Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach

Lina M. Cortés, Andrés Mora-Valencia, and Javier Perote
Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach

Lina M. Cortés*†, Andrés Mora-Valencia **, and Javier Perote***

* Universidad EAFIT, Medellín, Colombia
** Universidad de los Andes, School of Management, Bogotá, Colombia
*** University of Salamanca (IME), Salamanca, Spain

Abstract

This paper contributes to the literature on the estimation of the Risk Neutral Density (RND) function by modeling the prices of options for West Texas Intermediate (WTI) crude oil that were traded in the period between January 2016 and January 2017. For these series we extract the implicit RND in the option prices by applying the traditional Black & Scholes (1973) model and the semi-nonparametric (SNP) model proposed by Backus, Foresi, Li, & Wu (1997). The results obtained show that when the average market price is compared to the average theoretical price, the lognormal specification tends to systematically undervalue the estimation. On the contrary, the SNP option pricing model, which explicitly adjust for negative skewness and excess kurtosis, results in markedly improved accuracy.

Keywords: Oil prices, option pricing, risk neutral density, semi-nonparametric approach

JEL Classification: Q47, G12, C14

† Corresponding author: Department of Finance, School of Economics and Finance, Universidad EAFIT, Carrera 49 No 7 Sur-50, Medellín, Colombia. E-mail: lcortesd@eafit.edu.co. Fax: +57 43120649.
Other authors’s e-mails: perote@usal.es (Javier Perote), a.mora262@uniandes.edu.co (A. Mora-Valencia).
1. Introduction

The fluctuation of oil prices over recent years has caused huge concern among consumers, firms and governments (Huang, Yu, Fabozzi, & Fukushima, 2009; Kallis & Sager, 2017). On a global level, forecasting macroeconomic variables is largely impacted by oil price projections, given that economic activity and inflation are dependent on them (He, Kwok, & Wan, 2010; Kallis & Sager, 2017). The difficulty is due to the fact that oil prices are strongly influenced by stock levels, the weather, the short-term imbalances between supply and demand, and political issues (Huang, Yu, Fabozzi, & Fukushima, 2009; de Souza e Silva, Legey, & de Souza e Silva, 2010; Abhyankar, Xu, & Wang, 2013). However, as the Risk Neutral Density (RND) function reflects the market expectations on the future development of the underlying assets, such density has become a useful tool to model the price of this commodity (Jondeau & Rockinger, 2000; Liu, Shackleton, Taylor, & Xu, 2007; Monteiro, Tütüncü, & Vicente, 2008; Fabozzi, Tunaru, & Albota, 2009; Du, Wang, & Du, 2012; Lai, 2014; Taboga, 2016; Kiesel & Rahe, 2017).

The prices of financial options are a valuable source of information to be able to obtain the RND (Liu, 2007; Rompolis, 2010; Völker, 2015). Hence, this research seeks to contribute to the literature on estimating the RND through modeling WTI crude oil options that are priced on the New York Mercantile Exchange (NYMEX) commodity market. Different methods have been developed to extract the RND; however, their efficiency must be tested in several types of markets and not only in the stock market (on which the majority of studies have been focused) (see, for example, Corrado & Su, 1996; Corrado & Su, 1997; Hartvig, Jensen, & Pedersen, 2001; Lim, Martin, & Martin, 2005; Monteiro, Tütüncü, & Vicente, 2008; Birru & Figlewski, 2012; Christoffersen, Heston, & Jacobs, 2013; Kiesel & Rahe, 2017; Leippold & Schärer, 2017; etc.). The very fact that oil continues to be a fundamental energy component in modern economies is an important reason to study the behavior of option prices for the WTI. Changes in oil prices can produce important effects on the global economy, which means it is important to create new methods that allow for the stochastic process of the future price to be adjusted (Abhyankar, Xu, & Wang, 2013; Su, Li, Chang, & Lobont, 2017).
The theory based on which modeling the prices of financial assets was developed began with the publication of the Black-Scholes (1973) valuation model. This seminal work has been the basis for many generalizations and enhancements by academics and finance professionals (Peña, Rubio, & Serna, 1999; Liu, 2007; León, Mencía, & Sentana, 2009; Rompolis, 2010; Du, Wang, & Du, 2012; Lai, 2014; Feng & Dang, 2016). However, the Black-Scholes model has become less reliable over time. Even for markets for which it was expected to be more precise, there have been differences between the theoretical prices and the market prices (Jarrow & Rudd, 1982; Corrado & Su, 1996; Backus, Foresi, Li, & Wu, 1997; Birru & Figlewski, 2012; Christoffersen, Heston, & Jacobs, 2013).

