Some Exact Solutions for a Klein Gordon Equation

H. H. Ortíz Álvarez¹ F. N. Jiménez-García² A. E. Posso Agudelo³

Received: 20-jun-2012, Accepted: 12-sep-2012
Available online: 30-nov-2012

MSC: 35A30

Abstract
In solving practical problems in science and engineering arises as a direct consequence differential equations that explains the dynamics of the phenomena. Finding exact solutions to this equations provides important information about the behavior of physical systems. The Lie symmetry method allows to find invariant solutions under certain groups of transformations for differential equations. This method not very well known and used is of great importance in the scientific community. By this approach it was possible to find several exact invariant solutions for the Klein Gordon Equation \(u_{xx} - u_{tt} = k(u) \). A particular case, The Kolmogorov equation \(u_{xx} - u_{tt} = k_1 u + k_2 u^n \) was considered. These equations appear in the study of relativistic and quantum physics. The general solutions found, could be used for future explorations on the study for other specific \(K(u) \) functions.

¹ MSc. en Enseñanza de la Matemática, hugo.ortiz@ucaldas.edu.co, Profesor Asistente, Universidad de Caldas, Manizales–Colombia. Profesor Asociado, Universidad Nacional de Colombia, Manizales–Colombia.
² Doctora en Ingeniería, fnjimenezg@unal.edu.co, Profesora Titular, Universidad Autónoma, Manizales–Colombia. Profesor Titular, Universidad Nacional de Colombia, Manizales–Colombia.
³ Doctor en Matemática, possoa@utp.edu.co, Profesor Titular, Universidad Tecnológica, Pereira–Colombia.
Key words: Lie simmetries, Klein Gordon equation, invariant solutions

Algunas soluciones exactas para una ecuación de Klein Gordon

Resumen
En la solución de problemas prácticos de las ciencias y la ingeniería surgen como consecuencia directa ecuaciones diferenciales que dan razón de la dinámica de los fenómenos. El encontrar soluciones exactas a estas ecuaciones proporciona información importante sobre el comportamiento de sistemas físicos. El método de las simetrías de Lie permite encontrar soluciones invariants bajo ciertos grupos de transformaciones para ecuaciones diferenciales. Mediante este método fue posible encontrar familias de soluciones exactas invariantes para la ecuación de Klein Gordon $u_{xx} - u_{tt} = k(u)$. En particular, se consideró la ecuación de Kolmogorov $u_{xx} - u_{tt} = k_1 u + k_2 u^n$. Estas ecuaciones aparecen en el estudio de la física relativista y cuántica. Las soluciones generales encontradas podrían emplearse en futuros desarrollos en el estudio para otro tipo de funciones $k(u)$.

Palabras claves: Simetrías de Lie, Ecuación de Klein Gordon, soluciones invariantes.

1 Introduction

It is remarkable how two areas of apparently so different have reached such synergy on the solution of differential equations, as it is the case of Group and Differential Geometry theories. In the late eighteen century Sophus Lie made use of transformation groups in an effort to bring the results of Evarist Galois on polinomial equations to the differential equations theory. It was just the beginning and Sophus Lie already foresaw the monumental work that he had proposed to himself. The dedication of a whole life established the corner stone of this huge theory. It was Cartan who for the first time stated the concept of manifold in relation with transformation groups, building the bridge that allowed to relate the results on groups to the differential geometry theory and vice versa. The first fundamental theorem of Lie estates the correspondence between a Lie group and its infinitesimal representation also called Lie algebra or the symbol of the transformation. Such relation makes it possible to study
differential equations not from the group action on submanifolds but from its
infinitesimal representation. This fact conducd to a remarkable simplification
on the understanding of the problem of how to identify transformations under
which a differential equation remained invariant or equivalently according to
Lie’s theory, to find transformations (Symmetries) or new coordinates that
allowed an easier approximation to the solution of this kind of equations [2].

