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Abstract

In this research, we address the problem of clinical management of dengue, which is composed of

diagnosis and treatment of the disease. Dengue is a vector-borne tropical disease that is widely

distributed worldwide. The development of approaches to aid in decision-making for diseases of public

health concern –such as dengue– are necessary to reduce morbidity and mortality rates. Despite the

existence of clinical management guidelines, the diagnosis and treatment of dengue remains a challenge.

To address this problem, our objective was to develop methodologies, models, and approaches to

support decision-making regarding the clinical management of this infection. We developed several

research articles to meet the proposed objectives of this thesis. The first article reviewed the latest

trends in dengue modeling using machine learning (ML) techniques. The second article proposed

a decision support system for the diagnosis of dengue using fuzzy cognitive maps (FCMs). The

third article proposed an autonomous cycle of data analysis tasks to support both diagnosis and

treatment of the disease. The fourth article presented a methodology based on FCMs and optimization

algorithms to generate prescriptive models in clinical settings. The fifth article tested the previously

mentioned methodology in other science domains such as, business and education. Finally, the last

article proposed three federated learning approaches to guarantee the security and privacy of data

related to the clinical management of dengue. In each article, we evaluated such strategies using

diverse datasets with signs, symptoms, laboratory tests, and information related to the treatment of

the disease. The results showed the ability of the developed methodologies and models to predict

disease, classify patients according to severity, evaluate the behavior of severity-related variables, and

recommend treatments based on World Health Organization (WHO) guidelines.

Keywords: Dengue, Predictive modeling, Prescriptive modeling, Artificial intelligence, Ma-

chine learning, Clinical decision-support system, Fuzzy cognitive maps, Federated learning
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Resumen

En esta investigación, abordamos el problema del manejo cĺınico del dengue, que se compone del

diagnóstico y el tratamiento de la enfermedad. El dengue es una enfermedad tropical transmitida por

vectores que está ampliamente distribuida en todo el mundo. El desarrollo de enfoques que ayuden a

la toma de decisiones en enfermedades de interés para la salud pública –como el dengue– es necesario

para reducir las tasas de morbilidad y mortalidad. A pesar de la existencia de gúıas para el manejo

cĺınico, el diagnóstico y el tratamiento del dengue siguen siendo un reto. Para abordar este problema,

nuestro objetivo fue desarrollar metodoloǵıas, modelos y enfoques para apoyar la toma de decisiones en

relación con el manejo cĺınico de esta infección. Nosotros desarrollamos varios art́ıculos de investigación

para cumplir los objetivos propuestos de esta tesis. El primer articulo revisó las últimas tendencias

del modelamiento de dengue usando técnicas de aprendizaje automático. El segundo art́ıculo propuso

un sistema de apoyo a la decisión para el diagnóstico del dengue utilizando mapas cognitivos difusos.

El tercer art́ıculo propuso un ciclo autónomo de tareas de análisis de datos para apoyar tanto el

diagnóstico como el tratamiento de la enfermedad. El cuarto art́ıculo presentó una metodoloǵıa

basada en mapas cognitivos difusos y algoritmos de optimización para generar modelos prescriptivos en

entornos cĺınicos. El quinto art́ıculo puso a prueba la metodoloǵıa anteriormente mencionada en otros

dominios de la ciencia como, por ejemplo, los negocios y la educación. Finalmente, el último art́ıculo

propuso tres enfoques de aprendizaje federado para garantizar la seguridad y privacidad de los datos

relacionados con el manejo cĺınico del dengue. En cada art́ıculo evaluamos dichas estrategias utilizando

diversos conjuntos de datos con signos, śıntomas, pruebas de laboratorio e información relacionada

con el tratamiento de la enfermedad. Los resultados mostraron la capacidad de las metodoloǵıas

y modelos desarrollados para predecir la enfermedad, clasificar a los pacientes según su severidad,

evaluar el comportamiento de las variables relacionadas con la severidad y recomendar tratamientos

basados en las directrices de la Organización Mundial de la Salud.

Palabras Clave: Dengue, Modelamiento predictivo, Modelamiento prescriptivo, Inteligencia

artificial, Aprendizaje automático, Sistema de apoyo a la decisión cĺınica, Mapas cognitivos difusos,

Aprendizaje federado
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Chapter 1

Introduction and research context

1.1 Problem statement and motivation

Dengue is one of the most important vector-borne tropical diseases worldwide [1]. This pathology

has become a public health problem in tropical and subtropical regions, with a great epidemiological,

social, and economic impact [2, 3]. The disease is produced by an arbovirus (DENV) that receives the

same name [4]. The infection is transmitted to humans by the bite of mosquitoes of the genus Aedes,

mainly A. aegypti and A. albopictus [5].

In 1997, WHO classified the disease like dengue fever and dengue hemorrhagic fever [6]. A new

classification was proposed in 2009, which was based on the severity level of the disease: non-severe

dengue (with or without warning signs) and severe dengue (SD). This last includes the dengue shock

syndrome [7]. According to the WHO, more than 350 million dengue virus infections occur annually

worldwide. In addition, 20,000 deaths related to dengue in the same period of time [8]. The Pan

American Health Organization annual epidemiological bulletin of arboviruses reported 1,267,151 cases

of dengue in the Americas region during 2021, with a cumulative incidence of 127.72 cases per 100,000

population.

The countries in the Americas region with the highest number of cases during 2021 were Brazil,

Colombia and Peru with 975,474 cases (77.0%), 53,334 cases (4.2%) and 49,274 cases (3.9%), respec-

tively [9]. Colombia was the country with the second highest number of cases in the Americas region in

2021. According to the weekly epidemiological report by the Colombian National Institute of Health,

the territorial entities with the highest number of cases were Cartagena with 7,434 cases (14.2%), Cali

with 5,762 cases (11.0%) and Barranquilla with 5,178 cases (9.9%) [10].

Clinical management of dengue is the process by which health care professionals evaluate the

patient to make a diagnosis based on severity and treat the patient palliatively to avoid life-threatening

complications [11]. The clinical management of dengue is a major challenge for medical professionals

1
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and health authorities worldwide [11]. The main goal of early diagnosis and timely treatment activities

is to decrease morbidity and mortality rates associated with the disease [12]. Mortality rates for dengue

can be high when diagnosis and treatment are not appropriate, reaching values of 20% [13]. In 2009,

WHO published some guidelines for the diagnosis, treatment, prevention and control of dengue [7].

These guidelines are currently used by medical personnel for the clinical management of dengue, from

diagnosis to treatment of patients. However, there are still di�culties in the diagnosis and treatment

of the disease.

The processes used to diagnose and treat dengue are complex because the large amount of in-

formation that the medical sta� must analyze in a short time to define the procedure to follow for

each patient [14]. This information corresponds to demographic, clinical and laboratory variables such

as age, signs and symptoms, among others, that a patient with dengue may present [15]. Besides,

physicians’ lack of experience could make the diagnosis di�cult because there are not always reason-

able rules to analyze a complex event such as dengue. According to experts, the appropriate clinical

management of dengue patients depends on an astute interpretation of the clinical and laboratory

findings to prevent or treat the life-threatening complications [14].

One way to address this type of problem is with the development of clinical decision support

systems (CDSSs) based on predictive and prescriptive models to support decision-making of medical

personnel caring dengue patients [16]. According to Sutton et al. [16], a CDSS is defined as a system

that seeks to improve healthcare delivery by supporting medical decisions with clinical knowledge and

patient information. The main objective is for the physician to combine her/his clinical knowledge

with suggestions from the CDSS to make the best possible decision. Such systems use data to enhance

the processes performed by a human being [17].

Advances in artificial intelligence (AI) have driven the development of CDSSs to support decision-

making in clinical or hospital environments [18–21]. These systems are mainly based on predictive

and prescriptive models using AI techniques. The predictive models can be used for the detection

or diagnosis of diseases using prediction or classification tasks [22]; while the prescriptive models are

optimization models that can be used to prescribe a suitable treatment [23].

The development of predictive models has been worked extensively for the detection of dengue and

to di�erentiate it from other diseases with similar clinical pictures, such as Zika, chikungunya, malaria

and leptospirosis [22, 24, 25]. These models are useful for the diagnosis of dengue, however, they have

some disadvantages: 1) they only detect the disease, 2) they do not evaluate the behavior of variables

related to severity. Thus, the diagnosis of dengue is not only a prediction or detection problem, it

involves many severity-related factors that physicians must analyze to perform a correct classification

of the clinical picture and a appropriate management of the patient’s signs and symptoms. In this

way, the development of CDSSs that not only predict an outcome, but also evaluate the behavior
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of the variables involved in the process are more useful to improve the diagnostic process of dengue

[26]. Therefore, it is necessary to develop CDSS based on explanatory models for the prediction and

evaluation of factors related to the severity of dengue. This type of explainable techniques allows

explaining the relevance of the variables involved in the system. Additionally, it is important to

compare the developed models with other ML techniques proposed in the literature.

In general, the clinical management of dengue constitutes the diagnosis and treatment of the

disease. Predictive models have focused on diagnosis, while prescriptive models have focused on

treatment. The prescriptive models are a type of modeling to know what are the best actions to obtain

a desired outcome [27]. In the case of dengue, there is no treatment or cure available; its treatment is

based on palliative care and continuous assessment of signs to avoid complications leading to death.

To date and to the best of our knowledge, no prescriptive model developed to support decision-making

in the treatment of dengue has been reported in the literature. Therefore, it is necessary to develop

prescriptive models to support decision-making so that patients with dengue have the best possible

treatment within the recommendations made by WHO.

An important aspect in the development of predictive and prescriptive models for the clinical

management of dengue is to ensure the privacy and security of patient data. In traditional approaches

all data are collected and sent (without any security) to a single location for model training. However,

potential data leaks that compromise the identity of patients constitute a serious problem for health-

care institutions. To attack this problem, it is indispensable to develop di�erent approaches such as

federated learning, where predictive and prescriptive models are trained for the clinical management

of diseases without data leaving their place of origin or collection.

In summary, there is a need to develop predictive and prescriptive models for the clinical manage-

ment of dengue, not only to support decision-making regarding diagnosis but also treatment. Also,

there is a need to ensure the privacy and security of patient data. Our expectation was to develop

models to support clinical decision makers to decrease dengue mortality rates considering these as-

pects.

1.2 Research objectives

1.2.1 General objective

Develop predictive and prescriptive models for the clinical management of dengue

1.2.2 Specific objectives

• Develop a predictive model for classification and severity assessment of dengue.

• Develop prescriptive models to aid decision-making in the clinical management of dengue.
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• Develop federated learning for FCMs to support decision-making in the clinical management of

dengue.

1.3 Contributions and research scope

This research focuses on the development of models, methodologies and computational approaches to

support decision-making in the clinical management of dengue. Several contributions were made to

the generation of knowledge in the development of CDSS for the diagnosis and treatment of dengue.

The first contribution of the present research was a systematic literature review (SLR) to identify

challenges and opportunities for dengue research. In this review, we focused on three main aspects

of dengue: i) diagnostic modeling, ii) predictive modeling, and iii) prescriptive modeling. For each of

these approaches, we identify challenges and opportunities for future work.

Based on the information reported in the SLR, we set out three objectives related to predictive

modeling, prescriptive modeling, and federated learning. On the one hand, we applied AI techniques on

datasets related to the clinical management of dengue to generate predictive models with explanatory

capacity, it means, models that allow us to evaluate the behavior of included variables. In the literature

there are works reported for dengue detection, however, works that dynamically evaluate dengue

variables are scarce. On the other hand, we used optimization techniques such as genetic algorithms

(GAs) to generate prescriptive models that prescribe treatments according to the clinical pictures of

the patients. In this case, we developed a strategy called autonomous cycles of data analysis tasks

(ACODAT) [28] that combines predictive and prescriptive models for dengue diagnosis and treatment,

respectively.

Because prescriptive modeling is a relatively new area, and although its interest is growing,

methodologies for the generation of this type of models are still scarce. For this reason, another

important contribution of the present study consisted of a methodology based on an extension of

FCMs for the generation of prescriptive models. This methodology uses the inference process of

cognitive maps and optimization algorithms such as GAs to prescribe actions that lead to desired

outcomes. It was tested in di�erent domains such as education, business and diseases like diabetes,

geohelminthiasis and dengue.

Finally, to ensure the security and privacy of dengue patient data, we developed federated learning

approaches where the data used to train the models do not leave their place of origin. These approaches

are useful to support decision-making in the diagnosis and treatment of dengue in di�erent cities in

Colombia. The proposed approaches present a useful alternative to centralized environments where

data are gathered in one place for training.

The phases used for the development of the models corresponding to the specific objectives com-

prised planning, analysis, design and implementation. In the planning and analysis is important to
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emphasize the support of clinical experts in dengue to extract the sources of knowledge in healthcare

centers and identify the main problems related to the clinical management of dengue. Regarding the

design, we defined the architectures used for the generation of AI models. Finally, the implementation

consisted of the translation of the requirements and designs into functional code.

Deployment of the models in mobile, web and desktop applications is beyond the scope of this

work. Di�culties in accessing clinical and hospital environments due to the COVID-19 pandemic

make it di�cult to evaluate and validate the results obtained at full scale. However, the results are

evaluated using particular scenarios advised by experts in the clinical management of dengue.

All the contributions made in this research are represented in research articles. A total of six (6)

scientific articles were generated, of which three (3) are published and the other three (3) are under

review in scientific journals. The status of each of the articles is briefly explained below.

A first review article was generated to identify research opportunities in dengue modeling using

ML. This article was published in the journal: Artificial Intelligence in Medicine (Q1 in SJR). The

second research article corresponded to the predictive explainable model using FCMs for dengue

diagnosis. This article was published in the journal: Health Care Management Science (Q1 in SJR).

The third article presents an ACODAT using prediction or prescription tasks for the diagnosis and

treatment of dengue, respectively. This article was published in the journal: Heliyon (Q1 in SJR).

The fourth article generated presents a methodology based on FCMs and optimization algorithms to

generate prescriptive models in clinical settings. This article is under review in the journal: Journal of

Biomedical Informatics (Q1 in SJR). The fifth article applies this methodology to generate prescriptive

models in other fields of science such as education and business. This article is under review in the

journal: Expert Systems with Applications (Q1 in SJR). Finally, the last article presents three federated

learning approaches for FCMs to support decision-making in the clinical management of dengue. This

article was accepted for publication in the journal: Engineering Applications of Artificial Intelligence

(Q1 in SJR).

1.4 Thesis organization

This thesis is presented as a collection of articles developed to fulfill each of the objectives proposed.

Chapter 3, Chapter 4 and Chapter 5 correspond to the fulfillment of the first, second and third

objectives, respectively. One article was generated for the first and third objectives, while three

articles were generated for the second objective. The articles will be presented in each section with

the title, doi (if published), abstract and full text.

Chapter 2 describes the latest trends in diagnostic, predictive and prescriptive modeling for dengue.

In this chapter, we show a SLR useful to identify trends, challenges, and research opportunities in

predictive and prescriptive modeling for dengue. Chapter 3 presents an article corresponding to the
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fulfillment of the first objective, which consists of the development of a CDSS for dengue based on

FCMs.

Chapter 4 presents three articles to meet the second objective proposed in this thesis. The first

article corresponds to the development of an ACODAT for the clinical management of dengue. The

second article corresponds to the development and implementation of a strategy based on FCMs and

optimization algorithms to generate prescriptive models in clinical environments. Subsequently, the

third article corresponds to the application of this methodology in other domains such as education

and business to validate the generalizability of the developed approach.

Chapter 5 presents an article where we proposed three approaches of federated learning to support

clinical decision-making in dengue and ensure privacy and security of dengue patient data. Chapter 6

presents a summary of the conclusions of all the articles presented in the previous sections. Finally, in

this last chapter, we show the limitations of our research and possible future work for the development

and improvement of CDSSs for the clinical management of dengue.



Chapter 2

State of the art

2.1 Motivation

In this chapter, we present an SLR that reviewed three dengue modeling approaches: diagnostic,

predictive, and prescriptive. At the time of the start of the research project, there was no review

in the literature that encompassed these three approaches together for dengue. The main objective

of this review was to identify the main trends in these three approaches using ML techniques. In

diagnostic modeling, the objective was to find the main modeling approaches to detect, diagnose or

classify the disease. In predictive modeling, the objective was to find the main modeling approaches

at the epidemic level, as well as modeling to study and analyze dengue morbidity and mortality rates.

The prescriptive or intervention modeling was oriented to find the main developments on the analysis

of the impact of interventions to mitigate epidemics and control dengue. The whole article is in

Appendix A.

2.2 Identification of the article

W. Hoyos, J. Aguilar, and M. Toro, “Dengue models based on machine learning techniques: A sys-

tematic literature review”, Artificial Intelligence in Medicine, vol. 119. p. 102157, Aug. 2021,

doi:10.1016/j.artmed.2021.102157., (Q1 in SJR, H-Index = 98).

2.3 Abstract

Dengue modeling is a research topic that has increased in recent years. Early prediction and decision-

making are key factors to control dengue. This SLR analyzes three modeling approaches of dengue:

diagnostic, epidemic, intervention. These approaches require models of prediction, prescription, and

7
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optimization. This SLR establishes the state-of-the-art in dengue modeling, using ma- chine learning,

in the last years. Several databases were selected to search the articles. The selection was made based

on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology.

Sixty-four articles were obtained and analyzed to describe their strengths and limitations. Finally,

challenges and opportunities for research on ML for dengue modeling were identified. Logistic re-

gression was the most used modeling approach for the diagnosis of dengue (59.1%). The analysis of

the epidemic approach showed that linear regression (17.4%) is the most used technique within the

spatial analysis. Finally, the most used intervention modeling is General Linear Model with 70%. We

conclude that cause-e�ect models may improve diagnosis and understanding of dengue. Models that

manage uncertainty can also be helpful, because of low data-quality in healthcare. Finally, decentral-

ization of data, using federated learning, may decrease computational costs and allow model building

without compromising data security.