It is known that after the stock market crisis of October 1987, the Black-Scholes option valuation model tended to underestimate the options that are very much ‘in-the-money’ and ‘out-of-the-money’ (see Rubinstein (1994) for a detailed discussion of this empirical regularity). This is the result of the violation of the assumption under which all option prices for the same underlying asset with the same expiration date but with a different exercise price should have the implied volatility (Corrado & Su, 1997; Lim, Martin, & Martin, 2005; Friesen, Zhang, & Zorn, 2012). The empirical evidence reveals that the implied volatility derived from the Black-Scholes model seems to be different across the exercise price by drawing the well-known volatility smile (Peña, Rubio, & Serna, 1999; Jondeau & Rockinger, 2000; Liu, 2007; Kiesel & Rahe, 2017).

The Black-Scholes model assumes that the RND is lognormal, but this prediction has been convincingly rejected by (MacBeth & Merville, 1979). Hence, the literature on option pricing has suggested models that allow for adjustments to be included, both in terms of bias and excess kurtosis in the RND, in order to correct the previously mentioned problems (Backus, Foresi, Li, & Wu, 1997; Nikkinen, 2003; Jondeau, Poon, & Rockinger, 2007, p. 365; Friesen, Zhang, & Zorn, 2012). The relevance of these types of models lies in the assumption that the logarithm of the share price being normal is unrealistic, specifically because the distribution’s tails are heavier than those that have a normal distribution (Fama, 1965; Das & Sundaram, 1999; Dennis & Mayhew, 2002; Nikkinen, 2003; Huang, Yu, Fabozzi, & Fukushima, 2009; Feng & Dang, 2016).
To this effect, the most up-to-date academic literature has taken two different directions to try to measure the RND. The first consists of specifying a stochastic process of the alternative price different to that proposed by Black-Scholes, which, in turn, results in an alternative RND. The second seeks to develop procedures to extract implicit RND from the option prices observed (Hartvig, Jensen, & Pedersen, 2001; Dennis & Mayhew, 2002; Lai, 2014). In line with the second direction, Breeden & Litzerberger (1978), Shimko (1993) and Jondeau, Poon, & Rockinger (2007, p. 398) suggest making use of the fact that the RND is the second derivative from the call option price with respect to the exercise price.

However, other authors have proposed different approaches such as: parametric ones, which suggest a direct expression for the RND without referring to the specific price dynamics (Ritchey, 1990; Melick & Thomas, 1997; Anagnou-Basioudis, Bedendo, Hodges, & Tompkins, 2005; Fabozzi, Tunaru, & Albota, 2009; Völkert, 2015); nonparametric ones that do not try to give an explicit form of the RND (Jackwerth & Rubinstein, 1996; Aït-Sahalia & Lo, 1998); and semi-nonparametric ones (SNP) that suggest an approximation of the RND (Jarrow & Rudd, 1982; Corrado & Su, 1996; Backus, Foresi, Li, & Wu, 1997; Rompolis & Tzavalis, 2007; León, Mencía, & Sentana, 2009; Taboga, 2016).

This study’s approach seeks to extract the RND that is implicit in the option prices by applying an SNP model. Specifically, we verify whether the SNP model proposed by Backus, Foresi, Li, & Wu (1997) outperforms option pricing measures for the WTI listed in the period between January 2016 and January 2017. Additionally, for the purpose of contrasting the results obtained, the dates that are being analyzed are either special events in the oil market and political events that have the ability to affect the financial markets or days of “relative” calm. In the first stage, the skewness parameters and excess kurtosis are calibrated by using the SNP distribution. In the second stage, the previously estimated parameters (skewness and excess kurtosis) are used to approximate the price distribution of the underlying asset under a specification that we write as log-SNP. The advantage of applying SNP models is that they are not as data intensive as other methods, which allows for the RND to be extracted (Aït-

---

1 The Black-Scholes approach considers that the price of an underlying asset is distributed under a lognormal specification in the sense that its variations follow a normal distribution. As is demonstrated in Section 2, the Gram-Charlier or SNP distribution corresponds to an extension of the normal distribution, and the log-SNP corresponds to an extension of the log-normal distribution. Consequently, the SNP option valuation model is a generalization of the Black-Scholes model.
Sahalia & Lo, 1998; Taboga, 2016). Given that there is scanty number of price data obtained from the financial markets in a trading day, it is essential the search of a method which fit the data in an accurate way for practitioners so as they can take optimal decisions (Liu, 2007; Feng & Dang, 2016).

Backus, Foresi, Li & Wu (1997) use a Gram-Charlier A series expansion (hereafter denoted as SNP) around a normal density function to incorporate the terms of adjustment for skewness and excess kurtosis for the Black-Scholes formula. These authors used the model suggested by Jarrow & Rudd (1982) as a baseline; they were pioneers in proposing an SNP model for valuing options using an Edgeworth series expansion around the lognormal density function. Subsequently, Corrado & Su (1996) also derived a valuation model for option prices using a Gram-Charlier series expansion around the normal density function.

