SONDA DE CORRIENTES EDDY PARA LA DETECCIÓN DE DEFECTOS EN SUPERFICIES CLADEADAS
API 5L X65 + INCONEL 625

TRABAJO DE GRADO

Andrés Felipe Cuéllar Ochoa
acuella1@eafit.edu.co

UNIVERSIDAD EAFIT
ESCUELA DE CIENCIAS
DEPARTAMENTO DE CIENCIAS FÍSICAS
MAESTRÍA EN FÍSICA APLICADA
MEDELLÍN, COLOMBIA
2018
SONDA DE CORRIENTES EDDY PARA LA DETECCIÓN DE DEFECTOS EN SUPERFICIES CLADEADAS
API 5L X65 + INCONEL 625

Andrés Felipe Cuéllar Ochoa
acuella1@eafit.edu.co

TRABAJO DE GRADO PARA OPTAR AL TÍTULO DE MAGÍSTER EN FÍSICA APLICADA

Director
Juan Manuel Jaramillo Ocampo, Ph.D
jjaram44@eafit.edu.co

Co-Director
Diego Andrés Acosta Maya, Ph.D
dacostam@eafit.edu.co

UNIVERSIDAD EAFIT
ESCUELA DE CIENCIAS
DEPARTAMENTO DE CIENCIAS FÍSICAS
MAESTRÍA EN FÍSICA APLICADA
MEDELLÍN, COLOMBIA
2018
We have a habit in writing articles published in scientific journals to make the work as finished as possible, to cover all the tracks, to not worry about the blind alleys or to describe how you had the wrong idea first, and so on. So there isn’t any place to publish, in a dignified manner, what you actually did in order to get to do the work.

Richard P. Feynman
A mi Padre
Menchetillas, carretillas yo te haré, para que hagas buena letra y no manches el papel.

A mi Tatica y mi Hermano (Guru)
Agradecimientos

Agradezco de corazón a todos aquellos que han posibilitado de manera directa o indirecta la culminación de la presente disertación.

El desarrollo de esta tesis ha significado el más emocionante periplo de mis últimos años, en una labor de incansable persistencia y aprendizaje, que ha arrojado sus frutos gracias al apoyo y amistad de mi director de tesis el Ph.D. Juan Manuel Jaramillo Ocampo. Valoro incommensurablemente su confianza en mí, su respaldo permanente en los momentos de angustia computacional y su gran calidez. Al profesor Diego Andrés Acosta Maya, por sus buenos consejos, apoyo y paciencia. Para ellos mi agradecimiento con gran admiración y respeto.

Agradezco con todo mi corazón a mi Padre (HL) a Guru y Pato, y primordialmente a mi Tatica fufury, por su alegría, amor y apoyo incondicional durante las largas noches de trabajo. Siempre han estado ahí cuando más los he necesitado.

Al Colegio Aspaen Gimnasio los Alcázares y al Fondo Patrimonial Educativo por la intervención económica que en conjunto facilitaron realizar este estudio.

Agradezco a la Universidad EAFIT y al Proyecto interno del departamento de ciencias físicas de la escuela de ciencias, los cuales posibilitaron mi pasantía en la Universidad Federal de Rio de Janeiro Brasil, en el Laboratorio de Ensayos no Destructivos, Corrosión y Soldadura LNDC de COPPE/UFRJ, donde en compañía de un excelente grupo de trabajo se pudo validar la metodología de construcción de la sonda de detección de defectos propuesta en esta tesis; mil gracias a la Profesora Gabriela Ribeiro Pereira, a la investigadora Clara Johanna Pacheco, al ingeniero Cesar Camerini y especialmente a la estudiante de doctorado Mónica Arenas y a la técnica de laboratorio Iane Soares.

Sin el apoyo de estas personas e instituciones, habría sido muy difícil realizar mis estudios de maestría y a la vez obtener los resultados que se presentan en esta disertación.

Andrés F. (Pipe)

2018
Resumen

La inducción de Corrientes Eddy es una técnica de inspección no destructiva utilizada ampliamente en la industria petroquímica, para el control y detección de defectos en tuberías metálicas empleadas para transportar fluidos. Este estudio se centra en la derivación de una metodología a partir de un metamodelo, para la construcción de una sonda de detección de microfisuras por inducción de Corrientes Eddy en superficies de acero cladeado de tipo API 5L X 65 + Inconel 625.

A partir de los datos reportados en la literatura, se pudo establecer los parámetros relevantes para el diseño, construcción y caracterización de una sonda cilíndrica de Corrientes Eddy y empleando la metodología del Diseño Estadístico de Experimentos se definió un estudio experimental con el fin de optimizar la geometría y la sensibilidad de detección de la sonda; específicamente se logró en esta tesis la detección de microfisuras superficiales que se encuentran en un intervalo de 0.5 a 2 mm de profundidad y 0.37 a 0.46 mm de abertura en la parte posterior de los cuerpos de prueba. La metodología se desarrolló empleando el Modelado Electromagnético a Bajas Frecuencias y la evaluación numérica de la sonda por el Método de Elementos Finitos, a través de la obtención de la frecuencia de excitación óptima de la sonda y de la variación geométrica del “Lift Off”, del área de sección transversal y la corriente de excitación de la sonda. La aplicación de esta metodología permitió obtener simultáneamente la máxima densidad de corriente inducida y la máxima densidad del flujo magnético inducidos por la sonda en una sección del material evaluado, y en consecuencia de ello generar los campos electromagnéticos primario y secundario que aseguraron detectar los defectos a través de la variación en la inducción de las Corrientes Eddy. La solución computacional se verificó a través de resultados experimentales, al obtener la curva de la variación de impedancia de la sonda al interactuar con una microfisura en una muestra del material de la tubería.

Palabras clave: Parámetros de la Sonda, Detección de Grietas, Ensayo de Corrientes Eddy, Simulación de Campos Electromagnéticos, Método de Elementos Finitos, Ensayos No Destructivos, Optimización de Sondas, Diseño Estadístico de Experimentos.
Abstract

The induction of Eddy Currents is a non-destructive inspection technique widely used in the petrochemical industry, for control and detection defects in metal pipes used to transport fluids. This study focuses on the derivation of a methodology from a metamodel, for the construction of a detection probe by micro-cracks induction of Eddy currents on steel clad surfaces of type API 5L X 65 + Inconel 625.

From the data reported in the literature, it was possible to establish the relevant parameters for the design, construction and characterization of a cylindrical probe of Eddy Currents and using the methodology of the Statistical Design of Experiments, an experimental study was defined in order to optimize the geometry and detection sensitivity of the probe; specifically in this thesis was the detection of superficial microcracks that are in a range of 0.5 to 2 mm deep and 0.37 to 0.46 mm opening in the back of the test bodies. The methodology was developed using Electromagnetic Modeling at Low Frequencies and the numerical evaluation of the probe by the Finite Element Method, through obtaining the optimal excitation frequency of the probe and the geometric variation of the “Lift Off”, of the cross-sectional area and the excitation current of the probe. The application of this methodology allowed simultaneously obtaining the maximum induced current density and the maximum magnetic flux density induced by the probe in a section of the material evaluated, and consequently generating the primary and secondary electromagnetic fields that ensured detecting the defects to through the variation in the induction of Eddy Currents. The computational solution was verified through experimental results, by obtaining the curve of the impedance variation of the probe when interacting with a microcrack in a sample of the pipe material.

Keywords: Coil Parameters, Crack Detection, Eddy Current Testing, Electromagnetic Field Simulation, Finite Element Method, Non Destructive Testing, Probe Optimization, Statistical Design of Experiments.
Contenido

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agradecimientos</td>
<td>ix</td>
</tr>
<tr>
<td>Resumen</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiii</td>
</tr>
<tr>
<td>Lista de Acrónimos</td>
<td>xx</td>
</tr>
<tr>
<td>1. Introducción</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Motivación del Trabajo</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Planteamiento del Problema</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Objetivos</td>
<td>5</td>
</tr>
<tr>
<td>1.3.1. Objetivo General</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2. Objetivos Específicos</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Estructura del Documento</td>
<td>6</td>
</tr>
<tr>
<td>2. Generalidades y Marco Teórico</td>
<td>7</td>
</tr>
<tr>
<td>2.1. Estado del Arte</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Marco Teórico</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1. Principios Físicos</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2. Efecto Pelicular y Profundidad de Penetración</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3. Frecuencia de Inspección</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4. Plano de Impedancia</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5. Ensayos No Destructivos</td>
<td>22</td>
</tr>
<tr>
<td>2.2.6. Detección de Defectos por Ensayos No Destructivos</td>
<td>22</td>
</tr>
<tr>
<td>3. Materiales y Métodos</td>
<td>25</td>
</tr>
<tr>
<td>3.1. Materiales</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1. Hardware</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1.1. Procesadores</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1.2. Componentes Electrónicos</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1.3. Banco de Pruebas</td>
<td>26</td>
</tr>
</tbody>
</table>
3.1.4. Sondas de Corrientes Eddy EC ... 27
3.1.5. Cuerpos de Prueba y Probetas ... 28

3.1.2. Software ... 30
 3.1.2.1. Solid Works ... 30
 3.1.2.2. COMSOL Multiphysics ... 30
 3.1.2.3. Matlab .. 30
 3.1.2.4. Herramientas Ofimáticas 30

3.1.3. Gestores Bibliográficos .. 31

3.2. Metodología .. 31

3.3. Metodología para el Desarrollo de una Sonda de EC 32
 3.3.1. Frecuencia de Excitación de la Sonda 33
 3.3.2. Diseño Estadístico de Experimentos DOE 34

3.4. Validación de la Metodología .. 35

4. Resultados y Discusión ... 36
 4.1. Elección de las Sondas de EC: Pruebas Computacionales 36
 4.1.1. Detección Computacional del Defecto 37
 4.1.2. Parámetros Reales de las Sondas 39
 4.1.3. Detección Computacional del Defecto para el DOE Actualizado .. 42
 4.2. Caracterización de Metales .. 43
 4.3. Pruebas S-scan ... 44
 4.3.1. Comparación Entre los Resultado de Simulación y la Prueba S-scan .. 49
 4.4. Pruebas C-scan ... 52

5. Conclusiones y Perspectivas .. 55
 5.1. Conclusiones ... 55
 5.2. Trabajo futuro ... 55

A. Inconel 625 .. 56

B. Distribución de EC y Efecto Pelicular 58

C. Ecuación del Flujo de Corrientes Inducidas 59

D. Planos ... 62

Bibliografía .. 68
Lista de Figuras

<table>
<thead>
<tr>
<th>N°</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Región de interés para la detección de defectos en tuberías cladeadas para el trasporte de fluidos corrosivos, imagen adaptada de [41].</td>
<td>2</td>
</tr>
<tr>
<td>1-2</td>
<td>Principio de detección de defectos por inducción de EC.</td>
<td>4</td>
</tr>
<tr>
<td>2-1</td>
<td>Bobina de EC sobre dos placas conductoras coplanares, imagen adaptada de [1].</td>
<td>8</td>
</tr>
<tr>
<td>2-2</td>
<td>Cambio en la resistencia (a) e inductancia (b) de la bobina como una función de la posición central, imagen adaptada de [1].</td>
<td>9</td>
</tr>
<tr>
<td>2-3</td>
<td>Amplitud del cambio de Impedancia de las señales debidas al adelgazamiento de la pared en función del la frecuencia (a) y del factor de llenado (b), imagen adaptada de [2].</td>
<td>10</td>
</tr>
<tr>
<td>2-4</td>
<td>Dibujo esquemático de las muescas mecanizadas, imagen adaptada de [8].</td>
<td>11</td>
</tr>
<tr>
<td>2-5</td>
<td>Imagen de un PEC experimental en defectos subsuperficiales, imagen adaptada de [8].</td>
<td>11</td>
</tr>
<tr>
<td>2-6</td>
<td>EC en un material conductor, sonda absoluta.</td>
<td>18</td>
</tr>
<tr>
<td>2-7</td>
<td>Plano de Impedancia y el efecto de las diferentes fuentes de perturbación,</td>
<td>21</td>
</tr>
<tr>
<td>3-1</td>
<td>Banco de pruebas: Mesa (x,y,z) para el ensayo experimental C-scan.</td>
<td>26</td>
</tr>
<tr>
<td>3-2</td>
<td>Construcción de las sondas de detección por EC.</td>
<td>27</td>
</tr>
<tr>
<td>3-3</td>
<td>Juego de sondas de inspección de tipo absoluto y baja frecuencia.</td>
<td>27</td>
</tr>
<tr>
<td>3-4</td>
<td>Bloque estándar para la diferenciación de materiales magnéticos y no magnéticos.</td>
<td>28</td>
</tr>
<tr>
<td>3-5</td>
<td>Bloque estándar de calibración, Técnica S-scan. P: Profundidad, E: Espesor.</td>
<td>28</td>
</tr>
<tr>
<td>3-6</td>
<td>Bloque estándar de calibración, para la detección de defectos Técnica C-scan,</td>
<td>29</td>
</tr>
<tr>
<td>3-7</td>
<td>Caracterización bloque API 5L X65 + Inconel 625 para las pruebas S-scan y C-scan, (a)</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Región atacada para revelar el acero API 5L X65, (b) Metalografía Inconel 625, (c) Interfaz del material cladeado, imágenes tomadas de [41].</td>
<td>29</td>
</tr>
<tr>
<td>3-8</td>
<td>Metodología de diseño y construcción de una sonda de EC, para la detección de defectos superficiales en tuberías de material cladeado API 5L X65 + Inconel 625.</td>
<td>32</td>
</tr>
<tr>
<td>4-1</td>
<td>Respuesta computacional del DOE para la selección de las sondas de EC a construir.</td>
<td>37</td>
</tr>
<tr>
<td>4-2</td>
<td>(a) Cambio de reactancia inductiva ΔXL (Ω), (b) Cambio de resistencia ΔR (Ω).</td>
<td>38</td>
</tr>
<tr>
<td>4-3</td>
<td>Señales normalizadas de (a) Cambio de reactancia inductiva ΔXL (V), (b) Cambio de resistencia ΔR (V).</td>
<td>38</td>
</tr>
<tr>
<td>4-4</td>
<td>Respuesta computacional del DOE actualizado de las sondas de EC construidas.</td>
<td>41</td>
</tr>
<tr>
<td>4-5</td>
<td>(a) Cambio de reactancia inductiva ΔXL (Ω), (b) Cambio de resistencia ΔR (Ω).</td>
<td>42</td>
</tr>
<tr>
<td>Figura</td>
<td>Descripción</td>
<td>Página</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>4-6</td>
<td>(a) Cambio de reactancia inductiva ΔXL (V), (b) Cambio de resistencia ΔR (V)</td>
<td>42</td>
</tr>
<tr>
<td>4-7</td>
<td>Plano de Impedancia sonda 8. Prueba de caracterización de materiales.</td>
<td>43</td>
</tr>
<tr>
<td>4-8</td>
<td>Detección sonda 6, señales ΔR y ΔXL. Datos OmniScan MX.</td>
<td>44</td>
</tr>
<tr>
<td>4-9</td>
<td>Detección sonda 8, señales ΔR y ΔXL. Datos OmniScan MX.</td>
<td>45</td>
</tr>
<tr>
<td>4-10</td>
<td>Detección sonda 10, señales ΔR y ΔXL. Datos OmniScan MX.</td>
<td>46</td>
</tr>
<tr>
<td>4-11</td>
<td>Detección sonda 14, señales ΔR y ΔXL. Datos OmniScan MX.</td>
<td>47</td>
</tr>
<tr>
<td>4-12</td>
<td>Detección sonda 16, señales ΔR y ΔXL. Datos OmniScan MX.</td>
<td>48</td>
</tr>
<tr>
<td>4-13</td>
<td>Señales normalizadas en (V) de ΔXL y ΔR, para la obtención computacional y experimental</td>
<td>49</td>
</tr>
<tr>
<td>4-14</td>
<td>Señales normalizadas en (V) de ΔXL y ΔR, para la obtención computacional y experimental</td>
<td>50</td>
</tr>
<tr>
<td>4-15</td>
<td>Señales normalizadas en (V) de ΔXL y ΔR, para la obtención computacional y experimental</td>
<td>50</td>
</tr>
<tr>
<td>4-16</td>
<td>Reproducción electromagnética bloque de calibración LNDC, por el cambio de la resistencia</td>
<td>53</td>
</tr>
<tr>
<td>4-17</td>
<td>Reproducción electromagnética bloque de calibración LNDC, por el cambio de la resistencia</td>
<td>53</td>
</tr>
<tr>
<td>B-1</td>
<td>Distribución de EC y de flujo magnético en un conductor en función de la profundidad</td>
<td>58</td>
</tr>
<tr>
<td>D-1</td>
<td>Dimensiones bloque de prueba LNDC</td>
<td>62</td>
</tr>
<tr>
<td>D-2</td>
<td>Dimensiones carcaza sonda 6.</td>
<td>63</td>
</tr>
<tr>
<td>D-3</td>
<td>Dimensiones carcaza sonda 8.</td>
<td>64</td>
</tr>
<tr>
<td>D-4</td>
<td>Dimensiones carcaza sonda 10.</td>
<td>65</td>
</tr>
<tr>
<td>D-5</td>
<td>Dimensiones carcaza sonda 14.</td>
<td>66</td>
</tr>
<tr>
<td>D-6</td>
<td>Dimensiones carcaza sonda 16.</td>
<td>67</td>
</tr>
</tbody>
</table>
Lista de Tablas