2.4 Link to the full article

https://doi.org/10.1016/j.artmed.2021.102157

https://doi.org/10.1016/j.artmed.2021.102157


Chapter 3

Predictive models for the clinical

management of dengue

3.1 Motivation

Predictive models for dengue have been widely reported in the literature [1]. Some works have reported

predictive models to detect the disease using sociodemographic and epidemiological variables. Other

works have di�erentiated dengue from other diseases with similar clinical pictures such as leptospirosis,

malaria, Zika and chikungunya. However, approaches to understand the dynamics of the variables

used for diagnosis remain scarce [1]. Knowing in advance the behavior of variables related to dengue

severity is crucial because complications leading to death can be avoided. For this reason, we develop

a CDSS that uses FCMs both to predict the severity of dengue and to evaluate the behavior of these

variables over time. Finally, we compare this approach with other ML approaches. Thus, in this

chapter, we present the first paper corresponding to the fulfillment of the first objective. The whole

article is in Appendix B.

3.2 Identification of the article

W. Hoyos, J. Aguilar, and M. Toro, “A clinical decision-support system for dengue based on fuzzy

cognitive maps”, Health Care Management Science, pp. 1-16, Aug. 2022, doi:10.1007/s10729-022-

09611-6.

9
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3.3 Abstract

Dengue is a viral infection widely distributed in tropical and subtropical regions of the world. Dengue

is characterized by high fatality rates when the diagnosis is not made promptly and e�ectively. To aid

in the diagnosis of dengue, we propose a clinical decision-support system that classifies the clinical

picture based on its severity, and using causal relationships evaluates the behavior of the clinical and

laboratory variables that describe the signs and symptoms related to dengue. The system is based on

a FCM that is defined by the signs, symptoms and laboratory tests used in the conventional diagnosis

of dengue. The evaluation of the model was performed on datasets of patients diagnosed with dengue

to compare the model with other approaches. The developed model showed a good classification

performance with 89.4% accuracy and could evaluate the behaviour of clinical and laboratory variables

related to dengue severity (it is an explainable method). This model serves as a diagnostic aid for

dengue that can be used by medical professionals in clinical settings.

3.4 Link to the full article

https://doi.org/10.1007/s10729-022-09611-6

https://doi.org/10.1007/s10729-022-09611-6


Chapter 4

Prescriptive models for the clinical

management of dengue

4.1 Motivation

Prescriptive models for the clinical management of dengue are essential because they support treat-

ment decision-making. Dengue has no cure and its treatment is based on palliative care to alleviate

symptoms and avoid complications. For this reason, it is necessary to develop computer-aided ap-

proaches that generate strategies capable of prescribing suitable actions to alleviate or avoid fatal

complications. In addition, until 2020 there were no studies that have developed computational tools

to support decisions regarding the treatment of dengue [1]. For this reason, we develop methodologies

to generate prescriptive models to treat dengue based on WHO guidelines. This chapter focuses on

the implementation of algorithms for the generation of prescriptive models. Particularly, it presents

an ACODAT for the generation of a prescriptive model, and shows the design and implementation of

an extension of FCMs for the generation of prescriptive models not only in the clinical management of

dengue, but also to generate prescriptive models with high performance in several domains of science.

Thus, for the fulfillment of the second objective, three papers were developed, and each subsection

below shows each work.

4.2 ACODAT for the clinical management of dengue

4.2.1 Motivation

Prescriptive modeling is an area of data analytics that is gaining much interest in healthcare due to

its capabilities for defining actions related to disease treatment. Until 2020, there were no prescriptive

11
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models for prescribing actions to reduce dengue-related signs and symptoms [1]. Based on this context,

we defined an ACODAT to classify dengue and prescribe treatment actions for each type of dengue. In

this first prescriptive modeling article, we present the results of the implementation of ML techniques

(ANNs and SVMs) for prediction and GA for prescription of a list of available treatments. The whole

article is in Appendix C.

4.2.2 Identification of the article

W. Hoyos, J. Aguilar, and M. Toro, “An autonomous cycle of data analysis tasks for the clinical man-

agement of dengue”, Heliyon, vol. 8, no. 10, p. e10846, Oct. 2022, doi: 10.1016/J.HELIYON.2022.E10846.

4.2.3 Abstract

Dengue is the most widespread vector-borne disease worldwide. Timely diagnosis and treatment of

dengue is the main objective of medical professionals to decrease mortality rates. In this paper, we

propose an autonomous cycle that integrates data analysis tasks to support decision-making in the

clinical management of dengue. Particularly, the autonomous cycle supports dengue diagnosis and

treatment. The proposed system was built using ML techniques for classification tasks (ANNs and

SVMs) and evolutionary techniques (GA) for prescription tasks (treatment). The system was quan-

titatively evaluated using dengue-patient datasets reported by healthcare institutions. Our system

was compared with previous works using qualitative criteria. The proposed system has the ability

to classify a patient’s clinical picture and recommend the best treatment option. In particular, the

classification of dengue was done with 98% accuracy and a GA recommends treatment options for

particular patients. Finally, our system is flexible and easily adaptable, which will allow the addition

of new tasks for dengue analysis.

4.2.4 Link to the full article

https://doi.org/10.1016/j.heliyon.2022.e10846

4.3 Clinical decision-making through prescriptive modeling

4.3.1 Motivation

Decisions made by medical professionals in prevention, diagnosis and prognosis are di�cult due to

the large amount of information to be analyzed (demographic, clinical, environmental data, etc.).

The lack of experience and knowledge of some health professionals makes di�cult to make quickly

https://doi.org/10.1016/j.heliyon.2022.e10846
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decisions, time that is vital in some situations to ensure the life of patients. Based on these scenarios,

it is important to develop methodologies that allow the prescription of preventive actions to avoid

infections that increase the costs of health systems [1]. In this work, we developed a methodology,

called Prescriptive-FCM, to generate prescriptive models that define treatment actions mainly in

clinical settings. The proposed approach generated prescriptive models that formulate treatments

and actions for diseases. This approach is based on FCMs and optimization algorithms. This work

has not yet been published; therefore, it is included in Appendix D.

4.3.2 Identification of the article

W. Hoyos, J. Aguilar, M. Raciny, and M. Toro, “Case studies of clinical decision-making through

prescriptive models based on machine learning”, preprint under review in Journal of Biomedical In-

formatics, 2023.

4.3.3 Abstract

Background: The development of computational methodologies to support clinical decision-making is

of vital importance to reduce morbidity and mortality rates. Specifically, prescriptive analytics is a

promising area to support decision-making in the monitoring, treatment and prevention of diseases.

These aspects remain a challenge for medical professionals and health authorities. Materials and

Methods: In this study, we propose a methodology for the development of prescriptive models to

support decision-making in clinical settings. The prescriptive model requires a predictive model to

build the prescriptions. The predictive model is developed using fuzzy cognitive maps and the particle

swarm optimization algorithm, while the prescriptive model is developed with an extension of fuzzy

cognitive maps that combines them with genetic algorithms. We evaluated the proposed approach

in three case studies related to monitoring (warfarin dose estimation), treatment (severe dengue)

and prevention (geohelminthiasis) of diseases. Results: The performance of the developed prescriptive

models demonstrated the ability to estimate warfarin doses in coagulated patients, prescribe treatment

for severe dengue and generate actions aimed at the prevention of geohelminthiasis. Additionally,

the predictive models can predict coagulation indices, severe dengue mortality and soil-transmitted

helminth infections. Conclusions: The developed models performed well to prescribe actions aimed

to monitor, treat and prevent diseases. This type of strategy allows supporting decision-making in

clinical settings. However, validations in health institutions are required for their implementation.

4.3.4 Link to the full article

Appendix D
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4.4 PRV-FCM: an extension of FCMs for prescriptive model-

ing

4.4.1 Motivation

The development of methodologies to generate prescriptive models should be able to be used in any

domain of science. To show the generalizability of our methodology to generate prescriptive models,

we tested it in fields such as education, business and medicine. Thus, we implemented the PRV-FCM

methodology developed in the previous work to generate prescriptive models in di�erent domains.

Since this article has not been published, the full text is presented in Appendix E.

4.4.2 Identification of the article

W. Hoyos, J. Aguilar, and M. Toro, “PRV-FCM: an extension of fuzzy cognitive maps for prescriptive

modeling”, preprint submitted to Expert Systems with Applications, 2023.

4.4.3 Abstract

In this paper, we present a methodology based on FCMs and metaheuristic algorithms to generate

prescriptive models, called PRescriptiVe FCM (PRV-FCM). FCMs are a set of concepts interrelated

that describe the behavior of a system. This kind of modeling has been extensively used to build

descriptive and predictive models. We propose an extension of FCMs to develop prescriptive models

and support decision-making in di�erent domains. This adaptation characterizes FCMs, using system

and prescriptive concepts. After that, it uses a metaheuristic algorithm (in this case, we use a

GA) to optimize prescriptive concepts based on system concepts and the stability of the FCM. Our

proposed prescriptive approach was implemented and tested in four scenarios where it demonstrated

its capability to find solutions that lead to desired values for the variables of interest. Specifically, no

significant di�erences were found between the values of the prescriptive variables in the datasets and

those generated by PRV-FCM.

4.4.4 Link to the full article

Appendix E



Chapter 5

Federated learning approaches for

FCMs to support clinical

decision-making in dengue

5.1 Motivation

Ensuring data security and privacy when developing CDSSs remains a challenge due to the amount of

data being generated today. In addition, there is interest in not sending data to a single location for

model training for multiple reasons, such as vulnerability and sensitivity of healthcare data. On the

other hand, the amount of lost data in healthcare continues to increase due to the increased workload

faced by medical professionals that leads them to not fill in the data correctly. To date, there are no

literature reports that implement federated learning to generate predictive and prescriptive models

[1]. According to our literature review, this was one of the challenges identified. Based on this,

there is a need to develop systems that can guarantee data privacy and security and, moreover, that

combine data from di�erent domains to transfer learning from one party to another, and thus obtain

global models that can be used by all parties involved. In this chapter, we present one research

where we design and implement three federated learning approaches using FCMs to support decision-

making with respect to SD. Each approach is described and validated with datasets from two endemic

regions of Colombia. This article has not yet been published, therefore, its full text can be found in

Appendix F.
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5.2 Identification of the article

W. Hoyos, J. Aguilar, and M. Toro, “Federated learning approaches with fuzzy cognitive maps to sup-

port clinical decision-making in dengue”, article accepted for publication in Engineering Applications

of Artificial Intelligence, 2023.

5.3 Abstract

Federated learning is a distributed ML approach developed to guarantee the privacy and security

of data stored on local devices. In healthcare, specifically in diseases of public health interest such

as dengue, it is necessary to develop strategies that guarantee such data properties. Therefore, the

aim of this work was to develop three federated learning approaches with FCMs for the prediction

of mortality and treatment of SD. We developed three federated learning approaches with FCMs to

support decision-making regarding dengue mortality and treatment of SD. Validation of the approaches

was performed on SD datasets from two dengue endemic regions in Colombia. We used accuracy to

measure the performance of the models developed in each approach. The use of federated learning

significantly improves the performance of models developed in centralized environments. Additionally,

the use of federated learning allows guaranteeing the privacy and security of each client’s data due to

the local training of the models. Federated learning is a useful tool in healthcare because it guarantees

the privacy and security of patient data. Our results demonstrated the ability of aggregated models

to predict mortality and prescribe treatment for SD.

5.4 Link to the full article

Appendix F



Chapter 6

Conclusions

In this research, we defined predictive and prescriptive models for the clinical management of dengue,

which consists of diagnosis and treatment of the disease. In this chapter, we present a summary of

the conclusions of all previously presented papers. In addition, we show the limitations and research

opportunities for future work.

6.1 Summary

Dengue diagnosis is a crucial component in the clinical management of the disease. To address this

problem, we developed an explanatory predictive model that would allow diagnosing dengue in a more

robust manner. To date, the predictive models developed for dengue diagnosis are based on early

detection of the disease and di�erentiation of dengue from other similar diseases. Dengue diagnosis

is based on severity and the models reported in the literature only make predictions, but do not

evaluate the dynamics of the variables involved in the severity of dengue. This research opportunity

was identified, and we proposed an explanatory model where the behavior of the variables can be

evaluated as a prognostic model such that can be observed how the variables related to the diagnosis

behave.

The developed CDSS allowed anticipating the presence of some key signs and symptoms to avoid

complications. This type of explanatory model is useful for the diagnosis of the disease because it

allows the identification of the factors that most influence severity in a particular patient. Detecting

warning signs before they occur is crucial to properly manage the patient and avoid complications that

lead to death. For example, shock is a defining sign of SD and is indicative of complications. Using

simulations, our model was able to detect the presence of shock, even before its onset in patients.

The development of this type of computational tools is fundamental to support decision-making with

respect to diagnosis and thus reduce dengue mortality rates.
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Another important aspect in the clinical management of dengue is treatment. This aspect is closely

related to diagnosis, since treatment depends on the type of dengue present in the patient. To support

decision-making regarding dengue treatment, we initially implemented ACODAT to prescribe dengue

treatment based on WHO guidelines. Subsequently, we designed and implemented a methodology that

generates prescriptive models to define treatment options for dengue using FCMs and optimization

algorithms. This methodology was also validated on datasets from other science domains.

The prescriptive models generated with our methodology had excellent performance in prescribing

and recommending actions, leading to desired outcomes of the proposed systems. The developed

models had the ability to prescribe actions with respect to SD treatment, Warfarin dose estimation

and geohelminthiasis prevention. With respect to other domains of science, our methodology was

validated in fields such as business and education where it allowed the generation of prescriptive

models to define actions that improve wine quality and increase student academic performance.

Finally, in health sciences is essential to ensure the privacy and security of patient data. In

Chapter 3 and Chapter 4, the models were trained using a centralized environment. The data were

collected and gathered in one place, where AI techniques were applied to obtain the trained models.

This approach is known as traditional ML and does not guarantee the privacy and security of the

data. To address this problem, we proposed three federated learning approaches with FCMs to

support decision-making in the diagnosis and treatment of SD. The first approach, called total federated

learning, indicates that the feature space in each site is equal. The second approach, called target-based

federated learning, assumes that only one variable (target or decision variable) is common among all

sites involved in the federation. Finally, the third approach, called federated transfer learning, indicates

that learning can be transferred from one site to another.

The use of federated learning is a useful alternative to the traditional ML approach. Federated

learning allows local training of models with local data and only shares model parameters with other

parties. In all proposed approaches to support decision-making with respect to dengue diagnosis

and treatment, the performance of models developed with federated approach was superior to the

performance of both local models and models trained under the centralized or traditional approach.

In addition, the privacy and security of dengue patient data was guaranteed because the models were

trained locally with their own data and what was shared between the parties were the parameters of

the trained models.

6.2 Limitations and future work

We developed strategies or approaches to support decision-making in the clinical management of

dengue. With the results of the present investigation, we were able to meet the proposed objectives.

However, this research has some limitations, which we summarize below.
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For the generation of the predictive and prescriptive models we used data related to signs, symp-

toms, laboratory tests and variables related to dengue diagnosis and treatment. However, not all

dengue-related variables were available. Data from dengue patients, like all data in the health care

field, is di�cult to collect due to the sensitivity of this type of data. The use of variables such as

cytokines and complete blood count test could help to improve the performance of the developed

models. Our systematic literature review showed the importance of this type of variables for the

diagnosis and classification of dengue [1].

A limitation in all the works presented in this research is the number of endemic regions and the

sample size used for the construction of predictive and prescriptive models for the clinical management

of dengue. The availability of data depends on the frequency of the observed event, for example, SD has

very low frequency when compared to non-severe dengue with and without warning signs. Increasing

the sample size by adding other dengue endemic regions not only in Colombia, but also in the world,

could improve performance and could yield results on the behavior of variables related to dengue

severity in populations with di�erent characteristics. Additionally, the development of methodologies

that generate synthetic data with the same distribution as the original data without losing information

could be helpful to address this problem.

The absence of datasets with before and after cohort did not allow evaluating the impact of

predictions and prescriptions, and the analysis of factors that influence the severity of dengue. The use

of longitudinal data from prospective studies and the implementation of other optimization algorithms

would allow us to know the impact on patient health of the actions prescribed by the developed

prescriptive models. Longitudinal data follow individuals at di�erent time points. Knowing the real

evolution of patients’ severity at di�erent time points could allow a more accurate validation of the

proposed models and approaches. On the other hand, for the generation of prescriptive models, we

only used GAs and particle swarm optimization algorithm, due to their simplicity to be trained and

their excellent performance demonstrated in studies reported in the literature [28–30]. However, other

optimization algorithms could perhaps better establish the relationships between predictor variables

and decision variables.

In the last objective of the present study, federated learning approaches were developed to pre-

vent parties involved with dengue patient data from sharing their data in violation of data privacy.

Although these approaches used a federated global model, they are still centralized because the pro-

cess of aggregating the local models to generate a global model is done on a federated server. A

disruption to this server would disrupt the process of aggregating and updating the global model in

all parties involved. It is necessary to develop new approaches where all the parties involved perform

the aggregation process and all of them can access the global model at the same time.

FCMs were extensively used in this thesis to generate both prediction and prescription models.



20 Conclusions

Although research in this technique has increased considerably, there are still challenges to be taken

into account. For example, there are currently enough libraries to perform the inference process

with FCMs in languages such as, R [31], Python [32] and Java [33]. However, there are not enough

computational tools to train FCMs with historical data. In addition, there are no libraries that

implement FCMs in a federated environment. Future work could be directed towards the development

of libraries that use historical data to train the FCMs, in order to obtain the map weights. Finally,

the development of libraries that allow federated training with FCMs would be an interesting future

work.
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A B S T R A C T   

Background: Dengue modeling is a research topic that has increased in recent years. Early prediction and 
decision-making are key factors to control dengue. This Systematic Literature Review (SLR) analyzes three 
modeling approaches of dengue: diagnostic, epidemic, intervention. These approaches require models of pre-
diction, prescription and optimization. This SLR establishes the state-of-the-art in dengue modeling, using ma-
chine learning, in the last years. 
Methods: Several databases were selected to search the articles. The selection was made based on Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Sixty-four articles were 
obtained and analyzed to describe their strengths and limitations. Finally, challenges and opportunities for 
research on machine-learning for dengue modeling were identified. 
Results: Logistic regression was the most used modeling approach for the diagnosis of dengue (59.1%). The 
analysis of the epidemic approach showed that linear regression (17.4%) is the most used technique within the 
spatial analysis. Finally, the most used intervention modeling is General Linear Model with 70%. 
Conclusions: We conclude that cause-effect models may improve diagnosis and understanding of dengue. Models 
that manage uncertainty can also be helpful, because of low data-quality in healthcare. Finally, decentralization 
of data, using federated learning, may decrease computational costs and allow model building without 
compromising data security.   