Although Corrado & Su’s (1996) model is derived from Jarrow & Rudd (1982), operationally the pioneers explain the bias deviations and the excess kurtosis of the lognormality of the share price while the model developed by Corrado & Su (1996) explain the deviations from normality of the asset returns in terms of bias and excess kurtosis. It is noteworthy that Brown & Robinson (2002) have corrected two of Corrado & Su’s (1996) typographical errors and they provide examples of how errors such as these may have economic significance. We adopt the Backus, Foresi, Li, & Wu (1997) model in this study because these authors show that some of the terms in Corrado & Su’s (1996) model are numerically very small in real markets and can be eliminated from the option pricing model. As such, Backus, Foresi, Li, & Wu (1997) propose a more parsimonious model that represents a good approximation of the option price.

This paper is divided into the following sections: Section 2 presents the model to be estimated and the applied methodology. Section 3 describes the data that will be used. Section 4 gathers the results and discusses the suggested method, and, finally, Section 5 summarizes the conclusions.
2. Model and methodology

2.1. Model

The first attempt to estimate the RND was developed by Breeden & Litzenberger (1978). The authors demonstrated that the RND can be recovered from the second derivative of the call price. \( C \) \((P) \) is a European call (put) option with exercise price \( K \) and the time at expiration \( \tau \),

\[
C(K; \theta) = \int_K^\infty e^{-rt} (S_T - K) q(S_T; \theta) dS_T,
\]

(1)

\[
P(K; \theta) = \int_0^K e^{-rt} (K - S_T) q(S_T; \theta) dS_T,
\]

(2)

where \( r \) is the risk-free rate. Hence,

\[
\frac{\partial^2 C}{\partial K^2} \bigg|_{K=S_T} = e^{-rt} q(S_T; \theta).
\]

(3)

The term \( e^{-rt} q(S_T) \) is generally referred to as the state price density (SPD), and \( q(\cdot) \) is the undiscounted RND (Jondeau, Poon, & Rockinger, 2007, p. 387). The estimation of the RND by (3) requires a continuous series of exercise prices to estimate the parameters by using a finite differences method. However, this procedure leads to unstable results and, in turn, several methods such as (i) local volatility or implied tree models, (ii) interpolation of the implied volatility curve, (iii) stochastic volatility and jumps, (iv) nonparametric approach, and (v) the combination of parametric and nonparametric approaches that have been suggested in the literature (see, for example, Fusai & Roncoroni, 2008 and the references therein). This research uses a classic parametric approach from the lognormal approximation and its achievements can be compared with the SNP suggested approach, which is explained in the following subsection.

2.2. Methodology

For a particular date and for various call and put option contracts with the same expiration and different exercise prices, the Black-Scholes and SNP models’ set of parameters \( \theta \) is estimated by minimizing the sum of the squared errors between the observed market prices and the theoretical prices, and the parameter set is used to represent the RND for each model.
In the first step, the parameters ($\mu, \sigma, \delta_3, \delta_4$) are calibrated by using the Black-Scholes and SNP models for call and put options. These parameters are used in the second step to fit the probability density function (pdf) by assuming a lognormal distribution and log-SNP, respectively.$^2$

The well-known theoretical price for the Black-Scholes call option is given by,

$$C^{BS}(K; \theta) = S_T \Phi(d_1) - Ke^{-rT} \Phi(d_2),$$  \hspace{1cm} (4)

where $\Phi(.)$ denotes the cumulative distribution function (cdf) of the normal standard, $d_1 = [\ln(S_T/K) + (r + \sigma^2/2)T]/\sigma \sqrt{T}$. Moreover, the call option price of the SNP model can be formulated as (Backus, Foresi, Li, & Wu, 1997; Christoffersen, 2012, p. 237):

$$C^{SNP}(K; \theta) = C^{BS}(K; \theta) + S_T \phi(d_1) \sigma \left[ \delta_3 (2 \sqrt{T} \sigma - d_1) - \delta_4 \sqrt{T} (1 - d_1^2 + 3d_1 \sqrt{T} \sigma - 3T \sigma^2) \right].$$  \hspace{1cm} (5)

The put prices are obtained through the Put–call parity. In order to obtain (5), the log-returns are assumed to be Gram-Charlier distributed instead of Gaussian as in the case of Black-Scholes. The pdf of the Gram-Charlier distribution is given by:

$$f(x) = [1 + \sum_{s=1}^{n} \delta_s H_s(x)] \phi(x),$$  \hspace{1cm} (6)

where $\delta_s$ are the parameters and the Gram-Charlier distribution$^3$ and $H_s(x)$ is the $s$th order Hermite polynomial (HP), which can be defined in terms of the derivatives of normal standard density $\phi(x)$, such as $\frac{d^s \phi(x)}{dx^s} = (-1)^s H_s(x) \phi(x)$.