2-1. Métodos de NDT (A: costo más alto, B y C: intermedios, D: costo más bajo)

3-1. Frecuencia Real de Inspección de la Sonda

50

3-2. Parámetros de Entrada y Salida para el DOE

34

3-3. Experimentos y Combinaciones del factorial 2^{k-p} del DOE

34

4-1. Respuesta Computacional del DOE

36

4-2. Parámetros Reales de las Sondas de Inspección

39

4-3. Parámetros Reales de las Sondas de Inspección

40

4-4. Respuesta Computacional del DOE Actualizado a Menor Frecuencia

40

4-5. Señal Computacional y Experimenta de ΔZ

51

4-6. Señal Computacional y Experimenta de ΔZ

52
Lista de Acrónimos

EC: Corrientes Eddy - Eddy Current.

NDT: Ensayos No Destructivos - Non Destructive Testing.

DOE: Diseño Estadístico de Experimentos - Design of Experiments.

EMLF: Modelado Electromagnético a Bajas Frecuencias - Electromagnetic Modeling at Low Frequencies.

LNDC: Laboratorio de Ensayos No Destructivos, Corrosión y Soldadura - Laboratório de Ensaios Não Destrutivos, Corrosão e Soldagem - Laboratory of Non Destructive Testing, Corrosion and Welding.

FEM: Método de Elementos Finitos - Finite Element Method.

PEC: Pulso de Corrientes Eddy - Pulsed Eddy Current.
Capítulo 1

Introducción

Ciertos tipos de industrias como las del gas y el petróleo presentan problemáticas debido a la corrosión externa y al desgaste interno de las tuberías utilizadas para el transporte de flui
dos altamente corrosivos, a altas temperaturas y bajo condiciones ambientales agresivas que pueden desencadenar en cualquier momento catástrofes ambientales[13]; por esta razón las industrias petroquímicas se ven obligadas a utilizar tuberías cladeadas[1], las cuales presentan alta resistencia al desgaste y a la oxidación[41]. Los materiales usados para la fabricación de estos tipos de tubos están clasificados según la norma API 5L[2] y el Instituto Americano del Petróleo (API), como API 5L X65 + Inconel 625, donde el Inconel 625 o UNS 625 es un revestimiento que se instala sobre la parte interna de la tubería X65. El material Inconel es un acero de aleación de níquel de alta resistencia a la corrosión, al que en una etapa de fabricación se le adiciona niobio, que al actuar con el molibdeno permite endurecer eficazmente la matriz de la aleación[3]. Este revestimiento consiste de una capa cuyo espesor puede variar entre 3 y 5 mm, la cual es formada por un acoplamiento mecánico a partir de procesos de laminación con calor (Hot rolled), mediante soldaje metalúrgico (liner/Weld overlay) o por aspersión térmica. En el caso de laminación, el tubo de Inconel cuya composición presenta un acero altamente paramagnético, se inserta telescópicamente en una tubería de acero de alto rendimiento mecánico para tuberías sin costura, que en su configuración presenta una naturaleza altamente ferromagnética de aleación carbono-manganeso[4] para ser ampliado en una prensa hidráulica en un proceso de expansión por hidroconformación. Esta técnica permite conseguir una distribución uniforme por presión, proporcionando el cuidado de la integridad del ensamblé sin ocasionar deformaciones en las superficies de los tubos acoplados[5].

[2] La norma internacional API 5L especifica los requisitos para la fabricación de dos niveles de especificación de productos (PSL PSL 1 y 2) de tubos de acero con costura para uso en sistemas de transporte por ductos en la industria del gas natural y del petróleo (oleoductos, gasoductos, procesos mineros y otras aplicaciones industriales que necesitan materiales con alta resistencia mecánica) [41].
Introducción

La composición química y las propiedades mecánicas del material Inconel 625 se presentan en las Figuras A-1 y A-2 del Apéndice A.

El tamaño de los tubos fabricados por esta técnica puede variar en longitudes que van entre los 12 y 24 m, con diámetros que pueden alternar entre 114.3 y 660 mm, para conductos sin soldadura circunferencial. Ahora, cuando una estación industrial (oleoducto o gasoducto) está siendo construida, hace parte del proceso soldar varios trechos de estos. En esta etapa de fabricación estas tuberías reciben una soldadura de superposición, la cual se realiza entre los biseles de dos piezas con el material UNS 625, con el fin de extender la longitud de la línea de distribución, sellar la unión entre las tuberías e impedir la entrada de humedad. Al realizar estos acoplamientos entre dos o más instalaciones, se generan microfisuras en las uniones de una tubería con otra, es decir, en la frontera de éstas y la soldadura, en la zona de transición o de encapsulado de los materiales [19,41], como se muestra en la Figura 1-1.

Figura 1-1: Región de interés para la detección de defectos en tuberías cladeadas para el trasporte de fluidos corrosivos, imagen adaptada de [41].

Según el Laboratorio de Ensayos No Destructivos, Corrosión y Soldadura (LNDC), el tamaño que se ha reportado para este tipo de fallas corresponde a un caso de estudio específico que varía en rangos que van desde 0.2 hasta 2 mm de profundidad, 0.33 a 0.46 mm de abertura y hasta 15 mm de longitud sobre el revestimiento de Inconel 625 [41,47].

Por la dificultad que representa para la industria petroquímica desmantelar las estructuras de los oleoductos y gasoductos, además de los elevados costos que esto conllevaría, es que resulta importante evaluarlas con técnicas de Ensayos No Destructivos (NDT) como las

www.nickelinstitute.org ; www.butting.com/pt/tubos-cladeados/
1.1 Motivación del Trabajo

Corrientes Eddy (EC), con el fin de reconocer el estado de las tuberías y localizar los defectos o fisuras sin poner en riesgo la integridad de la pieza evaluada y el entorno donde ésta se encuentre [10, 12, 16, 23, 24, 29].

Debido a que la literatura no presenta una metodología definida que se pueda implementar para el diseño y construcción de las sondas de detección por CE y por el gran número de variables significativas a tener en cuenta en este tipo de inspección, se plantea en esta investigación el desarrollo de una metodología a partir de un metamodelo que propicie el entorno teórico y conceptual adecuado para el desarrollo y construcción de estas sondas, soportado en el Diseño Estadístico de Experimentos (DOE); el Modelado Electromagnético a Bajas Frecuencias (EMLF) y el Método de Elementos Finitos (FEM).

1.1. Motivación del Trabajo

La oportunidad de participar en un proyecto ambicioso, que permitió lograr un mayor grado de apropiación conceptual sobre el entendimiento de este tipo de tecnologías, y profundizar en el conocimiento científico y práctico del electromagnetismo aplicado, fue lo que motivó a emprender este proyecto, además de tener la posibilidad de implementar una técnica no explorada antes en la línea de investigación en microfabricación. Todo esto a partir de un enfoque práctico y multidisciplinario que en conjunto con el LNDC de la Universidad Federal de Río de Janeiro, permitió fomentar la proyección de la línea de microfabricación, al desarrollo de una metodología no reportada en la literatura para el desarrollo de nuevas aplicaciones electromagnéticas que podrán impulsar a la universidad Eafit en vínculos con la industria nacional y regional, a través del grupo de electromagnetismo aplicado (GEMA) y así generar nuevos desarrollos tecnológicos en el campo de los ensayos no destructivos.

1.2. Planteamiento del Problema

Dentro de las diferentes técnicas empleadas en los NDT, las EC es una de las metodologías más sensibles a la detección de defectos superficiales y en el interior de las piezas de inspección que se están valorando [4, 10, 12, 16]. Para la implementación de ésta técnica, se suelen diseñar sistemas integrados o sensores caracterizados para un material y defecto en particular [4, 23, 24, 29]. El sensor de EC es un sistema electrónico asociado a un componente electromagnético de emisión - recepción (Sonda-Bobina-Antena) que estará encargado de...
inducir las EC y localizar la deformación de su circulación, para revelar los defectos que se encuen-
tren sobre la muestra de algún material eléctricamente conductor [4,10–12,16,23,24,29]. En el desarrollo de este documento hablar de sonda, bobina o antena es equivalente.

El principio de esta técnica se basa en la excitación de una sonda con una corriente alterna, generalmente sinusoidal a frecuencias que pueden variar en un intervalo aproximado de 1 kHz a 2 MHz [4,10–12]. Según la ley de inducción de Faraday, el paso de esta corriente a través de la sonda produce un campo magnético primario alternante y con la misma frecuencia de la corriente de excitación, orientado perpendicularmente a la dirección de esta corriente y paralelo al eje de la bobina. Al colocar la sonda sobre un material eléctricamente conductor se inducen EC directamente debajo de la antena, las cuales circulan por el material y de acuerdo con la ley de conservación de la energía, producen un campo magnético secundario opuesto al generado en la sonda. Por medio de la diferencia entre los campos magnéticos primero y secundario, se puede obtener información de la existencia de un defecto sobre una pieza de interés, ya que el defecto genera un cambio en la intensidad de los campo y debido a esto un cambio en la impedancia de la sonda [4,10–12,16,23,24,29], como se muestra en la Figura 1-2.

De esta manera la sonda de EC se establece como un sistema de emisión-recepción, el cual puede estar configurado de manera absoluta [10], como se muestra en la Figura 1-2, o en forma diferencial [11] por medio de un par de bobinas idénticas acopladas, configuradas con la

1.3 Objetivos

1.3.1 Objetivo General
Desarrollar una sonda de EC, que permita detectar microfisuras en superficies cladeadas de tipo API 5L X65 + Inconel 625, en un rango de 0.2 a 2mm de profundidad.

1.3.2 Objetivos Específicos

- Apropiar los principios físicos de las EC y los procedimientos teóricos y técnicos para la obtención computacional y experimental del cambio de la impedancia de la sonda.

- Desarrollar e implementar la metodología para la construcción de la sonda propuesta de EC.

- Diseñar y modelar un sistema magnético mediante el DOE, para implementar computacionalmente la simulación por elementos finitos de la sonda con mejores características encontradas por la metodología y obtener su cambio de impedancia a través del EMLF.

- Construir y caracterizar el sistema magnético propuesto y obtener de manera experimental el cambio de impedancia de la sonda.

12 Distancia o separación entre la bobina de una sonda y la pieza que se inspecciona o evalúa, medida del acoplamiento entre la sonda y la muestra [4].
Validar el comportamiento de la sonda de EC, contrastando los resultados del cambio de impedancia de la sonda obtenidos computacionalmente con los resultados experimentales.

1.4. Estructura del Documento

El soporte teórico y las generalidades de los NDT; la implementación de la técnica de las EC para la revelación de defectos superficiales en materiales conductores, a través del cambio de impedancia de la sonda de detección; la aplicación del DOE para integrar los parámetros fundamentales del diseño y modelamiento de la sonda de inspección, se presentan en el Capítulo 2, titulado Generalidades y Marco Teórico. Este capítulo desarrolla en su totalidad el primer objetivo específico y también trata sobre las ventajas y limitaciones de la técnica de las EC, para la localización de defectos y la manera en que el DOE y el EMLF, exponen la metodología de construcción de la sonda de inspección por EC.

Los softwares utilizados para la modelación de la antena, la articulación e implementación del DOE, la obtención computacional de la densidad de corriente y flujo magnético inducidos, y el cambio de impedancia de la sonda a través del EMLF se presentan en el Capítulo 3, titulado Materiales y Métodos. En este capítulo se desarrolla lo consignado en el segundo, tercer y cuarto objetivo específico, es decir, se desarrolla e implementa la metodología para la construcción de una sonda de EC, se hace la elección y construcción de las sondas de inspección y se presentan los experimentos desarrollados en el LNDC, al igual que los equipos utilizados en esta etapa de la investigación.

El Capítulo 4, titulado Resultados y Discusión, implementa el cuarto objetivo específico del proyecto de investigación y expone la validez y comportamiento de la sonda de detección, a través de la metodología propuesta y por medio de los productos obtenidos en el desarrollo de esta tesis, los cuáles son: la prueba en el bloque estándar de caracterización para la diferenciación de materiales magnéticos y no magnéticos, la prueba de detección de defectos sobre el bloque estándar de calibración de Inconel a través de la prueba S-Scan y la prueba de reproducción superficial de defectos C-Scan sobre el bloque de calibración de inconel LNDC, las cuales confirman a partir del cambio de la impedancia de la sonda si hay o no detección.

Por último en el Capítulo 5, se presenta las conclusiones y la propuesta de trabajos futuros que dan culminación a la disertación de este proyecto de investigación.
Capítulo 2

Generalidades y Marco Teórico

2.1. Estado del Arte

Los NDT se han venido practicado por décadas, se tiene registro desde 1868 cuando se comenzó a trabajar con campos magnéticos. Las técnicas de NDT basadas en la metodología de corrientes inducidas pertenecen al campo de los métodos de localización electromagnéticos y aparecen en la literatura como técnicas de detección por EC. Estos procedimientos comenzaron a desarrollarse a partir de los años 50, conjuntamente con el desarrollo de la electrónica integrada y los grandes impactos de la industria nuclear, aeronáutica y petroquímica. La técnica de inspección por EC es una de las más utilizadas para la evaluación de piezas metálicas por su eficiente velocidad de inspección, por no requerir contacto entre el material de prueba y la sonda, y porque ofrecen unos resultados casi instantáneos [4, 10–13, 16–19, 42].

