \text{si } a_{oc} > 2.5v \leq 1/3 \\
1 - 0.2a_{oc} & \text{si } a_{oc} > 2.5v \geq 0.45
\end{cases} \quad (54)$$

$$K_c = \begin{cases}
1 - 0.2a_{oc} & \text{si } a_{oc} \leq 2.5 \\
0.5 & \text{si } a_{oc} > 2.5v \leq 1/3 \\
1 - 0.2a_{oc} & \text{si } a_{oc} > 2.5v \geq 0.45
\end{cases} \quad (55)$$

Coeficiente de rigidez para los modos de cabeceo para una cimentación superficial (D/R= 0) en un estrato con $R_s/H=2$ (línea verde), 3 (morada) y 5 (azul).

$\eta = a_{oc}$

Figura12. Rigidez de cabeceo

Donde:

a_{oc} Frecuencia adimensional de cabeceo, ver ecuación 50.

4.4.2.5 Factores de amortiguamiento.

a) Factores de amortiguamiento horizontal, C_h

$$S_i \frac{a_{oh}}{a_s} \leq 1 \quad C_h = \frac{0.65\xi_s \left(a_{oh}/a_s \right)}{1 - (1 - 2\xi_s) \left(a_{oh}/a_s \right)^2} \quad (56)$$

$$S_i \frac{a_{oh}}{a_s} > 1 \quad c_h = 0.576 \quad (57)$$

Coeficiente de amortiguamiento para los modos de traslación horizontal para una cimentación superficial (D/R= 0) en un estrato con $R_s/H=2$ (línea verde), 3 (morada) y 5 (azul).

$\eta = a_{oh}$

Figura13. Amortiguamiento horizontal
Donde:

\(\xi_s \) Factor de amortiguamiento crítico del suelo.

\(a_{oh} \) Frecuencia adimensional horizontal, ver ecuación 49.

\(a_s \) parámetro constante, ver ecuación 46.

b) Factores de amortiguamiento de cabeceo \(C_c \)

\[
\begin{align*}
\text{Si } \frac{a_{oc}}{a_p} \leq 1 & \quad C_c = \frac{0.5\xi_s\left(\frac{a_{oc}}{a_p}\right)}{1-(1-2\xi_s)^2} \quad (58) \\
\text{Si } \frac{a_{oc}}{a_p} > 1 & \quad C_c = \frac{0.3a_{oc}^2}{1+a_{oc}^2} \quad (59)
\end{align*}
\]

Donde:

\(a_{oc} \) Frecuencia adimensional de cabeceo, ver ecuación 50.

\(a_p \) Parámetro constante, ver ecuación 47.

\(\xi_s \) Factor de amortiguamiento crítico del suelo.

4.4.2.6 Rigideces dinámicas.

a) Rigidez dinámica horizontal

\[
K_{h}^{d} = K_{h}^{e}\left[K_{h} - 2\xi_s a_{oh} c_h\right] \quad (60)
\]

Donde:

\(K_{h}^{e} \) Rigidez estática horizontal, ver ecuación 43.

\(K_h \) Factor adimensional de rigidez horizontal igual a 1.

\(\xi_s \) Factor de amortiguamiento crítico del suelo.

\(a_{oh} \) Frecuencia adimensional horizontal, ver ecuación 49.

\(c_h \) Factor adimensional de amortiguamiento horizontal, ver ecuaciones 56 o 57.

b) Rigidez dinámica de cabeceo.

\[
K_{c}^{d} = K_{c}^{e}\left[K_{c} - 2\xi_s a_{oc} c_c\right] \quad (61)
\]

Donde:

\(K_{c}^{e} \) Rigidez estática de cabeceo, ver ecuación 44.

\(K_c \) Factor adimensional de rigidez de cabeceo ver ecuación 53 o 54 o 55.
32

Factor de amortiguamiento crítico del suelo.

Frecuencia adimensional de cabeceo, ver ecuación 50.

Factor de amortiguamiento de cabeceo, ver ecuaciones 58 o 59.

4.4.2.7 Constantes dinámicas de amortiguamiento.

a) Amortiguamiento dinámico horizontal

\[
C_h^d = K_h^e \left[c_h + \frac{2\xi_s k_h}{a_{oh}} \right] \frac{R_h}{V_s} \quad (62)
\]

Donde:

-K_h^e Rigidez estática horizontal, ver ecuación 43.

-c_h Factor adimensional de amortiguamiento horizontal, ver ecuaciones 56 o 57.

-\xi_s Factor de amortiguamiento crítico del suelo.

-k_h Factor adimensional de rigidez horizontal igual a 1.

-a_{oh} Frecuencia adimensional horizontal, ver ecuación 49.

-R_h Radio horizontal de cimentación equivalente, ver ecuación 32.

-V_s Velocidad de onda de estrato equivalente.

b) Amortiguamiento dinámico de cabeceo

\[
C_c^d = k_c^e \left[c_c + \frac{2\xi_s k_c}{a_{oc}} \right] \frac{R_c}{V_s} \quad (63)
\]

Donde:

-k_c^e Rigidez estática de cabeceo, ver ecuación 44.

-c_c Factor adimensional de amortiguamiento de cabeceo, ver ecuaciones 58 o 59.

-\xi_s Factor de amortiguamiento crítico del suelo.

-k_c Factor adimensional de rigidez de cabeceo. Ver ecuación 53 o 54 o 55.

-a_{oc} Frecuencia adimensional de cabeceo, ver ecuación 50.

-R_c Radio de cabeceo de cimentación equivalente, ver ecuación 34.

-V_s Velocidad de onda de estrato equivalente.

4.4.2.8 Dinámica de estructuras.

a) Ecuación matricial dinámica de estructuras

Despreciando la masa y la inercia de la cimentación, dado que, en los análisis paramétricos se demuestra que estos valores no influyen en la respuesta se caracteriza la siguiente ecuación: (Fernández y Avilés, 2008)
\[
\begin{bmatrix}
K_e & 0 & 0 \\
0 & K_h^d & 0 \\
0 & 0 & K_c^d
\end{bmatrix}
- \omega_i^2
\begin{bmatrix}
M_e & M_e & M_eH_t \\
M_e & M_e & M_eH_t \\
M_eH_t & M_eH_t & M_eH_t^2
\end{bmatrix}
+ i\omega_i
\begin{bmatrix}
C_e & 0 & 0 \\
0 & C_h^d & 0 \\
0 & 0 & C_c^d
\end{bmatrix}
\begin{bmatrix}
U \\
H \\
\theta
\end{bmatrix} = \omega_i^2 X_g
\begin{bmatrix}
M_e \\
M_e \\
M_eH_T
\end{bmatrix}
\] (64)

Donde:

- \(K_e\) Rigidez equivalente de la estructura, constante, ver ecuación 30.
- \(K_h^d\) Rigidez dinámica horizontal, variable, ver ecuación 60.
- \(K_c^d\) Rigidez dinámica de cabeceo, ver ecuación 61.
- \(\omega_i\) Frecuencia circular de excitación.
- \(M_e\) Masa equivalente de la estructura.
- \(H_t\) Altura total, es la suma del desplante \(D\) más la altura equivalente \(H_e\).
- \(C_e\) Amortiguamiento de la estructura, ver ecuación 31.
- \(C_h^d\) Constante de amortiguamiento dinámico horizontal, ver ecuación 62.
- \(C_c^d\) Constante de amortiguamiento dinámico de cabeceo, ver ecuación 63.
- \(U\) Deformación estructural
- \(H\) Desplazamiento horizontal de cimentación
- \(\theta\) Rotación de cimentación

b) Solución de una matriz compleja

Se caracteriza la ecuación 64 de la forma:

\[
[Z] \{X\} = \{F\}
\] (65)

Para obtener el vector de desplazamientos \(\{X\} = \{U, H, \theta\}\) se pre-multiplica \([Z]\) por su inversa:

\[
[Z]^{-1} \{X\} = [Z]^{-1} \{F\}
\] (66)

Para obtener el vector de desplazamientos \(\{X\}\), se requiere entonces obtener la inversa\(^3\) de la matriz compleja \([Z]\), por lo cual se recurre al siguiente procedimiento:

\(^3\) Por definición de inversa de una matriz se tiene que, la matriz inversa de “\(Z\)” es la única matriz que al multiplicarla por ella obtenemos la matriz identidad del orden correspondiente.
Entonces:

$$[I] = [Z]^{-1}[Z]$$ \hspace{1cm} (70)

$[Z]$ y $[Z]^{-1}$ se pueden escribir de la siguiente forma:

$$[Z] = [A] + i[B]$$ \hspace{1cm} (71)

$$[Z]^{-1} = [C] + i[D]$$ \hspace{1cm} (72)

Cabe destacar que la matriz C en la ecuación 72 no es la matriz de amortiguamiento, sino que se usa por cuestión de nomenclatura la secuencia A, B, C, D.

Desarrollado la identidad 70 se tiene:

$$[I] = [[C] + i[D]].[[A] + i[B]]$$ \hspace{1cm} (73)

$$[I] = [[C][A] - [D][B]] + i[[C][B] + [D][A]]$$ \hspace{1cm} (74)

Por definición, la matriz de identidad $[I]$ solo tiene parte real, entonces:

$$[I] = [C][A] - [D][B]$$ \hspace{1cm} (75)

$$[0] = [C][B] + [D][A]$$ \hspace{1cm} (76)

Resolviendo la ecuación 76 se obtiene $[D]$:

$$[D][A] = -[C][B]$$ \hspace{1cm} (77)

$$[D][A][A]^{-1} = -[C][B][A]^{-1}$$ \hspace{1cm} (78)

$$[D] = -[C][B][A]^{-1}$$ \hspace{1cm} (79)

Sustituyendo $[D]$ en la ecuación 75 se tiene:

$$[I] = [C][A] + [C][B][A]^{-1}[B]$$ \hspace{1cm} (80)

$$[I] = [C].[[A] + [B][A]^{-1}[B]]$$ \hspace{1cm} (81)

$$[C] = [[A] + [B][A]^{-1}[B]]^{-1}$$ \hspace{1cm} (82)

Teniendo definidas A y B en la ecuación 71 podemos calcular la matriz C:

$$\begin{bmatrix}
K_e & 0 & 0 \\
0 & K_h & 0 \\
0 & 0 & K_c
\end{bmatrix} - \omega_t^2 \begin{bmatrix}
M_e & M_e & M_eH_t \\
M_e & M_e & M_eH_t \\
M_eH_t & M_eH_t & M_eH_T
\end{bmatrix} + i\omega_t \begin{bmatrix}
C_e & 0 & 0 \\
0 & C_h & 0 \\
0 & 0 & C_c
\end{bmatrix} \begin{bmatrix}
U \\
H \\
\theta
\end{bmatrix} = \omega_t^2 X_g \begin{bmatrix}
M_e \\
M_e \\
M_eH_T
\end{bmatrix}
$$

Finalmente se obtiene D reemplazando las matrices A, B y C en la ecuación 79.

Para obtener el vector de desplazamientos $\{X\}$ volvemos a la ecuación 69 y reemplazamos $[Z]^{-1}$ de la ecuación 72 teniendo así una ecuación con un término real y uno imaginario.

$$\{X\} = [[C] + i[D]]\{F\}$$ \hspace{1cm} (83)

$$\{X\} = [C]\{F\} = \begin{cases}
U_R \\
H_R
\end{cases} \text{Término real} \hspace{1cm} (84)

\{X\} = [D]\{F\} = \begin{cases}
U_i \\
H_i
\end{cases} \text{Término imaginario} \hspace{1cm} (85)

Expansiendo el vector X tenemos una parte real

$$[C]\begin{bmatrix}
M_e \\
M_e \\
M_eH_T
\end{bmatrix} \omega_t^2 X_g = \begin{bmatrix}
U_R \\
H_R
\end{bmatrix}$$ \hspace{1cm} (86)
Y una parte imaginaria

\[
[D]\left\{ \begin{array}{c}
M_e \\
M_e \\
M_e H_T
\end{array}\right\} \omega_i^2 X_g = \left\{ \begin{array}{c}
U_l \\
H_l \\
\theta_i
\end{array}\right\} \quad (87)
\]

Finalmente, obtenemos un \(U_R\) y \(U_l\) para cada período iterado \(T_i\)

Para cada relación \(T_i/T_e\) nos genera un valor \(\frac{\omega_e^2 U}{\bar{X}_g}\) según la siguiente ecuación:

\[
\ddot{U} / \ddot{X}_s = \frac{\omega_e^2 U}{\ddot{X}_g} = \sqrt{U_R^2 + U_l^2 \cdot \omega_e^2} \quad (88)
\]

El valor máximo de la gráfica nos permite encontrar la relación \(T_i/T_e\) en donde se halla el período de interacción suelo-estructura \(T_{ise}\).

![Función de transferencia](image)

Figura 14. Función de transferencia.

Los valores de la curva corresponden a la relación \(\frac{T_i}{T_e}\) vs. \(\frac{\ddot{X}}{\ddot{X}_s}\)

En donde se encuentra \(\frac{\ddot{X}}{\ddot{X}_s}\) máximo podemos calcular el \(T_{ise}\) como:

\[
T_{ise} = \left(\frac{T_i}{T_e}_{\text{máx}} \right) \cdot T_e \quad (89)
\]

Para encontrar el amortiguamiento se calcula con el valor máximo de la función:

\[
\xi_{ise} = \frac{1}{2 (W^2 U / \ddot{X}_g)_{\text{máx}}} \quad (90)
\]
5. CASO PRÁCTICO.

5.1 EDIFICIO A

5.1.1 Descripción, geometría y ubicación del proyecto

El proyecto “EDIFICIO A” consiste en el análisis y diseño de un edificio para huéspedes, consta de dos torres, A y B de igual arquitectura, comprenden 22 pisos y un subsuelo que se formará del diseño de la cimentación tipo cajón.

Está ubicado en Ecuador, en la provincia de Esmeraldas, Cantón Atacames, en la Parroquia Tonsupa.

Tabla 12. Distribución de plantas en altura edificio A

<table>
<thead>
<tr>
<th>Piso</th>
<th>Altura de entrepiso (m)</th>
<th>Planta Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.50</td>
<td>A</td>
</tr>
<tr>
<td>2 al 19</td>
<td>3.06</td>
<td>A</td>
</tr>
<tr>
<td>20 al 22</td>
<td>3.06</td>
<td>B</td>
</tr>
<tr>
<td>TOTAL</td>
<td>68.76</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 13. Secciones de columnas y muros edificio A

<table>
<thead>
<tr>
<th>Eje</th>
<th>Sección (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A, 2A, 1D, 2D</td>
<td>40 x 120</td>
</tr>
<tr>
<td>1B, 2B, 3B, 1C, 2C, 3C</td>
<td>60 x 120</td>
</tr>
<tr>
<td>3D</td>
<td>40 x 80</td>
</tr>
<tr>
<td>3A</td>
<td>Muro L 100 x 300 x 40</td>
</tr>
<tr>
<td>Ascensor T intermedia</td>
<td>Muro T 110x200x150</td>
</tr>
<tr>
<td>Ascensor muros externos</td>
<td>Muro C 200x 395x100</td>
</tr>
</tbody>
</table>
El edificio se considera como una super estructura y cimentación de hormigón armado, con losas bidireccionales apoyadas sobre vigas, cimentación tipo cajón y elementos verticales del tipo columnas y muros.
5.1.2 Cálculo de las propiedades del suelo edificio A

5.1.2.1 Ensayo SPT en terreno a implantar edificio A

Los resultados de SPT mostrados en la tabla 14, corresponden al estudio de suelos realizados en el sitio de implantación del proyecto. El punto p-33 se encuentra situado por debajo de la implantación de la torre en estudio.

La información con la que se cuenta tiene un estudio hasta los 10 mts de profundidad.

Tabla 14. Ensayo de penetración estándar (SPT).

<table>
<thead>
<tr>
<th>#</th>
<th>Profundidad</th>
<th>Tonsupa p-33</th>
<th>Tonsupa p-34</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.45</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1.45</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>2.45</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>3.45</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>4.45</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>5.45</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>6.45</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>7.45</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>8.45</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>9.45</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>29</td>
<td>36</td>
</tr>
</tbody>
</table>

5.1.2.2 Cálculo de Vs y G a partir de N spt

La tabla 14 se puede reducir a 5 estratos, asignando a cada uno el promedio de dos sondeos que se ubiquen dentro de los intervalos de profundidad planteados en la tabla 15.

Utilizando las ecuaciones 11 y 12 se calculan los valores de velocidad de propagación de onda y promediamos estos resultados para tener un solo valor correspondiente a cada intervalo de profundidad.

Los valores de peso específico se encuentran en la tabla 6 considerando que no hay nivel freático y se promedió el valor mínimo con el máximo para un suelo de clasificación CH. Finalmente se divide en tres estratos para resumir el perfil de suelo del sitio de implantación.

Se puede correlacionar también el N(spt) con la propiedad G del suelo según lo ha propuesto Yorhito Ohsaki y Ryoji Iwasaki (1973)

\[G = 1281 N^{0.78} \]
(91)

Donde:

- \(G \) Módulo de Cortante del suelo
- \(N \) Número de golpes considerando el 67% de la energía teórica máxima.
Tabla 15. Valores de Vs y G para P-33

<table>
<thead>
<tr>
<th>Profundidad (m)</th>
<th>SUCS</th>
<th>SPT</th>
<th>$V_s^{(4)}$ (m/s)</th>
<th>$V_s^{(5)}$ (m/s)</th>
<th>V_s prom (m/s)</th>
<th>G prom (ton/m2)</th>
<th>y (KN/m3)</th>
<th>y (ton/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>CH</td>
<td>13</td>
<td>174.90</td>
<td>183.79</td>
<td>179.35</td>
<td>174.90</td>
<td>184</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>CH</td>
<td>19</td>
<td>199.06</td>
<td>207.54</td>
<td>203.30</td>
<td>206.47</td>
<td>215</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>CH</td>
<td>23</td>
<td>213.89</td>
<td>222.03</td>
<td>217.96</td>
<td>206.47</td>
<td>215</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>CH</td>
<td>27</td>
<td>224.12</td>
<td>232.00</td>
<td>228.06</td>
<td>225.27</td>
<td>233</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>CH</td>
<td>27</td>
<td>226.42</td>
<td>234.24</td>
<td>230.33</td>
<td>225.27</td>
<td>233</td>
</tr>
</tbody>
</table>

Tabla 16. Valores de Vs y G para P-34

<table>
<thead>
<tr>
<th>Profundidad (m)</th>
<th>SUCS</th>
<th>SPT</th>
<th>V_s (m/s)</th>
<th>V_s (m/s)</th>
<th>V_s prom (m/s)</th>
<th>G (ton/m2)</th>
<th>y (KN/m3)</th>
<th>y (ton/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>CH</td>
<td>10</td>
<td>159.76</td>
<td>168.80</td>
<td>164.28</td>
<td>159.76</td>
<td>168.80</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>CH</td>
<td>18</td>
<td>197.27</td>
<td>205.79</td>
<td>201.53</td>
<td>207.09</td>
<td>215.38</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>CH</td>
<td>24</td>
<td>216.91</td>
<td>224.98</td>
<td>220.95</td>
<td>235.81</td>
<td>243.35</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>CH</td>
<td>31</td>
<td>234.76</td>
<td>242.33</td>
<td>238.55</td>
<td>235.81</td>
<td>243.35</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>CH</td>
<td>31</td>
<td>236.86</td>
<td>244.37</td>
<td>240.61</td>
<td>235.81</td>
<td>243.35</td>
</tr>
</tbody>
</table>

Tenemos así la estratificación de P-33 con relación a la tabla 15:

Figura 19. Perfil del suelo según los sondeos P-33.