1. Introduction 

Dengue is a vector-borne disease, with high importance in public 
health [1]. This disease is widely distributed worldwide; especially, in 
tropical and subtropical areas [2]. The disease is produced by an arbo-
virus (DENV) that receives the same name. To date, four virus serotypes 

have been identified: DENV-1, DENV-2, DENV-3 and DENV-4 [3]. The 
infection is transmitted to humans by the bite of mosquitoes of the genus 
Aedes, mainly A. aegypti and A. albopictus [4]. 

In 1997, the World Health Organization (WHO) classified the disease 
like dengue fever and dengue hemorrhagic fever [5]. A new classifica-
tion was proposed in 2009, which was based on the severity level of the 
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disease: non-severe dengue (with or without warning signs) and severe 
dengue (SD). This last includes the dengue shock syndrome (DSS) [6]. 
According to the WHO, more than 350 million dengue virus infections 
occur annually worldwide. In addition, 20,000 deaths related to dengue 
in the same period of time [7]. 

Dengue has been the subject of various studies worldwide. Its high 
prevalence in tropical and subtropical regions of the world has gener-
ated interest in its diagnosis, treatment and control. Different systematic 
literature reviews (SLRs) have been carried out of dengue. Most of them 
have been focused on the evaluation of molecules for the generation of 
vaccines, control of transmission, epidemiology and development of 
rapid-detection tests. In what follows, we briefly explain previous SLRs. 

Several SLRs have described the epidemiology of dengue. Jing and 
Wang [8] showed the epidemiology of dengue according to its 
geographical and temporal distribution. Besides, Jing and Wang evalu-
ated risk factors for transmission and control of dengue. Alhaeli et al. [9] 
conducted a review of the epidemiology of dengue in Saudi Arabia, 
where environmental conditions are extreme. Other reviews on the 
epidemiology of dengue have been carried out in different countries, 
such as Pakistan [10], Thailand [11], Malaysia [12], Philippines [13], 
Mexico [14] and Brazil [15]. Finally, Villar et al. [1] conducted a SLR of 
the epidemiological trends of dengue, in Colombia, for over 12 years 
(2000−2011). 

Another group of SLRs has focused on the production of rapid- 
detection tests and vaccines against the virus. For instance, Lim et al. 
[16] and Luo et al. [17] conducted reviews and meta-analyses to assess 
the economic impact of rapid-screening tests. Reviews have also been 
conducted to identify the latest economic studies of dengue vaccination 
[18,19]. For the development of dengue vaccines, it has been evaluated 
the immunogenicity, safety and efficacy of the vaccine [20,21,22]. 

In recent years, with the emergence of machine learning and the 
increase in data generation, computational methods have been devel-
oped for the prediction and evaluation of disease-transmission dy-
namics. This has generated interest for SLRs on this subject, to know the 
latest developments and opportunities in this domain. As an example, 
Louis et al. [23] developed an SLR of dengue to identify the main 
modeling approaches of the disease risk. Another SLR on computational 
methods was conducted by Naish et al. [24], focusing on quantitative 
modeling with respect to climate change. Andraud et al. [25] conducted 
a review of deterministic models of dengue transmission to identify 
features for future models. Finally, Lourenço et al. [26] published a 
review of the challenges in dengue research from a computational 
perspective. The authors focused on real-time data collection, genetic 
analysis and integrative modeling approaches. Particularly, integrative- 
modeling approaches simulate the epidemiology and molecular evolu-
tion of the virus. 

We present a review of three modeling approaches of dengue: 
diagnostic, epidemic and intervention. The goal is to present the 
development of machine learning models for these contexts. The first 
approach is to determine whether a patient has dengue or any of its 
variants. The second is to analyze the population-level dengue epidemic; 
in addition, to study morbidity and mortality rates. The third is to 
analyze the impact of interventions to mitigate epidemics of dengue. To 
date, there is no SLR that studies these three aspects related to the dis-
ease together. In addition, it is the first SLR to focus on models to 
evaluate the impact of interventions to mitigate dengue epidemics. 
Finally, this SLR establishes the state-of-the-art in these approaches, 
and, additionally, defines new challenges and opportunities for future 
research. The objectives of this SLR are:  

• To collect and describe machine learning models for dengue.  
• To visualize challenges for future work in dengue modeling. 

The present document is structured as follows: Section 2 describes 
search and selection process of relevant articles; Section 3 describes 
general results of the research; Section 4 discusses the papers, as well as 

the challenges and opportunities for research on dengue modeling for 
diagnosis, epidemics and interventions to control dengue. The last sec-
tion shows the conclusions, with a description of the works that would 
be a priority to develop in this research domain. 

2. Methodology 

This review was based on the PRISMA methodology [27]. The first 
step is to establish research questions; the second is to define a search 
strategy to delimit the findings; the third is to select the papers using 
eligibility criteria; and, finally, the last is to analyze the articles to 
extract strengths, limitations and challenges to overcome. To achieve 
the goal of this review, three research questions were proposed: 

Q1. Which machine learning models have been developed for dengue 
diagnosis? 

Q2. Which machine learning models have been developed for the 
analysis of dengue epidemics? 

Q3. Which machine learning models have been developed for the 
evaluation of dengue control strategies? 

2.1. Search strategy 

We used several digital libraries (databases): ScienceDirect, IEEE 
Xplorer, Google Scholar, Emerald, Taylor & Francis and Pubmed. The 
inclusion criteria for the selection of publications were: i) articles from 
January 2015 to March 2021, in the English language, related to the 
development and implementation of diagnostic, epidemic and inter-
vention models of dengue; ii) articles that match the search terms that 
describe the research questions. The criteria that allow discarding 
publications were: i) articles representing the personal opinions of in-
dividual experts, ii) conference papers, posters, abstracts, short articles 
and unpublished works; and iii) articles using ordinary-differential- 
equations models and other deterministic approaches. Table 1 shows 
the search strings derived from the research questions. Search strings 
were structured using the logical operators “OR” and “AND”. 

2.2. Selection procedure 

The selection procedure was carried out in three stages using inclu-
sion and exclusion criteria above mentioned: i) We chose articles by 
evaluating their title and keywords to exclude any non-relevant work. 
We also removed duplicate papers; ii) We examined the summaries of 
candidate papers from Stage 1. Then, we evaluated each paper to define 
if it is selected to the next step; iii) We evaluated the full texts of selected 
papers from Stage 2 to exclude papers that did not meet the criteria. 
Fig. 1 shows the flowchart of the selection process. 

A total of 19.327 papers were recovered from the scientific libraries. 
After reviewing the title and keywords, and removing duplicate ele-
ments (Stage 1), 418 papers were selected. Stage 2 consisted of abstract 
review, which allowed the selection of 203 papers. Finally, 64 articles 
met all the eligibility criteria (Stage 3), where 27 were about diagnostic 
modeling, 29 about epidemic models and 8 about prescriptive 

Table 1 
Search strings used for each research question.  

Question Approach String search 

Q1 Diagnostic [(diagnosis OR diagnostic OR infection) AND (gender 
OR age OR phenotype OR race OR “clinical profile”) 
AND model AND dengue] 

Q2 Epidemic [(epidemic OR outbreak) AND (predictive OR predicting 
OR prediction) AND model AND (dengue OR aedes)] 

Q3 Intervention [(fumigation OR vaccine OR “biologic control” OR 
“decision making” OR intervention OR prescriptive) 
AND model AND (dengue OR aedes)]  
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(intervention) modeling. 

2.3. Preliminary analysis 

This subsection shows the preliminary results of selected articles. 
Fig. 2 shows the distribution of the reviewed articles on dengue 
modeling around the world. The highest number of studies were from 

Taiwan with 9 (14%) articles, followed by Brazil and Vietnam, with 7 
(11%) articles in both countries. It was expected that Taiwan, Brazil and 
Vietnam would be in the top positions. First, because they are endemic 
countries where the amount of data available is greater. Second, because 
they are countries close to the equatorial axis and contain tropical and 
subtropical regions. In contrast, there are dengue-endemic countries 
with a low amount of publications on diagnostic, epidemic and 

Fig. 1. Flowchart of the selection process.  
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Fig. 2. Worldwide distribution of the reviewed papers on dengue modeling.  
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intervention modeling. Among these are Colombia, Ecuador and 
Venezuela. These countries may not have many publications because 
they invest very low in science and research [28]. 

Many predictors/features/variables are currently used for dengue 
modeling, which are classified according to their own characteristics 
and their method of collection. We classified them as: demographic, 
economic, clinical, laboratory, environmental, climatic, among others. 
For a better understanding, a brief description of them, with some ex-
amples, is shown in Table 2. In general, the most used variables were 
socio-economic and demographic data. Their easy access and avail-
ability would explain their high frequency of use. The combination of 
clinical and laboratory data was the most used for diagnostic modeling. 
The use of this data type is crucial for this approach because it allows 
finding relationships between the data and early detection of the dis-
ease. In terms of the epidemic approach, the most widely used pre-
dictors/variables were climatic, environmental and meteorological. 
These data types are widely used for the spatial-temporal analysis of 
dengue to map the distribution of the mosquito or disease. Finally, 
intervention modeling focused on the evaluation of control strategies of 
the mosquito. For this reason, entomological data were the most used for 
this purpose. 

According to this review, the least used variables for dengue 
modeling are genomics, cellphone and thermal-imaging data. Genomics 
data obtained from genetic tests were not usually performed for the 
diagnosis of dengue. Cellphone data are not easily acquired due to user 
privacy issues, and thermal imaging requires specialized tools that are 
not available in clinical practice. 

3. Analysis of reviewed papers 

Sixty-four articles were reviewed and analyzed to find what has been 

developed on diagnostic, epidemic and intervention modeling of 
dengue. 

3.1. Diagnostic models of dengue 

This section analyzes articles related to diagnostic models of dengue. 
The analysis was carried out according to different aspects of the disease 
that are currently important: early detection, seroprevalence used to 
determine populations at risk to acquire the disease, use of cytokines and 
plasma leakage as early markers of severity, and new diagnostic 
methods such as Raman spectroscopy. 

3.1.1. Early diagnosis of dengue 
Early diagnosis of dengue could prevent complications and death. 

For this reason, Macedo-Hair et al. [29] presented the analysis of clinical 
profiles of 523 dengue patients. In this case, Macedo-Hair et al. used 
unsupervised learning to find natural clusters associated with clinical 
patterns in confirmed cases of dengue. The results showed that the 
model can classify dengue into four states (4 clusters): dengue without 
warning signs, dengue with warning signs, SD and an intermediate state. 
These clusters can be used as risk criteria to diagnose dengue. Fernandez 
et al. [30] presented a model based on logistic regression (LoR) to 
differentiate dengue from other febrile diseases. The use of laboratory, 
clinical and demographic data was useful to reveal the association of 
predictive variables with the risk of suffering dengue. The results 
showed that there was a strong association of dengue with the explan-
atory variables: male sex, petechiae, skin rashes, myalgias, retro-ocular 
pain, positive tourniquet test and gingival bleeding. The accuracy of the 
model to diagnose dengue was 69.2%. 

Artificial neural networks (ANN) are machine learning algorithms that 
describe functional dependencies between input and output variables. 
One drawback of ANN is their optimization functions. ANN is set-up as a 
non-convex optimization problem where there could be a local mini-
mum that is not a global minimum. To overcome this, Chatterjee et al. 
[31] used an ANN (multilayer perceptron (MLP)) with a Cukoo search 
algorithm (ANN-MCS), to classify healthy people, patients with dengue 
and SD. The results showed that ANN-MCS improves the model accuracy 
(95.65%), compared to the use of unmodified ANN (87.5%). Gambhir 
et al. [32] also used an ANN (MLP) to early predict dengue. The authors 
supplemented ANN with the particle swarm-optimization (PSO) algo-
rithm. The results of the combined model showed an accuracy of 87%, 
higher than the accuracy of ANN without PSO (79%). A deep neural 
network (DNN) is an ANN with several hidden layers between the input 
and output layers. This kind of ANN can model more complex nonlinear 
relationships [33]. Ho et al. [34] used a DNN to identify laboratory- 
confirmed dengue cases using only four input variables (age, body 
temperature, leukocyte count and platelets). The developed model by 
Ho et al. was compared to LoR and DT. The area under the curve (AUC) 
was used to evaluate the performance. The results showed similar per-
formance in the developed models (DNN = 0.86 Vs. DT = 0.85 Vs. LoR 
= 0.84), with DNN being slightly better. 

Park et al. [35] developed models to classify dengue, SD and DSS 
using structural equation (SE) modeling. Park et al. used clinical and 
laboratory data for this purpose, and their models showed good per-
formance for each disease variety (dengue: AUC = 0.84, SD: AUC =
0.67, DSS: AUC = 0.70). Finally, Khosavanna et al. [36] developed two 
diagnostic algorithms (LoR and DT) based on clinical symptoms of 
dengue patients. The models performed similarly in specificity (LoR =
0.63 Vs. DT = 0.67) and sensitivity (LoR = 0.78 Vs. DT = 0.77). 

3.1.2. Seroprevalence of dengue 
Dengue seroprevalence studies allow knowing past or current cir-

culation of the virus in a specific area. This allows, among other things, 
to determine the populations at risk for a disease, and to evaluate the 
mechanisms of transmission [37]. Al-Raddadi et al. [38] developed the 
first multivariate model using LoR to estimate dengue seroprevalence in 

Table 2 
Description, examples and frequency of predictors used in dengue modeling in 
the reviewed papers.  

Type of predictor Definition Examples Articles 

Demographic +
Social +
Economic +
Population 

Characteristics related 
to the development of a 
population, from a 
quantitative 
perspective. 

Age, sex, population, 
housing type, socio- 
economic level. 

31 

Climatic +
Environmental +
Meteorological +
Topographic 

Characteristics related 
to climate and 
environment. 

Temperature, 
rainfall, 
precipitation, 
elevation. 

29 

Laboratory Analytical 
determinations of 
metabolites in the 
blood that may be 
altered in patients with 
dengue. 

Platelet and 
leukocyte count, 
hematocrit, albumin, 
transaminases 

25 

Clinical Signs and symptoms of 
patients with dengue. 

Blood pressure, fever, 
joint pain, headache, 
retro-ocular pain, 
arthralgia, myalgia. 

21 

Search Index and 
social networks 

Data from Internet Google Trends, Baidu 
Search Index, 
Twitter. 

7 

Entomological Data related to the 
biological vector and 
its propagation. 

Breteau index, 
container index, 
house index, one 
adult index, 
predations rates. 

7 

Genomic Genetic data Gene-expression 
levels 

2 

Thermal Images Images obtained from 
infrared cameras 

Thermograms 1 

Cellphone Data obtained from 
cellphones 

Geo-localization 1 

Mobility Air-passengers travel 
data 

Destination country 1  
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four endemic cities in Saudi Arabia. The authors analyzed the associa-
tion of risk factors (demographic, clinical, and environmental) with the 
disease using a multivariate LoR. They used the odds ratio (OR) with a 
95% confidence interval (CI) to present the results. The predictors asso-
ciated with the highest seroprevalence rate were: age over 30 years (OR 
[95% CI] = 3.91[2.78, 5.50]), housing type (OR [95% CI] = 1.93[1.62, 
2.31]), absence of pest-control activities (OR [95% CI] = 1.39 [1.13, 
1.72]) and presence of mosquitoes at home (OR [95% CI] = 1.39 [1.14, 
1.70]). Aguas et al. [39] used random forest (RF), on laboratory data 
(antibody titration), to estimate the proportion of asymptomatic dengue 
in children. The algorithm presented an accuracy of 99.45%, correctly 
classifying 361 cases out of 363. 

3.1.3. Cytokines 
Cytokines are molecules that increase their levels in the blood after a 

severe infection. Jayasundara et al. [40] presented a study describing 
the role of cytokines in SD: platelet activating factor (PAF), sphingosine 1- 
phosphate (S1P), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha 
(TNFα) and interleukin-10 (IL-10). They used fuzzy-logic (FL) to di-
agnose SD. The patients were analyzed 96, 108 and 120 h from onset of 
fever, using blood levels of cytokines for each time point. The developed 
model showed the best accuracy after 108 h from the onset of fever 
(85%). Low et al. [41] evaluated vascular endothelial growth factor 
(VEGF) and pentraxin-3 to classify the disease into severe and non- 
severe. The proposed diagnostic model using LoR showed 76.2% and 
73.6% of sensitivity and specificity, respectively. According to the re-
sults, pentraxin-3 is not useful to differentiate SD from non-severe 
dengue. There was no significant difference between the two groups 
for this cytokine's blood levels. 

3.1.4. Raman spectroscopy 
In recent years, Raman spectroscopy has been used for medical di-

agnoses, such as cancer [42,43], liver diseases [44,45], and infectious 
diseases, such as tuberculosis [46] and Chagas disease [47]. Khan et al. 
[48] proposed the extraction of the Raman spectrum, in serum samples, 
from healthy people and dengue patients. The goal was to classify the 
samples into normal and pathological using RF. The model had a good 
performance (accuracy = 91%). The same authors published another 
paper [49], but this time, they used a support vector machine (SVM) for 
the classification task. Different kernels were used: linear, polynomial 
and radial. The best kernel was the grade one polynomial; however, the 
performance with SVM was lower (85%) compared to RF (91%). 

3.1.5. Plasma leakage and severity 
Plasma extravasation is a warning sign for SD and should be detected 

early to avoid complications and death. This sign is characterized by 
serous effusions at the level of various cavities, such as pleura, peri-
cardium and peritoneum. For this reason, Suwarto et al. [50] developed 
a scoring system to detect pleural and/or ascitic effusion. Suwarto et al. 
implemented a LoR using laboratory data. To each factor, a score is 
assigned to determine the risk of plasma leakage. The higher score is 
assigned to a patient, the more likely the patient is to leak plasma. The 
developed model detected plasma leakage or ascites, with an accuracy of 
77.4%. Another study by da Silva et al. [51], used the same regression 
technique (LoR) to evaluate risk factors for hospitalization after dengue 
infection. The explanatory variables used were demographic, clinical 
and laboratory. The authors found that multi-organ failures are the most 
influential factors in hospitalization (OR[95% CI] = 5.75[3.53, 9.37]). 
Fernandez et al. [52] used a multivariate logistic model, in Honduran 
patients, using demographic, clinical and laboratory data. Fernandez 
et al. used plasma leakage as the target variable since this is the main 
warning sign of SD. The developed model achieved an accuracy of 
70.9%, with a sensitivity of 76.4% and a specificity of 70.3%. The same 
modeling technique was used by Phuong et al. [53], with the addition of 
free plasma deoxyribonucleic acid (DNA) as a predictor variable. The 
model achieved a sensitivity of 87.5%, and a specificity of 54.7%. 