Múltiples trabajos reportados en la literatura emplean la técnica de las EC, las cuales combinadas con métodos analíticos y numéricos como el Potencial Vector de Segundo Orden (SOVP) y el FEM, permiten relacionar el desarrollo teórico y experimental, a través del cambio de la impedancia de la sonda de detección para la identificación de microfisuras o defectos en las piezas evaluadas. Algunos trabajos donde se puede apreciar la aplicación de estas técnicas son los realizados por X. Chen and Y. Lei [5], S. Burke and T. Theodoulidis [6], J. R. Bowler and T. Theodoulidis [7] y T. Theodoulidis [9], en los cuales se determina de manera analítica la función para la densidad de corriente inducida de las EC como en [5], o el cambio de la impedancia de la sonda de detección, el plano de impedancia y sus respectivas gráficas como en [6, 7, 9] para luego corroborar acertadamente la validez de los resultados teóricos a través de experimentos con sondas de EC. F. Fu, J. Bowler, and T. Theodoulidis [1], evaluaron con este mecanismo una estructura que representa una grieta idealizada. La estructura es compuesta por dos placas rectangulares de aluminio una al lado de la otra con sus bordes separados por una pequeña distancia $2c$, como se muestra en la Figura 2-1.
La variación de la impedancia de la bobina con la posición, se midió al mover la bobina sobre los bordes adyacentes de la placa. Ellos utilizaron una teoría analítica para evaluar el cambio de la impedancia de la bobina debido a la brecha entre las placas. Esta teoría se basa en el método de expansión de la función propia de la región truncada, la cual se expresa inicialmente con la relación de los campos vectoriales en términos de cantidades escalares, sabiendo que la densidad de flujo magnético puede escribirse como se expresa en la Ecuación 2-1.

\[\mathbf{B} = \nabla \times \nabla \times \mathbf{W} \]

(2-1)

con

\[\mathbf{W} = \hat{x} W_a + \hat{x} \times \nabla W_b \]

(2-2)

Donde, \(W_a \) y \(W_b \) son respectivamente el potencial eléctrico transversal y el potencial magnético transversal, los cuales satisfacen la ecuación de Laplace en la región libre de fuente no conductor en el límite cuasiestático.

El método usado por los autores para calcular el cambio de la impedancia de la sonda de EC debido a las grietas formadas por dos placas coplanares fue validado, demostrando un buen acuerdo entre las predicciones teóricas y los resultados experimentales. Además, Investigaron el efecto de la apertura de la grieta, y las condiciones de contorno a través de la solución de la primera y segunda derivada parcial del potencial eléctrico transversal y el potencial magnético transversal en \(x = 0 \) y \(z = 0 \), encontrando que la impedancia de la bobina varía linealmente con la apertura de ésta y que para escaneos de impedancia medidos a diferentes frecuencias, el cambio de la resistencia varía de manera diferente a baja y alta frecuencia.

La diferencia entre la señal de la Bobina de EC debido a una muesca en comparación con la de una grieta puede explicarse en parte por la diferencia en la apertura. Ellos investigaron además el efecto de variar la apertura de la grieta simulada y se mostró de forma teórica y experimental cómo la impedancia de la bobina cambia con la posición, la apertura y la...
frecuencia, como se muestra en la Figura 2-2.

Figura 2-2: Cambio en la resistencia (a) e inductancia (b) de la bobina como una función de la posición central, imagen adaptada de [1].

Este cambio fue escaneado a través del espacio entre dos placas coplanares de Al 2024 a una frecuencia de 480 Hz con un Lift Off constante. Los círculos en la Figura 2-2 representan la medida experimental y las líneas son la predicción teórica.

T. P. Theodoulidis [2], en 2002 mediante la formulación del SOVP (W), resolvió el problema electromagnético de una bobina cilíndrica que vibra en el interior de una tubería conductora. La solución numérica en coordenadas cilíndricas de la integral de superficie que encierra al campo electromagnético producido por la vibración de la bobina al desplazarse dentro de la tubería, se obtiene en relación de los campos eléctricos y magnéticos en el interior y sobre la superficie de la tubería, ver la ecuación 2-3

\[\Delta Z = \frac{1}{\mu_0 I^2} \oint_{r=b_1} (\mathbf{r} \cdot \mathbf{E}_s \times \mathbf{B}_0 - \mathbf{E}_0 \times \mathbf{B}_s) r d\phi dz \] \hspace{1cm} (2-3)

Estos campos son obtenidos a través de la solución de las ecuaciones de Maxwell, como una relación con los potenciales escalares W_a y W_b de la formulación del SOVP, el cual se obtiene como solución de la expresión que se muestra en la Ecuación 2-4

\[A^* = \nabla \times W = \nabla \times (W_a \mathbf{z} + \mathbf{z} \times \nabla W_b) \] \hspace{1cm} (2-4)

Donde A^* es el potencial magnético vector de segundo orden modificado en coordenadas cilíndricas.

A partir de la incorporación de los campos eléctricos y magnéticos en la solución de la integral de superficie, el autor relaciona la variación de la impedancia como una expresión general
Generalidades y Marco Teórico

Para el cálculo de ésta, en una expresión que solo depende de la frecuencia de excitación de la bobina y que está dada por la Ecuación [2-5].

$$\Delta Z = \frac{4\pi^2 j\omega}{\mu_o I^2} \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a^2 D_s(a, m) C_{ec}(-a, -m) \, da$$ (2-5)

Donde $D_s(a, m)$ y $C_{ec}(-a, -m)$ son coeficientes obtenidos a partir de la solución de las funciones modificadas de Bessel del primer y segundo orden, que relacionan la geometría de la bobina y la tubería en términos de la frecuencia de excitación y que expanden la expresión de la variación de la impedancia a una expresión que muestra la estrecha relación entre el factor de llenado o acoplamiento magnético η y los parámetros geométricos entre la bobina y la tubería, permitiendo obtener diagramas de impedancia como: la curva de variación de la impedancia de la bobina, la relación normalizada de la reactancia inductiva (v_s) la resistencia, la amplitud de la variación de la impedancia (v_s) la frecuencia, entre otras curvas que permiten extraer información del estado de la tubería.

A partir de los resultados obtenidos, el autor valida la información del modelo propuesto por un método alternativo y los compara con los resultados numéricos obtenidos por el FEM, empleando el software OPERA 3D y el solucionador ELEKTRA, por medio de combinaciones de frecuencia respecto a las variaciones de la posición de la bobina. En la Figura 2-3, ID, OD y WB representan respectivamente al diámetro interno, diámetro externo y el desplazamiento de la bobina, es decir, la figura muestra el cambio de la amplitud de la impedancia a lo largo de cada uno de estos.

Figura 2-3: Amplitud del cambio de Impedancia de las señales debidas al adelgazamiento de la pared en función del la frecuencia (a) y del factor de llenado (b), imagen adaptada de [2].

Comparando los resultados del cambio de impedancia mostrado en la Figura 2-3 con la combinación de los resultados analíticos de la densidad de EC, se estableció que no se puede
simular el efecto de oscilación de una bobina cilíndrica que vibra en el interior de una tubería conductora, pero si se puede obtener el cambio de su impedancia con la aplicación del SOVP.

Un aspecto de gran relevancia en este trabajo y para futuros cálculos es que la Ecuación se puede utilizar para calcular el cambio de impedancia de cualquier bobina en el supuesto de que el coeficiente D_s se puede calcular.

V. Arjun et. al [3] utilizaron un Pulso de Corrientes Eddy (PEC) como una técnica para evaluar la superficie interior de un material eléctricamente conductivo y de manera análoga utilizaron ésta para la detección de defectos en materiales no magnéticos gruesos. Ellos encontraron que el PEC debía ser mejorado para la detección sensitiva de la muestra en la configuración de la sonda de inspección, ya que la sensibilidad de la detección depende de la configuración de la sonda, debido a que los PEC son una técnica que utiliza pulsos de corta duración con una corriente de excitación alta.

El estudio se centró en la optimización del diseño de la sonda del PEC para la detección de defectos que estarían por debajo de la superficie, a más de 4 mm en aproximadamente 8 mm del espesor de una placa de acero inoxidable AISI 316 como se muestra en la Figura 2-4.

![Figura 2-4: Dibujo esquemático de las muescas mecanizadas, imagen adaptada de 8.](image)

La optimización de la configuración de la sonda se realizó con la modelación del experimento por el FEM, con la finalidad de obtener como resultados una penetración más profunda del campo magnético de la sonda en el material evaluado como se muestra en la Figura 2-5.

![Figura 2-5: Imagen de un PEC experimental en defectos subsuperficiales, imagen adaptada de 8.](image)

La configuración de la sonda fue optimizada con el software COMSOL Multiphysics 3.4, bajo
un estudio estacionario para el cual se tuvieron en cuenta: la parte exterior de la geometría, las condiciones de frontera de Neumann en el campo magnético, además las condiciones de frontera para el resto de la geometría de la sonda. Estos últimos datos fueron ajustadas a la continuidad del campo magnético a lo largo de los límites de la geometría, dado que la bobina del sensor de inspección era pick-up1. El foco del problema fue discretizado a partir de elementos triangulares en la construcción de la malla y en la aplicación de la Ecuación 2-6 que gobierna a la sonda, para la solución de un problema particular de 9256 grados de libertad.

\[
\nabla \times \left(\frac{1}{\mu} \times \vec{A} \right) = -\sigma \frac{\partial \vec{A}}{\partial t} - \nabla \sigma V + \vec{J}_s
\]

Donde \(\mu, \vec{A}, \sigma, V \) y \(\vec{J}_s \) son respectivamente: la permitividad magnética del material, el potencial magnético vector, la conductividad eléctrica del material, el potencial eléctrico escalar y la densidad de corriente superficial.

El problema fue considerado por los autores como lineal debido al intervalo de frecuencias de funcionamiento \(< 100kHz\) y a la corriente de excitación \(< 1A\). La densidad de corriente de la fuente obtenida en la Ecuación 2-6, pudo expresarse como transitoria mediante la aplicación del segundo orden de la función por pasos de Heaviside, pudiendo resolver el problema utilizando el modo directo paso a paso del solucionador lineal del software COMSOL. La tensión inducida en la sonda la calcularon nuevamente utilizando dicho software, de igual manera se utilizó para realizar estudios de optimización de la sonda. A través de los resultados obtenidos en el estudio realizado, observaron que la sonda del tipo pick up con núcleo de ferrita mostraba una sensibilidad mayor a la detección de defectos subsuperficiales en comparación a las otras sondas de detección por EC.

S. K. Burke et. al [8] desarrollaron pruebas por medio del formalismo del SOVP, para el tratamiento de las EC sobre geometrías cilíndricas con bobinas rectangulares curvadas. El desarrollo de esta metodología les permitió derivar las expresiones teóricas para predecir la variación de la impedancia de una bobina rectangular colocada alrededor de un cilindro conductor. Para obtener una mayor penetración del campo magnético de la bobina en el material de inspección, utilizaron matrices multielementos de bobinas flexibles, desarrollando también la teoría para la predicción de la impedancia mutua de bobinas simples y bobinas de emisión recepción. La frecuencia de excitación de las bobinas para las pruebas experimentales se mantuvo en el intervalo de 10Hz a 1MHz, las cuales se realizaron sobre muestras de cilindros libres de defectos. Postularon como trabajos posteriores el tratamiento de simulaciones de cilindros con defectos o grietas, cuyos resultados fueron presentados posteriormente en otro

1Sonda formada por un par de bobinas idénticas y encapsuladas una al lado de la otra, para el tratamiento de la señal por emisión recepción
Los autores relacionan la variación de la impedancia de la bobina rectangular curvada a partir de la Ecuación 2-7 como una generalización de la Ecuación 2-5 propuesta en [2].

\[
\Delta Z = \frac{4\pi^2 j\omega}{\mu_0 I^2} \int_{-\infty}^{\infty} \alpha^2 \sum_{m=-\infty}^{\infty} C_s(-\alpha, -m)C_s(\alpha, m)R(\alpha, m) d\alpha
\]
(2-7)

Donde \(C_s\) es un coeficiente superficial que describe la geometría de la bobina y el coeficiente de reflexión \(R\) describe las propiedades electromagnéticas del cilindro conductor y son coeficientes obtenidos a partir de la solución de las funciones modificadas de Bessel del primer y segundo orden.

H. G. Ramos et. al [17] realizaron un estudio sobre las perturbaciones en el campo magnético y en las líneas de corriente debidas a diferentes defectos lineales sobre una superficie conductor plana con diferentes profundidades, con el fin de extraer información relevante que les permitiera determinar las características de dichos defectos, a partir de la simulación de EC en un material conductor por el FEM. Para la detección y caracterización de las fisuras superficiales utilizaron el software comercial FLUX, con el fin de determinar la máxima profundidad de penetración a la cual llegaría el campo magnético inducido sobre un defecto en la superficie conductor, a partir de la inducción de EC con una bobina planar. Así mismo obtuvieron que la geometría de la bobina al ser excitada produce un campo magnético uniforme en un área al rededor del sensor, induciendo una distribución uniforme de EC en el material y que en presencia de defectos en la superficie de éste, las líneas de corrientes en el interior del material se desviaban de su dirección de manera uniforme y el campo magnético producido por estas corrientes era detectado por el sensor. El problema fue formulado para observar si la determinación del patrón de EC era modificado debido a la presencia de un defecto en el volumen de la placa a inspeccionar, en una solución de 68.500 elementos de malla.

La Federación Mundial de Centros de Evaluaciones no Destructivas (FMCEND) planteo en 2012 el siguiente problema: obtener el cambio de la impedancia de una sonda generado por un defecto axial en la pared interna de un tubo de Inconel 600, por aplicación de la técnica de EC.

Características del problema:
Tubo: permeabilidad \(\mu=1\), conductividad \(\sigma=0.84\) MS/m, diámetro interno 16.64 mm, diámetro externo 18.99 mm.
Defecto: 12.20 mm de longitud axial y un ancho de abertura de 85 \(\mu\)m.
Sonda: radio interno 1.529 mm, radio externo 3.918 mm, altura 1.044 mm, número de vueltas 305, lift off 1.235 mm.
Frecuencias: 25, 50, 100, 150 y 200 kHz.
La solución de este problema fue reportada por diferentes grupos, en este documento se presentan los resultados obtenidos por dos de ellos.

J. M. Rebello et. al [18] atacaron el problema, por medio de la construcción de dos modelos distintos a través de la aplicación de dos software para la evaluación por el FEM: COMSOL Multiphysics 3.5a y OPERA 3D en el solucionador ELEKTRA. Estas simulaciones fueron desarrolladas para demostrar que los resultados simulados del desplazamiento de la bobina, a lo largo de una línea de 50mm atravesando una fisura en el interior de la tubería, estaba de acuerdo con los resultados experimentales dados a conocer por (FMCEND) en 2012.

Los cálculos fueron desarrollados para el intervalo de frecuencias de 25kHz a 200kHz para los cuales los resultados obtenidos a bajas frecuencias estuvieron de acuerdo a lo esperado, mientras que a altas frecuencias se presentaron algunas diferencias atribuidas a la variación de la malla. Para la generación de la malla del modelo desarrollado en el software COMSOL se utilizó una herramienta de malla adaptativa de elementos tetraédricos y debido a que las dimensiones de la fisura disminuyen, se requirió una malla más fina alrededor del defecto, para un total de 180.520 elementos de malla, con el fin de resolver la Ecuación 2-8.

\[(j\omega\sigma - \omega^2\varepsilon_0\varepsilon_r)\vec{A} + \nabla \times (\mu^{-1}\mu_r^{-1}\nabla \times \vec{A}) = \vec{J}_0\]

Donde \(\sigma\) es la conductividad eléctrica, \(\vec{A}\) es el potencial vector magnético, \(\vec{J}_0\) la densidad de corriente y \(\mu\) y \(\varepsilon\) son respectivamente la permeabilidad magnética y la permitividad absoluta. Esta ecuación se desarrolló sobre el paquete AC/DC en un estudio cuasi-estacionario para el EMLF.