4 Velocidad de propagación de ondas de corte Imai y Yoshimura (1990)
5 Velocidad de propagación de ondas de corte (Ohba y Toriumi, 1970).
6 Módulo de cortante (Yorhito Ohsaki y Ryoji Iwasaki; 1973)
7 Tabla 6 pesos específicos típicos
El estudio señala que el estrato 1 continúa hasta los 30 m. Siendo así, el estrato equivalente sería rígido debido a la ponderación que se realiza y que aproximaría el valor de cortante de suelo y velocidad de onda al del estrato de espesor más grande.

5.1.2.3 Cálculo del período para estrato equivalente de edificio A

a) Aplicación del método de las formas modales.

Se calcula ρs dividiendo ϒs por la gravedad y G mediante la ecuación 1

Tabla 17. Valores de G a partir de Vs en el método de las formas modales.

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Vₛ (m/s)</th>
<th>ϒₛ (t/m³)</th>
<th>ρₛ (t.s²/m⁴)</th>
<th>G(t/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>233</td>
<td>1.5</td>
<td>0.15</td>
<td>8309</td>
</tr>
<tr>
<td>2</td>
<td>215</td>
<td>1.5</td>
<td>0.15</td>
<td>7075</td>
</tr>
<tr>
<td>3</td>
<td>184</td>
<td>1.5</td>
<td>0.15</td>
<td>5182</td>
</tr>
</tbody>
</table>

Aplicando las ecuaciones 13 y 14 se construyen las matrices de masa y rigidez correspondientes a cada estrato.

Tabla 18. Matrices de masa y rigidez por estrato

<table>
<thead>
<tr>
<th>Estrato</th>
<th>[m]</th>
<th>[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrato1</td>
<td>1.22 0.61</td>
<td>346.23 -346.23</td>
</tr>
<tr>
<td></td>
<td>0.61 1.22</td>
<td>-346.23 346.23</td>
</tr>
<tr>
<td>Estrato2</td>
<td>0.20 0.10</td>
<td>1768.81 -1768.81</td>
</tr>
<tr>
<td></td>
<td>0.10 0.20</td>
<td>-1768.81 1768.81</td>
</tr>
<tr>
<td>Estrato3</td>
<td>0.10 0.05</td>
<td>2591.02 -2591.02</td>
</tr>
<tr>
<td></td>
<td>0.05 0.10</td>
<td>-2591.02 2591.02</td>
</tr>
</tbody>
</table>

Se ensambla la matriz de masa y rigidez total de acuerdo con las ecuaciones 15 y 16 y se eliminan la última fila y columna para considerar que el depósito está fijo en el contacto con el basamento rocoso.

Tabla 19. Matriz de masa del sistema

<table>
<thead>
<tr>
<th>[M]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 0.05 0 0</td>
</tr>
<tr>
<td>0.05 0.30 0.10 0</td>
</tr>
<tr>
<td>0 0.10 1.42 0.61 0.61</td>
</tr>
<tr>
<td>1.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[k]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 0.05 0 0</td>
</tr>
<tr>
<td>0.05 0.30 0.10 0</td>
</tr>
<tr>
<td>0 0.10 1.42 0.61 0.61</td>
</tr>
<tr>
<td>1.22</td>
</tr>
</tbody>
</table>
Tabla 20. Matriz de rigidez del sistema

<table>
<thead>
<tr>
<th></th>
<th>2591.02</th>
<th>-2591.02</th>
<th>0</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>[K]</td>
<td>-2591.02</td>
<td>4359.83</td>
<td>-1768.81</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-1768.81</td>
<td>2115.04</td>
<td>-346.23</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>-20</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Se varía la frecuencia angular hasta conseguir que el determinante según la ecuación 17 sea 0, esta frecuencia es la que corresponde a la del estrato equivalente, el periodo se calcula con la ecuación 18.

Tabla 21. Cálculo del período del estrato equivalente (edificio A)

<table>
<thead>
<tr>
<th></th>
<th>2574.812</th>
<th>-2599.124</th>
<th>0.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>[k-\omega^2[m]]</td>
<td>-2599.124</td>
<td>4311.210</td>
<td>-1785.022</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>-1785.022</td>
<td>1888.131</td>
</tr>
</tbody>
</table>

b) Aplicación del método de Rayleigh

Se han numerado los estratos del 1 al 3 siendo n=3 y para cada estrato i se tiene su relación H_i/G_i.

Mediante la ecuación 20 se obtiene W_i para cada estrato.

La columna \(Y_i*H_i*W# \) corresponde a los valores para el segundo paréntesis de la ecuación 19.

Tabla 22. Método de Rayleigh

<table>
<thead>
<tr>
<th>Estrato</th>
<th>G(t/m²)</th>
<th>Y(t/m³)</th>
<th>H(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrato1</td>
<td>8309</td>
<td>1.5</td>
<td>24</td>
</tr>
<tr>
<td>Estrato2</td>
<td>7075</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Estrato3</td>
<td>5182</td>
<td>1.5</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estrato</th>
<th>H/G_i</th>
<th>W_i</th>
<th>Y_iH_iW#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.003</td>
<td>0.752</td>
<td>20.37</td>
</tr>
<tr>
<td>2</td>
<td>0.001</td>
<td>0.899</td>
<td>12.30</td>
</tr>
<tr>
<td>3</td>
<td>0.000</td>
<td>1.000</td>
<td>8.13</td>
</tr>
<tr>
<td>Σ</td>
<td>2.651</td>
<td></td>
<td>40.80</td>
</tr>
</tbody>
</table>

Ts(s) 0.51
c) Aplicación del método del recíproco de las lentitudes.

Aplicando lo señalado en el numeral 4.1.3.3

Tabla 23. Valores de G y Vs en el método del recíproco de las lentitudes.

<table>
<thead>
<tr>
<th>Estrato1</th>
<th>G (t/m²)</th>
<th>8309</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϒ (t/m³)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>H (m)</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estrato2</th>
<th>G (t/m²)</th>
<th>7075</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϒ (t/m³)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>H (m)</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estrato3</th>
<th>G (t/m²)</th>
<th>5182</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϒ (t/m³)</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>H (m)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estrato</th>
<th>ρ (t²/s⁴/m⁴)</th>
<th>Vsi (m/s)</th>
<th>Vs (m/s)</th>
<th>Gs (t/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.153</td>
<td>233.00</td>
<td>226.45</td>
<td>7841.04</td>
</tr>
<tr>
<td>2</td>
<td>0.153</td>
<td>215.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.153</td>
<td>184.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los valores de período obtenidos son 0.50, 0.51 y 0.53 segundos con los diferentes métodos, tomaremos de aquí en adelante el valor del recíproco de las lentitudes porque es el más alto y representaría el periodo de un estrato equivalente menos rígido con relación a los otros valores, aunque como vemos la diferencia es mínima.

5.1.3 Cálculo de las propiedades de la estructura con base empotrada del edificio A

5.1.3.1 Modelación del edificio

Se modelan elementos frame para columnas y vigas de las secciones que se han definido en el numeral 5.1.1, elementos shell para muros y las losas se han modelado como tipo membrana para un sistema constructivo de tipo losa bidireccional, asignando las propiedades mostradas en la figura 20.
Los materiales se definen según se muestra en las figuras 7 y 8 para un hormigón de \(f'c=35 \text{ Mpa} \) y acero con \(f_y=4200 \text{ kg/cm}^2 \)

![Figura 21. Modelación del edificio A en ETABS 2016.](image)

5.1.3.2 Período fundamental y porcentajes de masa participante.

a) Cálculo aproximado del período fundamental de vibración aproximado \(T_e \)

Se puede definir el período de la edificación aproximado con el siguiente cálculo:

\[
T = C_t h_n^\alpha \tag{28}
\]

<table>
<thead>
<tr>
<th>(T_e)</th>
<th>2.477 s</th>
<th>Período equivalente NEC-SE-DS-2015 6.3.3.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_t)</td>
<td>0.055</td>
<td>Coeficiente que depende del tipo de edificio</td>
</tr>
<tr>
<td>(h_n)</td>
<td>68.76 m</td>
<td>Altura máxima de la edificación de (n) pisos, medida desde la base de la estructura, en metros.</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.9</td>
<td>Coeficiente que depende del tipo de edificio</td>
</tr>
</tbody>
</table>
b) Período fundamental de vibración aproximado T_e generado del modelo en ETABS.

Una vez terminado el modelo, se obtienen los resultados y se genera la tabla 25, el modo 1 señala el periodo fundamental y la dirección correspondiente.

Tabla 25. Períodos y porcentaje de Participación modal

<table>
<thead>
<tr>
<th>Case</th>
<th>Mode</th>
<th>Period</th>
<th>UX</th>
<th>UY</th>
<th>UZ</th>
<th>Sum UX</th>
<th>Sum UY</th>
<th>Sum UZ</th>
<th>RX</th>
<th>RY</th>
<th>RZ</th>
<th>Sum RX</th>
<th>Sum RY</th>
<th>Sum RZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.873</td>
<td>0.7683</td>
<td>0.0004</td>
<td>0.7683</td>
<td>0.0004</td>
<td>0.0004</td>
<td>0.2379</td>
<td>0.0009</td>
<td>0.2379</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.243</td>
<td>0.0002</td>
<td>0.7169</td>
<td>0.7684</td>
<td>0.7173</td>
<td>0.2938</td>
<td>0.0004</td>
<td>0.2938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.08</td>
<td>0.0024</td>
<td>0.0009</td>
<td>0.7708</td>
<td>0.7182</td>
<td>0.0003</td>
<td>0.7528</td>
<td>0.2941</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.887</td>
<td>0.1136</td>
<td>0.0002</td>
<td>0.8844</td>
<td>0.7184</td>
<td>0.0002</td>
<td>0.7173</td>
<td>0.2384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.623</td>
<td>0.0001</td>
<td>0.0307</td>
<td>0.8846</td>
<td>0.7491</td>
<td>0.0007</td>
<td>0.7109</td>
<td>0.2384</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.612</td>
<td>0.0005</td>
<td>0.1245</td>
<td>0.885</td>
<td>0.8736</td>
<td>0.3112</td>
<td>0.7115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.475</td>
<td>0.0417</td>
<td>0.0001</td>
<td>0.9267</td>
<td>0.8737</td>
<td>0.0001</td>
<td>0.6837</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.322</td>
<td>0.0027</td>
<td>0.0035</td>
<td>0.9294</td>
<td>0.8773</td>
<td>0.0079</td>
<td>0.6917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.306</td>
<td>0.0189</td>
<td>0.0043</td>
<td>0.9483</td>
<td>0.8815</td>
<td>0.0011</td>
<td>0.7017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.293</td>
<td>0.0017</td>
<td>0.0438</td>
<td>0.95</td>
<td>0.9253</td>
<td>0.0062</td>
<td>0.788</td>
<td>0.8588</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.22</td>
<td>0.0122</td>
<td>0.0002</td>
<td>0.9622</td>
<td>0.9253</td>
<td>0.0025</td>
<td>0.7881</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.202</td>
<td>0.0016</td>
<td>0.0071</td>
<td>0.9637</td>
<td>0.9324</td>
<td>0.0037</td>
<td>0.8918</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1.3.3 Cálculo de masa equivalente considerando la sobrecarga por acabados y mampostería.

Se aplicaron cargas distribuidas: muertas de 3KN/m² y vivas de 2KN/m², según lo expuesto en la metodología, se genera la tabla mostrada a continuación:

Tabla 26. Masa equivalente

<table>
<thead>
<tr>
<th>Group</th>
<th>Self Mass</th>
<th>Self Weight</th>
<th>Mass X</th>
<th>Mass Y</th>
<th>Mass Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>5041921.96</td>
<td>0</td>
<td>6588973.97</td>
<td>6588973.97</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuente: Modelo Edificación A

![Derivada de la ecuación (27)](Image)

\[
Masa (m) = \frac{(Mass X / 9810) \ [t-s^2/m]}{[t-s^2/m]} = \frac{(Mass Y / 9810) \ [t-s^2/m]}{[t-s^2/m]} = \frac{(Mass Z / 9810) \ [t-s^2/m]}{[t-s^2/m]}
\]

\[
m = 671.659 \ \text{t-s}^2/m
\]

\[
m_e = 76.83% = 516.036 \ \text{t-s}^2/m
\]
5.1.3.4 Resultados de las propiedades de la estructura con base empotrada edificio A

Se utilizará los resultados calculados por ETABS® como parte de las propiedades de la estructura con base empotrada, el cálculo del periodo de manera aproximada señala un rango en el cual debe estar comprendido el periodo fundamental de un modelo refinado, el cual considera valores de masa y rigidez más rigurosamente calculados.

Al usar la ecuación 28 plantead por la norma para el cálculo del período por su simplicidad no se considera la configuración que tienen los 3 últimos pisos del edificio en estudio, la distribución y secciones de columnas y muros, por lo tanto, se empleará el periodo calculado en Etabs®.

Tabla 27. Resultados de las propiedades de la estructura

<table>
<thead>
<tr>
<th>% masa participante</th>
<th>76.83%</th>
<th>Porcentaje de participación de la masa en el modo 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_e=</td>
<td>516.036 t-s²/m</td>
<td>Masa equivalente</td>
</tr>
<tr>
<td>T_e=</td>
<td>2.873 s</td>
<td>Período según Etabs *</td>
</tr>
<tr>
<td>T_e=</td>
<td>2.477 s</td>
<td>Periodo equivalente NEC-SE-DS-2015 6.3.3.a</td>
</tr>
<tr>
<td>C_e=</td>
<td>0.055</td>
<td>Coeficiente que depende del tipo de edificio</td>
</tr>
<tr>
<td>h_n=</td>
<td>68.76 m</td>
<td>Altura máxima de la edificación de n pisos, medida desde la base de la estructura, en metros.</td>
</tr>
<tr>
<td>α=</td>
<td>0.9</td>
<td>Coeficiente que depende del tipo de edificio</td>
</tr>
<tr>
<td>H=</td>
<td>68.76 m</td>
<td>Altura del edificio</td>
</tr>
<tr>
<td>H_e=</td>
<td>51.57 m</td>
<td>Altura equivalente, 75% de la altura total del edificio (NSR-10, Pte. A-84)</td>
</tr>
<tr>
<td>K_e=</td>
<td>2468.130 (t/m)</td>
<td>Rigidez equivalente</td>
</tr>
<tr>
<td>ξ%=</td>
<td>5.00%</td>
<td>Fracción de amortiguamiento de la estructura (NEC-SE-DS-2015)</td>
</tr>
<tr>
<td>ω_e=</td>
<td>2.187 (rad/s)</td>
<td>Frecuencia circular</td>
</tr>
<tr>
<td>C_e=</td>
<td>112.856 (t-s/m)</td>
<td>Amortiguamiento de la estructura</td>
</tr>
<tr>
<td>H_T=</td>
<td>54.97 m</td>
<td>Altura total</td>
</tr>
<tr>
<td>D=</td>
<td>3.4 m</td>
<td>Desplante</td>
</tr>
</tbody>
</table>

\[
T = C_e h_n^a
\]

\[
K_e = \frac{4 \cdot m_e \cdot \pi^2}{T_e^2}
\]

\[
\omega_e = \frac{2\pi}{T_e}
\]

\[
C_e = m_e \cdot \xi \cdot \omega_e
\]

\[
H_T = H_e + D
\]
5.1.4 Propiedades de la cimentación

La cimentación del edificio A es de tipo cajón, el diseño de la cimentación no es tema de estudio, las dimensiones una vez realizado el diseño se muestran a continuación:

Figura 22. Planta de cimentación

Figura 23. Cimentación sentido X-X

Figura 24. Cimentación sentido Y-Y
a) Radio horizontal Rh y Radio de cabeceo Rc

Para el problema en estudio se calculó en base a las ecuaciones 32, 33, 34 y 35:

Tabla 28. Resumen de parámetros de la fundación

<table>
<thead>
<tr>
<th>Parámetros de la fundación</th>
<th>Sentido X-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base(m)</td>
<td>20.40</td>
</tr>
<tr>
<td>Profundidad(m)</td>
<td>14.05</td>
</tr>
<tr>
<td>Desplante D(m)</td>
<td>3.40</td>
</tr>
<tr>
<td>Radio horizontal Rh(m)</td>
<td>9.55</td>
</tr>
<tr>
<td>Radio de cabeceo Rc(m)</td>
<td>8.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Para el sentido Y-Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base(m)</td>
</tr>
<tr>
<td>Profundidad(m)</td>
</tr>
<tr>
<td>Desplante D(m)</td>
</tr>
<tr>
<td>Radio horizontal Rh(m)</td>
</tr>
<tr>
<td>Radio de cabeceo Rc(m)</td>
</tr>
</tbody>
</table>

5.1.5 Cálculo del período y amortiguamiento de la estructura con efectos ISE

5.1.5.1 Método función de transferencia

A continuación, se realizará el cálculo de las propiedades de la estructura con efectos ISE, se toman los valores de las propiedades de estructura, cimentación y suelo calculados en los capítulos anteriores.

Se resumen los datos calculados previamente para el sentido X-X:

Tabla 29. Resumen de parámetros de edificio A

<table>
<thead>
<tr>
<th>Parámetros de la estructura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa equivalente $m_e(t-s^2/m)$</td>
</tr>
<tr>
<td>% masa participante</td>
</tr>
<tr>
<td>Período equivalente $T_e(s)$</td>
</tr>
<tr>
<td>Altura equivalente $H_e(m)$</td>
</tr>
<tr>
<td>Rigidez equivalente $K_e(t/m)$</td>
</tr>
<tr>
<td>Fracción de amortiguamiento de la estructura $\xi%$</td>
</tr>
<tr>
<td>Amortiguamiento de la estructura $C_e(t/s/m)$</td>
</tr>
<tr>
<td>Frecuencia circular $\omega_e(rad/s)$</td>
</tr>
<tr>
<td>Altura total $H_t=H_e+D(m)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros de la fundación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base(m)</td>
</tr>
<tr>
<td>Profundidad(m)</td>
</tr>
<tr>
<td>Desplante D(m)</td>
</tr>
<tr>
<td>Radio horizontal $R_h(m)$</td>
</tr>
<tr>
<td>Radio de cabeceo $R_c(m)$</td>
</tr>
</tbody>
</table>
Parámetros del suelo

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de cortante G (t/m²)</td>
<td>7841.04</td>
</tr>
<tr>
<td>Velocidad equivalente del suelo V_s (m/s)</td>
<td>226.45</td>
</tr>
<tr>
<td>Coeficiente de poisson ν</td>
<td>0.45</td>
</tr>
<tr>
<td>Amortiguamiento del suelo ξs%</td>
<td>5%</td>
</tr>
<tr>
<td>Profundidad del suelo H_s (m)</td>
<td>30.00</td>
</tr>
<tr>
<td>Período del estrato T_s (s)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

a) Rigideces Estáticas y factores de Rigidez y amortiguamiento

Sobre la metodología indicada, se aplican las ecuaciones 43, 44, 46, 47

Tabla 30. Valores de Rigideces Estáticas, Factores de Rigidez y amortiguamiento.