The second fundamental Lie’s theorem deals with the construction of a
local Lie group from its Lie algebra. The above is very important in seeking
new solutions from known ones. Through a complete classification of trans-
formation groups, Lie could identify all possible ordinary differential equation
order reductions. According to Olver [8], although most of Lie’s work was
concerned with first order linear differential equation systems, he also studied
the problem of determining the symmetries of second order partial differential
equations in two independent and one dependent variables; in particular, Lie
found the heat equation symmetries, a case that has been taken for several
authors as a key example for the description of the method. After a period
of little work on the theory, the inspiring work of Birkoff on the application
of group methods to differential equations of mathematical physics, favored
a new beginning in the exploration of this area, worth to mention Ovsianni-
kov e Ibragimov in the soviet school and Bluman and Cole in occident in
the decades of 1950’ and 1960’. More recently, among many other authors is
remarkable the rigorous treatment and the general formulation found in the
Olver’s book Application of Lie Groups to Differential Equations ([8]). From
then on, this field has become one of the mathematical areas of more progress
and development, wich can be seen from the large number of papers reporting
new solutions of differential equations and other topics based on this method
[3], [11].

Roughly speaking, if a one-parameter group of symmetries of a partial
differential equation is known, then it can be used to reduce in one unit the
number of independent variables. In particular if the equation has two in-
dependent variables then it can be transformed in an ordinary differential
equation, moreover if an ordinary differential equation is also invariant under
an one-parameter group, then its order can be reduced in one, in the case
of first order ordinary equations, the symmetry group can be used to find a
solution in terms of cuadratures by two very well known methods, canonical
coordinates and the Lie integrating factor.
According to [8], and [9], in the last four decades the range of application of Lie theory deals among others with the following topics: algorithmic determination of differential system symmetry groups, determination of explicit solutions for nonlinear partial differential equations, conservation laws, classification of integrable systems, numeric methods and solution stability [5].

This article will focus on the application of the Lie group theory to the Klein-Gordon equation

\[u_{xx} - u_{tt} = k(u), \]
(1)

a very important hyperbolic equation that appears in the study of relativistic or quantum mechanics particles.

2 The Method

In general a second order partial differential equation takes the form:

\[F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0, \]
(2)

where the equation is seen as a submanifold in a space isomorphic to \(\mathbb{R}^8 \). An element of this space is the octuple \((x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) \).

2.1 Function Prolongation

Definición 2.1. Given a smooth function

\[u = f(x, y), \quad f : \mathbb{R}^2 \to \mathbb{R}, \]
(3)

there is an induced function \(f^{(2)} = Pr^{(2)} f(x, y) \) called the second prolongation of \(f \) defined as

\[Pr^{(2)} f = (f, f_x, f_y, f_{xx}, f_{xy}, f_{yy}), \]
(4)

a solution of (2), will be understood as a smooth function \(u = f(x, y) \), such that

\[F(x, y, Pr^2 f(x, y)) = 0 \]
(5)

whenever \((x, y) \) is in the domain of definition of \(f \).
2.2 Group Prolongation Action

Let suppose G is a local group of transformations acting on an open subset of $\mathbb{R}^2 \times \mathbb{R}$, there is an induced local action of G on the prolonged space of the variables,

$$(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}),$$
called the second prolongation of G, denoted $Pr^{(2)}G$, defined in such a way, that it transforms the derivatives of (3) in the corresponding derivatives of the function transformed by the group.

2.3 Symbol Group Prolongation

Definición 2.2. Let M be an open subset of $\mathbb{R}^2 \times \mathbb{R}$ and suppose v is an infinitesimal generator of a group $G = \exp(\alpha v)$, then, the second prolongation of v, denoted $Pr^{(2)}v$, is defined as the infinitesimal generator of the second prolongation of G, $Pr^{(2)}[\exp(\alpha v)]$, that is,

$$Pr^{(2)}v\bigg|_{(x,y,u^{(2)})} = \left. \frac{d}{d\alpha} \right|_{\alpha=0} Pr^{(2)}[\exp(\alpha v)](x, y, u^{(2)}). $$ (6)