Davi et al. [54] used gene expression data to diagnose SD. The au-
thors used an MLP model with an average accuracy of 86%. Another 
study conducted by Tuan et al. [55], in Vietnam, applied multivariate 
LoR models to demographic, clinical and laboratory data. The AUC re-
sults were 0.95, with a sensitivity of 87% and specificity of 88%. 
Another model, using the same data and technique, was developed by 
Ahmad et al. [56]. The authors evaluated the main warning signs for SD. 
The best results showed that the model had a sensitivity of 91% when at 
least one warning sign was present, and a specificity of 99% when there 
were more than 5 warning signs. The study of Phakhounthong et al. [57] 
presented the use of decision trees (DT) for SD in children. The model was 
based on clinical and socio-demographic data of dengue patients. The 
sensitivity, specificity, and accuracy of the model were 60.5%, 65% and 
64.1%, respectively. Finally, Huang et al. [58] developed several models 
to diagnose severe dengue using demographic information and 
laboratory-test results. Huang et al. applied several machine learning 
techniques, such as LoR, RF, GBM, SVM and ANN. The best model was 
ANN with an accuracy of 75% and an AUC of 0.83. 

Zhang et al. [59], in their study, showed a new variable to diagnose 
SD: the aspartate aminotransferase/platelet count ratio index (APRI). The 
authors developed an LoR to evaluate the performance of APRI, in 
conjunction with other laboratory variables, such as prothrombin time 
and leukocyte count. The model performed well, reporting an AUC of 
0.87. Another work carried out by Lin et al., [60] also used LoR, but 
using hyaluronic acid as a feature or variable. The developed model by 
these authors had a moderate performance, with an AUC of 0.69, 
specificity of 55%, and sensitivity of 76%. Lee et al. [61] implemented 
LoR models for the development of a clinical-risk score for early diag-
nosis of SD. The researchers proposed that the coefficients in the model 
can be used as a risk score. The best developed model obtained an AUC 
of 0.92. The sensitivity and specificity of the model were 80.3% and 
85.8%, respectively. 

DSS is a potentially life-threatening complication of the disease. Lam 
et al. [62] proposed a diagnostic model to detect DSS in children. The 
authors developed LoR models to determine the relationships between 
clinical and laboratory variables with the presence of DSS. In addition, 
alternative techniques, such as adaptive least absolute shrinkage and se-
lection operator (LASSO), generalized additive model (GAM), classification 
and regression trees (CART) and gradient boosting machine (GBM), were 
compared. The logistic model performed favorably (AUC = 0.74), 
compared to the alternative modeling strategies (LASSO = 0.73, CART 
= 0.61, GAM = 0.69, GBM = 0.72). Another research work using LoR 
was carried out by Lam et al. [63], in Vietnam, where they evaluated the 
platelet count for the diagnosis of DSS. The model was better with the 
use of platelet count than without it (AUC = 0.73 Vs. AUC = 0.66). 

In summary, most of the modeling approaches for dengue diagnosis 
were based on LoR (see Fig. 3). Logistic models are widely used in the 
health field because of their simplicity to perform and interpret the re-
sults. These models were developed primarily to assess the factors 
associated with the risk of dengue infection, and to determine the as-
sociation of predictive factors with disease severity. The categories of 
variables most frequently used to construct these models were de-
mographic, clinical and laboratory parameters (see Fig. 3). This result is 
possibly due to the fact that these types of features are the most available 
in all countries with mandatory surveillance systems. GBM, FL and SE 
models are possibly the least used because of their mathematical 
complexity and difficulty to implement. Finally, the reviewed models for 
diagnosis were implemented as classification tasks: They only deter-
mined whether the patient had the disease or not. Diagnostic models 
should go further, and evaluate causal relationships among predictors 
and dengue. 

3.2. Epidemic models of dengue 

This section analyzes epidemic modeling approaches of dengue. This 
section was divided into subsections according to key aspects, such as 
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the type of analysis performed (e.g., spatial-temporal analysis), the types 
of data used (e.g., the Internet data from the social networks and search 
indexes). Finally, there is an important section dealing with the pre-
diction of mortality, a latent problem that should be addressed with 
predictive modeling. 

3.2.1. Spatial-temporal analysis of dengue 
The spatial-temporal analysis of dengue is the most studied field of 

the disease, among the reviewed articles. There are many studies that 
use machine learning to evaluate the spread of vectors and diseases. 
Rossi et al. [64] used boosted regression-trees (BRT) to conduct a spatial- 
temporal analysis of dengue with data from 76 countries. BRT is a 
modeling technique used primarily in ecology to explain or predict a 
phenomenon. The data collected were temperature, rainfall, migration 
and population density. The study showed that higher population den-
sity and shorter distances between countries with dengue outbreaks are 
relevant factors that characterize the disease. Geographically weighted 
regression (GWR) was used by Delmelle et al. [65], to evaluate the role of 
environmental and socioeconomic determinants of dengue in Cali, 
Colombia. The authors found that socioeconomic status, population 
density, proximity to both tire shops and plant nurseries; and the pres-
ence of sewage systems, are related to the disease. Mao et al. [66] used 
RF to predict the presence of dengue cases in a given area using topo-
graphic, climatic and population data. Since people are more likely to 
become ill when they travel to other locations, an important contribu-
tion of this work is the use of cellphone tracking data. Based on this, the 
authors reported an accuracy of 95%. Finally, Mutheneni et al. [67] 
mapped the levels of dengue endemicity in some districts of India, to 
identify groups at risk. The authors used self-organizing maps (SOM), 
with environmental data, for this purpose. The results indicated that the 
districts of Warangal, Karimnagar, Khammam and Vizianagaram are hot 
spot regions. 

A study by Akter et al. [68] used linear regression (LiR), with 
ecological and socio-demographic factors, to observe the spatial- 
temporal trend of dengue in Australia. The results of regression anal-
ysis showed an increased trend of dengue incidence with some factors, 
such as housing types and households with rainwater tanks. Yue et al. 
[69] and Reyes-Castro et al. [70] used the same technique in five dis-
tricts of China and two arid cities of Mexico, respectively. The two 
studies used environmental and spatial data to build the models. Be-
sides, socioeconomic data were aggregated for model improvement. On 
one hand, Yue et al. indicated the factors and dengue outbreak were 
significantly positively correlated. On the other hand, Reyes-Castro et al. 
showed that transmission foci started in neighborhoods with high- 
population density and low access to health services. 

In Brazil, according to the Ministry of Public Health, a year is 
epidemic, in a city, if the incidence is greater than 100 cases per 100,000 
inhabitants [71]. In this regard, Stolerman et al. [72] developed an SVM 
to predict whether a year will be epidemic or not. The data used by 
Stolerman et al. were climatic and epidemiological of 16 years. The SVM 
predicted the epidemicity of a year at 91% accuracy. 

Several studies have compared the performance of different machine 
learning models to predict dengue burden, outbreaks and importation of 
dengue into Europe. Carvajal et al. [73] compared machine learning 
models, using weather factors, in the Philippines. The objective was to 
find out which meteorological factors were the best predictors of dengue 
in that country. The techniques used were GAM, seasonal autoregressive 
integrated moving average with exogenous variables (SARIMAX), RF and 
GBM. They reported that relative humidity is the most important 
meteorological factor in the model. The highest performance, in terms of 
mean absolute error (MAE), was RF (0.23), followed by GBM (0.24). Zhao 
et al. [74] compared RF and ANN to predict dengue burden, in 
Colombia, at national and local scales. The comparison between the 
models was performed using MAE, and the results showed that RF (0.86) 
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performs slightly better than ANN (0.95). According to the level of 
prediction, the results showed that RF performs better at the national 
level than the sub-national level, demonstrated by lower MAE values in 
12-week forecasts (national = 0.86 Vs. local = 0.97). Salim et al. [75] 
used various machine learning techniques (SVM, DT, ANN, Bayes 
Network) to predict epidemics in Malaysia. Climatic variables were used 
as a predictor to build the models. According to the results reported by 
Salim et al., linear SVM performed the best, with an accuracy of 70%, 
specificity of 95% and sensitivity of 14%, when using the original data. 
On the other hand, class balancing improved the sensitivity to 64%. 
Finally, Salami et al. [76] developed and compared machine learning 
models to predict dengue importation into Europe. Salami et al. used air- 
passenger data to create connectivity indices between a source and 
destination country. The techniques implemented were RF, GLM, GBM 
and partial least squares. GBM had the best performance, with an AUC of 
0.94, a sensitivity of 0.94 and a specificity of 0.93. 

3.2.2. Distribution of the vector 
Simulation of vector distribution that transmits dengue is important 

to establish control strategies by health authorities. For this type of 
modeling, entomological data, such as the Breteau index (BI), house index 
(HI), container index (CoI) and adult index (AI), are commonly used. BI is 
the number of positive containers per 100 houses inspected. HI is the 
percentage of houses infested with mosquito larvae or pupae. CoI is the 
percentage of water containers infested with mosquito larvae or pupae. 
Finally, AI is the number of female mosquitoes captured divided by the 
number of houses inspected [77,78]. 

Parra et al. [79] developed a GAM using BI and mosquito genetic 
data. Meteorological data were also used to build the model. The pro-
posed model required 71.5% fewer human and operational resources 
than the BI measurement. Similarly, Chang et al. [77] used entomo-
logical indices as a tool for early prediction of a dengue epidemic. The 
implemented regression models obtained accuracies of 83.8, 87.8, 88.3 
and 88.4%, for BI, HI, CoI and AI, respectively. Ding et al. [80] simulated 
the distribution of A. aegypti and A. albopictus using environmental, 
climatic, social data and three machine learning methods (SVM, GBM 
and RF). Models with RF performed better followed by GBM; however, 
there were no significant differences between the results of AUC 
(A. aegypti: 0.973 Vs. 0.974 and A. albopictus: 0.971 Vs. 0.972). Jacome 
et al. [81] used LiR to identify the most important risk factors for the 
distribution of A. aegypti in a coastal zone in Ecuador. Environmental 
and spatial data were used for this purpose. Temperature and population 
density were the factors most likely to predict the number of cases. 

Modeling of mosquito breeding sites, using remote sensing, is gain-
ing interest in the scientific community. Scavuzzo et al. [78] imple-
mented several machine learning techniques to model the oviposition 
activity of A. aegypti, using time series obtained from satellite image 
data. The use of these techniques allowed finding non-linear relation-
ships between environmental variables and the oviposition of A. aegypti. 
The techniques used were: SVM, MLP, k-nearest neighbors (KNN) and DT. 
The evaluation of the models was done with mean square error (MSE). 
The results showed that the best model was KNN (MSE = 0.49), followed 
by MLP (MSE = 0.52), SVM (MSE = 0.61) and DT (MSE = 0.77). 

3.2.3. Search-index data 
The use of Internet searches has become a useful tool to predict 

disease outbreaks, where Google trends (GT) is the reference in this field. 
GT is a tool from Google that displays the most popular search terms in a 
fixed time and location. Data associated with these searches is used for 
prediction. 

The research conducted by Wu et al. [82] used climatic data from 
Taiwan combined with GT data. The model was built with DT and the 
findings revealed that temperature and humidity were the most relevant 
factors, with the greatest power of classification, while age and gender 
were the least relevant. Wu et al. [82] found that the use of GT data 
decreases the accuracy of the model (96% Vs. 94%). Strauss et al. [83] 

compared the accuracy of GT with conventional surveillance systems, in 
Venezuela, for 10 years. The authors used LiR to predict the cases, re-
ported officially by the Ministry of Health, based on GT data. The overall 
coefficient of determination (R2) was 0.75. 

In countries such as China, GT is not available to users, but there are 
alternatives, such as Baidu Search, a search engine that stores the 
searches made by users. Li et al. [84] used the data from Baidu index 
database and calculated the Dengue Baidu search index (DBSI) to improve 
the prediction of local dengue epidemics in Guangzhou. Climatic data 
also were used by Li et al. to train a GAM. The model performance was 
evaluated with the root mean square error (RMSE). The results showed 
that the model with DBSI was better than without DBSI (RMSE = 59.9 
Vs. RMSE = 203.3). Another study, conducted in China, by Liu et al. 
[85], used regression trees on DBSI data. The results demonstrated a 
strong association between DBSI and dengue incidences. The accuracy of 
the models was above 90%. 

3.2.4. Social networks 
Social networks provide information on the mobility of individuals in 

a population because a large percentage of social-network data is geo- 
tagged. According to this review, Twitter is the most used social 
network to predict dengue. Marques-Toledo et al. [86] used tweets to 
predict dengue, at local and national levels, in Brazil. Social network 
data were supplemented with demographic and incidence variables. The 
model had the ability to predict an outbreak up to 8 weeks in advance, 
with an MAE of 0.35. Another similar work was carried out by Ram-
adona et al. [87], who used geo-tagged data from Twitter and a gener-
alized linear model (GLM). The main objective of this research was to 
predict the risk of dengue in Yogyakarta, Indonesia. The model yielded 
an RMSE value of 0.78 when including Twitter data with the dynamic 
index of incidence weighted by mobility. Finally, Souza et al. [88] used 
Twitter data to create unsupervised models that detect spatial clusters to 
characterize high-risk regions of dengue. 

3.2.5. Prediction of morbidity and mortality 
The mortality rate in patients with SD is too high, mainly in children 

and geriatric patients [89,90]. For this reason, it has been important to 
develop models to predict morbidity and mortality. Kesorn et al. [91] 
applied various machine learning techniques to predict the morbidity 
rate of SD. DT, KNN, SVM (with linear, polynomial and radial kernels) 
and ANN were applied to climatic and demographic data. A. aegypti 
infection rates were also used to improve model performance. The re-
sults showed that SVM with radial kernel had better accuracy, with 
88.4%, when the infection rate in the mosquito was added. Md-Sani 
et al. [92] developed an LoR model in Malaysia. The goal was to iden-
tify risk factors that would allow the prediction of mortality. The best 
developed model was with age, serum bicarbonate, serum lactate and 
alanine aminotransferase (ALT), with an AUC of 0.84. 

Huang et al. [89] used demographic, clinical and laboratory data of 
patients over 65 years of age (N = 627). They used an LoR model to 
estimate the mortality of dengue. The model predicted a mortality of 
57.1% when at least two predictors were present in dengue patients. 
Huang et al. [90] conducted another study with a larger sample (N =
2358). Huang et al. developed a similar model to the one developed in 
[89] to assign a score to each patient, to know its probability of death. 
The results showed that the model had an AUC of 0.85. 

3.2.6. Thermal images 
Nagori et al. [93] used thermal imaging for the prediction of DSS. 

The authors used images of pediatric patients to train a GLM. The 
developed model demonstrated the usefulness of thermal imaging to 
predict DSS, with an AUC of 0.76. 

In summary, compared to diagnostic models, where LoR was most 
commonly used (see Fig. 3), in epidemic models, there is a variability in 
the frequency of the modeling approaches used. Although LiR was the 
most used approach for prediction, other techniques, with a high 
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frequency, such as RF, SVM, LoR and GAM/GLM, were also imple-
mented. Spatial-temporal analyses were used for the case of prediction 
using regression approaches. The most used technique for this task was 
LiR, where several studies used 16 times this type of modeling. As we see 
in Fig. 4, there is a relationship between the use of data types and 
modeling types. The LiR models used socioeconomic, demographic and 
environmental data. This type of data has been widely used for LiR 
because it allows mapping the distribution of the mosquito and the 
disease. These types of data were used in almost all the epidemic 
modeling approaches (see Fig. 4), except with LoR, which did not use 
environmental data. Clinical and laboratory data were mainly used with 
LoR, a technique widely used by medical personnel and epidemiologists 
to predict the presence or absence of a disease (classification task, 9 
papers). ANN have been little used, probably because of the low-quality 
and availability of data for dengue. It has been demonstrated that the 
performance of ANN is directly proportional to the quantity and quality 
of data [94]. Cellphone data have been little used to map dengue risk. 
The limited availability of data and the problem of data privacy could be 
the reason for this inconvenience. Finally, the use of GAM/GLM has 
increased with data extracted from the Internet (search indexes and 
social networks). These non-parametric models are increasing their use 
because they can capture features of a non-linear nature from unstruc-
tured data, such as trend data or tweets. 

3.3. Strategy evaluation models to control dengue 

Few intervention models have been developed for the evaluation of 
dengue control strategies. In this subsection, we analyze the articles 
according to different approaches, such as biological control using co-
pepods, entomopathogenic fungi, Wolbachia strains, vaccination and 

fumigation. 

3.3.1. Copepods 
In recent years, biological control of the vector A. aegypti and 

A. albopictus has emerged using biological predators called copepods. 
These are crustaceans with the ability to systematically devour young 
mosquito larvae [95]. Kalimuthu et al. [95] used a GLM to evaluate the 
predation efficiency of Mesocyclops formosanus on young larval pop-
ulations. The developed model showed the effectiveness of using co-
pepods to control the vector, and thus the disease. Another study, by 
Udayanga et al. [96], also used a GLM to compare the predation effi-
ciency rates of five copepods on Aedes larvae. According to the model, 
the highest predation efficiency rates were higher with Mesocyclops 
leuckarti, with 17.45% and 16.75% for A. aegypti and A. albopictus, 
respectively. 

3.3.2. Entomopathogenic fungi 
Entomopathogenic fungi produces diseases and cause the death of 

insects and arthropods. These types of fungi are a useful alternative to 
control the mosquito that transmits dengue. Lee et al. [97] built a GLM 
to evaluate the pathogenic activity of six species of fungi (Beauveria, 
Cordyceps, Metarhizium, Paecilomyces, Purpureocillium, and Verticillium) 
on A. albopictus. The model showed that Metarhizium anisopliae had the 
highest activity to eliminate A. albopictus, with a mortality rate of 73% 
after two days, and 90% after 5 days. 