<table>
<thead>
<tr>
<th>Parámetros calculados para el ejemplo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigidez estática horizontal K_{h_e} (t/m)</td>
<td>632970.2</td>
</tr>
<tr>
<td>Rigidez estática de cabeceo K_{c_e} (t-m/rad)</td>
<td>52084588.4</td>
</tr>
<tr>
<td>Frecuencia adimensional lateral a_s</td>
<td>0.5</td>
</tr>
<tr>
<td>Frecuencia adimensional vertical a_p</td>
<td>1.5</td>
</tr>
</tbody>
</table>

b) Parámetros variables

Se calculan para diferentes valores de **T_i** (período de excitación) desde 0.3 s hasta 4.0s aproximadamente; con un incremento del periodo de 0.1 s con esto se tiene para cada **T_i** su respectiva frecuencia **ω_i**; se muestra como ejemplo los cálculos para un **T_i= 0.3 s**, **T_i= 2.873 s** y **T_i= 4 s** con la finalidad de que se pueda comparar los resultados si el lector desarrolla el método, esto es de manera didáctica, al final se tiene tantos parámetros como períodos se discreticen. Sobre las ecuaciones mostradas en el numeral 4.4.2.3

Tabla 31. Valores de los Parámetros variables para algunos **T_i.**

<table>
<thead>
<tr>
<th>Parámetros variables</th>
<th>0.30</th>
<th>2.873</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_i (Rad/s)</td>
<td>20.94</td>
<td>2.19</td>
<td>1.57</td>
</tr>
<tr>
<td>a_oh</td>
<td>0.88</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>a_oc</td>
<td>0.81</td>
<td>0.09</td>
<td>0.06</td>
</tr>
<tr>
<td>a_oh/as</td>
<td>1.77</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>a_oc/ap</td>
<td>0.53</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>

c) Rigidez horizontal **Kh y Rigidez de cabeceo **Kc****

Se muestran los valores para diferentes períodos, a amanera de ejemplo se incluye el cálculo cuando **T_i=0.3s**, **T_i = T_e** y **T_i=4.0 s**
d) Factores de amortiguamiento horizontal y de cabeceo

Tabla 33. Factores adimensionales de amortiguamiento

<table>
<thead>
<tr>
<th>Ti (s)</th>
<th>0.3</th>
<th>2.873</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_h)</td>
<td>0.576</td>
<td>0.006</td>
<td>0.004</td>
</tr>
<tr>
<td>(c_c)</td>
<td>0.018</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

e) Matrices de rigidez, masa y amortiguamiento

Con los valores obtenidos se ensamblan las matrices según la ecuación 64. Los resultados de estas matrices se han obtenido de tal manera que el lector pueda corroborar que las iteraciones son correctas.

Tabla 34. Matrices K, M y C para un Ti = 0.3 s.

<table>
<thead>
<tr>
<th>K</th>
<th>M</th>
<th>C (amortiguamiento)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2468.13 0.0 0.0</td>
<td>516.04 516.04 28366.47</td>
<td>112.86 0.00 0.00</td>
</tr>
<tr>
<td>0.0 600761.9 0.0</td>
<td>516.04 516.04 28366.47</td>
<td>0.00 18400.49 0.00</td>
</tr>
<tr>
<td>0.0 0.0 43528331.8</td>
<td>28366.47 28366.47 1559305.07</td>
<td>0.00 0.00 244390.79</td>
</tr>
</tbody>
</table>

Tabla 35. Matrices K, M y C para un Ti = 2.873 s.

<table>
<thead>
<tr>
<th>K</th>
<th>M</th>
<th>C (amortiguamiento)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2468.13 0.0 0.0</td>
<td>516.04 516.04 28366.47</td>
<td>112.86 0.00 0.00</td>
</tr>
<tr>
<td>0.0 632934.1 0.0</td>
<td>516.04 516.04 28366.47</td>
<td>0.00 29107.80 0.00</td>
</tr>
<tr>
<td>0.0 0.0 51198438.3</td>
<td>28366.47 28366.47 1559305.07</td>
<td>0.00 0.00 2343910.46</td>
</tr>
</tbody>
</table>

Tabla 36. Matrices K, M y C para un Ti = 4.0 s.

<table>
<thead>
<tr>
<th>K</th>
<th>M</th>
<th>C (amortiguamiento)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2468.13 0.0 0.0</td>
<td>516.04 516.04 28366.47</td>
<td>112.86 0.00 0.00</td>
</tr>
<tr>
<td>0.0 632951.8 0.0</td>
<td>516.04 516.04 28366.47</td>
<td>0.00 40412.93 0.00</td>
</tr>
<tr>
<td>0.0 0.0 51448235.5</td>
<td>28366.47 28366.47 1559305.07</td>
<td>0.00 0.00 3277341.26</td>
</tr>
</tbody>
</table>
f) Vector componente del vector F

Si consideramos \(\{F\} = \omega^2 X_g \begin{pmatrix} M_e \\ M_e \\ M_e H_T \end{pmatrix} \) el vector \(f \) llamaremos a lo inscrito entre llaves.

Tabla 37. Vector \(f \) componente de \(\{F\} \)

<table>
<thead>
<tr>
<th>Vector ({f})</th>
</tr>
</thead>
<tbody>
<tr>
<td>516.04</td>
</tr>
<tr>
<td>516.04</td>
</tr>
<tr>
<td>28366.47</td>
</tr>
</tbody>
</table>

g) Solución de la ecuación matricial dinámica de estructuras

Una vez se tienen las matrices \(K \) y \(M \) se puede determinar \(Z \) como una suma de matrices \(A \) más \(iB \), en la metodología encontramos la equivalencia de \(A \) y \(B \) en el numeral 4.4.2.7 literal b.

Tabla 38. Matrices \(A \) y \(B \) para un \(T_i = 0.3 \) s

<table>
<thead>
<tr>
<th>(Z)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-223890.3892</td>
<td>2363.646219</td>
</tr>
<tr>
<td></td>
<td>-226358.5196</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-2468.130406)</td>
<td>(630465.9227)</td>
</tr>
<tr>
<td></td>
<td>(-135673.1284)</td>
<td>(63658.08343)</td>
</tr>
<tr>
<td></td>
<td>(47600804.41)</td>
<td>(5126078.59)</td>
</tr>
</tbody>
</table>

Tabla 39. Matrices \(A \) y \(B \) para un \(T_i = 2.873 \) s

<table>
<thead>
<tr>
<th>(Z)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-223890.3892</td>
<td>2363.646219</td>
</tr>
<tr>
<td></td>
<td>-226358.5196</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-2468.130406)</td>
<td>(630465.9227)</td>
</tr>
<tr>
<td></td>
<td>(-135673.1284)</td>
<td>(63658.08343)</td>
</tr>
<tr>
<td></td>
<td>(47600804.41)</td>
<td>(5126078.59)</td>
</tr>
</tbody>
</table>

Tabla 40. Matrices \(A \) y \(B \) para un \(T_i = 4.0 \) s

<table>
<thead>
<tr>
<th>(Z)</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-223890.3892</td>
<td>2363.646219</td>
</tr>
<tr>
<td></td>
<td>-226358.5196</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(-2468.130406)</td>
<td>(630465.9227)</td>
</tr>
<tr>
<td></td>
<td>(-135673.1284)</td>
<td>(63658.08343)</td>
</tr>
<tr>
<td></td>
<td>(47600804.41)</td>
<td>(5126078.59)</td>
</tr>
</tbody>
</table>

Habiendo obtenido \(A \) y \(B \) podemos calcular \(C \):
Tabla 41. Cálculo de Matriz C para un \(T_i = 0.3 \) s

<table>
<thead>
<tr>
<th>(B.A^{-1})</th>
<th>(B.A^{-1}.B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.135310682</td>
<td>319.8265814</td>
</tr>
<tr>
<td>-0.5508472044</td>
<td>-1302.007911</td>
</tr>
<tr>
<td>-5.550634708</td>
<td>-13119.73674</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A+B.A^{-1}.B)</th>
<th>(C^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-223570.5626</td>
<td>5.3688E-05</td>
</tr>
<tr>
<td>-227660.5275</td>
<td>-9.14619E-07</td>
</tr>
<tr>
<td>-12456047.56</td>
<td>-1.0272E-06</td>
</tr>
</tbody>
</table>

Tabla 42. Cálculo de Matriz C para un \(T_i = 2.873 \) s

<table>
<thead>
<tr>
<th>(B.A^{-1})</th>
<th>(B.A^{-1}.B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.56859636</td>
<td>-140.3369965</td>
</tr>
<tr>
<td>-0.672448617</td>
<td>-165.9690878</td>
</tr>
<tr>
<td>-36.79749809</td>
<td>-9082.10239</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A+B.A^{-1}.B)</th>
<th>(C^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-140.3369965</td>
<td>-0.001576098</td>
</tr>
<tr>
<td>-2634.099494</td>
<td>-7.71221E-06</td>
</tr>
<tr>
<td>-9082.10239</td>
<td>-5.23988E-06</td>
</tr>
</tbody>
</table>

Tabla 43. Cálculo de Matriz C para un \(T_i = 4.0 \) s

<table>
<thead>
<tr>
<th>(B.A^{-1})</th>
<th>(B.A^{-1}.B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.162792917</td>
<td>28.85886465</td>
</tr>
<tr>
<td>0.12702294</td>
<td>22.51779687</td>
</tr>
<tr>
<td>6.966416069</td>
<td>1234.960725</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A+B.A^{-1}.B)</th>
<th>(C^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1223.722598</td>
<td>0.000890618</td>
</tr>
<tr>
<td>-1250.748876</td>
<td>1.88196E-06</td>
</tr>
<tr>
<td>-68756.50827</td>
<td>1.27284E-06</td>
</tr>
</tbody>
</table>

Teniendo la matriz \(C \) podemos calcular la matriz D señalada anteriormente:

Tabla 44. Matriz D para un \(T_i = 0.3 \) s

\[
[D] = -[C][B][A]^{-1}
\]

<table>
<thead>
<tr>
<th>([D])</th>
<th>(7.42605E-07)</th>
<th>(2.3906E-07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.347E-05</td>
<td>7.42605E-07</td>
<td>2.3906E-07</td>
</tr>
<tr>
<td>7.42605E-07</td>
<td>-7.5384E-07</td>
<td>1.7794E-10</td>
</tr>
<tr>
<td>2.3906E-07</td>
<td>1.7794E-10</td>
<td>-4.49985E-09</td>
</tr>
</tbody>
</table>
Tabla 45. Matriz D para un $T_i = 2.873$ s

$$ [D] = -[C][B][A]^{-1} $$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.001094164</td>
<td>-4.10564E-06</td>
<td>-2.79251E-06</td>
</tr>
<tr>
<td>-4.10564E-06</td>
<td>-1.73305E-07</td>
<td>-1.08771E-08</td>
</tr>
<tr>
<td>-2.79251E-06</td>
<td>-1.08771E-08</td>
<td>-9.33439E-09</td>
</tr>
</tbody>
</table>

Tabla 46. Matriz D para un $T_i = 4.0$ s

$$ [D] = -[C][B][A]^{-1} $$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.000154093</td>
<td>-5.40176E-07</td>
<td>-3.65027E-07</td>
</tr>
<tr>
<td>-5.40176E-07</td>
<td>-1.59182E-07</td>
<td>-1.55925E-09</td>
</tr>
<tr>
<td>-3.65027E-07</td>
<td>-1.55925E-09</td>
<td>-2.97939E-09</td>
</tr>
</tbody>
</table>

Obtenidos C y D podemos ensamblar Z^{-1}

Tabla 47. Matriz Z^{-1} para un $T_i = 0.3$ s

$$ [Z]^{-1} = [C] + i[D] $$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3688E-05</td>
<td>-9.14619E-07</td>
<td>-1.0272E-06</td>
</tr>
<tr>
<td>-9.14619E-07</td>
<td>1.1743E-06</td>
<td>-5.04648E-09</td>
</tr>
<tr>
<td>-1.0272E-06</td>
<td>-5.04648E-09</td>
<td>1.85292E-08</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.347E-05</td>
<td>7.42605E-07</td>
</tr>
<tr>
<td></td>
<td>7.42605E-07</td>
<td>-7.5384E-07</td>
</tr>
<tr>
<td></td>
<td>2.3906E-07</td>
<td>1.77949E-10</td>
</tr>
</tbody>
</table>

Tabla 48. Matriz Z^{-1} para un $T_i = 2.873$ s

$$ [Z]^{-1} = [C] + i[D] $$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.001576098</td>
<td>-7.71221E-06</td>
<td>-5.23988E-06</td>
</tr>
<tr>
<td>-7.71221E-06</td>
<td>1.53404E-06</td>
<td>-2.0438E-08</td>
</tr>
<tr>
<td>-5.23988E-06</td>
<td>-2.0438E-08</td>
<td>5.45186E-09</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.001094164</td>
<td>-4.10564E-06</td>
</tr>
<tr>
<td></td>
<td>-4.10564E-06</td>
<td>-1.73305E-07</td>
</tr>
<tr>
<td></td>
<td>-2.79251E-06</td>
<td>-1.08771E-08</td>
</tr>
</tbody>
</table>

Tabla 49. Matriz Z^{-1} para un $T_i = 4.0$ s

$$ [Z]^{-1} = [C] + i[D] $$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000890618</td>
<td>1.88196E-06</td>
<td>1.27284E-06</td>
</tr>
<tr>
<td>1.88196E-06</td>
<td>1.57142E-06</td>
<td>4.90916E-09</td>
</tr>
<tr>
<td>1.27284E-06</td>
<td>4.90916E-09</td>
<td>2.25646E-08</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.000154093</td>
<td>-5.40176E-07</td>
</tr>
<tr>
<td></td>
<td>-5.40176E-07</td>
<td>-1.59182E-07</td>
</tr>
<tr>
<td></td>
<td>-3.65027E-07</td>
<td>-1.55925E-09</td>
</tr>
</tbody>
</table>
Y se obtiene el vector de desplazamientos \(\{x\} \), multiplicando \([C]\) por \(\{f\} \) para la parte real y \([D]\) por \(\{f\} \) para la parte imaginaria.

Tabla 50. Vector de desplazamientos para un \(T_i = 0.3 \) s

<table>
<thead>
<tr>
<th></th>
<th>Término real</th>
<th>Término imaginario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U)</td>
<td>-0.00190506</td>
<td>0.000213505</td>
</tr>
<tr>
<td>(H)</td>
<td>-9.14776E-06</td>
<td>-7.50009E-07</td>
</tr>
<tr>
<td>(\theta)</td>
<td>-7.06786E-06</td>
<td>-4.18991E-06</td>
</tr>
</tbody>
</table>

Tabla 51. Vector de desplazamientos para un \(T_i = 2.873 \) s

<table>
<thead>
<tr>
<th></th>
<th>Término real</th>
<th>Término imaginario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U)</td>
<td>-0.965939138</td>
<td>-0.645959742</td>
</tr>
<tr>
<td>(H)</td>
<td>-0.003767907</td>
<td>-0.002516631</td>
</tr>
<tr>
<td>(\theta)</td>
<td>-0.002559863</td>
<td>-0.00171143</td>
</tr>
</tbody>
</table>

Tabla 52. Vector de desplazamientos para un \(T_i = 4.0 \) s

<table>
<thead>
<tr>
<th></th>
<th>Término real</th>
<th>Término imaginario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U)</td>
<td>0.496667943</td>
<td>-0.090150534</td>
</tr>
<tr>
<td>(H)</td>
<td>0.001921323</td>
<td>-0.000405124</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.001299443</td>
<td>-0.000273687</td>
</tr>
</tbody>
</table>

h) Resultados por el método función de transferencia.

Se calcula para cada período \(T_i \) con la ecuación 88.

Finalmente se divide el período iterado para el período de la estructura con base empotrada para graficar la curva: \(\frac{T_i}{T_e} \) vs. \(\frac{\omega_e^2 U}{s_g} \) que se genera con cada iteración; el punto máximo corresponde al período con efectos de interacción suelo-estructura \(T_{ise} \).
Tabla 53. Valores de $\frac{T_i}{T_e}$ vs. $\frac{\omega_e^2 U}{\dot{X}_e}$ para estructura A.

<table>
<thead>
<tr>
<th>T_i(s)</th>
<th>$\frac{\omega_e^2 U}{\dot{X}_e}$</th>
<th>$\frac{T_i}{T_e}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.009</td>
<td>0.104</td>
</tr>
<tr>
<td>0.60</td>
<td>0.039</td>
<td>0.209</td>
</tr>
<tr>
<td>0.90</td>
<td>0.093</td>
<td>0.313</td>
</tr>
<tr>
<td>1.20</td>
<td>0.178</td>
<td>0.418</td>
</tr>
<tr>
<td>1.80</td>
<td>0.516</td>
<td>0.627</td>
</tr>
<tr>
<td>2.10</td>
<td>0.861</td>
<td>0.731</td>
</tr>
<tr>
<td>2.70</td>
<td>3.127</td>
<td>0.940</td>
</tr>
<tr>
<td>2.873</td>
<td>5.495</td>
<td>1.000</td>
</tr>
<tr>
<td>3.085</td>
<td>10.629</td>
<td>1.074</td>
</tr>
<tr>
<td>3.24</td>
<td>7.580</td>
<td>1.128</td>
</tr>
<tr>
<td>3.60</td>
<td>3.565</td>
<td>1.253</td>
</tr>
<tr>
<td>3.70</td>
<td>3.15</td>
<td>1.29</td>
</tr>
<tr>
<td>3.90</td>
<td>2.602</td>
<td>1.357</td>
</tr>
<tr>
<td>4.00</td>
<td>2.414</td>
<td>1.392</td>
</tr>
</tbody>
</table>

Figura 25. Función de transferencia edificio A.