Specifically, the four first HP are:

$$H_1(x) = x,$$  \hspace{1cm} (7)

$$H_2(x) = x^2 - 1,$$  \hspace{1cm} (8)

---

$^2$ The methodology used in this paper was developed based on the R Package Risk Neutral Density Extraction Package (RND). Specifically, modifications were made to program the SNP model calculations. The code is available on request. For more information, please refer to https://cran.r-project.org/web/packages/RND/index.html

$^3$ Hence Gram-Charlier distribution collapses to the Normal as $\delta_s \rightarrow 0$, $\forall s$. 

\[ H_3(x) = x^3 - 3x, \quad (9) \]
\[ H_4(x) = x^4 - 6x^2 + 3. \quad (10) \]

It is worth mentioning that other expressions can be suggested for the SNP option price, see, for example, Jarrow & Rudd (1982) and Corrado & Su (1996). The main difference lies in the fact that the approximation is made based on the price logarithm instead of the price, according to Jarrow & Rudd’s research (Backus, Foresi, Li, & Wu, 1997).

Each model is calibrated by selecting a set of \( \theta \) parameters, which minimize the sum of the squared differences among the theoretical prices (Black-Scholes and SNP) and the market prices observed for different values of \( N_c \) calls and \( N_p \) puts and the same time to expiration. The call and put market prices are denoted by \( C_i^{mkt} \) and \( P_i^{mkt} \), respectively.

\[
\min_{\theta} \left\{ \sum_{i=1}^{N_c} \left( C_i^{mkt} - C(K_i; \theta) \right)^2 + \sum_{j=1}^{N_p} \left( P_j^{mkt} - P(K_j; \theta) \right)^2 \right\}. \quad (11)
\]

In order to estimate the accuracy of each model, we perform a linear regression of the call (put) values for each method as a dependent variable and the respective market values as the independent variables. We consider the method with the minimum mean absolute error (MAE) to be the best. To obtain the undiscounted RND graph for the Black-Scholes model, the lognormal density is used with the parameters obtained from the calibration process,

\[
q^{LogN}(S_T; \theta) = \frac{1}{s_T \sqrt{2\pi \sigma^2}} e^{-\frac{(\ln S_T - \mu)^2}{2\sigma^2}}. \quad (12)
\]

Similarly, the undiscounted RND graph for the SNP model is obtained by employing the log-SNP distribution suggested by Ñíguez, Paya, Peel, & Perote (2012), and the parameters are calibrated from the SNP modes for the option prices. This distribution has shown exceptional results in the literature when compared to the lognormal distribution as the benchmark model (see Cortés, Mora-Valencia, & Perote, 2016 and 2017). The log-SNP pdf is defined as

\[
q^{logSNP}(S_T; \theta) = \left[ 1 + \sum_{s=1}^{n} \delta_s H_s \left( \frac{\ln S_T - \mu}{\sigma} \right) \right] \left( \frac{1}{s_T \sqrt{2\pi \sigma^2}} e^{-\frac{(\ln S_T - \mu)^2}{2\sigma^2}} \right). \quad (13)
\]
where $H_s$ denotes the $s$th order HP. It should be noted that the lognormal distribution is recovered from the log-SNP when $\delta_s = 0 \ \forall s$. Also, if a random variable $x$ is distributed as log-SNP, $\log(x)$ is distributed as Gram-Charlier, which resembles the relationship between the lognormal and normal random variables.

3. Description of the data

The database compiled includes the closing prices for call and put option contracts for WTI crude oil listed on NYMEX. Specifically, data was obtained for ten unevenly spaced dates taking into consideration special events in the oil market or political events that could affect the financial markets. In order to contrast the results obtained, five dates of ‘relative calm’ were also selected. The first was January 20 2016, and the last was January 24 2017. For each event, options with different exercise prices but the same expiration date were selected. We used the Bloomberg database to obtain the quoted prices for the WTI and the call and put options. Also, news items were gathered from Bloomberg’s Financial Information Network and the OPEC website. The selected contracts mature in between approximately thirty and sixty days as the London Interbank Offered Rate (LIBOR) is used as the referenced risk-free rate for either one or two months, depending on the contract. LIBOR was obtained from the ICE Benchmark Administration (IBA).

The interest in analyzing the oil market comes from the fact that the unexpected changes in the price of this commodity have had an impact on the global economy, and thus this issue has become a topic of interest for investors and central banks (Postali & Picchetti, 2006; He, Kwok, & Wan, 2010; Antonakakis, Chatziantoniou, & Filis, 2017). Figure 1 corresponds to the time series of the evolution of the spot price of WTI crude oil between January 1 2016 and January 31 2017.

---

5 See: [https://www.theice.com/iba/libor](https://www.theice.com/iba/libor). This study only uses LIBOR without taking into account other reference rates that could be studied in different future research.
The figure represents the time series of the evolution of the spot price for WTI crude oil between January 1 2016 and January 31 2017. The dates selected in this research are signalled in the figure by dots. The black dot (News) represents a date with important news events that had an impact on the oil price. The grey dot (Calm) represents a date on which there were no outstanding news events relating to the oil market.