La parte real de la variación de la impedancia (\(\Delta Z\)) se calculó con las pérdidas por efecto Joule (\(\Delta L\)) en los medios conductores y la parte imaginaria se obtuvo con la energía magnética (\(\Delta W\)), por medio de las Ecuaciones 2-9 y 2-10 respectivamente.

\[Re(Z) = \frac{JL}{I^2} \quad \Delta Z \quad I^2Re(\Delta Z) = \int_{\Omega} \frac{1}{\sigma}(|J_x^2| - |J_y^2|) \, d\Omega \]

\[Im(Z) = \frac{\omega WM}{I^2} \quad \Delta Z \quad I^2Im(\Delta Z) = \int_{\Omega} \frac{1}{\mu}(|B_x^2| - |B_y^2|) \, d\Omega \]

Para resolver estas ecuaciones se utilizaron simultáneamente los softwares COMSOL y Matlab, encontrando en la solución pequeñas ondulaciones en la curva de variación de impedancia al rededor de la fisura, fenómeno causado por la brusca disminución del tamaño de la malla alrededor de ésta, especialmente para los datos tomados a bajas frecuencias.

El segundo modelo utilizado por los autores para reproducir los resultados experimentales fue el software OPERA 3D; éste software puede utilizarse para calcular el tiempo variando...
los campos electromagnéticos en tres dimensiones incluyendo los efectos de las EC. En este caso utilizaron la geometría del modelo construido en COMSOL. El proceso de mallado y el método de cálculo de impedancia son completamente diferentes, el número total de elementos de malla fue 1.323.288. Los resultados obtenidos con esta primera aproximación de la malla no fueron lo suficientemente buenos para validar la simulación, además el tiempo de cálculo que consumía ésta era muy largo, así que después de varias pruebas en la optimización de la malla lograron algunas mejoras y finalmente, los resultados fueron bastante buenos en comparación con las mediciones experimentales publicadas en 2012.

De igual manera, T. P. Theodoulidis et. al [20] presentaron los resultados numéricos de este problema, los cuales fueron obtenidos a través del FEM por medio del software comercial COMSOL Multiphysics. Las mediciones implicaban la obtención de las curvas de impedancia. Debido a que el problema propuesto es ideal para resolverse completamente por un método integral, se recurrió al desarrollo por el FEM. Las simulaciones se ejecutaron sobre el modulo AC/DC en la versión 3.5a del software COMSOL, para campos electromagnéticos en un estudio cuasi estacionario, en el que se incorporaron mallas de elementos cuadráticos sobre todos los elementos del problema a simular, cuyo resultado presentó aproximadamente 77.000 elementos de malla y 620.000 grados de libertad.

La simulación fue ejecutada sin problemas a través de la introducción en el software Comsol de la expresión “2*i*(2*pi*nu_emqav)*(Jey_emqav*Ay + Jez_emqav*Az) donde mqav se refiere a una integral de superficie”, para el volumen de la bobina; el cambio de la impedancia en la bobina fue calculado como la diferencia de los resultados de las simulaciones de las impedancias con y sin fisura. La concordancia entre los resultados numéricos y experimentales fue calificada por los autores como excelente para las cinco frecuencias de inspección utilizadas.

J. M. Szlagowska-Spychalska et. al [21] desarrollaron esta investigación como parte del soporte de la tesis doctoral presentada por J. Szlagowska en 2012 y en la cual se presenta una propuesta para la medición del espesor de las capas superficiales de materiales de baja conductividad a través de modelos especiales por el FEM, metodología formulada a partir de la simulación de EC inducidas sobre la superficie del material a evaluar, las cuales se pudieron utilizar de manera directa para medir el endurecimiento de la muestra, a través de la inducción sobre capas de forma compleja. Esta metodología se utilizó mediante la validación de modelos numéricos, los cuales fueron realizados a partir de los resultados obtenidos sobre muestras de ensayo diseñadas especialmente para la validación de las mediciones experimentales, proporcionando desde las simulaciones con el software ANSYS 12, una herramienta para el análisis de los diagramas de impedancia de EC por medio de la variación de los parámetros de la sonda y de las capas del sustrato analizado.

Las pruebas se realizaron para evaluar a través de la inducción el espesor y el endurecimien-
Las medidas de las EC se realizaron con el uso de un defectoscope MIZ 27SI (ZETEC). Para esta medida se utilizó una sonda con núcleo de aire, diámetro de 9,5mm, altura de 25mm y un número de vueltas igual a 100; la escala de funcionamiento de la sonda se estableció en los intervalos de frecuencia 1 a 5 kHz y 5 a 50 kHz. La exactitud de la metodología empleada fue confirmada a partir de los resultados logrados con las curvas de Lift Off y los ángulos de fase, obtenidos mediante simulaciones numéricas y corroborados por medio de estas curvas a través de la evaluación por EC.

Es así que grupos de trabajo de todo el mundo están llevando a cabo investigaciones en el desarrollo y optimización de los algoritmos de procesado que se ejecutan en los equipos de instrumentación y en las técnicas de detección por EC como las publicadas por X. Mao and Y. Lei [14], K. Reber [19], T. P. Theodoulidis and J. R. Bowler [22], X. Chen and Y. Lei [25] y A. Simmet. al [26] entre otras, en las que el empleo de técnicas simultáneas permiten obtener de manera muy exacta el cambio de la impedancia de la sonda al interactuar con la muestra del material evaluado, identificando defectos, corrosion y permitiendo, además caracterizar las piezas a evaluar.

En conclusión, las diferentes técnicas que emplean la de detección por EC como el análisis del espectro de frecuencias, la detección por efecto Hall, los pulsos de corriente, la compensación del Lift Off y la inducción de EC por sondas absolutas o de emisión - recepción, han permitido desarrollar estudios analíticos, computacionales y experimentales para el análisis de corrosión en recubrimientos y en remaches de fuselaje, permitiendo evaluar discontinuidades en orificios o agujeros y obtener las discontinuidades en espesores de tubos y soldaduras, apoyados por el FEM y el EMLF para dar respuesta a la detección de defectos superficiales y subsuperficiales a través de la obtención del cambio de la impedancia de la sonda de detección.

La propuesta de una metodología basada en un metamodelo se efectúa a raíz de los hallazgos encontrados en el estudio del Estado del Arte, debido a que diversos autores desarrollan análisis con sondas de EC por diferentes metodologías que al final convergen en la obtención del cambio de la impedancia de la sonda pero no se encontró ningún reporte que propusiera una metodología estándar para el diseño y construcción de las sondas de detección por EC que vinculara parámetros como: la frecuencia de inspección, la profundidad de penetración, el retraso de fase, la conductividad eléctrica, la permeabilidad magnética, el espesor del material evaluado, la corriente de excitación, las dimensiones de los defectos, el lift off, la geometría...
de la sonda e.t.c, y además sus posibles variaciones; en este rastreo bibliográfico se encontró que un significativo número de autores como los reportados en [1–3, 8, 15–18, 20, 21, 26, 32, 34–36, 38, 39, 41], a través de la combinación de diferentes métodos analíticos como el SOVP, la solución por transformadas de Fourier y diversos análisis experimentales que apoyados en simulaciones por el FEM permiten determinar múltiples propiedades a partir del cambio de la impedancia de la sonda de EC como: las propiedades eléctricas y magnéticas de los materiales, el dimensionamiento y la profundidad de discontinuidades o defectos.

2.2. Marco Teórico

Las EC son una técnica de inspección no destructiva basada en la inducción de corrientes eléctricas en un determinado material conductor. Las EC descubiertas por Foucault en 1851, se producen cuando un conductor atraviesa un campo magnético variable o viceversa. Tal vez el primero en aplicar esta técnica para hacer medidas experimentales fue Hughes en 1879 [4], quien distinguió la diferencia entre algunos metales al registrar la variación de la inductancia en una bobina cuando le acercaba algunos metales. Él separó y clasificó materiales con base en las diferencias de los parámetros eléctricos tales como conductividad y permeabilidad magnética. Actualmente existen desarrollos que emplean este principio físico en el campo de los NDT [10–12, 23, 25].

2.2.1. Principios Físicos

Teniendo en cuenta las relaciones expresadas en la Ley de Faraday y la Ley de Ampere-Maxwell, se puede explicar físicamente el principio del funcionamiento del fenómeno de las EC. Estas relaciones se expresan respectivamente en las ecuaciones 2-11 y 2-12

\[
\oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{s} \quad (2-11)
\]

\[
\oint_C \mathbf{H} \cdot d\mathbf{l} = I_c + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{s} \quad (2-12)
\]

Donde la ecuación 2-11 manifiesta que se crea o induce un voltaje en una región del espacio cuando se produce una variación en el campo magnético, así que, si el flujo magnético \(\mathbf{B} \) encerrado por una espira cambia con el tiempo, una corriente de variación sinusoidal también es producida en la espira y por tanto el flujo magnético total en la sonda también variará sinusoidalmente. En las ecuaciones 2-11 y 2-12 el índice \(S \) corresponde a la superficie encerrada por el contorno \(C \). \(\mathbf{E} \) corresponde a la intensidad de campo eléctrico y se relaciona con el vector de desplazamiento o densidad de flujo eléctrico a través de la permitividad del medio, como se indica a continuación: \(\mathbf{D} = \varepsilon \mathbf{E} \). En la ecuación 2-12, \(\mathbf{H} \) es la intensidad del campo magnético, el cual se relaciona con el vector de densidad de flujo magnético por medio de la
permeabilidad magnética del medio, es decir: \(\vec{B} = \mu \vec{H} \).

De acuerdo con la Ley de Ampere-Maxwell, cuando se hace circular una corriente alterna a través de una bobina y ésta es colocada en las proximidades de la superficie de un material conductor eléctrico para llevarlo a un estado de energía adecuado, el campo magnético primario de la bobina penetra en el material generando unas corrientes eléctricas circulares llamadas corrientes parásitas o EC debido a que la corriente de excitation fluye por la muestra como se muestra en la Figura 2-6.

![Figura 2-6: EC en un material conductor, sonda absoluta.](image)

Estas corrientes por la ley de conservación de la energía, dan origen a un campo magnético secundario de sentido tal que se opone siempre a las variaciones de amplitud del campo magnético primario, lo cual causa una disminución de la reactancia inductiva de la bobina a medida que aumentan las EC, las irregularidades o defectos presentes en el material inspeccionado obstruyen la circulación de las EC, disminuyendo su intensidad y aumentando la reactancia inductiva de la bobina y en general causando una variación de la impedancia de la sonda [4,11,12,15,16].

Un factor de gran importancia para esta técnica de evaluación es que la frecuencia de inspección determina la profundidad de penetración en la muestra; a medida que aumenta la frecuencia, disminuye la penetración y la distribución de las EC se hace más densa cerca de la superficie del material [4,11,12].

Tanto las EC como el flujo magnético se debilitan con la profundidad debido al efecto pelicular. Además de ésta atenuación, las EC experimentan un retraso en la fase con la profundidad, ver Figura B-1 del Apéndice B. Éste retraso de fase de las EC es el parámetro clave que hace de esta técnica un método de inspección no destructivo útil [4].
2.2.2. Efecto Pelicular y Profundidad de Penetración

Es el fenómeno por el cual las EC inducidas sobre un material conductor se limitan a la superficie de la muestra evaluada, como consecuencia de la frecuencia de inspección, debido a que el aumento de ésta frecuencia reduce la penetración de la señal en el material [4].

El efecto pelicular se puede explicar de la siguiente manera: las EC que fluyen en el material sensado a cualquier profundidad, producen campos magnéticos en oposición al campo magnético primario, reduciendo el flujo de corrientes a medida que aumenta la profundidad; estas corrientes cerca de la superficie pueden considerarse como barreras del campo magnético producido en la sonda, debilitando el campo a medida que la profundidad de inspección aumenta y como consecuencia obteniéndose también una reducción de las corrientes inducidas, ver Figura [B-1] del Apéndice B [4,11,12].

La ecuación 2-13 describe el flujo de corriente inducida (la obtención de esta ecuación se presenta en el Apéndice C) como se presenta a seguir

\[\nabla^2 \mathbf{J} = \sigma \mu \frac{\partial \mathbf{J}}{\partial t} \] \hspace{1cm} (2-13)

donde \(J \) es la densidad de EC en \(A/m^2 \), \(\sigma \) y \(\mu \) son la conductividad y la permeabilidad magnética en \(S/m \) y \(Tm/A \), es decir \(\mu = \mu_0 \mu_r \) y \(\nabla^2 \) es el operador (Laplaciano). Esta expresión permite obtener la solución para un conductor semi-infinito grueso y se expresa en la ecuación 2-14.

\[\frac{J_x}{J_0} = e^{-\beta \sin(\omega t - \beta)} \] \hspace{1cm} (2-14)

De tal manera que \(J_x/J_0 \) es la relación de las EC a una profundidad \(x \) en el material evaluado, donde \(J_0 \) es la densidad superficial y \(J_x \) la densidad a la profundidad \(x \), \(\omega \) es la frecuencia angular en rad/seg cuando \(f \) es la frecuencia en hertzios y \(\beta \) es una cantidad dada por \(x/\delta \), donde \(\delta \) es la profundidad estándar de penetración. La ecuación 2-14 se puede separar en dos componentes:

\[\frac{J_x}{J_0} \propto e^{-\beta} \] \hspace{1cm} y \hspace{1cm} \[\frac{J_x}{J_0} \propto \sin(\omega t - \beta) \]

La primera componente de la ecuación 2-14 describe la disminución exponencial de la densidad de EC como una función de la profundidad de penetración en la muestra evaluada; la segunda componente de la ecuación 2-14 muestra la relación que se encuentra entre el retraso temporal o desfase de la señal emitida por la sonda con la profundidad de penetración de ésta y se relacionan en la ecuación 2-15 de la siguiente forma [4,11,12,15,16].

\[\frac{J_x}{J_0} = \sin(\omega t - \beta) \] \hspace{1cm} (2-15)
La profundidad estándar de penetración \(\delta \), relacionada en \(\beta \), se define como el punto donde la densidad de corriente eléctrica disminuye por un factor de \(\frac{1}{e} \times (100\%) \approx 36.8\% \) de su valor superficial, donde \(f \) es la frecuencia de operación de la sonda en \(Hz \), ver ecuación 2-16.

\[
\delta = \frac{1}{\sqrt{\pi f \mu \sigma}} \quad \therefore \quad \delta = \frac{1}{\sqrt{\pi f \mu_0 \mu_r \sigma}} \quad (2-16)
\]

En esta expresión \(\rho = \frac{1}{\sigma} \) y \(\rho \) es la resistividad eléctrica del material, \(\mu_0 \) y \(\mu_r \) son respectivamente la permeabilidad del espacio libre y la permeabilidad relativa del material.

A partir de la ecuación 2-16 se puede observar que a medida que la frecuencia de inspección aumenta, la penetración disminuye y la distribución de las EC queda más densa en la superficie del material sensado.

2.2.3. Frecuencia de Inspección

La frecuencia característica de inspección es aquella bajo la cual la solución de las funciones de Bessel para las ecuaciones de Maxwell, relativas al campo magnético de un objeto finito que se inspecciona es igual a la unidad [4]. La frecuencia de inspección en la mayoría de los casos constituye la única variable que es posible regular, debido a que las características y la forma del material inspeccionado son por lo general fijas [4,10–12].

Se obtiene la frecuencia de inspección o de excitación de la sonda, teniendo en cuenta la estrecha relación que se presenta entre la ecuación 2-16 y la expresión 2-17 que se muestran a continuación.

\[
0.8 \leq \frac{t}{\delta} \ll 2 \quad (2-17)
\]

Donde \(t \) es el espesor de la pared de la pieza a evaluar y \(\delta \) es la profundidad de penetración estándar en el material evaluado, ambos en mm. La ecuación 2-17 es la relación establecida para determinar la frecuencia de inspección en placas y tubos para sondas externas o internas, deducida de [4], la relación expresada por el cociente \(\frac{t}{\delta} \) debe ser ligeramente mayor que uno.