Los valores de la curva corresponden a la relación $\frac{T_i}{T_e}$ vs. $\frac{\dot{U}}{\dot{X}_e}$

El punto máximo corresponde a:

$$\frac{\dot{U}}{\dot{X}_e} \text{máx} = 10.629$$
\[
\frac{T_i}{T_e} = 1.074
\]

Por lo tanto:

\[T_{ise} = 1.074 \times 2.873 \text{ s}\]

\[T_{ise} = 3.085 \text{ s}\]

Se calcula el amortiguamiento con el valor máximo de la función:

\[
\xi_{ise} = \frac{1}{2(W_e^2 \cdot U/\ddot{x}g)} \tag{90}
\]

\[
\xi_{ise} = \frac{1}{2(10.629)}
\]

\[
\xi_{ise} = 4.70 \%
\]
6. CRITERIOS DE DISEÑO.

Para el diseño estructural de la cimentación según NEC-SE-GC-2015 tenemos:

El fenómeno de la interacción dinámica suelo-estructura se compone por la interacción inercial y la interacción cinemática. Los efectos inerciales afectan directamente al comportamiento de la estructura; aumentan el periodo fundamental de vibración, modifican el amortiguamiento y, hasta donde se tiene conocimiento, reducen la ductilidad. Estos fenómenos ocurren por el aumento de flexibilidad que sufre la estructura al encontrarse sin empotramiento fijo en su base. La interacción cinemática se refiere al comportamiento de la cimentación, la que por su geometría y rigidez filtra las altas frecuencias de la excitación. La cimentación, al incorporarse al sistema, experimenta efectos de torsión y cabeceo, lo que origina, generalmente, reducción en su movimiento.

6.1.1 Pasos del método

Los pasos a seguir son los siguientes:

6.1.1.1 Determinación del espectro de diseño $Sa(T)$

De acuerdo con las características geotectónicas del lugar de emplazamiento de la estructura (véase en la sección 3.3 NEC-SE-DS-2015)

![Diagrama de espectro de diseño](figura26.png)

Donde:

- η: Razón entre la aceleración espectral Sa a período estructural $T = 0.1\, s$ y el PGA para el periodo de retorno seleccionado. Su valor depende de la región del Ecuador.
- z: Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g.

Figura 26. Espectro de diseño
\[F_a \] Coeficiente de amplificación de suelo en la zona de período corto.

\[F_d \] Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca.

\[F_s \] Comportamiento no lineal de los suelos.

\(r \) Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto.

6.1.1.2 Período fundamental \(T_a, T_o \) y \(T_e \) y respuesta elástica de aceleración \(S_a (T_a) \)

Se aplica la metodología según el numeral 4.2.3.2

6.1.1.3 Determinación del cortante de base \(V \) con los resultados de los pasos anteriores.

Cortante basal de diseño \(V \), según la sección 6.3.2 (NEC-SE-DS-2015)

El cortante basal total de diseño \(V \), a nivel de cargas últimas, aplicado a una estructura en una dirección especificada, se determinará mediante las expresiones:

\[
V = \frac{I S_a (T_a)}{R \varnothing_P \varnothing_E} \cdot W \tag{92}
\]

Dónde:

\(S_a (T_a) \) Espectro de diseño en aceleración; véase 6.1.1.1

\(\varnothing_P \) y \(\varnothing_E \) Coeficientes de configuración en planta y elevación; sección 5.3 (NEC-SE-HM,2015)

\(I \) Coeficiente de importancia; sección 4.1 (NEC-SE-HM,2015)

\(R \) Factor de reducción de resistencia sísmica; sección 6.3.4 (NEC-SE-HM,2015)

\(V \) Cortante basal total de diseño.

\(W \) Carga sísmica reactiva\(^8\); véase en la sección 6.1.7 (NEC-SE-HM,2015)

\(T_a \) Período de vibración; véase 4.2.3

6.1.1.4 Representación y determinación de la carga sísmica horizontal:

La base del análisis constituirá una representación apropiada de la acción sísmica, de conformidad con los principios de la dinámica estructural. La acción sísmica determinada mediante un procedimiento dinámico debe representar, como mínimo, al sismo de diseño (período de retorno de 475 años), sin la aplicación del factor de reducción de respuesta \(R \), y puede ser, el espectro de respuesta elástico de aceleraciones, expresado como fracción de la aceleración de la gravedad, es proporcionado en la sección 3.3.1(NEC-SE-DS-2015).

\(^8\) Para casos generales, \(W \) es la carga muerta total de la estructura, para el caso de bodegas y almacenaje, \(W \) es la carga muerta total más el 25% de la carga viva por piso.
6.1.1.5 Cálculo de las fuerzas horizontales aplicando la NEC-SE-DS-2015

Distribución vertical de fuerzas sísmicas laterales (sección 6.3.5, NEC-SE-DS-2015)

La distribución de fuerzas verticales se asemeja a una distribución lineal (triangular), similar al modo fundamental de vibración, pero dependiente del periodo fundamental de vibración T_a.

En ausencia de un procedimiento más riguroso, basado en los principios de la dinámica, las fuerzas laterales totales de cálculo deben ser distribuidas en la altura de la estructura, utilizando las siguientes expresiones:

\[
V = \sum_{i=1}^{n} F_i \quad ; \quad V_x = \sum_{i=x}^{n} F_i \quad ; \quad F_x = \frac{w_x h_x^k}{\sum_{i=1}^{n} w_i h_i^k} V \quad (93) \ ; \ (94) \ ; \ (95)
\]

Dónde:

- \(V \) Cortante total en la base de la estructura (determinado con ecuación 92)
- \(V_x \) Cortante total en el piso x de la estructura
- \(F_i \) Fuerza lateral aplicada en el piso i de la estructura
- \(F_x \) Fuerza lateral aplicada en el piso x de la estructura
- \(n \) Número de pisos de la estructura
- \(w_x \) Peso asignado al piso o nivel x de la estructura, siendo una fracción de la carga reactiva
- \(w_i \) Peso asignado al piso o nivel i de la estructura, siendo una fracción de la carga reactiva
- \(h_x \) Altura del piso x de la estructura
- \(h_i \) Altura del piso i de la estructura
- \(k \) Coeficiente relacionado con el período de vibración de la estructura T_a

6.1.1.6 Cálculo del cortante basal por medio de la herramienta Etabs® de la estructura empotrada:

a) Patrón de carga sísmica (Load Pattern) para estructura empotrada.

Para determinar las fuerzas horizontales se ha creado un caso llamado FHEX (fuerza horizontal equivalente en el sentido X) de tipo sismo y coeficientes de usuario.

El coeficiente C “Base Shear Coefficient” en la ventana Seismic Load Pattern corresponde a los factores y coeficientes usados para el cálculo del cortante basal sin considerar la carga sísmica reactiva \(W \).

\[
V = \frac{IS_a(T_a)}{R\theta_p \theta_E} \cdot W \quad \text{(92)}
\]

El valor K se determina según la tabla, dependiendo del periodo fundamental, este valor se coloca en la casilla Building Height Exp., K.
Tabla 54. Factor K

<table>
<thead>
<tr>
<th>Valores de T(s)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.5</td>
<td>1</td>
</tr>
<tr>
<td>0.5 < T ≤ 2.5</td>
<td>0.75 + 0.50 T</td>
</tr>
<tr>
<td>> 2.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Se muestra a continuación las ventanas del patrón de carga sísmica en donde se colocan los valores de C y K:

![Ventanas de patrón de carga sísmica en Etabs ®](image1)

Figura 27. Ventanas de patrón de carga sísmica en Etabs ®

El valor de cortante basal y la distribución de fuerzas horizontales se encuentran en la ventana *Story Response* activando *Story shears* para el caso FHEX creado anteriormente.

![Fuerzas horizontales y cortante Basal](image2)

Figura 28. Fuerzas horizontales y cortante Basal
6.2 Dirección de aplicación de las fuerzas sísmicas y verificación de que los índices de deriva no sobrepasen el valor permitido.

Para el caso FHEX, fuerza horizontal equivalente en el sentido X obtenemos los valores máximos de desplazamiento horizontal tanto en el sentido X como en Y en la ventana Story Response activando Max story displ.

![Figura 29. Máximos desplazamientos por piso](image)

La tabla de desplazamientos máximos por piso se obtiene para calcular las derivas y verificar según la norma que se cumpla lo siguiente:

6.2.1 Límites de la deriva:

La deriva máxima inelástica \(\Delta_M \) de cada piso debe calcularse mediante:

\[
\Delta_M = 0.75 R \Delta_E
\]

Dónde:
- \(\Delta_M \): Deriva máxima inelástica
- \(\Delta_E \): Desplazamiento obtenido en aplicación de las fuerzas laterales de diseño reducidas
- \(R \): Factor de reducción de resistencia (véase la sección 6.3.4 NEC-SE-HM,2015)

Regla: \(\Delta_M \) no puede superar los valores establecidos en la Tabla 7, los cuales deben satisfacerse en todas las columnas del edificio.

Se verificará que:

\[
\Delta_M \leq \Delta_M \text{máxima}
\]

Dónde:

\(\Delta_M \text{ Máxima} \) se determina conforme a la sección 4.2.2 de la NEC-SE-DS-2015

\[
\Delta = \sqrt{\delta x^2 + \delta y^2}
\]

\[
\Delta_E = \Delta_n - \Delta_{n-1}
\]

\[
\Delta_M = 0.75 \times R \times \Delta_E
\]

\[
\Delta_M \text{ máx} = 0.02 \times h_i \text{ (NEC-SE-DS-2015 4.2.2)}
\]
6.3 Aplicación de los criterios de diseño para el edificio A (empotrado) sentido X

El proyecto se encuentra ubicado en la provincia de Esmeraldas, y de acuerdo con la velocidad de onda $V_s = 226.45 \text{ m/s}$ calculada en capítulos anteriores sabemos que corresponde a un perfil de suelo tipo D.

Tabla 55. Tipo de perfil de suelo

<table>
<thead>
<tr>
<th>Tipo de Perfil</th>
<th>Descripción</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o</td>
<td>$360 \text{ m/s} > V_s \geq 180 \text{ m/s}$</td>
</tr>
<tr>
<td></td>
<td>Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones</td>
<td>$50 > N \geq 15.0$ $100 \text{ kPa} > \text{Su} \geq 50 \text{ kPa}$</td>
</tr>
</tbody>
</table>

Fuente: Norma Ecuatoriana de la Construcción (NEC-SE-DS-2015, tabla 2)

6.3.1 Espectro de diseño

Conocida la ubicación y el tipo de perfil de suelo tenemos:

Tabla 56. Valores paramétricos para determinar el espectro de diseño

| η: Razón entre la aceleración espectral S_a a período estructural $T = 0.1 \text{ s}$ y el PGA para el período de retorno seleccionado. Su valor depende de la región del Ecuador. |
| Región del Ecuador | η |
| Provincias de la Sierra, Esmeraldas y Galápagos | 2.48 |

| Z: Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g |
| Factor de Zona sísmica | Z |
| VI | 0.5 |

F_a: Coeficiente de amplificación de suelo en la zona de período corto.

F_d: Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca

F_s: Comportamiento no lineal de los suelos

r: Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto

$r = 1$ para todos los suelos, con excepción del suelo tipo E

$r = 1.5$ para tipo de suelo E.

<table>
<thead>
<tr>
<th>Tipo de perfil del subsuelo</th>
<th>F_a</th>
<th>F_d</th>
<th>F_s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1.12</td>
<td>1.11</td>
<td>1.4</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| T_o | 0.1388 |
| T_c | 0.763 |</p>
<table>
<thead>
<tr>
<th>T (s)</th>
<th>Sa (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>1.389</td>
</tr>
<tr>
<td>0.763</td>
<td>1.389</td>
</tr>
<tr>
<td>0.800</td>
<td>1.325</td>
</tr>
<tr>
<td>1.000</td>
<td>1.060</td>
</tr>
<tr>
<td>1.500</td>
<td>0.707</td>
</tr>
<tr>
<td>2.000</td>
<td>0.530</td>
</tr>
<tr>
<td>2.500</td>
<td>0.424</td>
</tr>
<tr>
<td>3.000</td>
<td>0.353</td>
</tr>
<tr>
<td>3.500</td>
<td>0.303</td>
</tr>
<tr>
<td>4.000</td>
<td>0.265</td>
</tr>
</tbody>
</table>

Figura 30. Espectro elástico de diseño

Al utilizar los parámetros dentro de los espectros de respuesta predeterminados de Etabs, para NEC-SE-DS 2015 tenemos:

![Espectro elástico de diseño en Etabs®](image)

Figura 31. Espectro elástico de diseño en Etabs®

Tabla 57. Valores del espectro generado por Etabs®

<table>
<thead>
<tr>
<th>Period</th>
<th>Acceleration</th>
<th>Damping</th>
<th>Zone Coefficient</th>
<th>η Coefficient</th>
<th>Fa</th>
<th>Fd</th>
<th>Soil Type</th>
<th>Behavior Factor</th>
<th>Importance Factor</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3888</td>
<td>5</td>
<td>0.5</td>
<td>2.48</td>
<td>1.12</td>
<td>1.11</td>
<td>D</td>
<td>1.4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.7</td>
<td>1.3888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.293893</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1.08435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.925834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.50396</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.327332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.23422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.178177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>0.141394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.115729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Se pudo verificar que, en el espectro que produce Etabs® a pesar de haberse introducido los valores del ejercicio que llevamos a cabo, calcula valores distintos a los calculados de forma manual; por lo que se usará el espectro elaborado manualmente.

Para la estructura tenemos los periodos fundamentales en el sentido X e Y obtenidos en la tabla 25:

- Periodo Modo 1 (sentido X-X)= 2.873 s
- Periodo Modo 2 (sentido Y-Y)= 2.243 s

6.3.2 Respuesta elástica de aceleración S_a

La respuesta elástica de aceleración S_a correspondiente al período T_a o T_e del ejemplo se muestra a continuación.

![Espectro elástico de diseño](image)

Figura 32. Espectro elástico de diseño

6.3.3 Cortante Basal

Para el ejercicio en desarrollo tenemos:

$$V = \frac{1 \times 0.369}{8 \times 1 \times 1} \times (6588973.97 g \times 9.81 \frac{m}{s^2})$$

$$V = 2981.42 \text{ KN} = 303.92 \text{ t}$$

6.3.4 Cálculo de las fuerzas horizontales

a) Aplicando las expresiones de la NEC-SE-DS-2015

Aplicando las ecuaciones 93,94,95 podemos calcular las fuerzas horizontales para cada piso.
b) Cálculo con Etabs®

Una vez se haya definido el patrón de cargas FHEX con los valores:

\[C = \frac{1 \times 0.369}{8 \times 1 \times 1} = 0.046 \]

calculado como componente del cortante basal según ecuación 92.

\[K = 2 \quad \text{T}_e > 2.5 \]

Se genera la tabla 59 en donde se muestran las fuerzas por piso:

Tabla 59. Fuerzas horizontales obtenidas en Etabs®
<table>
<thead>
<tr>
<th>Story</th>
<th>FHEX 1</th>
<th>Top</th>
<th>0</th>
<th>-2337.8107</th>
<th>0</th>
<th>13916.7102</th>
<th>0</th>
<th>-34787.3486</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story 12</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2468.7396</td>
<td>0</td>
<td>14678.6428</td>
<td>0</td>
<td>-41941.2515</td>
</tr>
<tr>
<td>Story 11</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2579.5138</td>
<td>0</td>
<td>15323.2952</td>
<td>0</td>
<td>-49495.7679</td>
</tr>
<tr>
<td>Story 10</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2671.8169</td>
<td>0</td>
<td>15860.4634</td>
<td>0</td>
<td>-57389.2666</td>
</tr>
<tr>
<td>Story 9</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2747.3324</td>
<td>0</td>
<td>16299.9432</td>
<td>0</td>
<td>-65565.1085</td>
</tr>
<tr>
<td>Story 8</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2807.744</td>
<td>0</td>
<td>16651.5306</td>
<td>0</td>
<td>-73972.0456</td>
</tr>
<tr>
<td>Story 7</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2854.7351</td>
<td>0</td>
<td>16925.0215</td>
<td>0</td>
<td>-82563.8222</td>
</tr>
<tr>
<td>Story 6</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2889.9894</td>
<td>0</td>
<td>17130.2118</td>
<td>0</td>
<td>-91299.3738</td>
</tr>
<tr>
<td>Story 5</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2915.1903</td>
<td>0</td>
<td>17276.8975</td>
<td>0</td>
<td>-100142.7879</td>
</tr>
<tr>
<td>Story 4</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2932.0215</td>
<td>0</td>
<td>17374.8745</td>
<td>0</td>
<td>-109063.3036</td>
</tr>
<tr>
<td>Story 3</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2942.1665</td>
<td>0</td>
<td>17433.9387</td>
<td>0</td>
<td>-118035.3117</td>
</tr>
<tr>
<td>Story 2</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2947.3089</td>
<td>0</td>
<td>17463.886</td>
<td>0</td>
<td>-127038.3547</td>
</tr>
<tr>
<td>Story 1</td>
<td>FHEX 1</td>
<td>Top</td>
<td>0</td>
<td>-2949.2276</td>
<td>0</td>
<td>17475.1949</td>
<td>0</td>
<td>-136057.1268</td>
</tr>
</tbody>
</table>

Figura 33. Cortantes por piso sentido X-X

El cortante basal calculado en Etabs® es: \(V = 2949.23 \text{ kN} = 300.64 \text{ t} \)

6.3.5 Dirección de aplicación de las fuerzas sísmicas y verificación de que los índices de deriva no sobrepasen el valor permitido.

Figura 34. Desplazamientos máximos para FHEX, estructura A, empotrada
Aplicando el procedimiento según se muestra en el numeral 6.2 se calculan los índices de deriva a partir de los desplazamientos máximos:

Tabla 60. Control de derivas, aplicando las fuerzas horizontales en el sentido X
estructura empotrada, parámetros de suelo reales.