In this period, the WTI oil price reached a maximum of US$54.06 and a minimum of US$26.21, which is reflected in the historic standard deviation of the price of US$6.89. This same behavior has persisted over recent years. From 2014, oil prices have remained low in an economic environment in which the growth of several countries has progressively depleted. The decrease in oil prices also caused other problems as it affected global stock markets, inflation in several economies, and led to central banks raising interest rates (Kallis & Sager, 2017).

Table 1 shows in detail the news events relating to oil on the selected dates that are to be analyzed as well as the information on call and put options taken for each one of the events. Also, Figure 1 shows dots representing the dates that have been selected for analysis. The black dot (News) represents a date that had an important news event that caused an impact on the price of oil. The grey dot (Calm) represents a date on which there was no outstanding news event relating to oil.
The Table shows in detail the news events relating to oil on the selected dates in the study as well as the information on call and put options taken for each one of the events. Source: Bloomberg’s Financial Information Network and the OPEC webpage.

4. Results and discussion

Table 2 summarizes the results of the estimations undertaken with the Black-Scholes model (equation 4) and the SNP option pricing model (5) proposed by Backus, Foresi, Li, & Wu (1997). Using equation 11, which is presented in the methodology (subsection 2.2), each one of the parameters was obtained for the distributions. Specifically, for the Black-Scholes model, the implicit standard deviation is shown for each of the selected dates (see Panel A).
Similarly, for the SNP model, the implicit standard deviation, the implicit skewness, and the excess kurtosis are presented (see Panel B). Given that the call and put options with the same exercise price and the same expiration date are related through the put-call parity, the study only focuses on the results from the call options.

<table>
<thead>
<tr>
<th>Date of event</th>
<th>Number of prices observed</th>
<th>Panel A Black-Scholes</th>
<th>Panel B SNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/01/2016</td>
<td>82</td>
<td>0.65</td>
<td>0.70</td>
</tr>
<tr>
<td>22/01/2016</td>
<td>82</td>
<td>0.59</td>
<td>0.61</td>
</tr>
<tr>
<td>27/01/2016</td>
<td>82</td>
<td>0.65</td>
<td>0.68</td>
</tr>
<tr>
<td>09/02/2016</td>
<td>63</td>
<td>0.70</td>
<td>0.74</td>
</tr>
<tr>
<td>10/03/2016</td>
<td>60</td>
<td>0.49</td>
<td>0.51</td>
</tr>
<tr>
<td>11/05/2016</td>
<td>46</td>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>24/06/2016</td>
<td>57</td>
<td>0.40</td>
<td>0.42</td>
</tr>
<tr>
<td>02/08/2016</td>
<td>44</td>
<td>0.44</td>
<td>0.46</td>
</tr>
<tr>
<td>18/08/2016</td>
<td>46</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>28/09/2016</td>
<td>94</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>10/10/2016</td>
<td>95</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>09/11/2016</td>
<td>46</td>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>30/11/2016</td>
<td>44</td>
<td>0.40</td>
<td>0.41</td>
</tr>
<tr>
<td>19/01/2017</td>
<td>59</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>24/01/2017</td>
<td>61</td>
<td>0.29</td>
<td>0.30</td>
</tr>
</tbody>
</table>

The table summarizes the results from the estimations made with the Black-Scholes model and the SNP option pricing model. The first column shows each one of the dates selected in the study, and the second column contains the number of market prices observed in each date. Panel A shows the implicit standard deviation, the implicit skewness, and the implicit excess kurtosis for the SNP model.

The results show very close implicit standard deviations. However, as shown in Panel B, the results suggest that the implicit distributions are leptokurtic and negatively biased. These findings are consistent with those obtained by Corrado & Su (1996), Backus, Foresi, Li, & Wu (1997), Corrado & Su (1997) and Nikkinen (2003). Also, they strengthen existing evidence on the behavior of returns and underlying asset prices, which usually do not present normal and lognormal behavior, respectively (MacBeth & Merville, 1979).

Based on the input parameters presented in Table 2, the theoretical price was obtained for the call options for each one of the dates selected in the study. Using Table 3, it is possible to compare the average market price observed with the average theoretical price under a lognormal RND (see panel A) and a log-SNP RND (see panel B).
The table compares the average price observed on the market with the average theoretical price. The first column shows each one of the dates selected in the study, the second column shows the number of market prices observed, and the third shows the average market price on each date selected in the study. Panel A shows the average theoretical price that follows a lognormal RND. Panel B shows the average theoretical price that follows a log-SNP RND.

When comparing the average market prices and the average theoretical prices for each one of the distributions, we found that if the prices follow a lognormal RND, they tend to statistically underestimate the call options prices. Particularly, for May 11 and June 24 2016 when the option averages were more in the money, the difference was more noticeable. This result is not surprising given that Rubinstein (1994) obtained this empirical regularity for options on the S&P500 index.
FIGURE 2 RISK NEUTRAL DENSITY

The figure shows the risk neutral density (RND) function for January 24 2017, a day of relative calm (Calm) in the financial markets. The grey line corresponds to the lognormal specification and the black line corresponds to a Log-SNP specification.