For a group action in an open subset $M \subset \mathbb{R}^2 \times \mathbb{R}$, the symbol has the form:

$$v = f(x, y, u) \frac{\partial}{\partial x} + g(x, y, u) \frac{\partial}{\partial y} + h(x, y, u) \frac{\partial}{\partial u}, $$ (7)

and the first and second prolongation of v are:

$$Pr^{(1)}v = v + h^x(x, y, u^{(1)}) \frac{\partial}{\partial u_x} + h^y(x, y, u^{(1)}) \frac{\partial}{\partial u_y} $$ (8)

$$Pr^{(2)}v = Pr^{(1)}v + h^{xx}(x, y, u^{(2)}) \frac{\partial}{\partial u_{xx}} + h^{xy}(x, y, u^{(2)}) \frac{\partial}{\partial u_{xy}} + h^{yy}(x, y, u^{(2)}) \frac{\partial}{\partial u_{yy}} $$ (9)
Some Exact Solutions for a Klein Gordon Equation

\[h^{(x)} = \frac{\partial h}{\partial x} + \left(\frac{\partial h}{\partial u} - \frac{\partial f}{\partial x} \right) u_x - \frac{\partial g}{\partial x} u_y - \frac{\partial f}{\partial u} u_x^2 - \frac{\partial g}{\partial u} u_x u_y. \]
\[h^{(y)} = \frac{\partial h}{\partial y} + \left(\frac{\partial h}{\partial u} - \frac{\partial g}{\partial y} \right) u_y - \frac{\partial f}{\partial y} u_x - \frac{\partial g}{\partial u} u_y^2 - \frac{\partial f}{\partial u} u_x u_y. \]
\[h^{(xx)} = \frac{\partial^2 h}{\partial x^2} + \left(2 \frac{\partial^2 h}{\partial x \partial u} - \frac{\partial^2 f}{\partial x^2} \right) u_x - \frac{\partial^2 g}{\partial x^2} u_y + \left(\frac{\partial h}{\partial u} - 2 \frac{\partial f}{\partial x} \right) u_{xx} - \frac{\partial g}{\partial u} u_{xx} - 2 \frac{\partial f}{\partial u} u_x^3 - \frac{\partial g}{\partial u} u_{xy} u_x - 2 \frac{\partial f}{\partial u} u_x u_y - \frac{\partial g}{\partial u} u_{yy} u_x. \]
\[h^{(xy)} = \frac{\partial^2 h}{\partial x \partial y} + \left(\frac{\partial^2 h}{\partial x \partial u} - \frac{\partial^2 g}{\partial x \partial y} \right) u_y + \left(\frac{\partial^2 h}{\partial y \partial u} - \frac{\partial^2 f}{\partial y \partial x} \right) u_x - \frac{\partial g}{\partial x} u_{xy} + \frac{\partial f}{\partial x} u_{xx} + \frac{\partial g}{\partial x} u_x u_y - \frac{\partial f}{\partial y} u_{xy} + \frac{\partial g}{\partial y} u_{xx} - \frac{\partial f}{\partial y} u_{yy} u_x. \]
\[h^{(yy)} = \frac{\partial^2 h}{\partial y^2} + \left(2 \frac{\partial^2 h}{\partial y \partial u} - \frac{\partial^2 g}{\partial y^2} \right) u_y - \frac{\partial^2 f}{\partial y^2} u_x + \left(\frac{\partial h}{\partial u} - 2 \frac{\partial g}{\partial y} \right) u_{yy} - \frac{\partial f}{\partial y} u_{yy} + \frac{\partial g}{\partial y} u_{xy} u_y - \frac{\partial f}{\partial y} u_x u_y - \frac{\partial g}{\partial y} u_{yy} u_x - 2 \frac{\partial f}{\partial y} u_{xy} u_y - \frac{\partial g}{\partial y} u_{yy} u_x - \frac{\partial f}{\partial y} u_{xy}. \]