<table>
<thead>
<tr>
<th>Story</th>
<th>Elevation</th>
<th>Location</th>
<th>X-Dir</th>
<th>Y-Dir</th>
<th>Δ</th>
<th>ΔE</th>
<th>ΔM</th>
<th>%</th>
<th>ΔM máxima</th>
<th>ΔM-ΔM máxima</th>
<th>ΔM<ΔM máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story22</td>
<td>68.76</td>
<td>Top</td>
<td>198.554</td>
<td>9.96</td>
<td>198.80</td>
<td>4.72</td>
<td>28.33</td>
<td>0.93%</td>
<td>61.2</td>
<td>32.87</td>
<td>ok</td>
</tr>
<tr>
<td>Story21</td>
<td>65.7</td>
<td>Top</td>
<td>193.884</td>
<td>8.759</td>
<td>194.08</td>
<td>5.19</td>
<td>31.16</td>
<td>1.02%</td>
<td>61.2</td>
<td>30.04</td>
<td>ok</td>
</tr>
<tr>
<td>Story20</td>
<td>62.64</td>
<td>Top</td>
<td>188.723</td>
<td>7.884</td>
<td>188.89</td>
<td>4.86</td>
<td>29.15</td>
<td>0.95%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story19</td>
<td>59.58</td>
<td>Top</td>
<td>183.879</td>
<td>7.418</td>
<td>184.03</td>
<td>4.68</td>
<td>20.90</td>
<td>0.91%</td>
<td>61.2</td>
<td>21.11</td>
<td>ok</td>
</tr>
<tr>
<td>Story18</td>
<td>56.52</td>
<td>Top</td>
<td>177.21</td>
<td>6.96</td>
<td>177.35</td>
<td>7.48</td>
<td>44.86</td>
<td>1.34%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story17</td>
<td>53.46</td>
<td>Top</td>
<td>169.745</td>
<td>6.496</td>
<td>169.87</td>
<td>8.25</td>
<td>49.52</td>
<td>1.59%</td>
<td>61.2</td>
<td>31.16</td>
<td>ok</td>
</tr>
<tr>
<td>Story16</td>
<td>50.4</td>
<td>Top</td>
<td>152.536</td>
<td>5.519</td>
<td>152.64</td>
<td>9.64</td>
<td>57.84</td>
<td>1.76%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story15</td>
<td>47.34</td>
<td>Top</td>
<td>142.909</td>
<td>4.999</td>
<td>143.00</td>
<td>10.22</td>
<td>61.31</td>
<td>2.00%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story14</td>
<td>44.28</td>
<td>Top</td>
<td>132.704</td>
<td>4.457</td>
<td>132.78</td>
<td>8.25</td>
<td>49.52</td>
<td>1.59%</td>
<td>61.2</td>
<td>31.16</td>
<td>ok</td>
</tr>
<tr>
<td>Story13</td>
<td>41.22</td>
<td>Top</td>
<td>122.007</td>
<td>3.897</td>
<td>122.08</td>
<td>10.11</td>
<td>69.67</td>
<td>2.28%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story12</td>
<td>38.16</td>
<td>Top</td>
<td>110.912</td>
<td>3.322</td>
<td>110.96</td>
<td>11.41</td>
<td>68.47</td>
<td>2.44%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story11</td>
<td>35.1</td>
<td>Top</td>
<td>99.513</td>
<td>2.738</td>
<td>100.00</td>
<td>11.11</td>
<td>68.47</td>
<td>2.44%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story10</td>
<td>32.04</td>
<td>Top</td>
<td>87.913</td>
<td>2.152</td>
<td>87.94</td>
<td>11.71</td>
<td>70.24</td>
<td>2.30%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story9</td>
<td>28.98</td>
<td>Top</td>
<td>76.217</td>
<td>1.579</td>
<td>76.23</td>
<td>10.98</td>
<td>65.88</td>
<td>2.15%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story8</td>
<td>25.92</td>
<td>Top</td>
<td>65.229</td>
<td>1.579</td>
<td>65.25</td>
<td>10.86</td>
<td>65.16</td>
<td>2.13%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story7</td>
<td>22.86</td>
<td>Top</td>
<td>54.357</td>
<td>2.019</td>
<td>54.39</td>
<td>10.74</td>
<td>64.42</td>
<td>2.11%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story6</td>
<td>19.8</td>
<td>Top</td>
<td>43.607</td>
<td>2.091</td>
<td>43.66</td>
<td>10.47</td>
<td>62.82</td>
<td>2.05%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story5</td>
<td>16.74</td>
<td>Top</td>
<td>33.127</td>
<td>1.993</td>
<td>33.19</td>
<td>10.00</td>
<td>60.02</td>
<td>1.96%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story4</td>
<td>13.68</td>
<td>Top</td>
<td>23.12</td>
<td>1.707</td>
<td>23.18</td>
<td>9.20</td>
<td>55.18</td>
<td>1.80%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story3</td>
<td>10.62</td>
<td>Top</td>
<td>13.931</td>
<td>1.243</td>
<td>13.99</td>
<td>7.86</td>
<td>47.19</td>
<td>1.54%</td>
<td>61.2</td>
<td>32.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story2</td>
<td>7.56</td>
<td>Top</td>
<td>6.08</td>
<td>0.712</td>
<td>6.12</td>
<td>6.12</td>
<td>36.73</td>
<td>1.20%</td>
<td>90</td>
<td>53.27</td>
<td>ok</td>
</tr>
<tr>
<td>Story1</td>
<td>4.5</td>
<td>Top</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>61.2</td>
<td>61.20</td>
<td>ok</td>
</tr>
</tbody>
</table>

Los valores de derivas de los pisos quinto al catorceavo exceden el valor máximo permitido, esto sin haber considerado los efectos de interacción suelo estructura, de esta manera se debe modificar las secciones o resistencia del hormigón. Ahora se realiza un análisis usando el nuevo período calculado con ISE.

6.4 Distribución de fuerzas horizontales y derivas calculadas con ISE.

6.4.1 Sa para un TISE en sentido X

Buscamos en el espectro el valor de Sa correspondiente al período de la estructura con efectos ISE.
Este valor corresponde a un espectro que obedece a una fracción de amortiguamiento respecto al crítico de 5%, esta aceleración se modifica cuando consideramos el amortiguamiento crítico del sistema estructural con efectos ISE. Para ello tenemos que:

\[
Sa(T_{ISE})^* = Sa(T_{ISE}) \left(\frac{0.05}{\xi_{ise}} \right)^{0.4}
\]

(102)

Donde:

- \(\xi_{ise}\): Amortiguamiento crítico del sistema estructural con efectos ISE
- \(Sa(T_{ISE})\): Aceleración espectral correspondiente al período del sistema estructural con efectos ISE sobre un espectro que obedece a una fracción de amortiguamiento respecto al crítico de 5%
- \(Sa(T_{ISE})^*\): Aceleración espectral correspondiente al período del sistema estructural con efectos ISE calculada sobre un espectro con una fracción de amortiguamiento respecto al crítico con efectos ISE

Para el ejemplo:

\[
Sa(T_{ISE})^* = 0.344 \left(\frac{0.05}{0.047} \right)^{0.4} = 0.344 \cdot 0.047^{0.4} = 0.344 \cdot 0.2 = 0.0688
\]

\[
Sa(T_{ISE})^* = 0.35
\]

6.4.2 Patrón de carga sísmica (Load Pattern) incluyendo efectos ISE

Para determinar las fuerzas horizontales se ha creado un caso llamado FHEXISE (fuerza horizontal equivalente en el sentido X con ISE), el coeficiente C corresponde a los factores y coeficientes usados para el cálculo del cortante basal sin la carga sísmica reactiva y esta vez se usa el valor de aceleración modificada por el aumento del período debido a los efectos ISE.
\[V = \frac{I_{sa}(T_{ISE})_s}{R \theta_p \Omega} \cdot W \]

\[C = \frac{1 \times 0.35}{8 \times 1 \times 1} = 0.043 \]

\[K = 2 \]

6.4.3 Cortante Basal con ISE

\[V = 0.043 \times (6588973.97 \times 9.81 \frac{m}{s^2}) = 2779.43 \text{ KN} = 283.33 \text{ t} \]

\[V = 2756.89 \text{ KN} = 281.03 \text{ t} \quad \text{ETABS®} \]

Figura 36. Distribución de fuerzas horizontales Estructura A con efectos ISE

6.4.4 Desplazamientos máximos y deriva

Tabla 61. Control de derivas, aplicando las fuerzas horizontales en el sentido X considerando efectos ISE, parámetros de suelo reales.

<table>
<thead>
<tr>
<th>Story</th>
<th>Elevation</th>
<th>Location</th>
<th>X-Dir</th>
<th>Y-Dir</th>
<th>Δ</th>
<th>ΔE</th>
<th>ΔM</th>
<th>%</th>
<th>ΔM máx</th>
<th>ΔM-ΔM máx</th>
<th>ΔM<ΔM máx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story22</td>
<td>68.76</td>
<td>Top</td>
<td>185.605</td>
<td>9.311</td>
<td>185.84</td>
<td>4.41</td>
<td>26.49</td>
<td>0.87%</td>
<td>61.2</td>
<td>34.71</td>
<td>ok</td>
</tr>
<tr>
<td>Story21</td>
<td>65.7</td>
<td>Top</td>
<td>181.239</td>
<td>8.187</td>
<td>181.42</td>
<td>4.85</td>
<td>29.13</td>
<td>0.95%</td>
<td>61.2</td>
<td>32.07</td>
<td>ok</td>
</tr>
<tr>
<td>Story20</td>
<td>62.64</td>
<td>Top</td>
<td>176.415</td>
<td>7.37</td>
<td>176.57</td>
<td>4.54</td>
<td>27.25</td>
<td>0.89%</td>
<td>61.2</td>
<td>33.95</td>
<td>ok</td>
</tr>
<tr>
<td>Story19</td>
<td>59.58</td>
<td>Top</td>
<td>171.887</td>
<td>6.935</td>
<td>172.03</td>
<td>6.25</td>
<td>37.48</td>
<td>1.22%</td>
<td>61.2</td>
<td>26.72</td>
<td>ok</td>
</tr>
<tr>
<td>Story18</td>
<td>56.52</td>
<td>Top</td>
<td>165.653</td>
<td>6.506</td>
<td>165.78</td>
<td>6.99</td>
<td>41.94</td>
<td>1.37%</td>
<td>61.2</td>
<td>20.26</td>
<td>ok</td>
</tr>
<tr>
<td>Story17</td>
<td>53.46</td>
<td>Top</td>
<td>158.675</td>
<td>6.072</td>
<td>158.79</td>
<td>7.72</td>
<td>46.29</td>
<td>1.51%</td>
<td>61.2</td>
<td>14.91</td>
<td>ok</td>
</tr>
<tr>
<td>Story16</td>
<td>50.4</td>
<td>Top</td>
<td>150.971</td>
<td>5.625</td>
<td>151.08</td>
<td>8.39</td>
<td>50.37</td>
<td>1.65%</td>
<td>61.2</td>
<td>10.83</td>
<td>ok</td>
</tr>
<tr>
<td>Story15</td>
<td>47.34</td>
<td>Top</td>
<td>142.588</td>
<td>5.159</td>
<td>142.68</td>
<td>9.01</td>
<td>54.06</td>
<td>1.77%</td>
<td>61.2</td>
<td>7.14</td>
<td>ok</td>
</tr>
<tr>
<td>Story14</td>
<td>44.28</td>
<td>Top</td>
<td>133.589</td>
<td>4.673</td>
<td>133.67</td>
<td>9.55</td>
<td>57.31</td>
<td>1.87%</td>
<td>61.2</td>
<td>3.89</td>
<td>ok</td>
</tr>
<tr>
<td>Story13</td>
<td>41.22</td>
<td>Top</td>
<td>124.049</td>
<td>4.167</td>
<td>124.12</td>
<td>10.01</td>
<td>60.06</td>
<td>1.96%</td>
<td>61.2</td>
<td>1.14</td>
<td>ok</td>
</tr>
<tr>
<td>Story12</td>
<td>38.16</td>
<td>Top</td>
<td>114.05</td>
<td>3.643</td>
<td>114.11</td>
<td>10.38</td>
<td>62.30</td>
<td>2.04%</td>
<td>61.2</td>
<td>-1.10</td>
<td>no cumple</td>
</tr>
<tr>
<td>Story11</td>
<td>35.1</td>
<td>Top</td>
<td>103.678</td>
<td>3.106</td>
<td>103.72</td>
<td>10.67</td>
<td>64.00</td>
<td>2.08%</td>
<td>61.2</td>
<td>-2.80</td>
<td>no cumple</td>
</tr>
<tr>
<td>Story10</td>
<td>32.04</td>
<td>Top</td>
<td>93.023</td>
<td>2.56</td>
<td>93.06</td>
<td>10.85</td>
<td>65.12</td>
<td>2.13%</td>
<td>61.2</td>
<td>-3.92</td>
<td>no cumple</td>
</tr>
<tr>
<td>Story9</td>
<td>28.98</td>
<td>Top</td>
<td>82.18</td>
<td>2.012</td>
<td>82.20</td>
<td>10.94</td>
<td>65.66</td>
<td>2.15%</td>
<td>61.2</td>
<td>-4.46</td>
<td>no cumple</td>
</tr>
<tr>
<td>Story8</td>
<td>25.92</td>
<td>Top</td>
<td>71.246</td>
<td>1.476</td>
<td>71.26</td>
<td>10.26</td>
<td>61.58</td>
<td>2.01%</td>
<td>61.2</td>
<td>-0.38</td>
<td>no cumple</td>
</tr>
<tr>
<td>Story7</td>
<td>22.86</td>
<td>Top</td>
<td>60.975</td>
<td>1.681</td>
<td>61.00</td>
<td>10.15</td>
<td>60.91</td>
<td>1.99%</td>
<td>61.2</td>
<td>0.29</td>
<td>ok</td>
</tr>
<tr>
<td>Story6</td>
<td>19.8</td>
<td>Top</td>
<td>50.812</td>
<td>1.887</td>
<td>50.85</td>
<td>10.04</td>
<td>60.22</td>
<td>1.97%</td>
<td>61.2</td>
<td>0.98</td>
<td>ok</td>
</tr>
</tbody>
</table>
En este caso se aprecia que redujeron las derivas, pero no se consiguieron valores dentro del máximo permitido.

Con el fin de mostrar los beneficios de incluir efectos de ISE se modelará para un suelo hipotético más blando.

6.4.5 Reducción de los desplazamientos horizontales máximos por efectos ISE en el sentido X

Tabla 62. Reducción de desplazamientos por efecto ISE en estructura A, parámetros de suelo reales

<table>
<thead>
<tr>
<th>ΔM</th>
<th>ΔM (ISE)</th>
<th>% de reducción de desplazamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.33 mm</td>
<td>26.49 mm</td>
<td>6.95%</td>
</tr>
<tr>
<td>31.16 mm</td>
<td>29.13 mm</td>
<td>6.97%</td>
</tr>
<tr>
<td>29.15 mm</td>
<td>27.25 mm</td>
<td>6.97%</td>
</tr>
<tr>
<td>40.09 mm</td>
<td>37.48 mm</td>
<td>6.96%</td>
</tr>
<tr>
<td>44.86 mm</td>
<td>41.94 mm</td>
<td>6.96%</td>
</tr>
<tr>
<td>49.52 mm</td>
<td>46.29 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>53.88 mm</td>
<td>50.37 mm</td>
<td>6.97%</td>
</tr>
<tr>
<td>57.84 mm</td>
<td>54.06 mm</td>
<td>6.99%</td>
</tr>
<tr>
<td>61.31 mm</td>
<td>57.31 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>64.26 mm</td>
<td>60.06 mm</td>
<td>6.99%</td>
</tr>
<tr>
<td>66.64 mm</td>
<td>62.3 mm</td>
<td>6.97%</td>
</tr>
<tr>
<td>68.47 mm</td>
<td>64 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>69.67 mm</td>
<td>65.12 mm</td>
<td>6.99%</td>
</tr>
<tr>
<td>70.24 mm</td>
<td>65.66 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>65.88 mm</td>
<td>61.58 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>65.16 mm</td>
<td>60.91 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>64.42 mm</td>
<td>60.22 mm</td>
<td>6.97%</td>
</tr>
<tr>
<td>62.82 mm</td>
<td>58.73 mm</td>
<td>6.96%</td>
</tr>
<tr>
<td>60.02 mm</td>
<td>56.11 mm</td>
<td>6.97%</td>
</tr>
<tr>
<td>55.18 mm</td>
<td>51.58 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>47.19 mm</td>
<td>44.11 mm</td>
<td>6.98%</td>
</tr>
<tr>
<td>36.73 mm</td>
<td>34.34 mm</td>
<td>6.96%</td>
</tr>
<tr>
<td>0 mm</td>
<td>0 mm</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
6.5 Aplicación de los criterios de diseño para el edificio A (empotrado) sentido Y

6.5.1 S_a para un T_{ISE} en sentido Y

Utilizando los valores de la tabla 25, calculamos los factores C y K:

<table>
<thead>
<tr>
<th>Coeficientes para cálculo de Cortante Basal y FHEY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_a (Y)$</td>
<td>2.243 s</td>
</tr>
<tr>
<td>I</td>
<td>1.00</td>
</tr>
<tr>
<td>$S_a T_a (Y)$</td>
<td>0.473 g</td>
</tr>
<tr>
<td>R</td>
<td>8.00</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>1.00</td>
</tr>
<tr>
<td>ϕ_E</td>
<td>1.00</td>
</tr>
<tr>
<td>C</td>
<td>0.059</td>
</tr>
<tr>
<td>K</td>
<td>1.872</td>
</tr>
<tr>
<td>V</td>
<td>385.6 t</td>
</tr>
</tbody>
</table>

6.5.2 Patrón de Cargas sentido Y

Creamos un patrón de cargas sísmicas en el sentido Y al cual llamaremos FHEY:

![Figura 38. Patrón de carga sísmica estructura A sentido Y, empotrada](image)

6.5.3 Cortante Basal y distribución de fuerzas horizontales en el sentido Y

Para el patrón de carga definido como FHEY, se tiene la siguiente distribución:

![Figura 39. Distribución de fuerzas horizontales en sentido Y, estructura A, empotrada.](image)
6.5.3 Desplazamientos máximos y derivas sentido Y, estructura empotrada.