3.3.3. Wolbachia strains 
Wolbachia is a bacterium that naturally infects insects. Infection of 

males with this bacterium produces a generation with unviable offspring 
when mated with an uninfected female [98]. This approach has been 
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developed as a method to control the spread of Aedes. Nazni et al. [99] 
used a Bayesian model (Bayesian time series (BTS)) to estimate the 
reduction of dengue cases in Malaysia after infecting mosquitoes with 
Wolbachia wAlbB strain. The model estimated dengue case reduction of 
40.3% in intervention sites. Other authors have also developed models 
to evaluate the impact of Wolbachia against Aedes; for instance, Indriani 
et al. [100] used a GLM model to estimate the effect of Wolbachia (wMel 
strain) over the reduction of dengue incidence in Indonesia. The 
developed model was able to reduce dengue incidence by 73% (95% CI: 
49%–86%). Finally, Ryan et al. [101] used the same model and the same 
Wolbachia strain, and achieved a 96% (95% CI: 84%–99%) reduction of 
dengue incidence in Australia. 

3.3.4. Vaccination 
Another option for dengue control is vaccination. Lee et al. [102] 

implemented a GLM for validation between the climatic risk factor index 
(CRF) and dengue incidence, to estimate the vaccination coverage rate 
and the number of doses required. CFR index was created using 12- 
month moving averages of climatic and non-climatic factors. The cli-
matic factors were temperature, precipitation and humidity. The non- 
climatic factors were population, density and elevation. The study was 
conducted in Colombia, Thailand and Vietnam, and the estimated 
vaccination coverage rates were 63%, 90% and 91%, respectively. 

3.3.5. Fumigation 
Fumigation has been widely used worldwide to reduce the burden of 

dengue virus-infected mosquitoes. Thus, Hladish et al. [103] con-
structed a stochastic simulation (SS) model to predict the effectiveness of 
spraying in Yucatán, Mexico. The results of the model indicate that the 
proactive application of this control method could reduce symptomatic 
infections by up to 89.7% in the first year, and 78.2% in the five cu-
mulative years. 

In summary, GLM was the most applied technique for intervention 

modeling. GLM was implemented with entomological, climatic and 
population data, where entomological data were the most used. A sto-
chastic simulation was only used in one work, with entomological and 
population data. Finally, BTS was implemented in one work with 
entomological data. Entomological data is very frequent because dengue 
control is based mainly on the control of the mosquito, the vector of 
dengue transmission. Fig. 5 shows the types of data used for each 
intervention modeling approach. 

3.4. A general analysis of data types and machine-learning techniques for 
dengue modeling 

The types of data and techniques considered in the reviewed studies 
were analyzed by question (see previous sub-sections); however, it is 
important to analyze them globally. Fig. 6 shows the intersection be-
tween the types of data and techniques used in all the reviewed studies. 
In this figure, we may see that the predominant technique used was LoR, 
and, as we comment in the section of diagnostic models, this technique 
was frequently used with clinical data and laboratory results. LoR 
models are often used by medical personnel to diagnose dengue. Ac-
cording to Fig. 6, the second is RF, with different data sources used by 
this technique, such as climatic, clinical and sociodemographic vari-
ables. This variability in the use of predictors/variables is explained 
because RF is a technique that was found in diagnostic models and 
epidemic models, and can be used for both regression (spatio-temporal 
analysis) and classification (dengue diagnosis) tasks. Also, Fig. 6 shows 
that LiR is used in spatio-temporal analysis where logically the utiliza-
tion of climatic and sociodemographic variables to map the distribution 
of the disease or vector was predominant. Finally, another of the most 
used techniques was GAM/GLM, a technique mainly used in epidemic 
models and intervention models. For the first case, the objective was to 
determine relationships between predictors and dengue incidence, and 
for the second case, the objective was to evaluate the impact of dengue 
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control strategies. 

4. Discussion 

Dengue modeling is a key tool for early detection of dengue, evalu-
ation of risk factors for SD, and may also be useful to control vectors that 
transmit the disease. Although extensive works have been done on these 
issues, it is important to know what aspects of dengue modeling have not 
been worked on, to develop future works that will allow a significant 
decrease in disease morbidity rates. The main objective of this work was 
to give an overview of diagnostic, epidemic and intervention modeling, 
in addition, to determine important challenges for future works. 

4.1. Limitations of the studies and challenges 

This section is focused on the limitations of the reviewed studies. 
Based on those limitations, we describe some research challenges or 
opportunities for each of the approaches presented: diagnostic, epidemic 
and intervention. 

4.1.1. Diagnostic models 
The diagnostic models reported in the reviewed articles focused on 

the detection of dengue or the differentiation between other diseases, 
such as zika, chikungunya and malaria [29,30,35,39,51,59]. This is 
useful because the characteristics presented in these diseases, as signs 
and symptoms, are also present in dengue. However, it is necessary to go 
further and develop cause-effect models that allow a deeper under-
standing of the main causes that lead to high morbidity and mortality 
rates of dengue. It is fundamental to develop cause-effect models of 
dengue to know the importance of the factors that contribute to the 
disease. Specifically, there is a need to understand both the 

interrelationship among the characteristics present in the disease, and 
the influence on the variants of dengue. For example, the comorbidities 
are basic diseases that can occur jointly with dengue, being the most 
common chronic-renal disease and chronic-hepatic disease. In these 
diseases, the blood levels of some parameters are elevated, which also 
increases in dengue. This aspect must be taken into account to develop 
future models of dengue. 

According to the reviewed articles, there are many predictors/fea-
tures used for the diagnostic, epidemic and intervention models of 
dengue (see Table 2). However, other predictors could be used and 
evaluated for this purpose. Raman spectroscopy data would be useful 
because the technique has the ability to diagnose the disease early [48]. 
Another type of predictor that could be used for modeling would be 
genomic data. According to this review, only two papers [31,54] have 
used this type of data to look for relationships with the disease. Tech-
niques to measure genetic data are expensive and are not usually per-
formed in clinical practice, making it difficult to obtain such data. The 
wide collection of genetic data would allow a better understanding of 
the dynamics of dengue at the population level, providing key insights 
into genetic factors that are difficult to track with clinical records alone. 

The use of a large number of variables could be useful to model 
dengue; however, a disadvantage of this approach is that the use of too 
many descriptors could cause the problem of the curse of dimension-
ality. This is characterized by the high dimensionality of the feature 
space where patterns cannot be easily recognized [104]. In addition, this 
phenomenon can sometimes hinder the optimization and speed of 
execution of the models. To solve this problem, different preprocessing 
techniques have been developed. However, in the reviewed papers, very 
little use of these techniques was reported (see Fig. 8). The most- 
reported preprocessing technique was normalization with 9.4%, fol-
lowed by PCA with 6.3%. This shows that it is necessary to increase the 
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use of preprocessing techniques (feature engineering processes 
[105,106]) that allow, among other things, analysis between all the 
predictors available, to find the most influential features on the disease, 
weighting their influence. 

4.1.2. Epidemic models 
Epidemic models of dengue are the most published modeling 

approach at present, according to this literature review. The largest 
percentage of reviewed studies use environmental and climatic data to 
analyze the distribution of the mosquito and the disease. 

In recent years, there has been an increasing interest to map the 
distribution of mosquitoes (A. aegypti and A. albopictus). Knowledge of 
the distribution of these vectors can help prevent the disease [99]. For 
this task, geographic information systems (GIS) have been used to analyze 
the relationship between climatic conditions and the distribution of the 
vector [64,79,97,102]. However, this type of information, collected and 
used for the models generation, has not a high resolution [80]. For this 
reason, a deep-learning approach and high-resolution Google images 
could be considered, using significant features (shrubs, urban areas, 
roads and puddles) identified from the images. The goal is to predict 
regions suitable for mosquitoes on a finer scale. 

Data quality is an important aspect for some machine learning al-
gorithms because their performances depend on this feature [107]. The 
management of dengue data quality is one of the most important chal-
lenges at present. Most of the databases, with clinical and epidemio-
logical data, reported by surveillance systems, have some problems, 
such as incorrect data or missing data [51]. The high demand for 
healthcare, in some places, may cause that medical personnel do not 
correctly fill out the epidemiological forms provided for this purpose. 
This was one of the most common limitations found in the reviewed 
studies [35,38,40,53,57,59,93]. When this type of data needs to be 
analyzed, this inconvenience sometimes forces the elimination of com-
plete records, which reduces the size of the database. According to the 
reviewed articles, none of the papers used models to manage uncertainty 
related to data quality. To solve this problem in dengue, several machine 
learning alternatives could be used, such as Bayesian models and fuzzy 
approaches, which have been used in other domains [108,109,110,111]. 
Besides, approaches that use robust estimators to deal with the problem 
of missing values and outliers have been developed [112]. Another 
option could be to generate complementary data to the existing ones. 
This consists of creating new data that have similar characteristics (e.g., 
distribution) to the available data. In recent years, also, the generation 
of synthetic data has allowed the construction of more robust models in 
other areas of knowledge, such as environmental sciences [113,114]. 
This could also be explored in this domain. 

4.1.3. Intervention models 
Of the three approaches described in this article, this is the most 

promising for future works, because the use of these models, in decision- 
making for dengue, is very limited [102]. Below, we show some fields 
that have not been much explored on dengue modeling. 

Prescriptive models have uncertainty, and being probabilistic, can 
lead to incorrect decision-making [115]. Particularly, the uncertainty of 
prescriptive models is one of the main challenges in dengue. The key 
components of this aspect are the lack of certainty of the model, the 
uncertainty in the quality of data, and the subjectivity of the human 
being to build the prescriptive model [116]. There is a need to generate 
prescriptive models based on data and less based on expert knowledge of 
the domain. Additionally, real-time data processing has not been 
explored. The developed models are static, and the priority is to use 
strategies that have the capacity to process time-varying data. Auto-
mation of prescriptive processes is needed, where the model is always 
adjusted in case any inconvenience occurs. In this way, higher-quality 
decisions can be made in the shortest possible time to overcome the 
problem presented. 

Standard machine-learning approaches require the centralization of 

training data in one device or data center. This could be a problem if the 
data are in different locations. According to this review, all articles used 
the centralized machine-learning approach. Most dengue information 
systems, in many countries, do not collect their data in one place. To 
overcome this drawback, one of the most secure and robust cloud in-
frastructures to process this data, developed by Google, could be used. 
The approach, called federated learning, is a kind of collaborative 
machine-learning without centralized training data and works as follows 
(see Fig. 7): the device downloads the current model, improves it by 
learning from the phone data, and then summarizes the changes as a 
small focused update. Only this updated model is sent to the cloud, using 
encrypted communication, where it is immediately averaged with the 
global model to improve the shared model. All training data remains on 
the device, and no individual update is stored in the cloud [117]. 

Finally, no studies were found that have considered implementing 
combined models for diagnosis, prediction and prescription. An 
important challenge of dengue modeling is the development of these 
types of hybrid models. Diagnostic, epidemic and intervention models 
combined could be superior in performance to the three models sepa-
rately developed. Additionally, real-time updating for diagnostic and 
epidemic models, with the automation of prescriptive model decision- 
making, would considerably decrease the uncertainty present in these 
types of problems. 

4.2. General summary 

This section shows a brief summary of the challenges found that 
could be used to develop future works. Fig. 8 represents and summarizes 
the aspects evaluated in this article. In the upper part, we can note the 
aspects evaluated: i) the most used preprocessing techniques, ii) the 
applied machine learning tasks, iii) the type of modeling approach, iv) 
the technique used and, v) the varieties of dengue that were studied. 
Fig. 8 shows the characteristics most and least used to model dengue. 
The width of the nodes and links is proportional to the number of 
reviewed articles that fall into each of the categories. Different colors 
were used in the links, to facilitate the visualization of the connections. 
Fig. 8 clearly shows the little use of preprocessing techniques (feature 
engineering) in the reviewed articles (45 of 64 articles do not report 
preprocessing techniques). Perhaps, the authors assume preprocessing 
as an implicit stage within modeling. Also, we can observe that almost 
all articles on diagnostic modeling used the classification task to detect 
the presence of the disease. The regression task was closely related to 
epidemic and intervention models. As mentioned above, intervention 
modeling was the least frequent approach in the reviewed articles. 
Finally, it can be observed that SSD is the least worked variation of the 
disease, mainly because of the low frequency and low quality of the data 
related to this syndrome. 

For the diagnostic modeling approach, three challenges could be 
identified. As we could see in this work, models to detect the disease and 
differentiate it from similar ones are quite implemented. Now, it is 
fundamental to develop cause-effect models of dengue because they are 
necessary to know the importance of the factors that can contribute to 
the disease. As can be seen in Fig. 3, several types of features have been 
used for the diagnosis of dengue. Adding new predictors for diagnosis 
could facilitate and improve detection time for treatment and avoidance 
of death. Although the use of many predictors for diagnosis could be 
beneficial, it could also cause difficulties with respect to the dimension 
of the data. One opportunity is the creation or improvement of pre-
processing techniques that will enable the identification of key charac-
teristics that are most related to dengue. 

Although dengue epidemic modeling is the most reported in the 
literature, data available for dengue has quality problems. The uncer-
tainty of models based on this type of data is high. One of the main 
challenges of epidemic approaches is the development of models that 
address and clearly express the associated uncertainty and measure the 
reliability of the predictions. It is crucial that improvements are 
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developed, or new techniques are created, to generate more accurate 
results. 

The frequency of articles on intervention modeling of dengue is low. 

Decision-making for treatment and control of the disease depends on 
this modeling approach. Prescriptive analysis, in general, presents 
challenges that must be taken into account. One of these is the low 

Fig. 7. Description of federated learning. The device personalizes the model locally, based on the usage (A). Many users' updates are aggregated (B) to form a 
consensus change (C) to the shared model, after which the procedure is repeated. Source: https://tinyurl.com/y9ykdbve 

Fig. 8. Trends of reviewed papers for dengue modeling. Abbreviations: ML = Machine Learning, NR = Not reported, PCA = Principal Component Analysis, SD: 
Severe Dengue, DSS = Dengue Shock Syndrome. 
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number of automatic prescriptive models for data-based decision-mak-
ing systems. The subjectivity of the domain expert could affect the 
quality of the decision made, and static models can not handle the 
changes that occur. Data-based and up-to-date prescriptions would be a 
valuable tool for the treatment and/or control of dengue. 

Finally, a challenge common to all three approaches reviewed in this 
article is the development of combined models (diagnostic, epidemic 
and intervention), to automate the prescription. Autonomous cycles of 
data analysis tasks (see [118,119] for more details about this concept), 
which integrate the previous models, can assist in decision-making as 
quickly as possible. For dengue, this is crucial, due to the high morbidity 
and mortality of the disease. 

5. Conclusions 

We conducted an SLR on dengue modeling based on machine 
learning. The main objective was to know about diagnostic, epidemic 
and intervention models that have been developed for the disease. Sixty- 
four articles were selected and analyzed from several scientific libraries, 
to find out the state-of-the-art in the three approaches mentioned above. 
The results show that dengue modeling is constantly growing. 

The most frequent diagnostic models were based on LoR. LoR is one 
of the most used modeling techniques because of its ease of realization 
and interpretation of results. Although other techniques, such as deci-
sion trees, can be easily interpreted, they consist of a large number of 
nodes, which can require a significant amount of mental effort to un-
derstand a particular prediction. In contrast, an LoR model is simply a 
list of coefficients, which is attractive to know the influence of charac-
teristics on the target variable. In addition, regression does not require 
that the continuous independent variables follow a normal distribution, 
and continuous and discrete predictors can be used together. With 
respect to the category of features, the most used for these models were 
demographic, clinical and laboratory data. Data are readily available 
from local health authorities in each country. 

In general, the most frequent epidemic models were based on LiR, RF 
and SVM, with socioeconomic, demographic, climatic and environ-
mental data. From this category, the most explored approach is the 
spatial-temporal analysis of dengue and its transmission vector. These 
techniques are commonly implemented to map disease risk in endemic 
areas, and establish relationships between risk factors and dengue 
incidence. 

Studies on intervention systems for dengue are quite limited. In this 
review, we found only eight studies with developed models for disease 
control. The techniques used were GLM, SS y BTS. The main data used 
were entomological. The morbidity and mortality of the disease clearly 
depend on the decisions made by health authorities, therefore, more 
studies are needed in this field to support the decisions. Finally, an 
important general remark is that the diagnostic, epidemic and inter-
vention models of dengue are normally machine learning models of 
predictive, diagnostic or prescriptive type. 

Several limitations were found in the reviewed papers, among which 
we have: the absence of reporting of preprocessing techniques used, and 
small sample sizes for disease variations, such as SD and DSS. Reviewing 
the strengths and limitations of the articles allowed the identification of 
future works for research: i) cause-effect models for dengue diagnosis, ii) 
use of new features, such as genetic data and Raman spectroscopy, for 
disease diagnosis, iii) a preprocessing phase based on feature engi-
neering processes, iv) implementation of Bayesian or fuzzy models that 
adequately manage data uncertainty, v) automatic prescriptive models 
for data-based decision-making systems, and vi) models combining the 
three approaches discussed in this article using autonomous cycles of 
data analysis. 

Based on these future works, prioritization should focus on cause- 
effect models for disease diagnosis. Not only the detection of the dis-
ease is critical, but also, the assessment of factors that most influence the 
infection. A better understanding of dengue-related causes with more 

robust diagnostic models, would help considerably in prevention and 
reducing complications and deaths. Likewise, modeling for the man-
agement of data uncertainty is urgent. The low quality of epidemio-
logical data on dengue is one of the main obstacles for the improvement 
of existing models. The use of other types of predictors, such as genetic 
data and spectrograms, could be useful, but their high cost of determi-
nation and collection could be a limitation. Finally, the use of autono-
mous cycles of data analysis tasks would automate decisions for disease 
control. 