FIGURE 3 RISK NEUTRAL DENSITY

The figure shows the risk neutral density (RND) function for June 24 2016, a day on which news events (News) affected the financial markets. The grey line corresponds to the lognormal specification and the black line corresponds to a Log-SNP specification.

An example of the lognormal – equation (12) – and log-SNP – equation (13) – RNDs are shown in Figures 2 and 3. We (randomly) selected one of the dates of relative calm and one of the dates on which there was an event that affected the behavior of the WTI. The first corresponds to January 24 2017 (Figure 2). The second date corresponds to June 24 2016, a day on which the financial markets reacted adversely due to the British voting in favor of leaving the European Union (Figure 3). Note that for the date of relative calm (Calm), the
RNDs under both specifications do not seem very different. However, for the second date (News), the RND that follows the log-SNP distribution is more biased than the lognormal one. This seems to allow a better collection of the evolution of the option prices.

In addition to the monetary difference between the average market and theoretical prices, shown in Table 3, as a measure of goodness of fit, the mean absolute value (MAE) of the residuals is calculated as explained in subsection 2.2. As shown in Table 4, for all the dates in the study, the prices that follow a log-SNP RND consistently have a lower MAE.

**Table 4 Mean absolute error of the residuals, lognormal vs. log-SNP**

<table>
<thead>
<tr>
<th>Date of event</th>
<th>Lognormal Mean absolute error</th>
<th>Log-SNP Mean absolute error</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/01/2016</td>
<td>0.0204</td>
<td>0.0051</td>
</tr>
<tr>
<td>22/01/2016</td>
<td>0.0165</td>
<td>0.0039</td>
</tr>
<tr>
<td>27/01/2016</td>
<td>0.0186</td>
<td>0.0039</td>
</tr>
<tr>
<td>09/02/2016</td>
<td>0.0342</td>
<td>0.0033</td>
</tr>
<tr>
<td>10/03/2016</td>
<td>0.0449</td>
<td>0.0068</td>
</tr>
<tr>
<td>11/05/2016</td>
<td>0.0516</td>
<td>0.0061</td>
</tr>
<tr>
<td>24/06/2016</td>
<td>0.1076</td>
<td>0.0186</td>
</tr>
<tr>
<td>02/08/2016</td>
<td>0.0397</td>
<td>0.0103</td>
</tr>
<tr>
<td>18/08/2016</td>
<td>0.0445</td>
<td>0.0067</td>
</tr>
<tr>
<td>28/09/2016</td>
<td>0.0478</td>
<td>0.0090</td>
</tr>
<tr>
<td>10/10/2016</td>
<td>0.0451</td>
<td>0.0076</td>
</tr>
<tr>
<td>09/11/2016</td>
<td>0.0326</td>
<td>0.0076</td>
</tr>
<tr>
<td>30/11/2016</td>
<td>0.0464</td>
<td>0.0091</td>
</tr>
<tr>
<td>19/01/2017</td>
<td>0.0458</td>
<td>0.0080</td>
</tr>
<tr>
<td>24/01/2017</td>
<td>0.0304</td>
<td>0.0079</td>
</tr>
</tbody>
</table>

The table shows the mean absolute error (MAE) of the residuals when estimating call option prices. The first column shows each of the dates selected in the study. The second column shows the MAE under a lognormal specification, and the third column shows the MAE under a log-SNP specification.
FIGURE 4 MEAN ABSOLUTE ERROR OF THE RESIDUALS

The figure shows the mean absolute error (MAE) when estimating call option prices on January 24, 2017, a day of relative calm (Calm) in financial markets. The figure on the left corresponds to the MAE under a lognormal specification, and the figure on the right corresponds to the MAE under a log-SNP specification.

FIGURE 5 MEAN ABSOLUTE VALUE OF THE RESIDUALS

The figure shows the mean error of the absolute value of the residuals (MAE) when estimating call option prices on June 24, 2016, a day on which the news affected financial markets. The figure on the left corresponds to the MAE under a lognormal specification, and the figure on the right corresponds to the MAE under a log-SNP specification.
Figures 4 and 5 graphically support the results presented in Table 4. Specifically, they offer an example for the same dates of calm (Figure 4) and news events in the market (Figure 5) that were previously selected. The main difference between the modeled RNDs is the ability to capture the high-order moments such as skewness and excess kurtosis. Especially for the dates on which there was the most amount of market uncertainty, the results suggest a better adjustment for the prices from the log-SNP distribution.

Studying models that allow for a better fit to be obtained between the market prices and the theoretical prices is fundamental, not only from an option pricing point of view but also from a risk management perspective. For example, within risk management framework one of the most important issues is quantifying the change in the option price relatively to the change in the price of an underlying asset (Backus, Foresi, Li, & Wu, 1997).