See [8]. Now it will be stated the condition that must be satisfied in order that a differential equation be invariant under a transformation group or, equivalently, what is needed to transform the solutions of a differential equation in solutions of the transformed equation.
Teorema 2.1. Suppose

\[F(x, y, Pr^{(2)}u(x, y)) = 0, \quad (13) \]

is a second order differential equation of maximal rank defined on an open subset \(M \subset \mathbb{R}^2 \times \mathbb{R} \). If \(G \) is a local group of transformations acting on \(M \), and

\[Pr^{(2)}v[F(x, y, Pr^{(2)}u(x, y)] = 0, \quad \text{whenever} \quad F(x, y, Pr^{(2)}u(x, y) = 0, \]

for every infinitesimal generator \(v \) of \(G \), then \(G \) is a symmetry group of the differential equation \([8], [1]\).

2.4 Computing Symmetry Groups

The above theorem with the prolongation formula (6), defines an effective way to calculate the symmetries of a second order differential equation in two independent and one dependent variables. Formulation that can be generalized for higher orders.

When applying the theorem (2.1) to a differential equation, it is obtained an equation equal to zero, which can involve \(x, y \) and \(u \) and its partial derivatives to the second order and also functions \(f, g, h \) of the symmetry group with their partial derivatives to the second order with respect to \(x, y \) and \(u \). After replacing in this equation the condition given by the differential equation, that is, \(F(x, y, Pr^2u(x, y)) = 0 \), collecting the coefficients of \(u \) and its derivatives, and equating these coefficients to zero, it results a system of partial differential equations called the determining equations that very often can be solved by elementary methods, giving in this way the most general form of the infinitesimal symmetry of the equation.

3 The Klein-Gordon Equation

For the Klein-Gordon equation

\[u_{xx} - u_{tt} = k(u), \quad (14) \]
it is observed that its jacobian matrix

\[(0, 0, -k'(u), 0, 0, 1, 0, -1), \quad (15)\]

never vanishes, so the submanifold defined for the differential equation in \(\mathbb{R}^8 \) is of maximal rank, that means, this submanifold has no singularities.

Applying the theorem (2.1) and the prolongation formula (6), to the differential equation (14),

\[
\left[h \frac{\partial}{\partial u} + h_{xx} \frac{\partial}{\partial u_{xx}} + h_{yy} \frac{\partial}{\partial u_{yy}} \right] (u_{xx} - u_{yy} - k(u)) = 0, \quad (16)
\]

It follows that,

\[-k'(u)h + h_{xx} - h_{yy} = 0, \quad (17)\]

After replacing \(h_{xx} \) and \(h_{yy} \) of expressions (11) and (12) and substituting \(u_{xx} = u_{tt} + k(u) \) whenever it occurs in (17) and then collecting terms of each one of the derivatives of \(u \), equating their coefficients to zero and solving the resulting determining system for the functions \(f \), \(g \) and \(h \), the following vectors or symbols of the symmetry group are found

\[
v_1 = \frac{\partial}{\partial x}, \quad v_2 = \frac{\partial}{\partial y}, \quad v_3 = y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}, \quad (18)
\]

where \(v_1, v_2 \) and \(v_3 \), constitute a basis for the Lie algebra of the group of symmetries. As it is expected by the theory of algebras, the Lie bracket is a closed operation between these generators (see table (1)).
Table 1: Commutators

<table>
<thead>
<tr>
<th>v_i</th>
<th>v_1</th>
<th>v_2</th>
<th>v_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0</td>
<td>v_3</td>
<td>v_2</td>
</tr>
<tr>
<td>v_2</td>
<td>v_3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>v_3</td>
<td>v_2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The corresponding one-parameter transformation groups found by exponentiation of (18) are respectively:

$$
(x_1, y_1, u_1) = (x + \alpha, y, u) \\
(x_1, y_1, u_1) = (x, y + \alpha, u) \\
(x_1, y_1, u_1) = (y e^\alpha, x e^\alpha, u)
$$

(19)

3.1 Invariant Solutions

Since a partial differential equation is invariant under a group of transformations, if their solutions are transformed in solutions under the action of the group, it is reasonable the possibility that some solutions of the equation also be invariant under the group. In this work it is explored this possibility that indeed is the way to find reductions in the number of independent variables and the construction of explicit solutions.