Se obtienen los desplazamientos máximos para las fuerzas aplicadas en el sentido Y:

![Diagrama de desplazamiento máximo aplicando las fuerzas horizontales en el sentido Y sin considerar efectos ISE](image)

Figura 40. Desplazamiento máximo aplicando las fuerzas horizontales en el sentido Y sin considerar efectos ISE

Tabla 64. Control de derivas, aplicando las fuerzas horizontales en el sentido Y sin considerar efectos ISE

<table>
<thead>
<tr>
<th>Story</th>
<th>Elevation</th>
<th>Location</th>
<th>X-Dir</th>
<th>Y-Dir</th>
<th>Δ</th>
<th>ΔE</th>
<th>ΔM</th>
<th>%</th>
<th>ΔM máx</th>
<th>ΔM-ΔM máx</th>
<th>ΔM<ΔM máx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>%</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Story22</td>
<td>68.76</td>
<td>Top</td>
<td>1.11</td>
<td>167.4</td>
<td>167.38</td>
<td>6.62</td>
<td>39.74</td>
<td>1.30%</td>
<td>61.2</td>
<td>21.46</td>
<td>ok</td>
</tr>
<tr>
<td>Story21</td>
<td>65.7</td>
<td>Top</td>
<td>0.53</td>
<td>160.8</td>
<td>160.76</td>
<td>6.79</td>
<td>40.74</td>
<td>1.33%</td>
<td>61.2</td>
<td>20.46</td>
<td>ok</td>
</tr>
<tr>
<td>Story20</td>
<td>62.64</td>
<td>Top</td>
<td>0.14</td>
<td>154</td>
<td>153.97</td>
<td>6.83</td>
<td>40.95</td>
<td>1.34%</td>
<td>61.2</td>
<td>20.25</td>
<td>ok</td>
</tr>
<tr>
<td>Story19</td>
<td>59.58</td>
<td>Top</td>
<td>0.71</td>
<td>147.1</td>
<td>147.14</td>
<td>7.19</td>
<td>43.13</td>
<td>1.41%</td>
<td>61.2</td>
<td>18.07</td>
<td>ok</td>
</tr>
<tr>
<td>Story18</td>
<td>56.52</td>
<td>Top</td>
<td>1.25</td>
<td>139.9</td>
<td>139.95</td>
<td>7.58</td>
<td>45.49</td>
<td>1.49%</td>
<td>61.2</td>
<td>15.71</td>
<td>ok</td>
</tr>
<tr>
<td>Story17</td>
<td>53.46</td>
<td>Top</td>
<td>1.72</td>
<td>132.4</td>
<td>132.37</td>
<td>7.97</td>
<td>47.82</td>
<td>1.56%</td>
<td>61.2</td>
<td>13.38</td>
<td>ok</td>
</tr>
<tr>
<td>Story16</td>
<td>50.4</td>
<td>Top</td>
<td>2.11</td>
<td>124.4</td>
<td>124.40</td>
<td>8.33</td>
<td>50.00</td>
<td>1.63%</td>
<td>61.2</td>
<td>11.20</td>
<td>ok</td>
</tr>
<tr>
<td>Story15</td>
<td>47.34</td>
<td>Top</td>
<td>2.42</td>
<td>116</td>
<td>116.07</td>
<td>8.65</td>
<td>51.93</td>
<td>1.70%</td>
<td>61.2</td>
<td>9.27</td>
<td>ok</td>
</tr>
<tr>
<td>Story14</td>
<td>44.28</td>
<td>Top</td>
<td>2.64</td>
<td>107.4</td>
<td>107.42</td>
<td>8.92</td>
<td>53.55</td>
<td>1.75%</td>
<td>61.2</td>
<td>7.65</td>
<td>ok</td>
</tr>
<tr>
<td>Story13</td>
<td>41.22</td>
<td>Top</td>
<td>2.77</td>
<td>98.45</td>
<td>98.49</td>
<td>9.13</td>
<td>54.79</td>
<td>1.79%</td>
<td>61.2</td>
<td>6.41</td>
<td>ok</td>
</tr>
<tr>
<td>Story12</td>
<td>38.16</td>
<td>Top</td>
<td>2.82</td>
<td>89.32</td>
<td>89.36</td>
<td>9.27</td>
<td>55.61</td>
<td>1.82%</td>
<td>61.2</td>
<td>5.59</td>
<td>ok</td>
</tr>
<tr>
<td>Story11</td>
<td>35.1</td>
<td>Top</td>
<td>2.78</td>
<td>80.04</td>
<td>80.09</td>
<td>9.32</td>
<td>55.94</td>
<td>1.83%</td>
<td>61.2</td>
<td>5.26</td>
<td>ok</td>
</tr>
<tr>
<td>Story10</td>
<td>32.04</td>
<td>Top</td>
<td>2.67</td>
<td>70.72</td>
<td>70.77</td>
<td>9.30</td>
<td>55.78</td>
<td>1.82%</td>
<td>61.2</td>
<td>5.42</td>
<td>ok</td>
</tr>
<tr>
<td>Story9</td>
<td>28.98</td>
<td>Top</td>
<td>2.48</td>
<td>61.42</td>
<td>61.47</td>
<td>9.17</td>
<td>55.04</td>
<td>1.80%</td>
<td>61.2</td>
<td>6.16</td>
<td>ok</td>
</tr>
<tr>
<td>Story8</td>
<td>25.92</td>
<td>Top</td>
<td>2.2</td>
<td>52.25</td>
<td>52.30</td>
<td>8.95</td>
<td>53.67</td>
<td>1.75%</td>
<td>61.2</td>
<td>7.53</td>
<td>ok</td>
</tr>
<tr>
<td>Story7</td>
<td>22.86</td>
<td>Top</td>
<td>1.86</td>
<td>43.31</td>
<td>43.35</td>
<td>8.19</td>
<td>49.13</td>
<td>1.61%</td>
<td>61.2</td>
<td>12.07</td>
<td>ok</td>
</tr>
<tr>
<td>Story6</td>
<td>19.8</td>
<td>Top</td>
<td>1.8</td>
<td>35.12</td>
<td>35.16</td>
<td>7.65</td>
<td>45.90</td>
<td>1.50%</td>
<td>61.2</td>
<td>15.30</td>
<td>ok</td>
</tr>
<tr>
<td>Story5</td>
<td>16.74</td>
<td>Top</td>
<td>1.75</td>
<td>27.46</td>
<td>27.51</td>
<td>7.09</td>
<td>42.56</td>
<td>1.39%</td>
<td>61.2</td>
<td>18.64</td>
<td>ok</td>
</tr>
<tr>
<td>Story4</td>
<td>13.68</td>
<td>Top</td>
<td>1.6</td>
<td>20.36</td>
<td>20.42</td>
<td>6.43</td>
<td>38.58</td>
<td>1.26%</td>
<td>61.2</td>
<td>22.62</td>
<td>ok</td>
</tr>
<tr>
<td>Story3</td>
<td>10.62</td>
<td>Top</td>
<td>1.34</td>
<td>13.93</td>
<td>13.99</td>
<td>5.61</td>
<td>33.69</td>
<td>1.10%</td>
<td>61.2</td>
<td>27.51</td>
<td>ok</td>
</tr>
<tr>
<td>Story2</td>
<td>7.56</td>
<td>Top</td>
<td>0.97</td>
<td>8.321</td>
<td>8.38</td>
<td>4.65</td>
<td>27.89</td>
<td>0.91%</td>
<td>61.2</td>
<td>33.31</td>
<td>ok</td>
</tr>
<tr>
<td>Story1</td>
<td>4.5</td>
<td>Top</td>
<td>0.5</td>
<td>3.695</td>
<td>3.73</td>
<td>3.73</td>
<td>22.37</td>
<td>0.50%</td>
<td>90.00</td>
<td>67.63</td>
<td>ok</td>
</tr>
<tr>
<td>Base</td>
<td>0</td>
<td>Top</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00%</td>
<td>61.2</td>
<td>61.20</td>
<td>ok</td>
</tr>
</tbody>
</table>

En el sentido Y las derivas producto de fuerzas horizontales no exceden los límites permitidos.
6.6 Cálculo de efectos ISE en el sentido Y

Tabla 65. Parámetros para cálculo de periodo ISE en el sentido Y, estructura A

<table>
<thead>
<tr>
<th>Parámetros de la estructura</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa equivalente me(t-s2/m)</td>
<td>481.5123</td>
</tr>
<tr>
<td>% masa participante</td>
<td>71.690%</td>
</tr>
<tr>
<td>Período equivalente Te(s)</td>
<td>2.243</td>
</tr>
<tr>
<td>Altura equivalente He(m)</td>
<td>51.57</td>
</tr>
<tr>
<td>Rigidez equivalente Ke(t/m)</td>
<td>3778.405</td>
</tr>
<tr>
<td>Fracción de amortiguamiento de la estructura (%)</td>
<td>5%</td>
</tr>
<tr>
<td>Amortiguamiento de la estructura Ce(t-s/m)</td>
<td>134.883</td>
</tr>
<tr>
<td>Frecuencia circular ωe(rad/s)</td>
<td>2.801</td>
</tr>
<tr>
<td>Altura total Ht=He+D(m)</td>
<td>54.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros de la fundación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base(m)</td>
<td>14.05</td>
</tr>
<tr>
<td>Profundidad(m)</td>
<td>20.4</td>
</tr>
<tr>
<td>Desplante D(m)</td>
<td>3.40</td>
</tr>
<tr>
<td>Radio horizontal Rh(m)</td>
<td>9.55</td>
</tr>
<tr>
<td>Radio de cabeceo Rc(m)</td>
<td>10.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros del suelo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de cortante G (t/m2)</td>
<td>7841.04</td>
</tr>
<tr>
<td>Velocidad equivalente del suelo Vs(m/s)</td>
<td>226.452</td>
</tr>
<tr>
<td>Coeficiente de poisson ν</td>
<td>0.45</td>
</tr>
<tr>
<td>Amortiguamiento del suelo ξs%</td>
<td>5%</td>
</tr>
<tr>
<td>Profundidad del suelo Hs(m)</td>
<td>30</td>
</tr>
<tr>
<td>Periodo del estrato Ts(s)</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Tabla 66. Función de transferencia, sentido Y, edificio A

<table>
<thead>
<tr>
<th>T(t)</th>
<th>W/2 U/Xg</th>
<th>T/Te</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.30</td>
<td>0.015</td>
<td>0.134</td>
</tr>
<tr>
<td>0.60</td>
<td>0.066</td>
<td>0.267</td>
</tr>
<tr>
<td>0.90</td>
<td>0.162</td>
<td>0.401</td>
</tr>
<tr>
<td>1.20</td>
<td>0.332</td>
<td>0.535</td>
</tr>
<tr>
<td>1.50</td>
<td>0.637</td>
<td>0.669</td>
</tr>
<tr>
<td>1.80</td>
<td>1.271</td>
<td>0.802</td>
</tr>
<tr>
<td>2.10</td>
<td>3.097</td>
<td>0.936</td>
</tr>
<tr>
<td>2.243</td>
<td>5.630</td>
<td>1.000</td>
</tr>
<tr>
<td>2.40</td>
<td>10.603</td>
<td>1.070</td>
</tr>
<tr>
<td>2.405</td>
<td>10.606</td>
<td>1.072</td>
</tr>
<tr>
<td>2.70</td>
<td>4.392</td>
<td>1.204</td>
</tr>
<tr>
<td>3.00</td>
<td>2.706</td>
<td>1.337</td>
</tr>
<tr>
<td>3.30</td>
<td>2.094</td>
<td>1.471</td>
</tr>
<tr>
<td>3.60</td>
<td>1.784</td>
<td>1.605</td>
</tr>
<tr>
<td>4.00</td>
<td>1.553</td>
<td>1.783</td>
</tr>
</tbody>
</table>

Figura 41. Función de transferencia, sentido Y, edificio A
El punto máximo corresponde a:

\[
\frac{\dot{U}}{X_s} \text{ máx} = 10.606 \quad \frac{T_i}{T_e} = 1.072
\]

Por lo tanto:

\[
T_{ise} Y = 1.072 \times 2.243 \text{ s} \quad T_{ise} Y = 2.405 \text{ s}
\]

Se calcula el amortiguamiento con el valor máximo de la función:

\[
\xi_{ise} Y = \frac{1}{2(W_e^2 \cdot \frac{U}{\dot{X}g})} \quad \xi_{ise} Y = \frac{1}{2(10.606)} \quad \xi_{ise} Y = 4.714 \%
\]
7. Efectos ISE en estructura A con características de suelo blando, caso hipotético

Se varía la velocidad de onda de corte del estrato equivalente a $V_s= 180$ m/s, esto con el fin de permanecer dentro del espectro para suelos tipo D y poder hacer referencia a los resultados de la estructura empotrada y además es muy posible encontrarse con suelo de estas características en la ciudad de Atacames, zona en estudio.

7.1 Parámetros para estructura A, tipo de suelo D con $V_s=180$ m/s (hipotético)

Tabla 67. Parámetros estructura A, caso hipotético

<table>
<thead>
<tr>
<th>Parámetros de la estructura</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa equivalente $m_e (\text{t-s2/m})$</td>
<td>516.036</td>
</tr>
<tr>
<td>% masa participante</td>
<td>76.83%</td>
</tr>
<tr>
<td>Período equivalente $T_e (s)$</td>
<td>2.873</td>
</tr>
<tr>
<td>Altura equivalente $H_e (m)$</td>
<td>51.57</td>
</tr>
<tr>
<td>Rigidez equivalente $K_e (\text{t/m})$</td>
<td>2468.13</td>
</tr>
<tr>
<td>Fracción de amortiguamiento de la estructura $\xi%$</td>
<td>5%</td>
</tr>
<tr>
<td>Amortiguamiento de la estructura $C_e (\text{t-s/m})$</td>
<td>112.856</td>
</tr>
<tr>
<td>Frecuencia circular $\omega_e (\text{rad/s})$</td>
<td>2.187</td>
</tr>
<tr>
<td>Altura total $H_t = H_e + D (m)$</td>
<td>54.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros de la fundación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base (m)</td>
<td>20.40</td>
</tr>
<tr>
<td>Profundidad (m)</td>
<td>14.05</td>
</tr>
<tr>
<td>Desplante $D (m)$</td>
<td>3.40</td>
</tr>
<tr>
<td>Radio horizontal $R_h (m)$</td>
<td>9.55</td>
</tr>
<tr>
<td>Radio de cabeceo $R_c (m)$</td>
<td>8.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros del suelo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de cortante $G (\text{t/m2})$</td>
<td>4957.20</td>
</tr>
<tr>
<td>Velocidad equivalente del suelo $V_s (\text{m/s})$</td>
<td>180</td>
</tr>
<tr>
<td>Coeficiente de poisson v</td>
<td>0.45</td>
</tr>
<tr>
<td>Amortiguamiento del suelo $\xi_s %$</td>
<td>5%</td>
</tr>
<tr>
<td>Profundidad del suelo $H_s (m)$</td>
<td>30.00</td>
</tr>
<tr>
<td>Periodo del estrato $T_s (s)$</td>
<td>0.67</td>
</tr>
</tbody>
</table>

7.2 Análisis de efectos ISE

Tabla 68. Función de transferencia edificio A, suelo con $V_s=180m/s$

<table>
<thead>
<tr>
<th>$T_i (s)$</th>
<th>$W_{e2} U/X_g$</th>
<th>T_i/T_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.30</td>
<td>0.008</td>
<td>0.104</td>
</tr>
<tr>
<td>0.60</td>
<td>0.036</td>
<td>0.209</td>
</tr>
<tr>
<td>0.90</td>
<td>0.085</td>
<td>0.313</td>
</tr>
<tr>
<td>1.20</td>
<td>0.162</td>
<td>0.418</td>
</tr>
<tr>
<td>1.80</td>
<td>0.461</td>
<td>0.627</td>
</tr>
<tr>
<td>2.10</td>
<td>0.754</td>
<td>0.731</td>
</tr>
<tr>
<td>2.70</td>
<td>2.408</td>
<td>0.940</td>
</tr>
<tr>
<td>2.873</td>
<td>3.843</td>
<td>1.00</td>
</tr>
<tr>
<td>3.200</td>
<td>10.894</td>
<td>1.114</td>
</tr>
<tr>
<td>3.24</td>
<td>10.540</td>
<td>1.128</td>
</tr>
<tr>
<td>3.60</td>
<td>4.380</td>
<td>1.253</td>
</tr>
<tr>
<td>3.70</td>
<td>3.74</td>
<td>1.29</td>
</tr>
<tr>
<td>3.90</td>
<td>2.956</td>
<td>1.357</td>
</tr>
</tbody>
</table>

Figura 42. Función de transferencia edificio A, suelo con $V_s=180m/s$
Tabla 69. Coeficientes para cálculo de Cortante Basal y FHEX, suelo V_s=180 m/s

<table>
<thead>
<tr>
<th>Coeficientes para cálculo de Cortante Basal y FHEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{ISE}= 3.200</td>
</tr>
<tr>
<td>E_{ISE}= 4.6%</td>
</tr>
<tr>
<td>I= 1.00</td>
</tr>
<tr>
<td>S_{a (T_{ISE})}= 0.331 g</td>
</tr>
<tr>
<td>S_{a (T_{ISE})}*= 0.34 g</td>
</tr>
<tr>
<td>R= 8.00</td>
</tr>
<tr>
<td>(\phi_s= 1.00)</td>
</tr>
<tr>
<td>(\phi_c= 1.00)</td>
</tr>
<tr>
<td>C= 0.04</td>
</tr>
<tr>
<td>K= 2</td>
</tr>
<tr>
<td>V= 2564.547 KN</td>
</tr>
</tbody>
</table>

*Sa considerando amortiguamiento ISE

7.3 Desplazamientos máximos y derivas

Tabla 70. Control de derivas, aplicando las fuerzas horizontales en el sentido X con efectos ISE, para suelo hipotético V_s=180m/s, edificio A

<table>
<thead>
<tr>
<th>TABLE: Story Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Story22</td>
</tr>
<tr>
<td>Story21</td>
</tr>
<tr>
<td>Story20</td>
</tr>
<tr>
<td>Story19</td>
</tr>
<tr>
<td>Story18</td>
</tr>
<tr>
<td>Story17</td>
</tr>
<tr>
<td>Story16</td>
</tr>
<tr>
<td>Story15</td>
</tr>
<tr>
<td>Story14</td>
</tr>
<tr>
<td>Story13</td>
</tr>
<tr>
<td>Story12</td>
</tr>
<tr>
<td>Story11</td>
</tr>
<tr>
<td>Story10</td>
</tr>
<tr>
<td>Story9</td>
</tr>
<tr>
<td>Story8</td>
</tr>
<tr>
<td>Story7</td>
</tr>
<tr>
<td>Story6</td>
</tr>
<tr>
<td>Story5</td>
</tr>
<tr>
<td>Story4</td>
</tr>
<tr>
<td>Story3</td>
</tr>
<tr>
<td>Story2</td>
</tr>
<tr>
<td>Story1</td>
</tr>
<tr>
<td>Base</td>
</tr>
</tbody>
</table>

Esta vez, con un suelo más blando de tipo D, los efectos sobre el período de la estructura debido a la interacción suelo estructura, han conseguido disminuir los desplazamientos horizontales y con esto se cumplen los requisitos de la norma.
7.3.1 Reducción de los desplazamientos horizontales máximos por efectos ISE en el sentido X suelo hipotético.