Al reemplazar la ecuación 2-16 en la ecuación 2-17 despejando la frecuencia \(f \) y tomando en este resultado como valor de referencia que el cociente de \(\frac{t}{\delta} = x \), se obtiene la ecuación 2-18 que se muestra a continuación.

\[
f = \frac{50^2 \rho x}{\mu_r t^2} \quad (2-18)
\]

Esta expresión permite calcular en KHz el valor de la frecuencia de inspección en el intervalo establecido por la ecuación 2-17. En el caso de tuberías la ecuación 2-18 es aproximadamente...
independiente del diámetro de la tubería y permite obtener una penetración máxima efectiva en el material y produce una separación de fase de 90° entre las variaciones del Lift Off y las señales de los defectos externos e internos, para el caso de placas el ángulo de fase de 90° no aumenta sino ligeramente en función de aumento del diámetro de la sonda [4, 10–12].

Las EC en la mayoría de los dispositivos convencionales van acompañados por una pérdida de energía, si se permite que estas corrientes fluyan sin cesar en el material, se reduce la fuerza del campo magnético aplicado, como si se produjeran fuerzas indeseables. La medida del cambio de la impedancia de la bobina proporciona información acerca de la disposición de fisuras, defectos o corrosión, a través de la intensidad de la señal de las EC sobre el material.

2.2.4. Plano de Impedancia

Cuando la bobina se acerca desde el aire a un metal no magnético, la componente real de la impedancia se incrementará con la generación de las EC las cuales tomarán la energía desde la bobina; esto sucede porque el material no es un conductor perfecto. Se sabe que, las EC afectan el campo magnético a través de las bobinas al reducir éste y como consecuencia se disminuye la parte imaginaria de la impedancia. Si un defecto está presente en el material, las EC no serán capaces de incrementar la parte imaginaria y disminuir la parte real, este efecto se pueden explicar claramente por medio de la Figura 2-7.

![Figura 2-7: Plano de Impedancia y el efecto de las diferentes fuentes de perturbación.](image)

Si la bobina se mueve en el aire sobre un metal ferromagnético, debido a la resistividad del material, las EC restarán energía a las bobinas, y se incrementará la componente real de la impedancia como se observa en la Figura 2-7 de otro lado, la parte imaginaria se incrementará debido al aumento del campo electromagnético. De este modo se hace evidente
que la capacidad de penetración en el material de las EC es un factor de análisis de gran importancia a la hora de interpretar los resultados de una inspección [4,11,12,14,30,32,42].

2.2.5. Ensayos No Destructivos

Los NDT son un conjunto de técnicas no invasivas que permiten determinar la integridad de un material sus componentes y estructura sin necesidad de interferir con su uso final. Ofrecen un excelente apoyo entre el control de calidad de un material y la integridad del mismo [19]. El objetivo principal de los NDT es poder predecir o evaluar el rendimiento y la vida útil de un componente o un sistema en varias etapas de los diferentes ciclos de fabricación [4,19]. Los NDT se utilizan en el control de calidad de las instalaciones y productos, y para la aptitud o evaluación propósito que evalúa la vida útil restante y el funcionamiento de los componentes de una planta como: líneas de proceso, tuberías y recipientes [4,10,12]. La inspección por NDT de equipos, instrumentos y estructuras industriales es importante para la ingeniería en las plantas de generación de energía, petróleo y procesamiento de químicos al igual que en el sector Aeronáutico y del transporte [4].

2.2.6. Detección de Defectos por Ensayos No Destructivos

Existe una gran lista de técnicas y metodologías de NDT, entre los cuales se incluyen: Pruebas radiográficas, Pruebas de ultrasonido, Pruebas de líquidos penetrantes, Pruebas de partículas y EC entre otras, las cuales permiten analizar el estado de los dispositivos, monitorear y evaluar daños por corrosión en estructuras y equipos, predecir la fatiga de las estructuras, daños por fluencia etc. Estos métodos tienen características comunes como la interpretación de los cambios que permite obtener información sobre las piezas evaluadas y que todos se aplican por el uso de métodos físicos que ponen a prueba la estructura valorada sin dañar su integridad [4,10,12,19].

Pruebas Radiográficas

Las pruebas radiográficas implican el uso de radiación penetrante (gamma o X), para examinar las partes y las imperfecciones de las muestras se utiliza como fuente de radiación un generador de rayos X o una fuente sellada de radioisótopos. La radiación se dirige a través de la pieza evaluada y sobre algún medio de formación de imágenes. El diagrama de sombra resultante muestra las características dimensionales de la pieza, las posibles imperfecciones se indican como cambios de densidad en la película, de la misma manera que la radiografía médica muestra huesos rotos. [10,12].

Prueba Ultrasónica

Utiliza la transmisión de ondas de sonido de alta frecuencia en un material para detectar imperfecciones o para localizar cambios en las propiedades de éste. La técnica de prueba ultrasónica más utilizada es el eco de pulsos, en el que el sonido es introducido en un objeto
de prueba y las reflexiones (ecos) son devueltas a un receptor por las imperfecciones internas en la geometría de la pieza evaluada [10-12].

Prueba de Líquidos Penetrantes

Las piezas de prueba se recubren con líquidos de viscosidad altas y bajas, de un colorante visible o fluorescente. El colorante excesivo se retira de la superficie evaluada y se aplica un revelador, este actúa como papel secante atrayendo el penetrante atrapado fuera de las imperfecciones abiertas a la superficie. Con los tintes visibles, los contrastes de colores vivos entre el penetrante y el revelador hacen que el defecto sea fácil de ver. Con los colorantes fluorescentes, la luz ultravioleta se utiliza para hacer que el defecto en tinte fluorescente intenso brille, lo que permite observar imperfecciones fácilmente [10-12].

Prueba de Partículas Magnéticas

Este método de NDT se lleva a cabo induciendo un campo magnético AC alternado en un material ferromagnético y luego limpiando (impregnando) la superficie con partículas o polvo de hierro. Las imperfecciones superficiales distorsionan el campo magnético y concentran las partículas de hierro cerca de las imperfecciones, permitiendo la visualización de las fallas [10-12].

Inspección Visual

La inspección óptica y visual es un método básico para muchas aplicaciones, implica el uso de los ojos del inspector para buscar defectos. El inspector también puede usar herramientas especiales tales como lupas o espejos para tener acceso e inspeccionar más de cerca el área de la pieza. Los examinadores visuales siguen los procedimientos que se extienden de simple a muy complejo [10-12].

Con frecuencia, es necesario usar uno o varios métodos de NDT para confirmar los hallazgos reportados de investigaciones por el uso de otros métodos de NDT. Por lo tanto, varios métodos deben considerarse como complementarios y no competitivos, como alternativas opcionales para la verificación de una prueba experimental que garantice la aprobación frente a la comunidad de NDT de los resultados que se estén validando. Cada método tiene sus ventajas y limitaciones particulares y estos deben tenerse en cuenta cuando se planifica cualquier programa de pruebas de detección.

La Tabla 2-1 presenta una síntesis de los métodos de NDT usados con mayor frecuencia para la detección de defectos en superficies conductoras [4, 10-12].
Tabla 2-1: MÉTODOS DE NDT (A: costo más alto, B y C: intermedios, D: costo más bajo) Tabla adaptada de [11]

<table>
<thead>
<tr>
<th>Técnica</th>
<th>Requisitos</th>
<th>Costo Equipo</th>
<th>Costo Inspección</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Métodos Opticos</td>
<td>Se puede usar para ver el interior de un equipo complejo. Un punto de acceso puede ser suficiente</td>
<td>B/D</td>
<td>D</td>
<td>Muy versátil, se requiere poca habilidad</td>
</tr>
<tr>
<td>Prueba Radiográfica</td>
<td>Debe poder alcanzar ambos lados de la muestra evaluada</td>
<td>A</td>
<td>B/C</td>
<td>A pesar de su alto costo, se puede inspeccionar una gran área a la vez. Se requiere una habilidad considerable en la interpretación.</td>
</tr>
<tr>
<td>Prueba de Ultrasonido</td>
<td>Uno o ambos lados de la muestra deben ser accesibles.</td>
<td>B</td>
<td>B/C</td>
<td>Requiere una búsqueda punto por punto, por lo tanto, se necesita mucho trabajo en estructuras grandes; Se requiere personal calificado.</td>
</tr>
<tr>
<td>Partículas Magnéticas</td>
<td>Requiere una superficie limpia y razonablemente lisa.</td>
<td>C</td>
<td>C/D</td>
<td>Solo es útil en materiales magnéticos como el acero; Se requiere poca habilidad; Solo detecta grietas superficiales o cercanas a la superficie.</td>
</tr>
<tr>
<td>Líquidos Penetrantes</td>
<td>Requiere que la falla sea accesible para el líquido penetrante (es decir, limpio y en la superficie).</td>
<td>D</td>
<td>C/D</td>
<td>Para todos los materiales; Algunas habilidades requeridas; Solo detecta defectos de superficie; Bastante desordenado</td>
</tr>
<tr>
<td>Corrientes Eddy</td>
<td>La superficie debe (por lo general) ser razonablemente lisa y limpia</td>
<td>B/C</td>
<td>C/D</td>
<td>Para materiales eléctricamente conductores solamente; Para defectos de ruptura de superficie; Variaciones en el espesor de los revestimientos o comparación de materiales; Para una comparación que no sea simple, generalmente se requiere una habilidad considerable.</td>
</tr>
</tbody>
</table>
Capítulo 3

Materiales y Métodos

3.1. Materiales

En esta sección se hace una descripción específica de los hardwares y softwares utilizados para el desarrollo de la presente disertación, además se mentionan los equipos informáticos, y se describen los instrumentos y materiales utilizados para la implementación de las pruebas experimentales y la manera en que se despliegan dichas pruebas, así mismo la metodología utilizada para la elección y construcción de las sondas de detección.

3.1.1. Hardware

3.1.1.1. Procesadores

Para el desarrollo de la metodología implementada en esta investigación y su validación, fue necesario utilizar como material de apoyo los siguientes equipos informáticos:

- Ordenador portátil de propósito general, con un procesador 2.5 GHz Intel Core i5 con memoria RAM de 8GB 1600 MHz DDR3, para la adquisición de datos, desarrollo de las simulaciones por elementos finitos, el post-procesamiento de la información y la representación de los resultados.

- Ordenador de escritorio de propósito general, con un procesador Intel Core i7-3770 con memoria RAM de 32GB, para el diseño de las carcazas de las sondas, la adquisición de datos, desarrollo de las simulaciones por elementos finitos, el post-procesamiento de la información y la representación de los resultados.

3.1.1.2. Componentes Electrónicos

Para la fabricación de las sondas de EC utilizadas en las pruebas experimentales, se han utilizado los siguientes componentes pasivos:
Componentes Pasivos: Hilo esmaltado de cobre de calibres 32, 34 y 36 según las especificaciones AWG, para el embobinado de las sondas; conectores BNC macho y cable coaxial, para la conexión de las sondas al equipo de detección de EC; material ABS para la elaboración por impresión 3D de las carcazas de las sondas de detección; resina Epoxi, para el aislamiento y protección de las sondas de EC.

3.1.1.3. Banco de Pruebas

Para el desarrollo de la prueba experimental C-scan, se utilizó un banco de pruebas conformado por, un Osciloscopio (Tektronix MSO 4034), un OmniScan MX (Olympus) y el software LabVIEW asociado a un ordenador. El posicionamiento vertical y la velocidad de desplazamiento de la sonda entorno a la superficie valorada se controla empleando este banco, de esta forma se minimizan los efectos que se puedan tener debido al aumento del Lift Off de la sonda en interacción con la pieza de material API 5L X65 + Inconel 625, ver Figura 3-1.

![Banco de pruebas](image_url)

Figura 3-1: Banco de pruebas: Mesa (x,y,z) para el ensayo experimental C-scan.

Las características de los equipos asociados al banco de pruebas son:

- **OmniScan MX (Olympus)**: Equipo para la detección de defectos en tiempo real por EC a través del cambio de la impedancia de la sonda de detección. Este equipo permite realizar la calibración general de la sonda para adquirir sus parámetros reales; por su portabilidad permite efectuar inspecciones en grandes zonas para identificar indicios de corrosión y dar solución a la inspección de grietas o fisuras superficiales y subsuperficiales.\(^1\) **Especificaciones**: *Frecuencia de operación 20 Hz a 6 MHz, *Ancho de banda 5 Hz a 20 kHz, *32 Canales con multiplexor interno, *Detección y configuración

\(^1\)www.olympus-ims.com/fr/omniscan-eca/
3.1 Materiales

automática de la sonda, *Velocidad de adquisición 1 Hz a 15 kHz, *Conexión BNC entre otras.

- **Osciloscopio (Tektronix TDS 2022B)**: Equipo para la obtención del cambio del voltaje asociado a la variación de la impedancia de la bobina electromagnética para la prueba C-scan. **Especificaciones**: *Ancho de Banda de 200 MHz, *Velocidad de Muestreo de hasta 2 GS/s en Tiempo Real, *2 Canales para toma de datos, *Pantalla LCD a Color, *Almacenamiento por puerto USB.

- **Osciloscopio (Tektronix MSO 4034)**: Equipo para la obtención del cambio del voltaje asociado a la variación de la impedancia de la bobina electromagnética para la prueba S-scan. **Especificaciones**: *Ancho de Banda de 1 GHz, 500 MHz y 350 MHz, *Velocidad de Muestreo de hasta 5 GS/s en Tiempo Real, *4 Canales analógicos para toma de datos y 16 digitales, *Pantalla LCD a Color, *Almacenamiento por puerto USB.

3.1.1.4. **Sondas de Corrientes Eddy EC**

El diseño de las bobinas electromagnéticas fue llevado a cabo en modo absoluto como se muestra en la Figura 3-2, la señal típica de este tipo de conexión se encuentra descrita en la figura B-1 del Apéndice B.

![Figura 3-2](image)

Figura 3-2: Construcción de las sondas de detección por EC.

Posteriormente el juego de sondas fue conectado a cables coaxiales con conectores BNC macho y sumergidas en una resina epoxi para aislar la señal, y darles rigidez y manejo como se muestra en la Figura 3-3.

![Figura 3-3](image)

Figura 3-3: Juego de sondas de inspección de tipo absoluto y baja frecuencia.
Cada una de estas sondas está formada por una bobina activa con núcleo de aire, cuyo eje es perpendicular a la superficie de inspección.

3.1.1.5. **Cuerpos de Prueba y Probetas**

Las pruebas experimentales de calibración por diferenciación de materiales magnéticos y no magnéticos y las pruebas de detección de defectos S-scan y C-scan fueron efectuadas sobre los siguientes cuerpos de prueba:

- **Bloque (Test-Maschinen-Technik):** Esta pieza cuenta con probetas de 1.0 mm de espesor de diferentes materiales eléctricamente conductores como: Cobre, Aluminio, Latón, Bronce, Austenita, Cobre-Níquel, Acero ST 37 y Acero MN 4104, como se muestra en la Figura 3-4.

![Figura 3-4: Bloque estándar para la diferenciación de materiales magnéticos y no magnéticos.](image)

- **Bloque Estándar API 5L X65 + Inconel 625 (Técnica S-scan):** Esta pieza de material cladeado cuenta con cuatro entalles de 2.0 mm, 1.0 mm, 0.5 mm y 0.2 mm de profundidad y 0.46 mm, 0.43 mm, 0.37 mm y 0.33 mm de espesor respectivamente en un volumen de 3.0 mm de profundidad en el material Inconel, como se muestra en la Figura 3-5.