In this case, as a hedging strategy against risk, the calculation of measurements such as the option’s delta becomes crucial. This measurement quantifies the sensitivity of the option price in response to a change in the price of the underlying asset. With the Black-Scholes model, we can demonstrate that the delta ($\Delta^{BS}$) is given by $\Delta^{BS}_{\text{call}} = \Phi(d_1)$ for the call option, and by $\Delta^{BS}_{\text{put}} = \Phi(d_1) - 1$ for the put option (see the proof in Appendix A).

However, as we have previously shown, the results obtained in Table 2 suggest that the implicit distributions in the option prices are leptokurtic and negatively biased. As such, it is necessary that the delta also captures the effects of the skewness and the excess kurtosis. In this case, the delta of the SNP model is given by:

$$\Delta_{\text{SNP}} = \Phi(d_1) - \frac{\delta_3}{\sqrt{t}} \Phi(d_1)(1 - d_1^2 + 3d_1\sigma\sqrt{t} - 2\sigma^2t) + \delta_4 \Phi(d_1) \left[3d_1(1 - 2\sigma^2t) - d_1^3 + 4d_1^2\sigma\sqrt{t} - 4\sigma\sqrt{t} - 4\sigma^3t^{3/2} \right],$$

(14)

for the call option, and by

$$\Delta_{\text{SNP}}^{\text{put}} = \frac{\partial P_{\text{SNP}}}{\partial S_T} - 1$$

(15)

for the put option (see the proof in Appendix B).
As shown in the previous equations, the traditional Black-Scholes approximation, which is frequently used in risk hedging and management of options, can differ substantially when the option price shows skewness and excess kurtosis. Consequently, it is possible to reach incorrect hedging decisions that lead to severe losses.

5. Conclusions

This study uses the SNP model proposed by Backus, Foresi, Li, & Wu (1997) who follow a Gram-Charlier A series expansion around the normal density function. The Black-Scholes model, which is a universal standard used in valuing options, was used as the benchmark. Using options prices for WTI crude oil traded on NYMEX in the period between January 2016 and January 2017, the skewness and excess kurtosis parameters were calibrated by using the SNP distribution. Compared to a normal distribution, a negative skewness was found, as well as a positive excess of kurtosis. These results were constant for the ten dates that were selected taking into account either special events in the oil market or political events that could affect financial markets and five days of relative calm.

Furthermore, when the average market price is observed in comparison to the average theoretical price, we found that the option prices under a lognormal RND tend to systematically be underestimated. This result is even more remarkable on the dates during which the financial markets are more unstable. In summary, we can conclude that the log-SNP RND option pricing model outperforms the traditional Black-Scholes model when pricing WTI options. These significant gains in accuracy are due to the fact that the terms accounting for skewness and excess kurtosis seem to be a relevant source of information, particularly on the presence of extreme events. Therefore the log-SNP model should be implemented for undertaking appropriate risk hedging and management strategies.
Acknowledgements

We thank financial support from the Spanish Ministry of Economics and Competitiveness [project ECO2016-75631-P], Junta de Castilla y León [project SA072U16], FAPA-Uniandes [project P16.100322.001] and Universidad EAFIT.

References


Appendix A

This appendix derives the expression for the delta of the Black-Scholes model ($\Delta^{BS}$):

From equation (4) we know that the theoretical price for the Black-Scholes call option can be obtained as

$$C^{BS}(K; \theta) = S_T \Phi(d_1) - Ke^{-rT} \Phi(d_2),$$

where $\Phi(d_1) = \int_{-\infty}^{d_1} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$ and $\Phi(d_2) = \int_{-\infty}^{d_2} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$ is the cdf of the normal standard distribution, $d_1 = \frac{\ln(S_T/K) + (r + \sigma^2/2)t}{\sigma\sqrt{t}}$ and $d_2 = d_1 - \sigma\sqrt{t}$.

First, it is estimated that

$$\frac{\partial \Phi(d_1)}{\partial d_1} = \frac{1}{\sqrt{2\pi}} e^{-\frac{d_1^2}{2}}, \quad \text{(A.1)}$$

$$\frac{\partial \Phi(d_2)}{\partial d_2} = \frac{1}{\sqrt{2\pi}} e^{-\frac{d_2^2}{2}},$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{(d_1 - \sigma\sqrt{t})^2}{2}}.$$

Developing the squared binomial and replacing $d_1$, the following can be obtained

$$\frac{1}{\sqrt{2\pi}} e^{-\frac{d_1^2}{2}} \cdot \frac{[\ln(S_T/K) + (r + \sigma^2/2)t] \sigma \sqrt{t}}{\sigma^2 \sqrt{t}} \cdot e^{-\frac{(d_1 - \sigma\sqrt{t})^2}{2}},$$

from which

$$\frac{\partial \Phi(d_2)}{\partial d_2} = \frac{1}{\sqrt{2\pi}} e^{-\frac{d_2^2}{2}} \left(\frac{S_T}{K}\right) e^{rt}.$$ \quad \text{(A.2)}$$