This study has a few limitations. The first limitation is that some 
online databases (ScienceDirect, IEEE Xplorer, Google Scholar, Emerald, 
Taylor & Francis and PubMed) were used, and interesting articles from 
other digital libraries could have been ignored. Second, the language 
chosen was English because most of the latest advances in dengue 
modeling are written and published in this language. The absence of 
articles in other languages, such as Spanish and Portuguese, limits the 
scope of the results of this study. 
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Abstract
Dengue is a viral infection widely distributed in tropical and subtropical regions of the world. Dengue is charac-
terized by high fatality rates when the diagnosis is not made promptly and effectively. To aid in the diagnosis of 
dengue, we propose a clinical decision-support system that classifies the clinical picture based on its severity, and 
using causal relationships evaluates the behavior of the clinical and laboratory variables that describe the signs and 
symptoms related to dengue. The system is based on a fuzzy cognitive map that is defined by the signs, symptoms 
and laboratory tests used in the conventional diagnosis of dengue. The evaluation of the model was performed on 
datasets of patients diagnosed with dengue to compare the model with other approaches. The developed model 
showed a good classification performance with 89.4% accuracy and could evaluate the behaviour of clinical and 
laboratory variables related to dengue severity (it is an explainable method). This model serves as a diagnostic aid 
for dengue that can be used by medical professionals in clinical settings.

Keywords Machine learning · Dengue · Artificial intelligence · Diagnosis · Fuzzy cognitive maps · Clinical decision-
support system

Highlights 

• Availability of dengue data about signs, symptoms, and 
laboratory tests provides opportunities to explore new 
dengue diagnosis tools.

• Precise dengue diagnosis models greatly assist physicians 
in detecting and treating dengue severity.

• We developed a clinical decision-support system for den-
gue diagnosis using fuzzy cognitive maps.

• The proposed explanatory model can be used to identify 
the main dengue variables that determine its severity.

1 Introduction

Dengue is a globally distributed disease spread –mainly– in 
tropical and subtropical regions [1]. The infection is trans-
mitted by the bite of Aedes female mosquitoes [2]. Accord-
ing to the World Health Organization (WHO), dengue cases 
around the world have increased eight times in the last 20 
years. In 2000, 505,430 cases were reported; while, in 2019, 
the number of cases raised to 4.2 million [3]. Currently, 
dengue diagnosis is a challenge due to its complexity. The 
process used to diagnose the disease is complex because 
the amount of information involved is high and some physi-
cian’s lack of experience could make the diagnosis difficult 
[4]. According to clinical experts, the diagnosis of dengue 
depends on an astute interpretation of the clinical and labo-
ratory findings, mainly in severe cases [5]. According to 
Sutton et al. [6], these problems could be addressed with the 
use of clinical decision-support systems (CDSS) based on 
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artificial intelligence (AI) techniques. Sutton et al. define a 
CDSS as a system that seeks to improve healthcare delivery 
by supporting medical decisions with clinical knowledge and 
patient information. The main objective is for the physician 
to combine her/his clinical knowledge with suggestions from 
the CDSS to make the best possible decision.

Diagnosis of dengue has two approaches: 1) to detect the 
disease and differentiate it from other diseases with similar 
signs and symptoms like malaria, Zika, chikungunya and lep-
tospirosis; 2) to classify the patient according to its severity. 
In recent years, the development of CDSS based on AI tech-
niques for the early detection of dengue has been increasing 
(see [7], for more details). As an example, Fernandez et al. [8] 
developed a logistic-regression-based system to detect dengue 
and differentiate it from other febrile diseases. The system 
used demographic and clinical predictors to fit the model and 
achieved an accuracy of 69.2%. Gambhir et al. [9] developed a 
hybrid approach based on an artificial neural network (ANN) 
to predict dengue, and a particle swarm optimization (PSO) 
to optimize the model parameters. The results showed that 
ANN-PSO performed better (accuracy = 87.2%) than when 
the ANN alone is used (accuracy = 79.1%).

Dengue is classified based on its severity into three 
types: dengue without warning signs, dengue with warn-
ing signs and severe dengue (SD). Early classification is 
crucial to avoid complications and death. Previous studies 
have attempted to develop systems to deal with this aspect 
of dengue. For example, Khan et al. [10] developed a system 
based on support vector machines (SVM) to classify den-
gue patients. The main contribution of Khan et al.’s work 
is the development of a system with Raman spectroscopy 
data. The diagnostic accuracy of the developed system was 
85%. Davi et al. [11] proposed a decision system using gene 
expression data together with machine learning (ML) tech-
niques, such as ANN and SVM. Davi et al. justified the use 
of this type of data because dengue phenotypes based on 
clinical and laboratory data are not very accurate. The work 
proposed by Davi et al. used SVM to find an optimal subset 
of features and an ANN to classify patients. The accuracy 
of the best model presented was 86%.

As we have seen previously, several works have been 
developed for the prediction of dengue, for the differentia-
tion with other diseases with similar clinical pictures, and 
for the classification of dengue patients based on severity. 
However, the previous works did not evaluate the behav-
ior of the clinical and laboratory features/variables that 
describe the signs, symptoms, and severity of dengue. 
Understanding the impact and behavior of these features 
over time is a useful strategy for the diagnosis and clinical 
management of dengue. Anticipating the appearance of 
signs and symptoms, in dengue, is crucial to avoid compli-
cations. Based on the above, the main contribution of this 
work is a CDSS based on fuzzy cognitive maps (FCMs), 

which aids in the decision making for the clinical manage-
ment of dengue. FCMs have been used to build CDSS in 
medicine for other diseases such as autism [12], meningitis 
[13] and pulmonary infections [14]. However, to date, no 
CDSS based on FCMs has been developed for the clinical 
management of dengue. Besides, our approach not only 
classifies the type of dengue but also allows analyzing 
over time the behavior of the clinical and laboratory vari-
ables that physicians use for the conventional diagnosis 
of dengue. Thus, we propose an explainable method that 
maintains a competitive predictive accuracy of the severity 
of dengue, which is a “glass box” approach that describes 
the way that it comes to decisions. These combined prop-
erties make this system more robust and solve the result 
interpretability problem of the machine learning systems 
very important in sensitive yet critical domains such as 
healthcare, which other reported systems in the literature 
do not do.

This article is organized as follows. Section 2 introduces 
the medical background of dengue and a conceptualization 
of FCMs. Section 3 describes the methodology implemented 
for the development of the proposed FCM. Section 4 shows 
computational experiments and model evaluation. Finally, 
the last section describes conclusions and future works.

2  Theoretical background

This section introduces background on dengue and its con-
ventional diagnosis. In addition, this section provides the 
basic concepts of FCMs used in this research.

2.1  Medical background

In this section, the main aspects of dengue are presented: 
its causes, symptoms and clinical course of the disease. In 
addition, the conventional diagnosis of dengue is introduced.

2.1.1  Introduction to dengue

Dengue is a mosquito-borne viral disease of more rapid 
spread in the world. Dengue virus is transmitted by female 
mosquitoes of Aedes aegypti and Aedes albopictus [3]. The 
clinical picture of dengue varies from patient to patient. 
Typically, the individuals infected by dengue are asymp-
tomatic (80%). Dengue has an incubation period of 3 to 14 
days. After this period, a viral picture appears characterized 
by a fever of more than 38◦ C, headache, retro-ocular pain, 
intense pain in the joints (arthralgia) and muscles (myalgia), 
nausea/vomiting and inflammation of lymphatic nodes [15].
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2.1.2  Clinical course of dengue

The clinical presentation of dengue is divided into three 
phases: febrile, critical and recovery [16]. Figure 1 shows 
the three dengue phases.

The first phase lasts from two to seven days and it is 
characterized by a sudden increase in body temperature, 
headache, generalized body pain, myalgia, arthralgia and 
rash [16]. In this febrile phase, it can be difficult to distin-
guish –clinically– dengue from other febrile diseases, such 
as malaria and leptospirosis.

At the beginning of the critical stage (second stage), the 
fever decreases or disappears [17]. This is the phase of compli-
cations and usually lasts 24 to 48 hours. A predominant feature 
is plasma extravasation with an increase in the values of the 
hematocrit [18, 19]. At this time, the patients who do not pre-
sent increased capillary permeability, improve; while, those with 
increased capillary permeability, can worsen as a result of the 
loss of plasma volume. When there is a critical loss of plasma 
volume, shock may occur and the patient may die [19].

In the third stage, called the recovery phase, the plasma 
extravasation decreases and the patient enters in a convalescent 
phase. The patient’s well-being improves due to a balance of the 
hemodynamic state by gradual reabsorption of the extravasated 
fluid [16, 20]. Other characteristics of the third phase are that 
appetite returns, gastrointestinal symptoms decrease, hemody-
namic status stabilizes, and diuresis occurs. This last phase can 
last between three to five days [21, 22].

2.1.3  Conventional diagnosis of dengue

Efficient and accurate diagnosis of dengue is of fundamen-
tal importance for clinical care: early detection of severe 
cases, confirmation of cases and a differential diagnosis with 
respect to other infectious diseases. Diagnosis of dengue can 
be difficult because the signs and symptoms can be –eas-
ily– confused with those of other diseases, such as malaria, 
leptospirosis and typhoid fever.

In 2009, the WHO set out guidelines for the clinical 
management of dengue [21]. This guide serves as a stand-
ard diagnostic criterion for dengue. In addition, the guide 
provides a global approach to the classification of dengue 
[23]. Figure 2 shows the progression of dengue, with signs, 
symptoms and laboratory tests, for each variant of the dis-
ease. These parameters are used as criteria for the diagnosis 
of dengue.

Laboratory tests to confirm dengue infection can be: iso-
lation of the virus, detection of viral nucleic acid, antigens, 
antibodies or a combination of these techniques. During the 
first stages of the disease, virus isolation, nucleic acid or 
antigen detection can be used to diagnose the infection. At 
the end of the acute phase of the infection, serology is the 
method of choice for diagnosis (see Fig. 1) [3].

2.2  Fundamentals of FCMs

In this section, the fundamentals of FCMs are shown. First, 
a conceptualization of FCMs is described, and, finally, the 
learning process used in this work is briefly explained.

2.2.1  Introduction to FCMs

FCMs were introduced by Kosko, in 1986, [24] from the 
cognitive maps created by Axelrod, in 1976 [25]. FCMs are 
used to model complex systems due to their ease of con-
struction and interpretation. FCMs are directed graphs com-
posed of concepts and relationships. Concepts represent the 
variables involved in a system, while relationships represent 
the influence among these concepts [26].

Figure 3 shows a simple example of an FCM with eight con-
cepts (from C1 to C8 ). Each concept represents a variable, entity 
or factor of the system, such as severity, disease’s symptoms 
and laboratory tests. A relationship, represented by a weight 
on a directed edge, shows the influence of one concept over 
another [27]. There are several ways to assign these relation-
ships to FCMs. Aguilar in [27] describes three approaches to 
assign this type of relationship in FCMs: i) assignment of causal 
relationships using fuzzy rules, ii) assignment of relationships 
using generic logic rules and iii) assignment of relationships 
using mathematical models describing the system to be evalu-
ated. In some of these approaches can be used experts to assign 
the weights (e.g., in the first two approaches), but also, data can 
be used to infer causal relationships in these approaches. The 
strength of a relationship depends on the value assigned, which 
varies from -1 to +1. A value of +1 represents an excitatory 
effect from the Ci concept to the Cj concept, a value of -1 rep-
resents an inhibitory effect between Ci and Cj , and a value of 
0 indicates that no causal relationship exists between the two 
concepts. Other values in the interval [-1, +1], represent differ-
ent degrees of causality. For instance, if the antecedent concept 
Ci has a very low value and the consequent concept Cj has a high 

Febrile phase Critical phase Recovery phase

1 2 3 4 5 6 7 8 9 10
Time (days)

Antibodies Plasma leakage Inflammatory response Viraemia

Fig. 1  Clinical course of dengue. Adapted from [17]
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value, then the causal relationship between concepts could be 
determined as Negative high. Table 1 shows an example of cau-
sality degrees, with their respective linguistic terms. This table 

can be used to facilitate the assignation of the relationships by 
the domain experts according to their knowledge.

Mathematically, an FCM is represented as a tuple of four 
elements:

(1)Φ = ⟨n, f (⋅), r,W⟩

Fig. 2  Criteria for diagnosis of 
dengue. Adapted from WHO 
guidelines [21]. (Abbreviations: 
HCT = hematocrit, DSS = 
dengue shock syndrome, AST = 
aspartate aminotransferase, ALT 
= alanine aminotransferase, 
CNS = central nervous system)

Fig. 3  Simple graphical representation of an FCM model with eight 
concepts

Table 1  Type of causal relationships using some generic logic rules 
based on concepts’ values

 Each linguistic term represents the causality degree between anteced-
ent and consequent concepts. NA = Not applicable

Linguistic term Numerical value Generic logic rule
Antecedent Ci Consequent Ci

Positive complete 1 Very high Very high
Positive high 0.75 High High
Positive moderate 0.5 Medium Medium
Positive low 0.25 Low Low
Null 0 NA NA
Negative low −0.25 Very low Low
Negative moderate −0.5 Low High
Negative high −0.75 Very low High
Negative complete −1 Very low Very high
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where n ∈ ℝm is the set of concepts ( n1,… , nm ), and f (⋅) is 
the activation function that holds concept values in deter-
mined range r. For example, the sigmoid function holds 
concepts values between 0 and 1, where 0 indicates absence 
and 1 indicates the complete presence of the concept. This 
function allows assigning and expressing semantically a cat-
egorical state to each concept in each iteration [28]. Table 2 
shows several functional forms used for this goal. The choice 
of an activation function to model FCMs will depend on 
the problem to be solved. For example, if we want to model 
the symptoms of a disease, then it would be more useful to 
use the sigmoid function because the values of the concepts 
to be modeled will be between values of 0 (absence of the 
symptom) and 1 (presence of the symptom). For this case, it 
does not make sense to have negative values, thus, it would 
not be necessary to choose the hyperbolic tangent function 
that has a range between -1 and 1. Finally, W ∈ ℝm×m , is 
the adjacency matrix to represent the interactions among 
concepts. The adjacency matrices are square matrices that 
allow storing the influences among concepts of an FCM. As 
an example, the adjacency matrix for the FCM in Fig. 3 is:

2.2.2  Reasoning of FCMs

The inference process in an FCM, can be defined 
–mathematically– using three components: a weight 
matrix, W ∈ ℝm×m , which defines the interaction among 

(2)

C1 C2 C3 C4 C5 C6 C7 C8

! =

C1

C2

C3

C4

C5

C6

C7

C8

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

0 0 0 0 0 0 0 w18

w21 0 w23 0 w25 0 0 0

0 0 0 w34 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 w54 0 w56 0 0

0 0 0 0 0 0 w67 0

0 0 w73 0 0 0 0 0

0 w82 0 0 0 0 w87 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

concepts, an activation function that holds concepts val-
ues between a range, and, a state vector, a ∈ ℝm , that 
represents the degree of activation of the concepts. The 
activation degree of a concept indicates the value of that 
concept in a determined iteration. We refer to the term 
activation of a concept when the value of a concept at 
iteration t is 0 ( ai(t) = 0 ) and at iteration t + 1 greater 
than 0 ( ai(t + 1) > 0 ). In simple words, it is when an 
absent concept becomes present in the system.

The inference procedure consists of calculating the state 
vector a through iterations with successive multiplications of 
the state vector by the weight matrix, until the system finds a 
steady state. Equation 3 summarizes this process [24]:

where aj(t + 1) is the value of concept Cj at iteration t + 1 , 
m is the number of concepts, Wij is the value for relationship 
from concept Ci to concept Cj , and aj(t) is the value of con-
cept Cj at iteration t. The point of equilibrium (steady state) 
is reached when a(t) = a(t − 1) or a(t) − a(t − 1) ≤ 0.001.

The use of FCMs is essential in simulation scenarios, 
because it allows experts to study the system behavior for 
different initial conditions. This initial condition is defined 
by a(0) and is denoted as:

where a1(0) is the value of concept C1 at iteration = 0.

3  Methodology

In this section, we describe the methodology used to develop 
an CDSS for dengue using FCMs. Figure 4 shows the six-
step methodological framework. Each of the steps is briefly 
explained below.

3.1  Selection of experts

Three clinical experts in dengue were selected. The med-
ical professionals agreed to participate in this research. 
The selected experts have a wide experience in physio-
pathology of dengue. All of them add up to more than 
70 years of experience in the clinical management of 
the disease.

3.2  Concepts and relationships

This stage is developed by the clinical experts of dengue. 
First, the concepts were defined according to the diagnostic 

(3)aj(t + 1) = f

( m∑
i=1,i¬j

Wijai(t)

)

(4)a(0) =
[
a1(0), a2(0),… , am(0)

]

Table 2  Activation functions used in FCMs

Activation function Equation Range

Bivalent
f (x) =

{
1 x > 0

0 x ≤ 0

f (x) ∈ {0, 1}

Trivalent
f (x) =

⎧
⎪
⎨
⎪⎩

1 x > 0

0 x = 0

−1 x < 0

f (x) ∈ {−1, 0, 1}

Sigmoid f (x) =
1

1+e−!×x
f (x) ∈ [0, 1]

Hyperbolic tangent f (x) =
ex−e−x

ex+e−x
f (x) ∈ [−1, 1]
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criteria developed by WHO [21]. Table 3 shows a brief 
description of the concepts. These concepts are classified 
into five types: i) demographic: variables related to popu-
lation, ii) signs: clinical manifestations that the physician 
detects in the medical consultation, iii) symptoms: clinical 
manifestations that the patient experiences and refers to the 
physician in the medical consultation, iv) laboratory tests: 
tests performed in the clinic or hospital to know the status 
of some parameters such as platelet levels, plasma volume 
and cell-content ratio. v) target, which indicates the final 
classification.

After the definition of concepts, each expert generated a 
matrix of weights with values between -1 and 1, correspond-
ing to the influences among the previously defined concepts. 
This assignment process was performed according to the 
protocols and clinical algorithms for the diagnosis of den-
gue published by WHO [21]. Each expert combined their 
experience and knowledge extracted from WHO guidelines, 
to establish how each concept influences the other. To facili-
tate this procedure, the experts used Table 1 to choose the 
linguistic term for each causal relationship, and then, the 
associated numerical value was used to construct the weight 
matrix.