![Figura 3-5: Bloque estándar de calibración, Técnica S-scan. P: Profundidad, E: Espesor.](image)

- **Bloque Estándar API 5L X65 + Inconel 625 (Técnica C-scan):** Esta pieza de material cladeado cuenta con cuatro entalles diferentes de 3.0 mm, 2.0 mm, 1.0 mm y
3.1 Materiales

0,5 mm de profundidad y 1.0 mm, 0.8 mm, 0.3 mm y 0.2 mm de espesor en un volumen de 3.0 mm de profundidad en el material Inconel, que respectivamente forman las letras LNDC como se muestra en la Figura 3-6 y cuyas dimensiones se presentan en la Figura D-1 del Apéndice D.

Figura 3-6: Bloque estándar de calibración, para la detección de defectos Técnica C-scan.

Estos bloques de calibración fueron producidos para una investigación anterior [41], de una placa de acero cladeado de 1030 mm x 1000 mm x 15 mm, fabricada por cladeamiento metalúrgico de co-laminación, la cual fue proporcionada por la empresa Butting al LNDC, donde se cortan los bloques de calibración y se esculpen los entalles de estas piezas por electroerosión, además en el LNDC se analizó y caracterizó la estructura de las placas de material API 5L X65 + Inconel 625, a través de ataques químicos por inmersión en Nital al 3 % a intervalos de tiempo diferentes y un ataque electrolítico a 5V en una solución de FeCl₃ con 99ml de etanol durante 15s para revelar la estructura del bloque de calibración, para la identificación de la región de interfaz del material cladeado y revelar la conexión metalúrgica entre el Inconel 625 y el material X65 como se muestra en la Figura 3-7 [41].

Figura 3-7: Caracterización bloque API 5L X65 + Inconel 625 para las pruebas S-scan y C-scan, (a) Región atacada para revelar el acero API 5L X65, (b) Metalografía Inconel 625, (c) Interfaz del material cladeado, imágenes tomadas de [41].
3.1.2. Software

Para el desarrollo de la metodología implementada en esta investigación y para la construcción de las antenas, fueron utilizados los siguientes equipos y programas informáticos:

3.1.2.1. Solid Works

Software CAD en la versión 2012 utilizado para la modelación y diseño 3D de las carcasas de las antenas cuyos planos se presentan en las Figuras D-2, D-3, D-4, D-5 y D-6 del Apéndice D y que posteriormente fueron utilizados para la construcción de éstas en material ABS por impresión 3D. Este software permite utilizar diferentes herramientas tecnológicas para la automatización de los modelos elaborados y poder simular su rendimiento.

3.1.2.2. COMSOL Multiphysics

Para el desarrollo del EMLF de esta investigación, se utilizó las versiones 5.1 y 5.2 del software COMSOL Multiphysics en el modulo AC/DC; herramienta de modelado y análisis por el FEM para prototipaje virtual de fenómenos físicos individuales y acoplados, relacionados con las bobinas electromagnéticos tales como: las pérdidas resistivas, la densidad de flujo magnético de las sondas y la densidad de corriente inducida sobre el material conductor, a través de la solución de ecuaciones diferenciales parciales.

3.1.2.3. Matlab

Para el tratamiento de los resultados se emplea la versión R2017a y R2017b del software Matlab, herramienta utilizada en esta disertación para filtrar el ruido en las señales obtenidas experimentalmente para la Resistencia (R) y la Reactancia inductiva (XL) de las sondas de EC en las pruebas S-scan y C-scan, además de utilizarse también para construir de manera gráfica el cambio de impedancia de las sondas XL, R vs Y y el plano de impedancia para cada uno de los defectos de los bloques de calibración.

3.1.2.4. Herramientas Ofimáticas

- Para la elaboración del documento que relaciona el estudio presentado en esta disertación, las tablas de datos, el procesamiento de la información, los gráficos etc. se han utilizado herramientas ofimáticas de COMSOL Multiphysics, Matlab, Microsoft PowerPoint, Excel y LaTeX.

- Para la elaboración de esquemas se ha utilizado Microsoft Word, Microsoft PowerPoint y LaTeX.

- Para la gestión de referencias se ha utilizado el gestor de referencias Bibliográficas EndNote y el entorno BibTex, además, se ha utilizado Turnitin para la revisión de la integridad de esta tesis.
Se ha utilizado simultáneamente conexiones oficiales a Internet para la consulta de información en bases de datos digitales para la documentación general del proyecto de investigación.

3.1.3. Gestores Bibliográficos

Los gestores y medios bibliográficos fueron seleccionados según la metodología de revisión sistemática de literatura establecida en el texto 43, donde se integran los elementos propios de la búsqueda de información científica y se mencionan a continuación:

- Medios Bibliográficos físicos proporcionados por la Biblioteca Luis Echavarría Villegas de la Universidad Eafit.
- Bases de datos y medios Bibliográficos digitales en línea proporcionados por la Biblioteca Luis Echavarría Villegas de la Universidad Eafit, algunos de los documentos más relevantes son obtenidos de revistas electrónicas, como Scopus, ScienceDirect y EbscoHost.

3.2. Metodología

Inicialmente se describen de forma superflua los conceptos sobre los cuales se apoya esta metodología:

Diseño Estadístico de Experimentos DOE

Es una herramienta soportada en la estadística que permite conocer un proceso o sistema por medio de la observación de los cambios al variar los parámetros individuales involucrados. La estructura del DOE define la secuencia experimental que debe ser llevada a cabo para un estudio teniendo en cuenta el siguiente lenguaje:

Factor: son las variables que conoce el experimentador y se desea estudiar como ellas afectan una o varias respuestas.

Nivel: son los valores mínimo, central (valor intermedio entre un mínimo y un máximo) y máximo que pueden tomar los factores.

Tratamiento: es la matriz de experimentos que sugiere el DOE.

Efecto principal: indica la contribución que cada factor tiene sobre las variables respuestas. Esta se mide evaluando el cambio que se produce en la respuesta al modificar los niveles del factor.

Interacción: permite ver la relación o dependencia que hay entre los diferentes factores.

El DOE permite minimizar el número de experimentos a realizar, así como el margen de error y obtener conclusiones contundentes sobre el sistema o situación de estudio 44 45.

Método de Elementos Finitos (FEM)

El FEM, es un procedimiento sistemático que permite convertir un cuerpo de naturaleza continua en un modelo discreto aproximado, dividiéndolo en un número elevado de dominios y
subdominios no intersectantes entre sí y estos a su vez en una serie de puntos representativos llamados nodos, que vistos como estructura forman la malla de elementos finitos. La solución se encuentra mediante la interpolación de los valores conocidos en los nodos, a través de la solución de ecuaciones diferenciales parciales.

Una propiedad de gran importancia del FEM es la convergencia; si se consideran particiones de elementos finitos sucesivamente más finos, la solución numérica calculada converge rápidamente hacia la solución exacta del sistema de ecuaciones.

3.3. Metodología para el Desarrollo de una Sonda de EC

La metodología emplea el DOE, el FEM y el EMLF de manera conjunta a través del desarrollo de un metamodelo, y de esta forma se optimiza el área de la sección transversal de la sonda, con el fin de maximizar la densidad del flujo magnético y la corriente inducida por esta, sobre un determinado punto en el material evaluado. En la Figura 3-8 se presenta el esquema general de la Metodología de construcción de las sondas de detección por EC.

![Figura 3-8: Metodología de diseño y construcción de una sonda de EC, para la detección de defectos superficiales en tuberías de material cladeado API 5L X65 + Inconel 625.](image)

En las condiciones del proceso, Figura 3-8 se calcula la frecuencia de inspección de la sonda a partir de la ecuación 2-18.

3.3 Metodología para el Desarrollo de una Sonda de EC

La geometría de la sonda se determina a partir de los factores o parámetros relevantes tales como: número de espiras, diámetro del alambre, frecuencia de excitación, entre otros.

El modelo físico se desarrolla en el software COMSOL Multiphysics utilizando el modulo AC/DC.

Definida la geometría y la física que se va a resolver por medio del software, se asocian los diferentes materiales y sus propiedades a las geometrías correspondientes al modelo CAD. A seguir se subdivide la geometría en elementos al asociarle un conjunto de nodos (malla).

Desarrollado lo anterior se ejecutan las simulaciones, es decir, se está en la fase de procesamiento; en esta etapa la variable a ser obtenida sobre las ecuaciones del solucionador es el potencial magnético vector \vec{A}, el cual permite obtener la evaluación numérica de la sonda y posteriormente se presentan los resultados en la fase denominada propiedades finales o post-procesamiento.

Las sondas dependerán del tipo de defecto que se desea medir y del material que está siendo evaluado, es decir, no existe una sonda universal. La metodología propuesta en esta investigación es lo suficientemente flexible para el diseño de una sonda determinada, independiente del material a evaluar y adicionalmente es escalable en su geometría.

3.3.1. Frecuencia de Excitación de la Sonda

Asignando los valores $t_\delta = 0,8$, $t_\delta = 1,5$ y $t_\delta = 2$, del intervalo de la ecuación 2-17, con $\sigma = 8,4x10^5 S/m$ y $\mu_r = 1,0006$ a 15,9kA/m, y sustituyéndolos en la ecuación 2-18 se obtiene la Tabla 3-1 para un espesor de 3mm del material Inconel 625.

| Tabla 3-1: Frecuencia Real de Inspección de la Sonda |

<table>
<thead>
<tr>
<th>Espesor del Material Inconel 625 (mm)</th>
<th>Frecuencia de Inspección de la Sonda (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mínimo</td>
</tr>
<tr>
<td>3</td>
<td>26,4</td>
</tr>
</tbody>
</table>

El patrón experimental tiene un espesor de 3mm, por este motivo se calculo teóricamente la frecuencia teniendo en cuenta este valor. Sin embargo estos valores de frecuencia no serán parámetros de entrada del Diseño Estadístico de Experimentos, si no que se tomaran aquellos que se reportan en la literatura, y es de esperar que los valores experimentales se encuentren dentro del rango de los teóricos como se indica en la Tabla 3-1.
3.3.2. Diseño Estadístico de Experimentos DOE

A partir de los datos reportados en la literatura, se determinaron que los factores de entrada y los niveles máximo, medio y mínimo son los que se presentan en la Tabla 3-2.

Tabla 3-2: Parámetros de Entrada y Salida para el DOE

<table>
<thead>
<tr>
<th>Parámetros o Factores</th>
<th>Nombre</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mínimo</td>
</tr>
<tr>
<td>A</td>
<td>Número de espiras</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>Diámetro del alambre AWG</td>
<td>36</td>
</tr>
<tr>
<td>C</td>
<td>Corriente de excitación Bobina (mA)</td>
<td>10</td>
</tr>
<tr>
<td>D</td>
<td>Lift Off (mm)</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>Frecuencia de excitación (kHz)</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>Diámetro del núcleo (mm)</td>
<td>5</td>
</tr>
<tr>
<td>G</td>
<td>Longitud de la bobina (mm)</td>
<td>10</td>
</tr>
</tbody>
</table>

Con base en la información presentada en la Tabla 3-2 se planteó como estudio experimental un diseño factorial fraccionado 2^{k-p} con ensayo central, donde k viene dado por el número de factores y p representa la corriente y la frecuencia de excitación (factor C y E) y Lift Off (factor D). Estos tres factores están fuertemente correlacionados [4,44,45].

Se hará un diseño factorial fraccionado 2^{7-3}, es decir se desarrollarán 17 experimentos, donde se combinan los niveles de los diferentes factores. Se asocia el valor de -1 al nivel mínimo, 0 al nivel medio y 1 al nivel máximo. Finalmente la matriz de experimentos con todas las combinaciones posibles se presenta en la Tabla 3-3.

Tabla 3-3: Experimentos y Combinaciones del factorial 2^{k-p} del DOE

<table>
<thead>
<tr>
<th>Parámetros o Factores</th>
<th>Experimentos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17</td>
</tr>
<tr>
<td>A</td>
<td>-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 0</td>
</tr>
<tr>
<td>B</td>
<td>-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 0</td>
</tr>
<tr>
<td>C</td>
<td>-1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 0</td>
</tr>
<tr>
<td>D</td>
<td>-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>E</td>
<td>-1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 0</td>
</tr>
<tr>
<td>F</td>
<td>-1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0</td>
</tr>
<tr>
<td>G</td>
<td>-1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 -1 0</td>
</tr>
</tbody>
</table>

La Tabla 3-3 es la ruta de experimentos a seguir, cada una de las corridas experimentales representa una sonda, es decir, se evaluarán computacionalmente 17 sondas.

En este documento hablar de corrida experimental o sonda es equivalente.
3.4. Validación de la Metodología

En el primer estudio estacionario en el dominio de la frecuencia se determinará computacionalmente y de manera simultánea los valores máximos y mínimos de la densidad de corriente \(\mathbf{J} \) y de la densidad de flujo magnético \(\mathbf{B} \), inducidos por la sonda sobre la muestra de material Inconel 625, sin la incorporación de defectos.

En el segundo estudio se modelará un defecto de 2mm de profundidad y 0.46mm de ancho, presente en el sustrato de Inconel 625. Se determinará el cambio en la reactancia inductiva y el cambio de la resistencia de las 17 corridas experimentales, al interactuar con el defecto. este estudio se realizara en el dominio de la frecuencia utilizando el modulo AC/DC del software COMSOL.

Obtenidas las sondas con mejores características, estas se fabricaran y se harán diferentes experimentos en cuerpos de prueba de Inconel 625 empleando las pruebas de: caracterización, S-scan y C-scan.

Para la prueba de caracterización, las sondas primero se encapsulan en la resina epóxica y se les instalan los conectores BNC con el fin de darle soporte mecánico y aislar la señal del ruido electromagnético (hasta donde sea posible) respectivamente. A seguir, estas son colocadas sobre un sustrato de Inconel 625 de 3mm de espesura, para determinar el intervalo de frecuencias reales asociadas a las mismas, empleando el OmniScan MX.

Luego, estas se posicionan sobre un bloque estándar de calibración (test-maschinen-technik), el cual cuenta con probetas de diferentes materiales magnéticos y no magnéticos como: Cobre, Aluminio, Latón, Bronce, Austenita, Cobre-Níquel, Acero ST 37 y Acero MN 4104, para verificar la respuesta a la variación de la conductividad eléctrica \(\sigma \) y la permeabilidad magnética \(\mu \). Si las sondas presentan un buen comportamiento, las probetas magnéticas deben quedar visualizadas en el primer cuadrante y las no magnéticas en el cuarto cuadrante del plano de impedancia.

Para la técnica S-scan a cada sonda se le hace un trazado lineal y continuo sobre la superficie del Bloque estándar de calibración Api 5L X65 + Inconel 625, esta prueba se realiza para visualizar en tiempo real el cambio del voltaje de las señales de resistencia y reactancia inductiva de las sondas, es decir, el cambio de la impedancia de estas respecto a la posición y medir la intensidad con la cual la señal penetra en el material, de manera que se pueda validar si hay o no detección sobre los defectos del bloque.

En la técnica C-scan se hace un barrido o mapeo de reproducción electromagnético superficial, una imagen del bloque de calibración LNDC, con las dos mejores sondas de detección propuestas por el modelo empleando el equipo del banco de prueba.
Capítulo 4

Resultados y Discusión

4.1. Elección de las Sondas de EC: Pruebas Computacionales

Siguiendo la propuesta experimental presentada en la Tabla 3-3 se desarrollaron las 17 corridas y se encontraron los resultados que están sintetizados en la Tabla 4-1.