Tabla 71. Reducción de desplazamientos por efecto ISE en estructura A, parámetros de suelo más blando

<table>
<thead>
<tr>
<th>ΔM (mm)</th>
<th>ΔM (ISE) (mm)</th>
<th>% de reducción de desplazamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.33</td>
<td>24.64</td>
<td>14.98%</td>
</tr>
<tr>
<td>31.16</td>
<td>27.1</td>
<td>14.98%</td>
</tr>
<tr>
<td>29.15</td>
<td>25.35</td>
<td>14.99%</td>
</tr>
<tr>
<td>40.09</td>
<td>34.87</td>
<td>14.97%</td>
</tr>
<tr>
<td>44.86</td>
<td>39</td>
<td>15.03%</td>
</tr>
<tr>
<td>49.52</td>
<td>43.06</td>
<td>15.00%</td>
</tr>
<tr>
<td>53.88</td>
<td>46.86</td>
<td>14.98%</td>
</tr>
<tr>
<td>57.84</td>
<td>50.29</td>
<td>15.01%</td>
</tr>
<tr>
<td>61.31</td>
<td>53.31</td>
<td>15.01%</td>
</tr>
<tr>
<td>64.26</td>
<td>55.88</td>
<td>15.00%</td>
</tr>
<tr>
<td>66.64</td>
<td>57.95</td>
<td>15.00%</td>
</tr>
<tr>
<td>68.47</td>
<td>59.54</td>
<td>15.00%</td>
</tr>
<tr>
<td>69.67</td>
<td>60.58</td>
<td>15.00%</td>
</tr>
<tr>
<td>70.24</td>
<td>61.07</td>
<td>15.02%</td>
</tr>
<tr>
<td>65.88</td>
<td>57.29</td>
<td>14.99%</td>
</tr>
<tr>
<td>65.16</td>
<td>56.66</td>
<td>15.00%</td>
</tr>
<tr>
<td>64.42</td>
<td>56.02</td>
<td>14.99%</td>
</tr>
<tr>
<td>62.82</td>
<td>54.63</td>
<td>14.99%</td>
</tr>
<tr>
<td>60.02</td>
<td>52.2</td>
<td>14.98%</td>
</tr>
<tr>
<td>55.18</td>
<td>47.98</td>
<td>15.01%</td>
</tr>
<tr>
<td>47.19</td>
<td>41.03</td>
<td>15.01%</td>
</tr>
<tr>
<td>36.73</td>
<td>31.94</td>
<td>15.00%</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
8. Ejemplo de edificación B

8.1 EDIFICIO B

8.1.1 Descripción, geometría y ubicación del proyecto

El proyecto “Edificio B” consiste en el análisis y diseño de un edificio para huéspedes, consta de una torre, comprenden 13 pisos y un subsuelo que se formará del diseño de la cimentación tipo cajón.

Está ubicado en Ecuador, en la provincia de Guayas, Ciudad de Guayaquil, la implantación es sobre un suelo de tipo E, con Vs=120 m/s

Figura 44. Edificio Malena, Edificio B

Figura 45. Plantas tipo de edificio B
Figura 46. Planta Tipo C

La planta tipo A únicamente corresponde al nivel 3.24m las plantas superiores son similares y del tipo B, son 12 pisos de 3.24m y la cubierta de escaleras y ascensor de tipo C.

Tabla 72. Distribución de plantas en altura edificio A

<table>
<thead>
<tr>
<th>Piso</th>
<th>Altura de entrepiso (m)</th>
<th>Planta Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.24</td>
<td>A</td>
</tr>
<tr>
<td>2 al 12</td>
<td>3.24</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>3.24</td>
<td>C</td>
</tr>
<tr>
<td>TOTAL</td>
<td>42.12</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 73. Secciones edificio tipo B

<table>
<thead>
<tr>
<th>SECCIONES COLUMNAS Y MUROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJE</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>D1, D2, A2</td>
</tr>
<tr>
<td>A1, B1, B2, C1; C2</td>
</tr>
<tr>
<td>Ascensor</td>
</tr>
</tbody>
</table>
8.1.2 Cálculo de las propiedades del suelo edificio B

Teniendo como dato preliminar un suelo de tipo E con \(V_s = 120 \) m/s que va desde el nivel 0 hasta una profundidad de 30m. se puede calcular el módulo de cortante \(G \) con la ecuación 1 y el período del estrato con la ecuación 25, sabiendo que el peso específico es de 1.5 t/m\(^3\)
8.1.3 Cálculo de las propiedades de la estructura con base empotrada del edificio B

8.1.3.1 Modelación del edificio
8.1.3.2 Resultados del análisis modal de la estructura B empotrada.

Tabla 75. Masa de la estructura B

<table>
<thead>
<tr>
<th>Group</th>
<th>Self Mass</th>
<th>Self Weight</th>
<th>Mass X</th>
<th>Mass Y</th>
<th>Mass Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kN</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>All</td>
<td>2058622.3</td>
<td>0</td>
<td>2861414.06</td>
<td>2861414.06</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabla 76. Período y participación modal de estructura B

<table>
<thead>
<tr>
<th>Case</th>
<th>Mode</th>
<th>Period</th>
<th>UX</th>
<th>UY</th>
<th>UZ</th>
<th>Sum UX</th>
<th>Sum UY</th>
<th>Sum UZ</th>
<th>RX</th>
<th>RY</th>
<th>RZ</th>
<th>Sum RX</th>
<th>Sum RY</th>
<th>Sum RZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modal 1</td>
<td>1.735</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.288</td>
<td>0.003</td>
<td>0.002</td>
<td>0.288</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modal 2</td>
<td>1.560</td>
<td>0.730</td>
<td>0.000</td>
<td>0.715</td>
<td>0.735</td>
<td>0.000</td>
<td>0.271</td>
<td>0.002</td>
<td>0.001</td>
<td>0.272</td>
<td>0.290</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modal 3</td>
<td>1.379</td>
<td>0.000</td>
<td>0.000</td>
<td>0.720</td>
<td>0.736</td>
<td>0.000</td>
<td>0.001</td>
<td>0.758</td>
<td>0.273</td>
<td>0.290</td>
<td>0.762</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modal 4</td>
<td>0.483</td>
<td>0.128</td>
<td>0.002</td>
<td>0.000</td>
<td>0.848</td>
<td>0.738</td>
<td>0.000</td>
<td>0.353</td>
<td>0.000</td>
<td>0.280</td>
<td>0.643</td>
<td>0.762</td>
<td></td>
</tr>
</tbody>
</table>

8.1.4 Parámetros de la fundación

8.1.4.1 Geometría de la fundación tipo cajón edificio B

Figura 51. Cimentación edificio B

8.1.4.2 Radio Horizontal y Radio de cabeceo en el sentido X

Tabla 77. Radio horizontal y radio de cabeceo fundación edificio B

<table>
<thead>
<tr>
<th>Parámetros de la fundación</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base(m)</td>
<td>21.95</td>
</tr>
<tr>
<td>Profundidad(m)</td>
<td>9.05</td>
</tr>
<tr>
<td>Desplante D(m)</td>
<td>4.86</td>
</tr>
<tr>
<td>Radio horizontal Rh(m)</td>
<td>7.95</td>
</tr>
<tr>
<td>Radio de cabeceo Rc(m)</td>
<td>6.45</td>
</tr>
</tbody>
</table>
8.1.5 Criterios de diseño para edificación B.

8.1.5.1 Espectro elástico de diseño para la ciudad de Guayaquil para suelo tipo E.

η: Razón entre la aceleración espectral S_a a período estructural $T = 0.1 \text{ s}$ y el PGA para el periodo de retorno seleccionado. Su valor depende de la región del Ecuador.

<table>
<thead>
<tr>
<th>Región del Ecuador</th>
<th>η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincias de la costa excepto Esmeraldas</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Z: Aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad g.

<table>
<thead>
<tr>
<th>Factor de Zona sísmica</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0.4</td>
</tr>
</tbody>
</table>

F_a: Coeficiente de amplificación de suelo en la zona de período corto.

F_d: Amplificación de las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca.

F_s: Comportamiento no lineal de los suelos.

r: Factor usado en el espectro de diseño elástico, cuyos valores dependen de la ubicación geográfica del proyecto.

$r = 1$ para todos los suelos, con excepción del suelo tipo E.

$r = 1.5$ para tipo de suelo E.

<table>
<thead>
<tr>
<th>Tipo de perfil del subsuelo</th>
<th>F_a</th>
<th>F_d</th>
<th>F_s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td>1.6</td>
<td>1.9</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Tabla 78. Espectro elástico de diseño suelo tipo E, zona 5.

<table>
<thead>
<tr>
<th>T (s)</th>
<th>S_a (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.720</td>
</tr>
<tr>
<td>1.672</td>
<td>0.720</td>
</tr>
<tr>
<td>0.800</td>
<td>0.720</td>
</tr>
<tr>
<td>1.000</td>
<td>0.720</td>
</tr>
<tr>
<td>1.500</td>
<td>0.720</td>
</tr>
<tr>
<td>2.000</td>
<td>0.550</td>
</tr>
<tr>
<td>2.500</td>
<td>0.394</td>
</tr>
<tr>
<td>3.000</td>
<td>0.300</td>
</tr>
<tr>
<td>3.500</td>
<td>0.238</td>
</tr>
<tr>
<td>4.000</td>
<td>0.195</td>
</tr>
</tbody>
</table>

Figura 52. Espectro elástico de diseño para suelo tipo E zona V.
8.1.5.2 Cortante Basal calculado para estructura empotrada sentido X

Tabla 79. Coeficientes para cálculo de cortante basal y FHEX estructura B

| Coeficientes para cálculo de Cortante Basal y FHE |
|---------------------------------|----------------|
| T_a = 1.735 s |
| I_X = 1.00 |
| $S_aT(X)$ = 0.681 g |
| R_0 = 8.00 |
| ϕ_{p0} = 1.00 |
| ϕ_{l0} = 1.00 |
| C_0 = 0.085 |
| K_0 = 1.618 |
| V_c = 241.55 t |

Figura 53. S_a para T_e estructura B sentido X

8.1.5.3 Derivas y desplazamientos máximos para estructura B con base empotrada en el sentido X.

Figura 54. Distribución de cortante para sentido X, estructura B

Figura 55. Desplazamientos máximos para FHEX, estructura B
Tabla 80. Control de derivas, aplicando las fuerzas horizontales en el sentido X sin considerar efectos ISE, edificio B

<table>
<thead>
<tr>
<th>Story</th>
<th>Elevation</th>
<th>Location</th>
<th>X-Dir</th>
<th>Y-Dir</th>
<th>Δ</th>
<th>ΔE</th>
<th>ΔM</th>
<th>%</th>
<th>ΔM máx</th>
<th>ΔM-ΔM máx</th>
<th>ΔM<ΔM máx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Story13</td>
<td>42.12</td>
<td>Top</td>
<td>139.46</td>
<td>5.10</td>
<td>3.68</td>
<td>22.08</td>
<td>0.68%</td>
<td>64.8</td>
<td>42.72</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Story12</td>
<td>38.88</td>
<td>Top</td>
<td>135.77</td>
<td>5.33</td>
<td>9.80</td>
<td>58.78</td>
<td>1.81%</td>
<td>64.8</td>
<td>6.02</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Story11</td>
<td>35.64</td>
<td>Top</td>
<td>125.99</td>
<td>4.69</td>
<td>126.08</td>
<td>10.94</td>
<td>2.03%</td>
<td>64.8</td>
<td>-0.82</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story10</td>
<td>32.4</td>
<td>Top</td>
<td>115.06</td>
<td>4.17</td>
<td>115.14</td>
<td>11.99</td>
<td>2.22%</td>
<td>64.8</td>
<td>-7.17</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story9</td>
<td>29.16</td>
<td>Top</td>
<td>103.06</td>
<td>3.99</td>
<td>103.15</td>
<td>12.98</td>
<td>2.40%</td>
<td>64.8</td>
<td>-13.07</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story8</td>
<td>25.92</td>
<td>Top</td>
<td>90.08</td>
<td>3.56</td>
<td>90.17</td>
<td>11.92</td>
<td>2.56%</td>
<td>64.8</td>
<td>-18.17</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story7</td>
<td>22.68</td>
<td>Top</td>
<td>76.25</td>
<td>3.63</td>
<td>76.34</td>
<td>14.37</td>
<td>2.66%</td>
<td>64.8</td>
<td>-21.43</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story6</td>
<td>19.44</td>
<td>Top</td>
<td>61.88</td>
<td>3.21</td>
<td>61.97</td>
<td>14.42</td>
<td>2.67%</td>
<td>64.8</td>
<td>-21.75</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story5</td>
<td>16.2</td>
<td>Top</td>
<td>47.46</td>
<td>2.80</td>
<td>47.55</td>
<td>13.39</td>
<td>2.48%</td>
<td>64.8</td>
<td>-15.56</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story4</td>
<td>12.96</td>
<td>Top</td>
<td>34.07</td>
<td>2.32</td>
<td>34.15</td>
<td>11.91</td>
<td>2.21%</td>
<td>64.8</td>
<td>-6.66</td>
<td>no cumple</td>
<td></td>
</tr>
<tr>
<td>Story3</td>
<td>9.72</td>
<td>Top</td>
<td>22.17</td>
<td>1.78</td>
<td>22.24</td>
<td>10.53</td>
<td>1.95%</td>
<td>64.8</td>
<td>1.61</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Story2</td>
<td>6.48</td>
<td>Top</td>
<td>11.65</td>
<td>1.14</td>
<td>11.71</td>
<td>8.17</td>
<td>1.51%</td>
<td>64.8</td>
<td>15.81</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Story1</td>
<td>3.24</td>
<td>Top</td>
<td>3.53</td>
<td>0.30</td>
<td>3.55</td>
<td>3.55</td>
<td>0.66%</td>
<td>64.8</td>
<td>43.52</td>
<td>ok</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>0</td>
<td>Top</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64.8</td>
<td>64.80</td>
<td>ok</td>
<td></td>
</tr>
</tbody>
</table>

8.1.6 Análisis de efectos ISE en el sentido X para edificación B

Tabla 81. Parámetros para cálculo de efectos ISE estructura B, sentido X

| Parámetros de la estructura | | |
|-----------------------------|-----------------------------|
| Masa equivalente \(m(t-s^2/m) \) | 206.8619 |
| % masa participante | 70.920% |
| Período equivalente \(Te(s) \) | 1.735 |
| Altura equivalente \(He(m) \) | 31.59 |
| Rigidez equivalente \(Ke(t/m) \) | 2712.946 |
| Fracción de amortiguamiento de la estructura \(ξ% \) | 5% |
| Amortiguamiento de la estructura \(Ce(t-s/m) \) | 74.914 |
| Frecuencia circular \(ωe(rad/s) \) | 3.621 |
| Altura total \(Ht=He+D(m) \) | 36.45 |

<table>
<thead>
<tr>
<th>Parámetros de la fundación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base(m)</td>
</tr>
<tr>
<td>Profundidad(m)</td>
</tr>
<tr>
<td>Desplante (D(m))</td>
</tr>
<tr>
<td>Radio horizontal (Rh(m))</td>
</tr>
<tr>
<td>Radio de cabeceo (Rc(m))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parámetros del suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de cortante (G (t/m2))</td>
</tr>
<tr>
<td>Velocidad equivalente del suelo (Vs(m/s))</td>
</tr>
<tr>
<td>Coeficiente de poisson (ν)</td>
</tr>
<tr>
<td>Amortiguamiento del suelo (ξ%)</td>
</tr>
<tr>
<td>Profundidad del suelo (Hs(m))</td>
</tr>
<tr>
<td>Periodo del estrato (Ts(s))</td>
</tr>
</tbody>
</table>
Tabla 82. Función de transferencia edificio B, sentido X

<table>
<thead>
<tr>
<th>T(s)</th>
<th>W_e^2 · U/ẍ_g</th>
<th>T_i/T_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.30</td>
<td>0.018</td>
<td>0.173</td>
</tr>
<tr>
<td>0.60</td>
<td>0.083</td>
<td>0.346</td>
</tr>
<tr>
<td>0.90</td>
<td>0.213</td>
<td>0.519</td>
</tr>
<tr>
<td>1.20</td>
<td>0.458</td>
<td>0.692</td>
</tr>
<tr>
<td>1.735</td>
<td>1.924</td>
<td>1.000</td>
</tr>
<tr>
<td>2.00</td>
<td>6.156</td>
<td>1.153</td>
</tr>
<tr>
<td>2.130</td>
<td>11.372</td>
<td>1.228</td>
</tr>
<tr>
<td>2.30</td>
<td>6.014</td>
<td>1.33</td>
</tr>
<tr>
<td>2.60</td>
<td>2.945</td>
<td>1.499</td>
</tr>
<tr>
<td>2.90</td>
<td>2.137</td>
<td>1.671</td>
</tr>
<tr>
<td>3.20</td>
<td>1.777</td>
<td>1.844</td>
</tr>
<tr>
<td>3.50</td>
<td>1.576</td>
<td>2.02</td>
</tr>
<tr>
<td>3.80</td>
<td>1.449</td>
<td>2.190</td>
</tr>
<tr>
<td>4.00</td>
<td>1.389</td>
<td>2.305</td>
</tr>
</tbody>
</table>

Figura 56. Función de transferencia, edificio B, sentido X

El punto máximo corresponde a:

\[
\frac{\ddot{U}}{X_s} \text{ máx} = 11.372 \quad \frac{T_i}{T_e} = 1.228
\]

Por lo tanto:

\[T_{ise}X = 1.228 \cdot 1.735 \text{ s} \quad T_{ise}X = 2.130 \text{ s} \]

Se calcula el amortiguamiento con el valor máximo de la función:

\[
\xi_{ise}X = \frac{1}{2(W_e^2 \cdot U/\ddot{x}_g)} \quad \xi_{ise}X = \frac{1}{2(11.372)} \quad \xi_{ise}X = 4.40 \%
\]
8.1.7 Cortante Basal calculado para estructura con efectos ISE sentido X.