Fig. 4  Flowchart of the CDSS for dengue

Table 3  Concepts used to build an FCM for dengue based on [21]

Concept node Concept name Type of variable Description

C1 Age Demographic Time elapsed since the birth of an individual
C2 Fever Sign/symptom Increase in body temperature
C3 Cefalea Symptom Pain and discomfort located in any part of the head
C4 Pain BE Symptom Pain behind eyes
C5 Myalgias Symptom Muscle aches
C6 Arthralgias Symptom Joint pain
C7 Rash Sign/symptom Skin exanthema
C8 Abdominal pain Sing/symptom Intense pain, located in the epigastrium and/or right hypochondrium
C9 Vomit Symptom Violent expulsion by the mouth of what is contained in the stomach.
C10 Lethargy Sign/symptom State of tiredness and deep and prolonged sleep
C11 Hypotension Sign Excessively low-blood pressure on the artery wall
C12 Hepatomegaly Sign Condition of having an enlarged liver
C13 Mucosal bleeding Sign/symptom Manifestations of mild to severe bleeding in the nasal mucosa, gums,

skin, female genital tract, brain, lungs, digestive tract and hematuria
C14 Hypothermia Sign/symptom Decrease of body temperature
C15 High hematocrit Lab. test Indirect increase in hematocrit test
C16 Low platelets Lab. test Decrease of platelet levels in the blood
C17 Edema Sign/symptom Swelling caused by excess fluid trapped in body tissues.
C18 Extravasation Sign It is characterized by serous spills at the level of various cavities
C19 Bleeding Sign/symptom Blood leaks from the arteries, veins or capillaries through which it

circulates, especially when it is produced in very large quantities
C20 Shock Sign/symptom Manifestation of severity evidenced by cold skin, thready pulse,

tachycardia and hypotension
C21 Organ failure Sign Affectation of several organs due to the extravasation of liquids
S1 Severity Target Dengue severity
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3.3  Design of the model

This stage summarizes the FCMs developed by the experts 
in a general map. The procedure to create a single global 
map is defined by the following equation [29]:

where EG
ij

 is the global weight for the general FCM, Ee
ij
 is the 

opinion of each expert on the causal relationship between 
the concept Ci and Cj , and NE is the number of experts. 
Finally, the general FCM is built using the igraph package 
[30] in R Software (version 4.0.1) [31]. Figure 5 shows the 
final FCM. The construction of FCMs with experts has an 
implicit bias due to the subjectivity of the experts in assign-
ing causal relationships [32]. Addressing bias in FCMs is 
beyond the scope of our study.

3.4  Inference

Step 4 of the methodology shown in Fig. 4 consisted of 
implementing the FCM previously defined in the FCM tool 
used in this work [33], and then, performing the inference 
processes for each case study. The inference is performed 
with the reasoning process defined in Section 2.2.2, and we 
used the sigmoid function as the activation function. Con-
figuration of the experiments and the results of this stage are 
shown in Section 4.2.

(5)EG
ij
=

NE∑
e=1

Ee
ij

NE

3.5  Interpretation

This step consisted of the interpretation of the inference 
results by the FCM in each case study. Configuration of 
the experiments and the discussion of the results of this 
stage are shown in Section 4.3

3.6  Decision

The final step of CDSS for dengue is the decision that the 
medical professional makes to improve the diagnosis of 
dengue.

4  Computational experiments

In this section, we analyze the diagnostic capability of our 
FCM. For that, validation and scenario-based simulations 
were executed. First, a dataset is preprocessed. Then, the 
global FCM is used to classify dengue patients. Because 
the result of the analysis of factors related to dengue 
severity is qualitative, we chose three scenarios (one for 
each dengue type) to show the capability of our model in 
interpreting the results. The diagnostic capability of our 
FCM is compared with ML techniques, such as ANN and 
SVM. Finally, a qualitative comparison with other previ-
ous works is performed.

Fig. 5  General FCM to support 
the diagnosis of dengue
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4.1  Dataset

The dataset used for the computational simulations is 
described below. The dataset corresponded to 52,051 
patients who attended the Health-Service Providers Institu-
tions with a diagnosis of dengue reported to the National 
System of Surveillance of Colombia [34], from 2008 to 
2018, in Medellin, Colombia.

We selected from the dataset the 22 variables that the 
experts defined as concepts in the FCM (see Table 3). These 
variables are signs, symptoms, laboratory tests and the final 
classification of dengue, which was used as the target to 
compare with the target predicted by the ML models. Other 
variables such as address, first names, last names and zip 
codes were eliminated because they did not contribute to the 
objective proposed in this study. Missing data are very com-
mon in this type of dataset, therefore, the records with more 
than 50% of missing values, for the variables, are eliminated. 
This process was performed because missing data in datasets 
can increase the bias and decrease the performance of the 
models [35]. In this dataset, it is difficult to know the cause 
of missing data, because it is not known if the physician 
did not enter the information by mistake or because of the 
absence of any symptom in the patients.

Categories of the input variables were binary (presence 
= 1, absence = 0), except age. We re-coded age as follows: 
patients younger than 5 years and older than 60 years were 
assigned values of 1, patients with other ages were assigned 
a value of 0. This modification is justified by the input vari-
ables having the same categories, the prevalence of SD is 
higher in patients under 5 years of age [36], older patients 
are more likely to develop SD [37]. At the end, the dataset 
consisted of 10,210 patients with DWS-negative, 11,123 
patients with DWS-positive, and 123 patients with SD. For 
this last class, oversampling [38] was used to balance the 
classes. Finally, the number of patients for the latter class 
was 11,186 records.

4.2  Classification of dengue based on the severity

The diagnosis of dengue is based on severity. This aspect in 
dengue is important because it allows medical profession-
als to make an early diagnosis and avoid complications and 
death. In what follows, we show three cases of dengue to 
classify them with the FCM. To validate the capability of 
the FCM model developed, we used the dataset described 
in the previous section. To show how our model performs 
the classification, we tested three cases (one for each type of 
dengue) corresponding to patients randomly extracted from 
the dataset.

For this classification model, an initial vector with the 
age, symptoms and laboratory tests of the patients was used. 
After the inference process, a final vector was obtained when 

the system found a steady state (see Section 2.2.2). The 
steady state in this case can be interpreted as a state in which 
the signs/symptoms/laboratory tests do not evolve further. In 
general, real-life problems such as dengue are dynamic prob-
lems that constantly evolve over time through the interaction 
of related factors. In this work, iterations are understood as 
evolutions over time of disease. For example, if in the ini-
tial iteration there is no shock but there is extravasation, the 
presence of the latter may lead to the presence of the former 
after some time. It is important to remember that the weight 
matrix is never modified during iterations because it reflects 
the causal relationships between the concepts and these were 
defined by the experts. Thus, causal relationships are static 
and variables or concepts are dynamic

The decision concept S1, in the final vector, was used 
to quantify the percentage degree of severity (PDS) in the 
patients. This was done to bring the values of the decision 
concept S1 to a range of diagnostic values and make the 
results more interpretable by the medical staff. The conver-
sion of the final decision concept S1 to PDS was performed 
using the following rule from [39]:

The values of PDS will be between 0 and 1. On one hand, 
when PDS = 0 means that the characteristic that the concept 
represents is not present (0%). In this case, since the concept 
of decision represents severity, then it is not present. On the 
other hand, 1 means that the characteristic that the concept 
represents is 100% present [39]. Specifically, values between 
0 and 1 will indicate different degrees of severity in terms 
of percentage. We used the functional form in Eq. 6 because 
of its simplicity and its good performance in other medi-
cal studies [14, 39]. PDS was discretized into three ranges 
to evaluate the classification made by the model. Patients 
with a PDS less than 20% are classified as DWS-negative, 
patients with PDS between 20% and 60% are classified as 
DWS-positive, and patients with PDS greater than 60% 
were classified as SD. All these criteria and thresholds were 
adjusted according to the experts’ opinions and application 
of our FCM over the dataset.

In order not to make this section longer, here we only 
focus on the prediction and interpretation of the target con-
cept. The interpretation of the values of the other concepts 
(signs/symptoms/laboratory tests) in the final vector is 
described in Section 4.3, where we describe the behavior of 
the variables through the iterations simulated with the FCM.

4.2.1  Case 1: A patient with DWS-negative

A 65 years-old patient with the following symptoms: 
fever, headache and myalgias. The vector of concepts 

(6)PDS (S1) =

{
0, S1 ≤ 0.5
S1−0.5

0.5
× 100%, S1 > 0.5
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corresponding to the patient’s signs, symptoms and labora-
tory tests (the initial vector) is passed to the inference rule 
(Eq. 3), and the final vector was obtained when the system 
reached a steady state (in iteration 73). The initial and the 
final vector of this patient can be seen in Table 4, and each 
iteration is the dynamic evolution of concepts. In the vec-
tor final, the decision concept S1 reached a value of 0.54 
(blue number), which was converted to an PDS of 8.2% (red 
number), using Eq. 6. Based on this result, and using the rule 
defined by dengue clinical experts in Section 4.2, we may 
classify this patient as DWS-negative.

4.2.2  Case 2: A patient with DWS-positive

A 64 years-old patient with the following symptoms: fever, 
headache, myalgias, pain behind the eyes, vomit and hypo-
thermia. The final vector was obtained when the system 
reached a steady state (in iteration 82). The initial and final 
vectors of this patient can be seen in Table 5. When the sys-
tem reached a steady state, the decision concept S1 reached 
a value of 0.67 (blue number), which was converted to an 
PDS of 35.2% (red number). Based on this result, and using 
the rule defined by dengue clinical experts, we may classify 
this patient as DWS-positive.

4.2.3  Case 3: A patient with SD

A 71 years-old patient with the following symptoms: fever, 
headache, arthralgias, vomit, shock and organ failure. The 
final vector was obtained when the system reached a steady 
state (in iteration 84). The initial and final vectors of this 
patient are shown in Table 6. When the system reached the 
steady state, the decision concept S1 reached a value of 0.82, 
which means an PDS of 64%. Thus, we may classify this 
patient as SD.

4.3  Analysis of risk factors

Diagnosis of dengue involves several factors related to sever-
ity. It is of great importance to analyze these factors to know 
their behavior over time to avoid complications and death. In 
this section, we evaluate the behavior of the variables used 
for the classification of dengue in three scenarios (one for 
each type of dengue).

4.3.1  Scenario 1: A patient with DWS-negative

The patient to be evaluated is 75 years old and presents: 
fever, headache, retro-ocular pain, myalgias, arthralgias and 
skin rash. Plot A, in Fig. 6, shows the simulation results of 
this patient, using the FCM. In this patient, we find that the 
value of the concepts activated at iteration 1 (factors present 
in the patient) –initially– decreases as the model achieves a Ta
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steady state; furthermore, the concepts reach the same value 
(blue curve). This could be explained by the fact that WHO 
guidelines [21] show that DWS-negative can be diagnosed 
by having fever plus two of the following: headache, retro-
ocular pain, myalgias, arthralgias or rash. Another aspect to 
show is that the presence of headaches increases the value 
of retro-ocular pain (green curve). This could be explained 
because the headache produced by the disease would have 
a causal effect on the back of the eye. The patient’s severity 
concept (red curve) remains at a moderate value (0.585); 
however, this value must be converted to severity percentage 
to establish the severity in terms of diagnosis. Performing 
this conversion, the patient’s severity is 17%. Finally, we 
note that the concepts –initially set to 0– remain disabled 
during inference (black curve).

4.3.2  Scenario 2: A patient with DWS-positive

In this scenario, we have a 3-year-old patient with abdominal 
pain, lethargy, hypotension, hepatomegaly, mucosal bleed-
ing, hypothermia, high hematocrit, low platelets and edema. 
Plot B, in Fig. 6, shows the simulation results for this par-
ticular patient.

The first thing we may observe in this plot is that the 
initial signs/symptoms of dengue are not present from the 
beginning of the simulation (i.e., fever, headache, retro-ocu-
lar pain, myalgias, arthralgias and erythema). The concepts 
associated with these signs/symptoms are deactivated during 
all iterations of the simulation; this can be seen in the black 
curve in the plot. According to the WHO [21], the critical 
phase of dengue can begin when the fever decreases or has 
disappeared, and, in this patient, the fever is not present, 
indicating that the patient is likely to develop this phase [18].

With respect to the activated concepts, corresponding to 
the patient’s signs and symptoms, we may note that age, 
lethargy, hypotension, hepatomegaly, mucosal bleeding, low 
platelets and edema, have the same behavior (yellow curve) 
and reach the same values at the end of the simulation. Some 
concepts that are deactivated (i.e., signs or symptoms that 
the patient does not refer to in the consultation or that the 
physician does not detect) are activated at the beginning of 
the simulation.

The vomiting concept (green curve) is activated from the 
first iteration, indicating that this patient is likely to vomit for 
different related causes. For example, hepatomegaly, edema 
and abdominal pain (blue curve) could be likely causes of 
this activation; liver enlargement can displace other organs 
such as the stomach and fluid accumulation in that area, 
which could increase the likelihood of persistent vomiting 
[23].

Another concept activated from the first iteration of 
the simulation, is shock (pink curve). The shock concept 
achieves higher values of 0.8 after the fourth iteration; Ta

bl
e 

5 
 C

on
ce

pt 
va

lue
s a

t t
he

 fi
rst

 an
d fi

na
l i

ter
ati

on
s o

f t
he

 F
CM

 fo
r a

 pa
tie

nt 
wi

th
 D

W
S-

po
sit

ive
 (C

as
e 2

)

S1
 an

d a
n P

DS
 ar

e t
he

 co
nc

ep
ts 

inf
er

red
 by

 th
e F

CM

Ve
cto

r
C1

C2
C3

C4
C5

C6
C7

C8
C9

C1
0

C1
1

C1
2

C1
3

C1
4

C1
5

C1
6

C1
7

C1
8

C1
9

C2
0

C2
1

S1
PD

S 
(%

)

In
iti

al
1

1
1

1
0

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

⋮
⋮

Fi
na

l
0.1

3
0.1

3
0.1

3
0.2

0
0

0
0

0
0.1

3
0

0
0

0
0.1

3
0

0
0

0
0

0
0



A clinical decision-support system for dengue based on fuzzy cognitive maps  

1 3

Table 6  Concept values at the first and final iterations of the FCM for a patient with SD (Case 3)

S1 and an PDS are the concepts inferred by the FCM

Vector C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 S1 PDS (%)

Initial 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Final 0.15 0.15 0 0 0.15 0 0 0 0.15 0 0 0 0 0.13 0 0 0 0 0 0.15 0.15

Fig. 6  Concept values of a 
patients with (A) = DWS-
negative, (B) = DWS-positive, 
and (C) = SD. Dashed orange 
line indicates when the system 
reached equilibrium
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however, when the model reaches a steady state, the values 
are approximately 0.6. With the exception of the concept of 
severity, the concept with the highest value is the concept 
of shock, which indicates that this patient could be compli-
cated and life-threatening. Although this patient does not 
present any WHO criteria to define it within SD (see Fig. 2), 
the activation of the shock concept (appearance of this sign 
in the simulation) with a high value alerts the physician of 
possible complications in the patient. The performed simula-
tion allowed the detection of this sign that was not present 
in the patient. Early detection of these signs or symptoms 
is crucial to reduce complications and mortality in patients 
with dengue.

With respect to severity (red curve), this concept is acti-
vated from the first iteration, achieving values above 0.95, 
maintaining high values throughout the simulation.

Other concepts –present throughout the simula-
tion– maintain their values activated and with moderate 
values; for example, high hematocrit (orange curve), which 
measures the relationship between the plasma volume and 
the cellular package in the blood. This concept is directly 
influenced by edema, which is characterized by the loss of 
plasma fluid from the blood to the tissues. Another activated 
concept is hypothermia (purple curve), which is mainly 
caused by a decrease in blood pressure (hypotension). One 
of WHO criteria to define hypotension is the presence of 
cold extremities with a recharged capillary refill, which is 
closely related to hypothermia [21].

In summary, if WHO guidelines are used, the signs, 
symptoms and laboratory tests show that this patient can be 
diagnosed as DWS-positive. However, the FCM goes fur-
ther and may indicate that the patient could present a shock 
immediately and compromise the patient’s life.

4.3.3  Scenario 3: A patient with severe extravasation

The last scenario is a 28-year-old patient with severe blood 
plasma extravasation. Plot C, in Fig. 6, shows the behavior 
of the concepts during the iterations of the simulation. The 
presence of extravasation (green curve) leads to a chain of 
activations of other important concepts and severity mark-
ers. One of these concepts is: elevated hematocrit (yellow 
curve) –as a consequence of fluid loss from the blood into 
the tissues (this concept reaches values of 0.7 after the fifth 
iteration). The increase in this laboratory parameter is rela-
tively due to fluid loss and not to cellular increase.

Another concept that is activated after the presence of 
extravasation is edema (blue curve), which reaches values 
above 0.5. The presence of this concept is due to the fact 
that plasma leakage in dengue causes fluid accumulation in 
the tissues.

The concepts that define SD are all activated: shock 
(orange curve) caused by the loss of blood plasma to the 

tissues. This concept reaches values between 0.85 and 0.95 
from iteration 5 onwards. Hemorrhages (purple curve) are 
caused by the loss of plasma proteins essential for coagula-
tion. In this case, the values of the concept hemorrhages 
reach moderate values between 0.6 and 0.8 after the fifth 
iteration. Another common finding in SD, is multi-organ 
failure (pink curve). This concept is possibly triggered 
by plasma leakage, causing hypotension, and leading to 
decrease blood supply to the organs. Another probable 
cause is that extravasation causes fluid accumulation in the 
organs and hinders their regular functioning. The concept 
of a multi-organ failure follows a similar behavior to that of 
hemorrhage, with similar concept values after iteration 5.

As we observed in this scenario, all the previously ana-
lyzed concepts are activated –from the first iteration– and 
remain with high values after the fifth iteration of the infer-
ence process. Finally, the severity concept is activated in 
the first iteration, and it is maintained with a high value 
(0.99) during all iterations. This indicates that the severity 
of the patient is high and should be adequately treated to 
avoid death.

In the three scenarios presented above, we see some 
concepts keep their same values during all iterations (see 
Fig. 6). This occurs when a concept is not activated from 
the beginning and has no concepts influencing it. For 
example, if the patient to be evaluated does not have fever 
(non-activated concept), this concept will have the same 
value during all iterations because it has no influential con-
cepts that modify its value.

4.4  Comparisons with other ML techniques

In this section, we evaluate the predictive capability of 
the FCM and compare it with other ML techniques, such 
as ANN and SVM (see Table 7). We use these two ML 
techniques for two reasons: 1) they are techniques that 
have shown good performance on structured data, and, 2) 
according to the literature review [7], they are the most 
widely used techniques for the development of CDSS for 
dengue (see Section 1).