Let see: A function f invariant under the group with generator v_1, must satisfy the condition

$$
v[f] = \frac{\partial}{\partial x} f = 0,
$$

(20)

the very well known characteristics method [7] assures that (20) is equivalent to the system

$$
\frac{dx}{1} = \frac{dy}{0} = \frac{du}{0},
$$

(21)

that has, as solution, the invariant functions $y = t$ and $\nu = u$, taking

$$
u = w(t),
$$

(22)
that is, \(u \) only depends on \(y \), it follows:

\[
\begin{align*}
 u_y &= w_t, \\
 u_{yy} &= w_{tt} \\
 u_x &= 0, \\
 u_{xx} &= 0
\end{align*}
\]

(23)

replacing (23) in the Klein-Gordon equation (1), results in the ordinary equation

\[
w_{tt} = -k(w) \quad t = x.
\]

(24)

In similar form, for the symmetry \(v_2 \) we obtain:

\[
w_{tt} = k(w)
\]

(25)

the ordinary equation of cases (24) and (25)

\[
w_{tt} = \pm k(w),
\]

(26)

can be transformed through canonical coordinates [4], \(X = w \), \(Y = t \), into equation

\[
\frac{d^2Y}{dX^2} = \mp \left(\frac{dY}{dX} \right)^3 k(X)
\]

(27)

the change of variable \(\nu = \frac{dY}{dX} \), gives the reduced equation,

\[
\frac{d\nu}{dX} = \mp \nu^3 k(X)
\]

(28)

or after integration,

\[
\nu = \left(\pm 2 \int k(X) dX + c_1 \right)^{-1/2},
\]

(29)

in terms of the original variables

\[
\int \left(\pm 2 \int k(w) dw + c_1 \right)^{-1/2} dw = t + c_2,
\]

(30)

that implicitly defines \(w \) as a function of \(t \), where \(u = w(t) \) is an invariant solution of equation (14) under the group given by the exponentiation of \(v_1 \).
The results for the other generators and for the possible linear combinations between them are shown in table (2).

Table 2: Invariant solutions of the de Klein-Gordon equation

<table>
<thead>
<tr>
<th>Vector</th>
<th>Invariant Solution</th>
<th>w satisfies the equation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>$u = w(y)$</td>
<td>$f \left(-2 \int k(w)dw + c_1\right)^{-1/2} dw = t + c_2,$</td>
</tr>
<tr>
<td>v_2</td>
<td>$u = w(x)$</td>
<td>$f \left(2 \int k(w)dw + c_1\right)^{-1/2} dw = t + c_2,$</td>
</tr>
<tr>
<td>v_3</td>
<td>$u = w(x^2 - y^2)$</td>
<td>$tw_{tt} + w_t = k(w)$</td>
</tr>
<tr>
<td>$av_1 + bv_2$</td>
<td>$u = w(\frac{a}{b}x - y)$</td>
<td>$f \left(2 \int \frac{k(w)}{a^2}dw + c_1\right)^{-1/2} dw = t + c_2,$</td>
</tr>
<tr>
<td>$av_1 + bv_3$</td>
<td>$u = w(\frac{b}{2}(x^2 - y^2) - ay)$</td>
<td>$\left(bt - \frac{a^2}{2}\right)w_{tt} + bw_t = \frac{k(w)}{2}$</td>
</tr>
<tr>
<td>$av_2 + bv_3$</td>
<td>$u = w(2ax + bx^2 - by^2)$</td>
<td>$\left(a^2 + bt\right)w_{tt} + bw_t = \frac{k(w)}{2}$</td>
</tr>
<tr>
<td>$av_1 + bv_2 + cv_3$</td>
<td>$u = w(\frac{c}{2}x^2 - \frac{c}{2}y^2 + bx - ay)$</td>
<td>$2ct - a^2)w_{tt} + 2cw_t = k(w)$</td>
</tr>
</tbody>
</table>