Tabla 83. Coeficientes para cálculo de cortante basal y FHEX con ISE estructura B

<table>
<thead>
<tr>
<th>Coeficientes para cálculo de Cortante Basal y FHE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta (ISE)</td>
<td>2.130 s</td>
</tr>
<tr>
<td>ξ_{ISE}</td>
<td>4.4%</td>
</tr>
<tr>
<td>I</td>
<td>1.00</td>
</tr>
<tr>
<td>SaTa(ISE)</td>
<td>0.501 g</td>
</tr>
<tr>
<td>SaTa(ISE)*</td>
<td>0.527 g</td>
</tr>
<tr>
<td>R</td>
<td>8.00</td>
</tr>
<tr>
<td>ϕ_p</td>
<td>1.00</td>
</tr>
<tr>
<td>ϕ_e</td>
<td>1.00</td>
</tr>
<tr>
<td>C</td>
<td>0.066</td>
</tr>
<tr>
<td>K</td>
<td>1.815</td>
</tr>
<tr>
<td>V</td>
<td>179.03 t</td>
</tr>
</tbody>
</table>

Figura 57. Sa para Tise estructura B, sentido X

Figura 58. Distribución de cortante para sentido X, estructura B con ISE

8.1.8 Derivas y desplazamientos máximos para edificio B con efectos ISE en el sentido X.

Figura 59. Desplazamientos máximos para FHEX con ISE, estructura B
Tabla 84. Control de derivas, aplicando las fuerzas horizontales en el sentido X con efectos ISE, edificio B

<table>
<thead>
<tr>
<th>Story</th>
<th>Elevation</th>
<th>Location</th>
<th>X-Dir</th>
<th>Y-Dir</th>
<th>Δ</th>
<th>ΔE</th>
<th>ΔM</th>
<th>%</th>
<th>ΔM máx</th>
<th>ΔM-ΔM máx</th>
<th>ΔM<ΔM máx</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Story13</td>
<td>42.12</td>
<td>Top</td>
<td>106.086</td>
<td>3.918</td>
<td>106.16</td>
<td>2.84</td>
<td>17.02</td>
<td>0.53%</td>
<td>64.8</td>
<td>47.78</td>
<td>ok</td>
</tr>
<tr>
<td>Story12</td>
<td>38.88</td>
<td>Top</td>
<td>103.241</td>
<td>4.096</td>
<td>103.32</td>
<td>7.55</td>
<td>45.30</td>
<td>1.40%</td>
<td>64.8</td>
<td>19.50</td>
<td>ok</td>
</tr>
<tr>
<td>Story11</td>
<td>35.64</td>
<td>Top</td>
<td>95.704</td>
<td>3.6</td>
<td>95.77</td>
<td>8.42</td>
<td>50.52</td>
<td>1.56%</td>
<td>64.8</td>
<td>14.28</td>
<td>ok</td>
</tr>
<tr>
<td>Story10</td>
<td>32.4</td>
<td>Top</td>
<td>87.293</td>
<td>3.19</td>
<td>87.35</td>
<td>9.21</td>
<td>55.27</td>
<td>1.71%</td>
<td>64.6</td>
<td>9.53</td>
<td>ok</td>
</tr>
<tr>
<td>Story9</td>
<td>29.16</td>
<td>Top</td>
<td>78.078</td>
<td>3.086</td>
<td>78.14</td>
<td>9.94</td>
<td>59.63</td>
<td>1.84%</td>
<td>64.6</td>
<td>5.17</td>
<td>ok</td>
</tr>
<tr>
<td>Story8</td>
<td>25.92</td>
<td>Top</td>
<td>68.137</td>
<td>2.931</td>
<td>68.20</td>
<td>10.75</td>
<td>64.48</td>
<td>1.99%</td>
<td>64.6</td>
<td>0.32</td>
<td>ok</td>
</tr>
<tr>
<td>Story7</td>
<td>22.68</td>
<td>Top</td>
<td>57.39</td>
<td>2.7</td>
<td>57.45</td>
<td>10.74</td>
<td>64.43</td>
<td>1.99%</td>
<td>64.8</td>
<td>0.37</td>
<td>ok</td>
</tr>
<tr>
<td>Story6</td>
<td>19.44</td>
<td>Top</td>
<td>46.651</td>
<td>2.434</td>
<td>46.71</td>
<td>10.79</td>
<td>64.75</td>
<td>2.00%</td>
<td>64.8</td>
<td>0.05</td>
<td>ok</td>
</tr>
<tr>
<td>Story5</td>
<td>16.2</td>
<td>Top</td>
<td>35.86</td>
<td>2.118</td>
<td>35.92</td>
<td>10.38</td>
<td>62.26</td>
<td>1.92%</td>
<td>64.6</td>
<td>2.54</td>
<td>ok</td>
</tr>
<tr>
<td>Story4</td>
<td>12.96</td>
<td>Top</td>
<td>25.486</td>
<td>1.754</td>
<td>25.55</td>
<td>8.94</td>
<td>53.63</td>
<td>1.66%</td>
<td>64.8</td>
<td>11.17</td>
<td>ok</td>
</tr>
<tr>
<td>Story3</td>
<td>9.72</td>
<td>Top</td>
<td>16.554</td>
<td>1.343</td>
<td>16.61</td>
<td>7.88</td>
<td>47.27</td>
<td>1.46%</td>
<td>64.8</td>
<td>17.53</td>
<td>ok</td>
</tr>
<tr>
<td>Story2</td>
<td>6.48</td>
<td>Top</td>
<td>8.688</td>
<td>0.859</td>
<td>8.73</td>
<td>6.09</td>
<td>36.54</td>
<td>1.13%</td>
<td>64.8</td>
<td>28.26</td>
<td>ok</td>
</tr>
<tr>
<td>Story1</td>
<td>3.24</td>
<td>Top</td>
<td>2.63</td>
<td>0.226</td>
<td>2.64</td>
<td>2.64</td>
<td>15.84</td>
<td>0.49%</td>
<td>64.8</td>
<td>48.96</td>
<td>ok</td>
</tr>
<tr>
<td>Base</td>
<td>0</td>
<td>Top</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00%</td>
<td>64.8</td>
<td>64.80</td>
<td>ok</td>
</tr>
</tbody>
</table>

En este caso y para el sentido X se consigue una reducción de los desplazamientos máximos y los valores resultan dentro de lo señalado por la norma.

El ejemplo practicado con la edificación B, en un suelo de tipo E, suelo muy blando, supuso un aumento del 22% en el periodo cuando se consideran los efectos ISE

8.2 Reducción de los desplazamientos horizontales máximos por efectos ISE en el sentido X edificio B

Tabla 85. Reducción de desplazamientos por efecto ISE en edificio B sentido X

<table>
<thead>
<tr>
<th>ΔM (mm)</th>
<th>ΔM (ISE) (mm)</th>
<th>% de reducción de desplazamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.08</td>
<td>17.02</td>
<td>29.7%</td>
</tr>
<tr>
<td>58.78</td>
<td>45.3</td>
<td>29.8%</td>
</tr>
<tr>
<td>65.62</td>
<td>50.52</td>
<td>29.9%</td>
</tr>
<tr>
<td>71.97</td>
<td>55.27</td>
<td>30.2%</td>
</tr>
<tr>
<td>77.87</td>
<td>59.63</td>
<td>30.6%</td>
</tr>
<tr>
<td>82.97</td>
<td>64.48</td>
<td>28.7%</td>
</tr>
<tr>
<td>86.23</td>
<td>64.43</td>
<td>33.8%</td>
</tr>
<tr>
<td>86.55</td>
<td>64.75</td>
<td>33.7%</td>
</tr>
<tr>
<td>80.36</td>
<td>62.26</td>
<td>29.1%</td>
</tr>
<tr>
<td>71.46</td>
<td>53.63</td>
<td>33.2%</td>
</tr>
<tr>
<td>63.19</td>
<td>47.27</td>
<td>33.7%</td>
</tr>
<tr>
<td>48.99</td>
<td>36.54</td>
<td>34.1%</td>
</tr>
<tr>
<td>21.28</td>
<td>15.84</td>
<td>34.3%</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
9. Valores paramétricos

9.1 Valores paramétricos edificio A

a) Relación de masas

\[R_M = \frac{m_c}{m_e} = \frac{36.47}{291.683} = 0.054 \]

(36)

b) Relación de inercias

\[R_I = \frac{J_c}{J_e} = \frac{3.40^3}{68.76^3} = 0.00012 \]

(37)

c) Densidad relativa

\[D_R = \frac{\rho_e}{\rho_s} = \frac{0.22 T^3}{1.53 T^3} = 0.14 \]

(38)

d) Profundidad relativa

\[P_R = \frac{H_s}{R_h} = \frac{30.00 m}{9.55 m} = 3.14 \]

(39)

e) Profundidad de desplante

\[P_D = \frac{D}{R_h} = \frac{3.40 m}{9.55 m} = 0.36 \]

(40)

f) Relación de esbeltez

\[R_E = \frac{H_e}{R_h} = \frac{51.57 m}{9.55 m} = 5.40 \]

(41)

g) Rigidez relativa

\[R_R = \frac{H_e / T_e}{H_s / T_s} = \frac{51.57 m / 2.873 s}{30.00 m / 0.53 s} = 0.317 \]

Tomando el caso práctico según 5.1.2

\[R_R = \frac{H_e / T_e}{H_s / T_s} = \frac{51.57 m / 2.873 s}{30.00 m / 0.67 s} = 0.40 \]

(42) Para caso hipotético según 7.1

9.2 Valores paramétricos edificio B (relevantes)

a) Profundidad relativa

\[P_R = \frac{H_s}{R_h} = \frac{30.00 m}{7.95 m} = 3.77 \]

(39)
b) Profundidad de desplante

\[P_D = \frac{D}{R_h} = \frac{4.86 \text{ m}}{7.95 \text{ m}} = 0.61 \] \hspace{1cm} (40)

c) Relación de esbeltez

\[R_E = \frac{H_e}{R_h} = \frac{31.59 \text{ m}}{7.95 \text{ m}} = 3.973 \] \hspace{1cm} (41)

d) Rigidez relativa

\[R_R = \frac{H_e/T_e}{H_s/T_s} = \frac{31.59 \text{ m}/1.735 s}{30.00 \text{ m}/1.000 s} = 0.607 \] \hspace{1cm} (42)

9.3 Relación entre Rigidez relativa y variación del T_{ISE}

Se calculan los valores de incremento del período en base a una disminución de la rigidez del suelo para ejemplificar la importancia que adquiere incluir efectos ISE en sitios de suelos más blandos (con relación a la del ejemplo real.)

El cálculo del T_{ISE} y \(\xi_{ISE} \) de la tabla a continuación se lo realizó paso a paso en el capítulo 5.1.5, se prioriza el cálculo de la rigidez relativa por que de aquí se sabrá si tiene alguna ventaja para el diseñador incluir los efectos ISE o si resultan despreciables.

Tabla 86. Relación de Rigidez vs % aumento Te.

Altura equív. He (m)	Período equivalente estructura Te(s)	Profundidad del suelo Hs(m)	\(\rho \) (t.s²/m⁴)	Velocidad equiv. del suelo Vs(m/s)	Módulo de cortante G (t/m²)	Período del estrato Ts(s)	Rigidez relativa T_{ise}	Tise/Te	% aumento Te	\(\xi_{ISE} \)	\(\xi_{ISE}/\xi \) (\(\xi = 5\% \))	% disminu \(\xi \)	
51.57	2.873	30.00	0.153	226.452	7841.044	0.53	0.317	3.085	1.074	7.38%	4.70%	94.00%	6.0%
51.57	2.873	30.00	0.153	200.00	6120.00	0.60	0.359	3.140	1.093	9.29%	4.65%	93.00%	7.0%
51.57	2.873	30.00	0.153	190.00	5523.30	0.63	0.378	3.170	1.103	10.34%	4.62%	92.40%	7.6%
51.57	2.873	30.00	0.153	180.00	4957.20	0.67	0.399	3.200	1.114	11.38%	4.59%	91.80%	8.2%
51.57	2.873	30.00	0.153	170.00	4421.70	0.71	0.422	3.240	1.128	12.77%	4.56%	91.20%	8.8%
51.57	2.873	30.00	0.153	160.00	3916.80	0.75	0.449	3.280	1.142	14.17%	4.53%	90.60%	9.4%
51.57	2.873	30.00	0.153	150.00	3442.50	0.80	0.479	3.335	1.161	16.08%	4.49%	89.80%	10.2%
51.57	2.873	30.00	0.153	140.00	2998.80	0.86	0.513	3.395	1.182	18.17%	4.45%	89.00%	11.0%
51.57	2.873	30.00	0.153	130.00	2585.70	0.92	0.552	3.470	1.208	20.78%	4.41%	88.20%	11.8%
51.57	2.873	30.00	0.153	120.00	2203.20	1.00	0.598	3.565	1.241	24.09%	4.37%	87.40%	12.6%
51.57	2.873	30.00	0.153	110.00	1851.30	1.09	0.653	3.685	1.283	28.26%	4.33%	86.60%	13.4%
Figura 60. Rigidez relativa vs. % Aumento Te (relación de esbeltez $R_E=5.40$)

*Señala la rigidez relativa del problema planteado y el porcentaje de incremento del periodo de la estructura cuando se incluyen efectos ISE.

Para diferentes valores de rigidez relativa, producidos por la disminución de la velocidad de onda de corte del suelo, se puede observar que, en suelos menos rígidos es mayor el aumento del período, a la vez que se incrementa el valor de rigidez relativa.

Figura 61. Rigidez relativa vs. % disminución ξ_e (relación de esbeltez $R_E=5.40$)
9.3 Número de pisos de estructuras que se ubicarían en la curva descendente del espectro elástico de diseño.

El período T_c en el espectro elástico de diseño señala el punto de inflexión de la curva, es desde ahí que un aumento de período debido a los efectos ISE derivaría en una disminución en la aceleración, generando un valor de cortante basal menor y posteriormente la disminución en los desplazamientos máximos; es por esto que a continuación, utilizando los valores de T_c para suelos tipo D y E para las principales ciudades del país se ha determinado un número aproximado de pisos a partir de los cuales se podría lograr una reducción de la aceleración y posterior reducción de las fuerzas horizontales a aplicarse para el análisis.

![Figura 62. T_c, Período que limita la zona plana del espectro.](image)

Tabla 87. Número de pisos mínimo aproximado que se ubican en la zona descendente del espectro, en suelos blandos, ciudades importantes.

<table>
<thead>
<tr>
<th>Principales Ciudades del Ecuador</th>
<th>Región del Ecuador</th>
<th>Zona Sísmica</th>
<th>Tipo de perfil de subsuelo</th>
<th>T_c (s)</th>
<th>H_a (m)</th>
<th>Número de pisos aproximado para entrepisos de (h=2.70m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guayaquil</td>
<td>Provincias de la costa excepto Esmeraldas</td>
<td>V</td>
<td>D</td>
<td>0.698</td>
<td>16.83</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1.672</td>
<td>44.43</td>
<td>16</td>
</tr>
<tr>
<td>Quito</td>
<td>Provincias de la Sierra, Esmeraldas y Galápagos</td>
<td>V</td>
<td>D</td>
<td>0.698</td>
<td>16.83</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1.672</td>
<td>44.43</td>
<td>16</td>
</tr>
<tr>
<td>Cuenca</td>
<td>Provincias de la Sierra, Esmeraldas y Galápagos</td>
<td>II</td>
<td>D</td>
<td>0.604</td>
<td>14.33</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1.100</td>
<td>27.90</td>
<td>10</td>
</tr>
<tr>
<td>Manta</td>
<td>Provincias de la costa excepto Esmeraldas</td>
<td>VI</td>
<td>D</td>
<td>0.763</td>
<td>18.58</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1.941</td>
<td>52.44</td>
<td>19</td>
</tr>
<tr>
<td>Ambato</td>
<td>Provincias de la Sierra, Esmeraldas y Galápagos</td>
<td>V</td>
<td>D</td>
<td>0.698</td>
<td>16.83</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1.672</td>
<td>44.43</td>
<td>16</td>
</tr>
<tr>
<td>Esmeraldas</td>
<td>Provincias de la Sierra, Esmeraldas y Galápagos</td>
<td>VI</td>
<td>D</td>
<td>0.763</td>
<td>18.58</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td>1.941</td>
<td>52.44</td>
<td>19</td>
</tr>
</tbody>
</table>
Estructuras de menor número de pisos estarían en la zona plana del espectro y a partir de esta consideración los efectos ISE producirían la variación del período, mas no de la aceleración espectral correspondiente. H_n se ha calculado a partir de la ecuación 28 considerando estructuras tipo pórticos especiales de hormigón armado, sin muros estructurales ni diagonales rigidizadoras. Para el cálculo se utilizan los coeficientes de la tabla 88

\textit{Tabla 88. Coeficientes según tipo de edificio}

<table>
<thead>
<tr>
<th>C</th>
<th>0.055</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.9</td>
</tr>
</tbody>
</table>
10. Conclusiones y Recomendaciones

10.1 Conclusiones

Se realizaron análisis para comparar el comportamiento con ISE y sin ISE en dos edificios reales, el primer edificio se estudió sobre un suelo tipo D con dos velocidades de onda de corte diferentes y el segundo en un suelo tipo E.

El edificio A, caso 1, lo ubicamos inicialmente en un suelo tipo D con Vs= 226.45 m/s con una $R_R = 0.317$.

Para el caso 2, sobre el edificio A utilizamos una Vs=180m/s, suelo tipo D (el mismo espectro elástico de respuesta que el caso 1), presentó una $R_R = 0.40$.

En el tercer caso tenemos al edificio B, implantado sobre un suelo tipo E con Vs=180 m/s y con una $R_R = 0.607$

Luego del análisis ISE se pudo verificar que:

Para el Edificio A, caso 1:
- Se consiguió un aumento del periodo del 7.38%
- El amortiguamiento disminuyó en 6%
- En términos porcentuales; la variación de desplazamientos máximos y derivas producto de los efectos ISE, con relación al sistema empotrado, redujeron aproximadamente 7%

Para el Edificio A, caso 2:
- El periodo aumentó 11.38%
- El amortiguamiento disminuyó en 8%
- Los desplazamientos máximos y derivas redujeron aproximadamente 15%

Para el Edificio B:
- El periodo aumentó 22.80%
- El amortiguamiento disminuyó en 12%
- Los desplazamientos máximos y derivas redujeron entre 30% y 34%

Se puede observar la relación directa que hay entre la Rigidez Relativa y el periodo ISE en los casos estudiados, mientras mayor es el valor de R_R también hay un mayor porcentaje de incremento del periodo por efectos ISE.

En el caso 1 no bastó para cumplir con la Norma, mientras que en el caso 2 y en el Edificio B la aplicación de este análisis sirvió para cumplir las exigencias vigentes.
Los efectos ISE incrementan el período fundamental de las estructuras y si estas se sitúan en la parte descendente del espectro de diseño se puede aprovechar este efecto para optimizar diseños.

Los suelos blandos incrementan el porcentaje de aumento del período más que los suelos rígidos.

Los efectos ISE en estructuras ubicadas en suelos tipo E serían mayores con relación a las ubicadas en suelos tipo D, sin embargo, el límite de la parte plana del espectro se ve desplazado hacia períodos de estructuras menos rígidas, que en términos prácticos hace que se aplique una reducción de cortante basal a estructuras más altas.

Se observa como la relación de rigidez es un parámetro que nos señala el mayor o menor efecto de interacción suelo estructura.

10.2 Recomendaciones

Teniendo en cuenta que: el análisis de la estructura empotrada nos brinda los parámetros de la estructura y que, para tener el espectro elástico de diseño son necesarios los parámetros del suelo y además que la concepción arquitectónica y a su vez la del diseño de cimentación son preexistentes, realizar el análisis ISE resultaría en la práctica el ingreso en una hoja de cálculo de todos estos parámetros y así el diseñador puede determinar si incluye o no dichos efectos, lo que se recomienda es observar en que porcentaje se logra disminuir S_a para poder usar esto en favor de reducir secciones, resistencias del concreto o a su vez cumplir requisitos de derivas máximas señaladas en la Norma.

La velocidad de propagación a los 30 m. es todavía baja y puede ser que haya un contraste más alto a mayor profundidad. Esto cambiaria de manera importante el periodo de vibración fundamental del depósito, que posteriormente afectarian los parámetros con los que se modela la rigidez y el amortiguamiento del suelo, sin embargo, se consideraron los datos que nos aportan los sondeos realizados para mostrar la metodología de cálculo.
Lista de referencias

AVILÉS, J., PÉREZ, & ROCHA. (1996). Evaluation of interaction effects on the system period and the system damping due to foundation embedment and layer depth. . Soil Dynamics and Earthquake Engineering.

Department of Transportation, Federal Highway Administration, National Highway Institute, Arlington.

Obtenido de URL http://www.ucm.es