Also, the following holds true,

$$\frac{\partial d_1}{\partial S_T} = \frac{\partial d_2}{\partial S_T} = \frac{1}{S_T \sigma \sqrt{t}}.$$ \quad \text{(A.3)}$$

The delta of an option is defined as the partial derivative of the option price with respect to the price of the underlying asset, for the call
\[ \Delta_{call}^{BS} = \frac{\partial c^{BS}}{\partial S_T}. \]

\[
\frac{\partial c^{BS}}{\partial S_T} = \Phi(d_1) + S_T \frac{\partial\Phi(d_1)}{\partial S_T} - Ke^{rT} \frac{\partial\Phi(d_2)}{\partial S_T},
\]

\[
= \Phi(d_1) + S_T \frac{\partial\Phi(d_1)}{\partial d_1} \frac{\partial d_1}{\partial S_T} - Ke^{rT} \frac{\partial\Phi(d_2)}{\partial d_2} \frac{\partial d_2}{\partial S_T},
\]

replacing equations (A.1), (A.2) and (A.3), the following is obtained

\[ \Delta_{call}^{BS} = \Phi(d_1). \square \] (A.4)

For the put option, it can be demonstrated that,

\[ \Delta_{put}^{BS} = \Phi(d_1) - 1. \] (A.5)

Appendix B

This appendix derives the expression for the delta of the SNP (\(\Delta^{SNP}\)) model:

From equation (5), we know that the theoretical price for the SNP call option can be obtained as

\[ c^{SNP}(K; \theta) = c^{BS}(K; \theta) + S_T \phi(d_1) f(d_1), \]

with \( f(d_1) = \sigma \left[ \delta_3 (2\sqrt{T}\sigma - d_1) - \delta_4 \sqrt{T} (1 - d_1^2 + 3d_1 \sqrt{T} \sigma - 3r \sigma^2) \right], \) (B.1)

where \( \phi(d_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{d_1^2}{2}} \) is the pdf of the normal standard distribution, and \( d_1 = \frac{\ln(S_T/K) + (r + \sigma^2/2)t}{\sigma\sqrt{T}}. \)

First, the following are derived,

\[ \frac{\partial \phi(d_1)}{\partial S_T} = \frac{\partial \phi(d_1)}{\partial d_1} \frac{\partial d_1}{\partial S_T}, \]

where \( \frac{\partial \phi(d_1)}{\partial d_1} = -d_1 \phi(d_1) \) and \( \frac{\partial d_1}{\partial S_T} \) is the equation found in (A.3). Also, the following is obtained
\[
\frac{\partial \phi(d_1)}{\partial S_T} = -\frac{d_1 \phi(d_1)}{S_T \sigma \sqrt{\tau}}. \tag{B.2}
\]

Also, the derivative of (B.1) is given by \(\frac{\partial f(d_1)}{\partial S_T} = \frac{\partial \phi(d_1)}{\partial d_1} \frac{\partial d_1}{\partial S_T}\),

where \(\frac{\partial f(d_1)}{\partial d_1} = \sigma [\delta \sqrt{\tau} - \delta_4 \sqrt{\tau} (-2d_1 + 3\sqrt{\tau})]\) and \(\frac{\partial d_1}{\partial S_T}\) is the equation found in (A.3). In such a way that the following is obtained

\[
\frac{\partial f(d_1)}{\partial S_T} = \frac{\left[\delta \sqrt{\tau} - \delta_4 \sqrt{\tau} (-2d_1 + 3\sqrt{\tau})\right]}{S_T \sqrt{\tau}}. \tag{B.3}
\]

Thus, the delta of the SON model for the call can be defined by the partial derivative

\[
\Delta^{SNP}_{call} = \frac{\partial C^{SNP}}{\partial S_T}.
\]

\[
\frac{\partial C^{SNP}}{\partial S_T} = \frac{\partial C^{BS}}{\partial S_T} + S_T \left( \phi(d_1) \frac{\partial \phi(d_1)}{\partial S_T} + f(d_1) \frac{\partial \phi(d_1)}{\partial S_T} \right) + \phi(d_1) f(d_1).
\]

By replacing equations (A.4), (B.1), (B.2) and (B.3), the following is obtained

\[
\Delta^{SNP}_{call} = \Phi(d_1) - \frac{\delta_3}{\sqrt{\tau}} \phi(d_1) \left( 1 - d_1^2 + 3d_1 \sigma \sqrt{\tau} - 2\sigma^2 \tau \right) + \delta_4 \phi(d_1) \left[ 3d_1 \left( 1 - 2\sigma^2 \tau \right) - d_1^3 + 4d_1^2 \sigma \sqrt{\tau} - 4\sigma \sqrt{\tau} + 3\sigma^3 \tau^{3/2} \right]. \tag{B.4}
\]

For the put option, it can be demonstrated that

\[
\Delta_{put}^{SNP} = \frac{\partial p^{SNP}}{\partial S_T} - 1. \tag{B.5}
\]