It follows from the groups (19) and their property of transforming solution on solutions, that:

If $u = w(x, y)$ is a solution of (1), then, other solutions for the same equation are:

$$w_1 = w(x - \alpha_1, y - \alpha_2),$$
$$w_2 = w(e^{-\alpha_3 y}, e^{-\alpha_3 x}).$$

Nota 3.1. An equivalent solution to the one found for v_3 generator appears reported at:

3.2 A particular form of $k(u)$

Considering particular cases of $k(u)$, it could be obtained more specific invariant solutions; by instance, for the equation,

$$u_{xx} - u_{yy} = k_1u + k_2u^n,$$

that appears in heat conduction, mass transfer, biology and ecology [10],

after integrating the equation $w_{tt} = \lambda k(w) + k_2w^n$, that includes the reduced ordinary differential equations corresponding to the generators v_1 and v_2.
for \(k_1 = 0 \), it is found the solution:

\[
\pm (n+1)^{1/2} hipergeom \left(\left[1/2, \frac{1}{n+1} \right], \left[1 + \frac{1}{n+1} \right], -\frac{2w^{n+1} \lambda k_2}{C_1^2} \right) w = C_1 t + C_2,
\]

for \(k_2 = 0 \)

\[
w = C_1 e^{\sqrt{\lambda k_1} t} + C_1 e^{-\sqrt{\lambda k_1} t}, \quad \lambda k_1 > 0
\]

\[
w = C_1 \cos \sqrt{\lambda k_1} t + C_2 \sin \sqrt{\lambda k_1} t, \quad \lambda k_1 < 0
\]

\[
w = C_1 t + C_2, \quad k_1 = 0,
\]

similarly for solution in table (3.1) corresponding to generator \(av_1 + bv_2 \), the integration with \(c_1 = c_2 = 0 \), \(k_1 > 0 \), \(k_2 > 0 \) and \(\lambda = \frac{a^2 - b^2}{b^2 - a^2} \), gives the solution

\[
\frac{\sqrt{2\lambda}}{\sqrt{k_1} \sqrt{\pi (n-1)}} \left[\left(-\ln(2) + (n-1) \ln(w) + \ln \left(\frac{k_2}{(n+1)k_1} \right) \right) \right] \sqrt{\pi} -
\]

\[
2\sqrt{\pi} \ln \left(\frac{1}{2} + \frac{1}{2} \sqrt{2 \frac{w^{(n-1)}k_2}{(n+1)k_1} + 1} \right) = t + c, \quad t = \frac{b}{a} x - y
\]

The integral surface defined by equation (33) for the particular values \(a = 1 \), \(b = \sqrt{2} \), \(k_1 = 1 \), \(k_2 = 1 \), \(n = 2 \) and \(c = 0 \) is shown in figure 1.
Figure 1: Particular Solution, $v = 2v_1 + v_2$, $n = 2$

4 Conclusions

1. The Klein-Gordon Equation is invariant under a Lie group generated by three vector fields. From each vector field, it was possible to obtain invariant solutions and from each group construct new solutions from known ones.

2. The more particular nonlinear case $k(u) = k_1 u + k_2 u^n$, was considered, being possible to find several solutions.

3. The method of Lie groups applied to differential equations gives an explicit and algorithmic way to compute invariant solutions for a wide range of equations. In the nonlinear case, these solutions could be the only at hand, being very important for modelling physical situations or to compare with numerical solutions as well. Now a day, there are a number of specialized software packages that make it easier the time consuming job of computing symmetries, and should be taken in account for a more practical use of the theory, mainly for equations of higher order or in working with differential equation systems. It is strongly recommended the Hereman review of symbolic software [6].
Acknowledgements

The assistance of Dr. Guillermo Calvo Mahé of the Universidad Autónoma de Manizales in translation of this article is gratefully acknowledged.

References