<table>
<thead>
<tr>
<th>Corrida</th>
<th>Densidad de Corriente Inducida J (mA/mm²)</th>
<th>Densidad de Flujo Magnético Normal B (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Máxima</td>
<td>Mínima</td>
</tr>
<tr>
<td>1</td>
<td>5.63x10^-3</td>
<td>-6.61x10^-3</td>
</tr>
<tr>
<td>2</td>
<td>1.50x10^2</td>
<td>-1.37x10^2</td>
</tr>
<tr>
<td>3</td>
<td>3.09x10^0</td>
<td>-3.12x10^0</td>
</tr>
<tr>
<td>4</td>
<td>1.63x10^-1</td>
<td>-1.95x10^-1</td>
</tr>
<tr>
<td>5</td>
<td>1.76x10^1</td>
<td>-2.30x10^1</td>
</tr>
<tr>
<td>6</td>
<td>2.81x10^0</td>
<td>-2.55x10^0</td>
</tr>
<tr>
<td>7</td>
<td>3.76x10^-2</td>
<td>-4.01x10^-2</td>
</tr>
<tr>
<td>8</td>
<td>3.21x10^2</td>
<td>-3.15x10^2</td>
</tr>
<tr>
<td>9</td>
<td>8.43x10^-2</td>
<td>-7.94x10^-2</td>
</tr>
<tr>
<td>10</td>
<td>7.11x10^-1</td>
<td>-7.11x10^-1</td>
</tr>
<tr>
<td>11</td>
<td>7.69x10^-1</td>
<td>-8.91x10^-1</td>
</tr>
<tr>
<td>12</td>
<td>2.00x10^-1</td>
<td>-1.89x10^-1</td>
</tr>
<tr>
<td>13</td>
<td>2.09x10^1</td>
<td>-1.50x10^1</td>
</tr>
<tr>
<td>14</td>
<td>4.97x10^-1</td>
<td>-4.42x10^-1</td>
</tr>
<tr>
<td>15</td>
<td>1.65x10^-1</td>
<td>-1.44x10^-1</td>
</tr>
<tr>
<td>16</td>
<td>4.27x10^-2</td>
<td>-3.59x10^-2</td>
</tr>
<tr>
<td>17</td>
<td>3.49x10^1</td>
<td>-2.98x10^1</td>
</tr>
</tbody>
</table>

Con el fin de visualizar mejor los resultados de la densidad de corriente J y de la densidad del flujo magnético B, inducidos por la sonda en el material evaluado, y poder establecer un
criterio de selección de las sondas a construir, se presenta la Figura 4-1.

![Figura 4-1: Respuesta computacional del DOE para la selección de las sondas de EC a construir.](image)

A partir de los resultados presentados en la Figura 4-1 se encontró que las sondas con mejores prestaciones y susceptibles de fabrica, para la validación de la metodología, son las obtenidas en las corridas experimentales 6, 8, 10, 14 y 16. Además, este primer estudio muestra que las sondas de las corridas experimentales número 6 y 8 presentan la máxima densidad de corriente inducida J y la máxima densidad de flujo magnético inducido B. A seguir, se volverán a correr estos 17 experimentos teniendo en cuenta que hay un defecto presente en el material a evaluar y se podrá corroborar si estas sondas siguen presentando el mejor comportamiento, y así pasar a fabricarlas.

4.1.1. Detección Computacional del Defecto

Se modeló un defecto de 2mm de profundidad y 0.46 mm de ancho sobre un sustrato de material Inconel de 3mm de espesor.

Los resultados de este estudio se presentan a continuación en las Figuras 4-2 y 4-3, donde la primera Figura muestra los cambios de ΔXL (Reactancia inductiva) y ΔR (Resistencia) en (Ω) versus la posición y la segunda presenta estos cambios en forma normalizada1 de acuerdo con la literatura reportada [2,6,9,14,21].

1Se normalizaron los resultados al multiplicar la reactancia inductiva y la resistencia por la corriente de excitación de las sondas, de forma que las unidades de estos parámetros son voltios.
Figura 4-2: (a) Cambio de reactancia inductiva $\Delta XL \ (\Omega)$, (b) Cambio de resistencia $\Delta R \ (\Omega)$.

En estas figuras se puede observar el cambio en la resistencia y la reactancia inductiva de las 17 sondas como una función de la posición central de cada una de ellas.

Figura 4-3: Señales normalizadas de (a) Cambio de reactancia inductiva $\Delta XL \ (V)$, (b) Cambio de resistencia $\Delta R \ (V)$.

Nuevamente se puede confirmar que las sondas 6, 8, 10, 14 y 16, son las que presentan mejor
4.1 Elección de las Sondas de EC: Pruebas Computacionales

respuesta para la detección del defecto y además, las sondas 6 y 8 siguen teniendo la mayor intensidad de las señales evaluadas como se puede ver en la Figura 4-3.

Es de anotar en estos resultados que hay un comportamiento extraño en la resistencia de las señales de las sondas ya que esta debería apuntar en la dirección contraria de la reactancia inductiva como lo presenta la literatura. La respuesta a este fenómeno tiene que ver con el valor de la frecuencia de inspección que se ha dado a cada una de las sondas en las simulaciones, ya que a bajas frecuencia el cambio de resistencia aumenta a un pico y luego disminuye a un mínimo a medida que la sonda se mueve hacia y a través de la grieta. A altas frecuencias la resistencia aumenta monótonamente hasta un máximo, como se puede apreciar en las Figuras 4-2 y 4-3.

Para poder establecer si la metodología empleada válida los resultados propuestos, es necesario obtener los parámetros reales de las sondas de detección y compararlos nuevamente con la frecuencia de excitación de las sondas, cuya información se encuentra en la Tabla 3-1. Luego validar los resultados de la inspección del defecto de 2 mm de profundidad y 0.46 mm de ancho para contrastar si hay o no variación en la señal de la resistencia.

4.1.2. Parámetros Reales de las Sondas

Se tomaron las 5 sondas con las mejores características de acuerdo a los resultados de las simulaciones y se caracterizaron con el OmniScan MX, para obtener el valor real de las frecuencias y estos compararlos con la Tabla 3-1.

Las medidas obtenidas se presentan en la Tabla 4-2:

<table>
<thead>
<tr>
<th>Tabla 4-2: Parámetros Reales de las Sondas de Inspección</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Frecuencia (kHz)</td>
</tr>
</tbody>
</table>

De la anterior tabla se observa que la frecuencia mínima corresponde a 10 kHz y la máxima 50kHz. De acuerdo con la Tabla 3-1, el valor experimental máximo encontrado está cercano a la frecuencia central calculada, 49.6kHz. El valor mínimo no está dentro del rango de los teórico, debido a que los parámetros, ver ecuación 2-18, que se eligieron para el calculo teórico son tomados de la literatura y no necesariamente coinciden con los del patron experimental.

Finalmente los parámetros de las sondas de inspección elegidas se presentan en la Tabla 4-3 donde R_{In} y R_{Ex}, columnas 6 y 7 de la Tabla, corresponden al Radio Interno y Radio Externo de las sondas respectivamente. Los valores del Lift Off son extraídos de la literatura, sin embargo al encapsular las sondas estos valores se alteran y no es posible determinar
este valor real porque el encapsulamiento no es uniforme y la bobina queda completamente cubierta por la resina.

Tabla 4-3: Parámetros Reales de las Sondas de Inspección

<table>
<thead>
<tr>
<th>Sonda</th>
<th>Parámetros</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vueltas</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td>1000</td>
</tr>
</tbody>
</table>

De acuerdo con los parámetros de la anterior tabla y teniendo en cuenta que los valores de frecuencia actuales van desde un mínimo de 10kHz, un valor central de 30kHz y un máximo de 50kHz, es conveniente actualizar la Tabla 3-2 y realizar de nuevo las 17 corridas experimentales propuestas por el DOE, (Tabla 3-3), con el fin de verificar si las sondas elegidas siguen presentando la máxima densidad de corriente inducida J y la máxima densidad de flujo magnético inducido B.

Los resultados de esta simulación se presentan en la Tabla 4-4.

Tabla 4-4: Respuesta Computacional del DOE Actualizado a Menor Frecuencia

<table>
<thead>
<tr>
<th>Corrida</th>
<th>Densidad de Corriente Inducida J (mA/mm2)</th>
<th>Densidad de Flujo Magnético Normal B (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Material</td>
<td>Máxima</td>
</tr>
<tr>
<td>1</td>
<td>5.63x10$^{-3}$</td>
<td>-6.61x10$^{-3}$</td>
</tr>
<tr>
<td>2</td>
<td>6.31x10$^{-4}$</td>
<td>-6.63x10$^{-4}$</td>
</tr>
<tr>
<td>3</td>
<td>1.37x10$^{-1}$</td>
<td>-1.23x10$^{-1}$</td>
</tr>
<tr>
<td>4</td>
<td>1.63x10$^{-1}$</td>
<td>-1.95x10$^{-1}$</td>
</tr>
<tr>
<td>5</td>
<td>6.22x10$^{-1}$</td>
<td>-6.84x10$^{-1}$</td>
</tr>
<tr>
<td>6</td>
<td>2.81x100</td>
<td>-2.55x100</td>
</tr>
<tr>
<td>7</td>
<td>3.76x10$^{-2}$</td>
<td>-4.01x10$^{-2}$</td>
</tr>
<tr>
<td>8</td>
<td>1.61x101</td>
<td>-1.43x101</td>
</tr>
<tr>
<td>9</td>
<td>8.43x10$^{-3}$</td>
<td>-7.94x10$^{-3}$</td>
</tr>
<tr>
<td>10</td>
<td>2.46x100</td>
<td>-2.20x100</td>
</tr>
<tr>
<td>11</td>
<td>2.97x10$^{-2}$</td>
<td>-2.68x10$^{-2}$</td>
</tr>
<tr>
<td>12</td>
<td>2.00x10$^{-1}$</td>
<td>-1.89x10$^{-1}$</td>
</tr>
<tr>
<td>13</td>
<td>6.03x10$^{-1}$</td>
<td>-6.06x10$^{-1}$</td>
</tr>
<tr>
<td>14</td>
<td>4.97x10$^{-1}$</td>
<td>-4.42x10$^{-1}$</td>
</tr>
<tr>
<td>15</td>
<td>1.65x10$^{-1}$</td>
<td>-1.44x10$^{-1}$</td>
</tr>
<tr>
<td>16</td>
<td>1.11x100</td>
<td>-1.22x100</td>
</tr>
<tr>
<td>17</td>
<td>1.38x100</td>
<td>-1.62x100</td>
</tr>
</tbody>
</table>
4.1 Elección de las Sondas de EC: Pruebas Computacionales

Para visualizar los anteriores resultados gráficamente, se presenta la Figura 4-4.

Figura 4-4: Respuesta computacional del DOE actualizado de las sondas de EC construidas.

De estos resultados se puede concluir que las sondas anteriormente elegidas siguen cumpliendo con el criterio de máxima densidad de corriente inducida J y máximá densidad de flujo magnético inducido B.

A continuación se procederán a evaluar con las 17 sondas (Corridas experimentales), el defecto modelado en COMSOL sobre un sustrato de Inconel 625. Las dimensiones de este defecto son 2 mm de profundidad y 0.46 mm de ancho.
4.1.3. Detección Computacional del Defecto para el DOE Actualizado

En las Figuras 4-5 y 4-6 se presentan los resultados de ΔXL y ΔR en (Ω) y normalizados en (V) respectivamente.

Figura 4-5: (a) Cambio de reactancia inductiva ΔXL (Ω), (b) Cambio de resistencia ΔR (Ω).

Nuevamente se puede confirmar que las sondas 6, 8, 10, 14 y 16, son las de mejores resultados.

Figura 4-6: (a) Cambio de reactancia inductiva ΔXL (V), (b) Cambio de resistencia ΔR (V).
En la detección del defecto se puede observar además que las sondas 6 y 8 siguen teniendo la mayor intensidad de las señales evaluadas como se puede ver en la Figura 4-6.

Es de anotar que en este resultado debido a la disminución de la frecuencia de las sondas de detección, el comportamiento que antes era extraño para la intensidad de la resistencia deja de serlo ya que a bajas frecuencia, el cambio de resistencia aumenta a un pico, luego disminuye a un mínimo a medida que la sonda se mueve hacia y a través de la grieta.

4.2. Caracterización de Metales

En la Figura 4-7 se presentan los resultados experimentales obtenidos por la sonda 8.

![Diagrama de impedancia con etiquetas de distintos metales](image)

Figura 4-7: Plano de Impedancia sonda 8. Prueba de caracterización de materiales.

De la anterior Figura se observa que los aceros ST 37 y MN 4104 quedan sobre el primer cuadrante del plano de impedancia, por sus características ferromagnéticas, y los otros mate-
iales en el cuarto cuadrante por sus propiedades paramagnéticas, como lo indica la literatura. Aunque únicamente se presentan los resultados de una bobina, cabe anotar en este punto, que se obtuvieron resultados similares para las otras cuatro sondas.

4.3. Pruebas S-scan

A seguir se describen los resultados obtenidos para las diferentes sondas, es decir aquellas fabricadas y que corresponden a las corridas experimentales 6, 8, 10, 14 y 16.

- **Sonda 6:**

 La Figura 4-8 presenta los resultados correspondientes a la variación de (XL) y (R) en el tiempo para esta sonda.

Figura 4-8: Detección sonda 6, señales ∆R y ∆XL. Datos OmniScan MX.
4.3 Pruebas S-scan

Esta sonda presenta una mínima cantidad de ruido en las señales de recepción como se observa en la figura y permite visualizar el cambio en la intensidad de las señales de la resistencia (R) y de la reactancia inductiva (XL) de los tres primeros defectos del bloque de calibración de Inconel. Las magnitudes de estas señales evidencian la detección. Para el cuarto defecto, debido a la disminución en la intensidad de estas señales, asociadas a la disminución en la profundidad del defecto, no se obtuvo una contribución en la señal de la reactancia inductiva que pudiera garantizar la detección de este.

- **Sonda 8:**
 Los resultados experimentales de la sonda 8 se presentan en la Figura 4-9.

![Figura 4-9: Detección sonda 8, señales ΔR y ΔXL. Datos OmniScan MX.](image)

Se observa que en esta sonda se presenta un aumento significativo en el ruido de las señales en comparación a la Sonda 6, además, permite detectar con una mayor inten-
sidad el cambio en las señales de la resistencia (R) y de la reactancia inductiva (XL) para los tres primeros defectos. Al igual que la sonda 6 y por la misma razón, no se presentó detección del cuarto defecto del bloque de calibración.

- **Sonda 10:**
 La Figura 4-10 presenta los resultados de esta sonda.

![Figura 4-10](image)

Figura 4-10: Detección sonda 10, señales ΔR y ΔXL. Datos OmniScan MX.

Las señales registradas presentan que esta es débil comparada con el ruido del sistema, en comparación a las demás sondas. Con ella se detectaron únicamente los dos primeros defectos, de acuerdo con esto las sondas 6 y 8 tienen mejor comportamiento que esta.
4.3 Pruebas S-scan

- **Sonda 14:**

De acuerdo con la Figura 4-11 esta sonda tiene un comportamiento similar a la sonda 10 pero la señal es mas limpia y de mayor amplitud en la componente de la resistencia, sin embargo no consigue detectar los defectos 3 y 4.

Figura 4-11: Detección sonda 14, señales ΔR y ΔXL. Datos OmniScan MX.

- **Sonda 16:**

Esta sonda presenta un comportamiento poco deseable y solo consigue detectar claramente el primer defecto. El segundo defecto la sonda lo detecta en una forma muy tenue y el aumento de ruido en general es significativo, ver Figura 4-12.
De las anteriores figuras se puede concluir que las sondas 6 y 8 permiten detectar los 3 primeros defectos del bloque de calibración. A demás, las señales correspondientes a las sonda 6 y 14 son más limpias en cuanto al ruido electromagnético, pero la máxima detección de defectos corresponde a las sondas 6 y 8.

De las simulaciones realizadas, de acuerdo con la matriz de experimentos propuestas por el DOE, se encontró efectivamente que estas dos sondas, 6 y 8, eran las que presentaban la máxima densidad de corriente \(J \) y de flujo magnético \(B \), inducido por las sondas. Se puede concluir en esta parte que la metodología consigue proponer las sondas con mejores prestaciones sin necesidad de fabricar un sin número de sondas.
4.3 Pruebas S-scan

4.3.1. Comparación Entre los Resultado de Simulación y la Prueba S-scan

De acuerdo con la literatura es conveniente mostrar las señales normalizadas del cambio de impedancia versus la posición, tanto experimental como computacional. En las Figuras 4-13 a 4-15 se presentan los resultados obtenidos por las sondas 6 y 8 para la detección del primero, segundo y tercer defecto del bloque de calibración de Inconel. Las líneas de color morado y rojo corresponden a los resultados de las simulaciones mientras que la negra y la azul correspondes a los datos obtenidos experimentalmente.

Figura 4-13: Señales normalizadas en (V) de ΔXL y ΔR, para la obtención computacional y experimental de ΔZ.

Este estudio se desarrolló para comparar las intensidades de las señales de la reactancia inductiva (XL) y la resistencia (R) del conjunto de las dos sondas propuestas por el DOE.

De acuerdo con la anterior figura se observa que las señales obtenidas para el primer defecto, presentan poco ruido sin embargo la amplitud es menor comparada con la simulación.
Figura 4-14: Señales normalizadas en (V) de ΔX_L y ΔR, para la obtención computacional y experimental de ΔZ.

Figura 4-15: Señales normalizadas en (V) de ΔX_L y ΔR, para la obtención computacional y experimental de ΔZ.

De las figuras 4-14 y 4-15 se observa que las señales obtenidas son más ruidosas y la amplitud
es menor que la obtenida por la simulación.

Se puede concluir para las tres sondas que, la diferencia de los valores máximos de las señales de la reactancia inductiva y de la resistencia entre lo experimental y computacional es debido al Lift Off. La imposibilidad de medirlo en forma real conlleva a este tipo de errores. Igualmente se observa que a medida que disminuyen las dimensiones del defecto, el ruido en la señales obtenidas es más significativo. Este ruido se debe a que no hubo posibilidad de aislar en forma adecuada las sondas. El equipo con el cual se realizaron las mediciones no está diseñado para aislar por completo el ruido de las señales obtenidas y se hace más sensible a medida que disminuyen las dimensiones de los defectos.

Otra causa de error es debido al filtrado de las señales experimentales en Matlab ya que este disminuye la intensidad de estas, y se hace más notorio cuando la señal presenta más ruido. En la Tabla 4-5 se presentan los valores máximos de las señales detectadas donde D1, D2 y D3, representan los defectos del bloque de calibración sobre el cual se realiza la prueba experimental. La prueba S-scan se realizó para obtener un criterio de verificación que permita establecer que las sondas propuestas por el DOE continúan entregando los mejores resultados para la detección de defectos tanto en la parte computacional como en la experimental.

A continuación se contrastan los resultados experimentales con los resultados computacionales de las sondas de mejor intensidad en las señales, es decir, de las sondas 6 y 8, los resultados se presentaran de forma individual para los primeros tres defectos del bloque de calibración ya que el cuarto defecto no fue detectado por ninguna de las sondas.

<table>
<thead>
<tr>
<th>Tabla 4-5: Señal computacional y experimental de ΔZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonda</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Los resultados de la Tabla 4-5 muestran que la sonda 6 presenta únicamente una intensidad mayor que las señales de la sonda 8 en la componente computacional del primer defecto (D1) en la reactancia inductiva, los demás resultados de la tabla muestran que tanto experimentalmente como computacionalmente la sonda 8 tiene resultados de mayor intensidad para la detección.
En la Tabla 4-6 se presenta el porcentaje de error promedio entre lo experimenta y lo computacional para estas dos sondas y sus diferentes variables.

<table>
<thead>
<tr>
<th>Sonda</th>
<th>% Reactancia XL</th>
<th>% Resistencia R</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>86</td>
<td>26</td>
</tr>
</tbody>
</table>

De acuerdo con la Tabla 4-6, la sonda más interesante sería la 6 si se quiere detectar por el cambio de la reactancia y la resistencia estos defectos. A demás el menor error en la detección está dado en la resistencia. Teniendo en cuenta que el objetivo en este trabajo era emplear una metodología que permitiera optimizar la construcción de las sondas para detectar defectos y no medir sus características geométricas, se puede afirmar que ambas sondas cumplieron con lo propuesto. Ahora, si para el investigador es más relevante la intensidad de la señal, la sonda 8 sería la elegida.

4.4. Pruebas C-scan

En esta prueba se trata de reproducir electromagnéticamente el mismo plano que se encuentra grabado en el bloque de caracterización y que corresponde a las siglas del laboratorio de ensayos no destructivos corrosión y soldadura LNDC. En las Figuras 4-16 y 4-17 se presentan los resultados normalizados del barrido superficial del bloque de calibración para las sondas 6 y 8.
Al comparar las dos figuras se observa que la sonda 8 detecta el patrón con mayor intensidad y como consecuencia con mayor resolución que la sonda 6. Obsérvese que la letra D para la
sonda 8 es claramente detectable mientras que en la sonda 6 no lo es tanto. Como lo que se busca es poder detectar el mayor número de defectos, la intensidad generada por los radia
dores se vuelve significativa.

Otra característica de estas imágenes que es importante observar, es que el patron propuesto es claramente legible independientemente de los errores asociados a las sondas como se indicó anteriormente.
Capítulo 5

Conclusiones y Perspectivas

5.1. Conclusiones

- Se implementó una metodología que permitió encontrar una sonda con la capacidad de detectar defectos y esta metodología es general, no depende ni del tipo de defecto ni del material a ser detectado.
- Las simulaciones realizadas estuvieron de acuerdo con datos de la literatura.
- Los radiadores construidos permitieron detectar fisuras de 2.0, 1.0 y 0.5 mm de profundidad en un patron de material API 5L X65 + Inconel 625, a través del cambio de la impedancia de la sonda de detección por evaluación experimental.
- Las medidas de resistencia comparadas con las simulaciones presentaron menor error que las obtenidas para la reactancia.

5.2. Trabajo futuro

Los trabajos futuros se centran en la implementación analítica y numérica de los resultados computacionales y experimentales arrojados por la aplicación de la metodología en el desarrollo.

- Implementar el modelo de forma analítica y numérica, extendiendo la metodología a la formulación del SOVP para la solución del problema tridimensional de la sonda dentro de un tubo conductor de material API 5L X65 + Inconel 625.
- Determinar el coeficiente superficialidad D_s de la sonda, para obtener por medio del de potencial vector de segundo orden el cambio la impedancia de las sondas.
- Se debe mejorar la construcción y el ruido asociado a la medida en los radiadores buscando que lo experimental y lo simulado esté más acorde.
Apéndice A

Inconel 625

- Composición Química Inconel 625

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Símbolo</th>
<th>Máximo %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbono</td>
<td>C</td>
<td>0,10</td>
</tr>
<tr>
<td>Manganeso</td>
<td>Mn</td>
<td>0,50</td>
</tr>
<tr>
<td>Fósforo</td>
<td>P</td>
<td>0,015</td>
</tr>
<tr>
<td>Azufre</td>
<td>S</td>
<td>0,015</td>
</tr>
<tr>
<td>Silicio</td>
<td>Si</td>
<td>0,50</td>
</tr>
<tr>
<td>Níquel</td>
<td>Ni</td>
<td>min. 58,0</td>
</tr>
<tr>
<td>Cromo</td>
<td>Cr</td>
<td>20,0-23,0</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>Mo</td>
<td>8,0-10,0</td>
</tr>
<tr>
<td>Hierro</td>
<td>Fe</td>
<td>5,0</td>
</tr>
<tr>
<td>Aluminio</td>
<td>Al</td>
<td>0,40</td>
</tr>
<tr>
<td>Columbio+Tántalo</td>
<td>Cb+Tn</td>
<td>3,15-4,15</td>
</tr>
<tr>
<td>Cobalto</td>
<td>Co</td>
<td>1,0</td>
</tr>
<tr>
<td>Titanio</td>
<td>Ti</td>
<td>0,40</td>
</tr>
</tbody>
</table>

- Propiedades Mecánicas Inconel 625

![Tabla de Propiedades Mecánicas Inconel 625](image)

En la gráfica:
- a = Grado 1: Recocado a 1600 ° F (871 ° C) como mínimo.
- b = Grado 2: solución recocida a 200 ° F (1093 ° C) mínimo, con o sin estabilización posterior recocida a 1800 ° F (982 ° C) como mínimo para aumentar la resistencia a la sensibilización.
- 1 = Hoja y tira laminadas en frío.
- 2 = Chapa laminada en caliente y chapa laminada de hasta 2,75 pulg. (70 mm.), Incl.
- 3 = Placa laminada en frío hasta 0.375 pulg. (9.5 mm.), Incl.
- * = Diámetro o Distancia entre superficies paralelas, pulg. (mm) hasta 4 (102), incl.
- ** = Diámetro o distancia entre superficies paralelas, pulg. (mm) hasta 4 (102) a 10 (254), incl.
Apéndice B

Distribución de EC y Efecto Pelicular

- Distribución de EC y Flujo Magnético en un conductor

Figura B-1: Distribución de EC y de flujo magnético en un conductor en función de la profundidad.

Atenuamiento de las EC y del Flujo magnético en la inspección por el incremento en la profundidad de penetración en el material de prueba debido al efecto pelicular.

En la Figura B-1, x es la profundidad de penetración en el material, β es el desfasaje o retardo de la señal y ω es la frecuencia angular ($\omega = 2\pi f$), donde f es la frecuencia de inspección de la sonda.
Apéndice C

Ecuación del Flujo de Corrientes Inducidas

La ecuación del flujo de corrientes inducidas se obtiene tomando el operador rotacional a ambos miembros de la ley de Faraday, ecuación como se muestra a continuación:

\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{C-1} \]

\[\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t} \nabla \times \vec{B} \tag{C-2} \]

A continuación se separará la ecuación para trabajar miembro a miembro con cada uno de los términos de los lados de dicha expresión; operando el miembro de la derecha de la ecuación y reemplazando en ésta la expresión del flujo magnético \(\vec{B} = \mu \vec{H} \) se obtiene la relación:

\[-\frac{\partial}{\partial t} \nabla \times \vec{B} = -\frac{\partial}{\partial t} \nabla \times \mu \vec{H} \tag{C-3} \]

Reemplazando en la ecuación el rotacional de la intensidad del campo magnético (Ley Circuital de Ampere) y la relación entre la intensidad de campo eléctrico con el vector de desplazamiento, a través de la permitividad del medio que esta dada por la expresión \(\vec{B} = \mu \vec{E} \) y de manera simultánea la relación entre la densidad de corriente libre con la conductividad y la intensidad del campo eléctrico dado por la ley de Ohm, en donde \(\vec{J} = \sigma \vec{E} \), se tiene:

\[-\mu \frac{\partial}{\partial t} \nabla \times \vec{H} = -\mu \frac{\partial}{\partial t} (\vec{J} + \frac{\partial}{\partial t} \vec{B}) = -\mu \frac{\partial}{\partial t} (\vec{J} + \frac{\partial}{\partial t} \epsilon \vec{E}) = -\mu \frac{\partial}{\partial t} (\vec{J} + \frac{\epsilon}{\sigma} \frac{\partial}{\partial t} \vec{J}) \]

Es decir:
\[-\mu \frac{\partial}{\partial t} \nabla \times \vec{H} = -\mu \frac{\partial}{\partial t} \vec{J} - \frac{\mu \epsilon}{\sigma} \frac{\partial^2}{\partial t^2} \vec{J} \]

Por lo tanto:

\[-\frac{\partial}{\partial t} \nabla \times \vec{B} = -\mu \frac{\partial}{\partial t} \vec{J} - \frac{\mu \epsilon}{\sigma} \frac{\partial^2}{\partial t^2} \vec{J} \] \hspace{1cm} (C-4)

Tratando ahora con el miembro de la izquierda de la ecuación [C-2] y aplicando a esta la propiedad del rotacional de un rotacional se obtiene la ecuación [C-5]

\[\nabla \times (\nabla \times \vec{E}) = \vec{E} \cdot (\nabla \times \nabla) - \nabla \cdot (\nabla \times \vec{E}) \] \hspace{1cm} (C-5)

Al solucionar y simplificar esta expresión, se obtiene el resultado que se relaciona en la ecuación [C-6]

\[\vec{E} \cdot (\nabla \times \nabla) - \nabla \cdot (\nabla \times \vec{E}) = -\nabla \cdot (\nabla \times \vec{E}) \] \hspace{1cm} (C-6)

Relacionando nuevamente los miembros de la ecuación [C-2] al igualar los resultados de las ecuaciones [C-6] y [C-4], se obtiene la expresión que se muestra en la ecuación [C-7]

\[\nabla \cdot (\nabla \times \vec{E}) = \mu \frac{\partial}{\partial t} \vec{J} + \frac{\mu \epsilon}{\sigma} \frac{\partial^2}{\partial t^2} \vec{J} \] \hspace{1cm} (C-7)

Para relacionar la divergencia del rotacional de la intensidad del campo eléctrico, procederemos de la siguiente manera:

Partiendo de la ley de Ohm y tomando para esta el operador rotacional a ambos miembros de la ecuación y luego la divergencia de esta operación; al simplificar esta última expresión encontraremos la divergencia del rotacional de la intensidad del campo eléctrico y que se relaciona en la ecuación [C-8]

\[\vec{J} = \sigma \vec{E} \]

\[\nabla \times \vec{J} = \sigma \nabla \times \vec{E} \]

\[\nabla \cdot (\nabla \times \vec{J}) = \sigma \nabla \cdot (\nabla \times \vec{E}) \]

\[\nabla^2 \vec{J} = \sigma \nabla \cdot (\nabla \times \vec{E}) \]
\(\nabla \cdot (\nabla \times \vec{E}) = \frac{1}{\sigma} \nabla^2 \vec{J} \) \((C-8) \)

Por último, igualando las ecuaciones \(C-8 \) y \(C-7 \) y simplificando la igualdad se obtiene la ecuación \(C-9 \)

\[\nabla^2 \vec{J} = \sigma \mu \frac{\partial}{\partial t} \vec{J} + \mu \epsilon \frac{\partial^2}{\partial^2 t} \vec{J} \] \((C-9) \)

Como el segundo miembro de la derecha de esta expresión es igual a cero, quedando demostrada así la expresión que relaciona al flujo de corrientes inducidas, como se muestra en la ecuación \(C-10 \)

\[\nabla^2 \vec{J} = \sigma \mu \frac{\partial}{\partial t} \vec{J} \] \((C-10) \)
Apéndice D

Planos

- Planos: Bloque de Calibración LNDC Prueba C-scan

Figura D-1: Dimensiones bloque de prueba LNDC [41].
Planos: Carcazas Radiadores Electromagnéticos: Sonda 6

Planos: Carcazas Radiadores Electromagnéticos: Sonda 8

Figura D-3: Dimensiones carcasa sonda 8.
Planos: Carcazas Radiadores Electromagnéticos: Sonda 10

Figura D-4: Dimensiones carcasa sonda 10.
- Planos: Carcazas Radiadores Electromagnéticos: Sonda 14

Figura D-5: Dimensiones carcaza sonda 14.
Planos: Carcazas Radiadores Electromagnéticos: Sonda 16

Figura D-6: Dimensiones carcaza sonda 16.
Bibliografía