The dataset, described in Section 4.1, was divided into 70% 
for training and 30% for testing. We used 10-fold cross-vali-
dation to choose the best model. The metrics used for model 
evaluation were accuracy and F1-measure. Receiving oper-
ating characteristic (ROC) curves also were implemented to 
calculate the area under the curve (AUC) of ROC.

Table 7  Results of the FCM 
classification approach and 
comparison with other ML 
techniques

Model Accuracy F1-Score

FCM 0.894 0.921
ANN 0.979 0.978
SVM 0.981 0.981
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4.4.1  Results for ANN

We used a single hidden-layer ANN (multilayer perceptron). 
We implemented different network configurations: i) number 
of units in the hidden layer (16, 32, 64, 128, 256); ii) two 
activation functions (tanh, relu); iii) two optimization algo-
rithms (gradient descent, Adam); iv) learning-rate values 
(0.0001, 0.001, 0.01, 0.05, 0.1, 0.5). The optimal parameters 
of the final model were: a learning rate of 0.01, 256 units 
in the hidden layer, a relu-activation function, and Adam as 
the optimization algorithm. After training and testing, it was 
found that the ANN correctly classifies the dengue severity 
class with an accuracy of 97.9%.

4.4.2  Results for SVM

The SVM model was built using mutiple configurations to 
find the best one for the dengue-severity classification prob-
lem. The configurations were: i) three types of kernel (linear, 
radial and sigmoid); ii) C values (0.0001, 0.001, 0.01, 0.1, 
1.0, 10.0, 100.0, 1000.0); iii) gamma values (0.0001, 0.001, 
0.01, 0.1, 1.0, 10.0, 100.0, 1000.0). The best configuration 
was the radial kernel with values of 10 for both gamma and 
C. Evaluation on the test set yielded an accuracy of 98.1%.

The results shown in Table 7 and Fig. 7 indicate that 
accuracy, AUC and F1 score values are lower for FCM than 
for ANN and SVM. ANN and SVM are excellent models to 
classify structured data; this capability is related to the dis-
covery of functional dependencies in ANN hidden layers and 
the use of support vectors to find separation hyperplanes in 
SVMs. Furthermore, they are data-driven techniques, where 
model parameters are extracted directly from the data, unlike 
FCMs where parameters are assigned by human experts with 
some bias. Nevertheless, a disadvantage of ANN and SVM 
is that they are poorly explanatory models [40], which indi-
cates that they are excellent for classification and not so good 
to evaluate among behaviour of concepts or variables. The 

FCM performed well, and it is able to correctly classifies 
dengue in 89.4% of the cases. The added value of the FCM 
is that it allows medical staff to evaluate the behavior of 
the concepts involved in the process. It is an explainable 
method that solves the result interpretability problem of the 
ML approaches, very important in sensitive critical domains 
such as healthcare. For example, in several scenarios –such 
as the one presented in Section 4.3.3– it was shown the abil-
ity of the FCM to analyze the relationships between extrava-
sation and other concepts, such as shock, hemorrhage, organ 
failure, among others. The diagnosis of dengue is not only a 
classification problem, as there are many factors related to 
the severity and classification of the disease that physicians 
must analyze to make a correct treatment decision.

Taking into account the accuracy and F1-score values of 
the FCM compared to the other ML models (see Table 7), 
we decided to use ROC curves to evaluate the behavior of 
each of the classes of dengue. One of the problems encoun-
tered is that class 2 (DWS-positive) has lower AUC values 
than the other two classes (see Fig. 8). One of the reasons 
why the low AUC value in class 2 may be occurring is that 
patients with DWS-positive are being diagnosed as SD; this 
may be due to the difficulty that –still– exists in differentiat-
ing between these two classes. There is a gray area between 
these two classes that does not allow a very accurate classifi-
cation to diagnose dengue. Another reason for the low AUC 
value in class 2 is that many patients with DWS-positive are 
being classified as SD because of the high number of alarm 
signs present in dengue. A patient with all warning signs 
could be classified as SD due to high scores calculated by 
the inference rule.

4.5  Comparison of this model with other works

In this section, we compare our model with other works 
developed for dengue diagnosis. The comparison was per-
formed based on the two most commonly used metrics in 

Fig. 7  ROC curves for the FCM model Fig. 8  ROC curves for the FCM model
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classification tasks (accuracy and AUC). Table 8 shows the 
results of this comparison.

The implementation of dengue models with new types of 
data has been increasing [7, 10, 11]. As an example, Khan 
et al. [10] developed an SVM-based classification model 
using Raman-spectroscopy data obtained from the serum of 
dengue patients. Davi et al. [11] proposed a hybrid approach 
with SVM (for feature engineering) and ANN to classify 
dengue using gene expression data.

Our model performed better than these previously pre-
sented works, probably because the utilization of clinical 
and laboratory data allows establishing stronger functional 
dependencies with disease severity. Studies have shown that 
the use of clinical and laboratory data has a higher perfor-
mance with respect to other types of data [7, 41, 42]. For 
instance, Park et al. [41] and Ho et al. [42] used structural 
equations and deep learning -respectively- to classify dengue 
using clinical and laboratory data. Although the works by 
Park et al. and Ho et al. used clinical and laboratory data, 
Table 8 shows that the result of our model is superior. This 
is probably due to the fact that the works implemented by 
Park et al. and Ho et al. used a smaller sample size than the 
one we used. It has been shown that the larger the size of the 
database, the better performance is obtained in the models 
[43, 44].

The global results of our FCM model show an excellent 
performance for classification, even outperforming many 
models previously developed for the same purpose, and our 
model has an additional feature: It allows evaluating the 
presence or absence of some features/variables related to the 
severity of dengue (it is an explainable method). Addition-
ally, our model had the ability to detect signs or symptoms 
before they appear, in order for physicians to take preventive 
actions that reduce complications and decrease mortality 
rates.

5  Conclusions

The use of computational methodologies to analyze den-
gue risk factors and classify dengue based on severity are 
useful to support the diagnosis and clinical management 
of the disease. In this study, we propose a computational 

tool to analyze the main variables involved in the clinical 
course of dengue (signs, symptoms and laboratory tests). 
In addition, the model allows the diagnosis of dengue 
based on its severity. This is the first work that proposes an 
FCM for dengue using the signs, symptoms and laboratory 
tests established by WHO for the diagnosis of the disease.

The developed model achieved 89.4% accuracy to 
diagnose dengue. The accuracy was lower than other ML 
models, such as ANN and SVM (ANN = 97.9%, SVM = 
98.1%). However, the FCM allowed the analysis of the 
behavior of factors associated with dengue. The model 
allowed the analysis of the relationships among these fac-
tors. ANN and SVM are less explanatory models because 
they do not assess the behavior of the variables involved 
in the process. Particularly, our approach is an explainable 
method that allows the result interpretation, very impor-
tant for the clinical management of dengue. This approach 
is very useful because it allows detecting signs and symp-
toms before they appear to generate preventive actions to 
reduce their presence. This ensures that complications and 
mortality rates are reduced. For this reason, FCMs are 
more integral methodologies that not only classify an out-
come but also evaluate the behavior of the factors. Finally, 
the developed model is flexible and easily adaptable to 
add more concepts and relationships. In this case, only a 
reconfiguration of the initial vector and weight matrix is 
necessary.

The severity of dengue should be evaluated early to avoid 
complications that lead to the death of patients. In this study, 
we found that the factor that most influences severity is 
extravasation. The extravasation of plasma fluids to the tis-
sues produces the loss of substances necessary for the proper 
functioning of the body. Extravasation leads to the failure 
of many organs and the patient may become complicated 
and die. The model developed made it possible to evaluate 
the presence or activation of extravasation on the severity 
of dengue.

The developed FCM in this work has four limitations. 
First, the FCM did not take into account other laboratory 
tests that physicians might have available when treating a 
patient with dengue such as liver enzymes and white blood 
cells. The use of demographic variables, such as origin, 
could also improve the performance of the system. Sec-
ond, FCM-based models based on human knowledge could 
lead to a biased assessment of the accuracy of these models 
because the weights were based on a predefined topology 
[45]. Automatically constructed FCMs perform better in 
dynamic analysis than in static analysis [28]. According to 
this, algorithms, such as particle swarm optimization, can 
be useful because they allow constructing FCMs –automati-
cally– from the dataset. Thus, the use of techniques that 
extract causal relationships –directly– from the dengue data 
is an opportunity to improve the work presented.

Table 8  Results of the FCM model and comparison with other works

Study Model Accuracy AUC 

Khan et al. [10] SVM 85% −
Davi et al. [11] ANN 86% −
Park et al. [41] SE − 0.85
Ho et al. [42] ANN − 0.86
Our work FCM 89% 0.92
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Third, there is still some uncertainty between the DWS-
positive class and the SD class. Future work could be aimed 
at decreasing the uncertainty between these dengue classes. 
The last limitation of this work is that the dataset used is 
from a single city, in Colombia, and it only evaluates the 
behavior of the concepts in that population. It would be 
useful to develop distributed strategies –such as federated 
learning [46] – to achieve a global model of different cities.

For a medical professional, the interpretation and analy-
sis of the signs, symptoms, laboratory tests and severity of 
dengue are more valuable than a classification of the den-
gue severity. There is no cure for dengue and treatment is 
aimed at palliating the signs and symptoms. Preventing the 
patient from developing complications is the primary goal of 
the physician when treating a patient with dengue. For this 
reason, an analysis of the patient’s signs/symptoms is more 
useful to a medical professional than just a classification of 
dengue severity.
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Dengue is the most widespread vector-borne disease worldwide. Timely diagnosis and treatment of dengue 
is the main objective of medical professionals to decrease mortality rates. In this paper, we propose an 
autonomous cycle that integrates data analysis tasks to support decision-making in the clinical management of 
dengue. Particularly, the autonomous cycle supports dengue diagnosis and treatment. The proposed system was 
built using machine learning techniques for classification tasks (artificial neural networks and support vector 
machines) and evolutionary techniques (a genetic algorithm) for prescription tasks (treatment). The system 
was quantitatively evaluated using dengue-patient datasets reported by healthcare institutions. Our system was 
compared with previous works using qualitative criteria. The proposed system has the ability to classify a 
patient’s clinical picture and recommend the best treatment option. In particular, the classification of dengue 
was done with 98% accuracy and a genetic algorithm recommends treatment options for particular patients. 
Finally, our system is flexible and easily adaptable, which will allow the addition of new tasks for dengue 
analysis.

1. Introduction

Dengue is an arthropod-borne viral disease transmitted by Aedes
mosquitoes, mainly Aedes aegypti and Aedes albopictus [1]. Currently, 
this infection is considered the most important arbovirosis worldwide 
in terms of morbidity, mortality and economic impact [2]. Between 
epidemiological weeks 1 and 49 of 2021, 1,173,674 dengue cases in 
the Americas region were reported, with a cumulative incidence rate 
of 118 cases per 100,000 inhabitants. In this period, the most af-
fected subregions were the Southern Cone with a cumulative incidence 
of 323 cases/100,000 inhabitants, and the Andean subregion with 89 
cases/100,000 inhabitants. Within the Andean subregion, Colombia is 
in third place with an incidence of 95 cases per 100,000 inhabitants, 
surpassed by Peru and Ecuador with 140 and 108 cases per 100,000 
inhabitants, respectively [3]. Mortality rates for dengue can be high 
when diagnosis and treatment are not appropriate, reaching values of 
20% [4].

In 2009, World Health Organization (WHO) published guidelines 
for diagnosis, treatment, prevention and control of dengue [5]. These 

* Corresponding author at: Centro de Estudios en Microelectrónica y Sistemas Distribuidos, Universidad de Los Andes, Mérida, Venezuela.
E-mail address: aguilar@ula.ve (J. Aguilar).

guidelines are, currently, used by medical personnel for the clinical 
management of dengue, from diagnosis to treatment of patients, and, 
used to avoid complications leading to death. However, there are still 
difficulties in the diagnosis and treatment of the disease. The main dif-
ficulty in these two aspects of dengue lies –mainly– in the large amount 
of information that the medical staff must analyze in a short time to 
define the procedure to follow for each particular patient. This informa-
tion corresponds to demographic, clinical and laboratory variables such 
as age, signs and symptoms that a patient with dengue may present 
[6]. One way to address this problem is to use decision support systems 
(DSS) to support the decision-making of medical personnel caring for 
dengue patients. Such systems can use data to enhance the processes 
performed by a human being [7].

With respect to the previously presented background, the contribu-
tion of this paper is a clinical DSS using an autonomous cycle of data 
analysis tasks (ACODAT) to aid decision-making in clinical settings. In 
particular, ACODAT uses the interaction of different successive tasks 
to extract the necessary knowledge to recommend improvements in a 
given process [8]. The use of ACODAT in different fields such as educa-
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tion, telecommunications and industry 4.0, have been reported [9, 10, 
11]. For example, in the educational field, ACODAT has been used to 
determine learning styles in smart classrooms. Aguilar et al. [9] used 
ACODAT to analyze web and social network data to build knowledge 
models about students. These models are used to permanently moni-
tor the learning process. The results showed the capacity of ACODAT 
for the generation of useful knowledge to improve the learning pro-
cess. In the field of telecommunications, Morales et al. [10] developed 
ACODAT for quality of service management in Internet of Things (IoT) 
platforms. The implemented ACODAT allowed analyzing the quality 
of IoT platforms using classification and clustering tasks. In Industry 
4.0, ACODAT has been developed and implemented to improve the 
efficiency of production processes. For example, Sanchez et al. [11] 
presented a framework that helps to solve the problems of integration 
and heterogeneity of the actors involved in manufacturing processes. 
The results show that ACODAT allowed to these actors (people, data, 
things and services) to interact for the creation of a self-configuration 
and self-optimization plan. Finally, it also has been used in smart cities, 
to control and supervise heating, ventilation, and air conditioning sys-
tems [12, 13].

The ACODAT concept has not been applied in the field of medicine. 
Particularly, ACODAT has not been used for clinical disease manage-
ment to date. Based on the problem of dengue, a disease that generates 
high mortality rates if not diagnosed or treated in time, and its economic 
impact on health systems, it is necessary to develop clinical DSS for the 
clinical management of dengue. For this reason, the objective of this 
work is to develop an ACODAT to support decision-making for the clin-
ical management of dengue. Currently, there are different clinical DSS 
for dengue [14]; however, the studies reported in the literature use pre-
dictive and prescriptive approaches separately, and to date, there are no 
models that integrate these two approaches, which are closely related 
to each other. Especially, prediction alone is not very useful when there 
is no prescriptive model to recommend the best options for solving the 
problem. The main contribution of this work is the development and 
implementation of an ACODAT that verifies and corrects clinical data, 
classifies dengue patients and recommends the best treatment options 
to avoid complications and death of patients.

The remainder of this paper is structured as follows: Section 2
presents a brief literature review about dengue modeling for the clin-
ical management of dengue. Section 3 introduces the generalities of 
dengue and the conceptualization of ACODAT. Section 4 describes the 
ACODAT proposed in this article, and the methodology used for its def-
inition and implementation. Section 5 shows the results of ACODAT’s 
implementation in two dengue datasets. Section 6 discusses the results 
and compares them with previous studies. Finally, Section 7 concludes 
the paper.

2. Related work

In this section, we show a brief literature review on dengue mod-
eling for the clinical management of dengue. To date, many machine 
learning (ML) models have been developed to support dengue diagnosis 
(see [14] for more information). Here, we present the most recent ones 
related to early detection, classification of the disease and prescription 
of the treatment.

2.1. Early detection of dengue

Early detection of dengue is difficult and challenging due to the lack 
of specificity in the clinical presentation of the disease. However, in re-
cent years, computer-aided strategies have been developed to support 
medical professionals in these difficult tasks. [15, 16]. For example, 
Khosavanna et al. [15] used two techniques, logistic regression (LR) and 
decision trees (DT), to develop predictive models for the assessment of 
possible early dengue infections. The authors used self-reported clinical 

manifestations from patients in non-endemic regions. The best perfor-
mance was from the DT model with an area under the curve (AUC) of 
0.75. Ho et al. [16] compared several ML techniques to identify con-
firmed dengue cases using only age, body temperature, white blood cell 
count and platelet count. Models were built with deep learning, DT and 
LR, where deep learning performed best with an AUC of 0.86.

2.2. Dengue classification

Dengue is classified into three types according to WHO: non-severe 
dengue (with or without warning signs) and severe dengue (SD). Dif-
ferentiation of these stages can be difficult in some cases due to the 
variability of the signs and symptoms of dengue. Different studies have 
attempted to model this type of problem to support diagnostic decision-
making [17, 18, 19]. For instance, Huang et al. [17] used demographic 
data and laboratory test results to classify dengue patients based on its 
severity. Several ML methods such as LR, random forest (RF), support 
vector machines (SVM) and artificial neural networks (ANN) were used 
to train the models. The best model was ANN with an accuracy of 0.75.

Chatterjee et al. [18] proposed a hybrid ANN model with a modi-
fied cuckoo optimization algorithm. The model proposed by Chatterjee 
et al. had an accuracy of 0.957 using gene expression data. However, 
the classification performed was based on that recommended by WHO 
in 1997 (dengue fever, dengue hemorrhagic fever and dengue shock 
syndrome) [20].

Hoyos et al. [19] developed a DSS for dengue using fuzzy cognitive 
maps (FCM). They implemented diagnostic models using FCM to clas-
sify patients according to the type of dengue, with an accuracy of 0.89. 
Also, they analyzed the behavior of signs, symptoms, laboratory tests 
and disease severity. This study goes further, and not only classifies the 
patient, but also evaluates the behavior of the signs and symptoms of 
dengue over time, giving recommendations as to what factors might 
influence and appear in the course of the disease.

2.3. Dengue treatment

Treatment of dengue consists of palliating symptoms and avoiding 
complications leading to death. The complexity of the treatment is rep-
resented by the high variability of the clinical manifestations presented. 
Despite WHO recommendations, the treatment of dengue remains a 
challenge for medical professionals. Unfortunately, to date, no com-
putational models have been developed to support decision making 
regarding the treatment of dengue.

In summary, the approaches proposed for the diagnosis of dengue 
based on severity are few. The models developed by [15] and [16] have 
the limitation of only detecting the disease without classifying it. On the 
other hand, the approaches developed for the classification of dengue 
have limitations such as the low classification performance in the work 
of [17], or the use of genetic data by [18], which is not useful in clinical 
practice because this type of data is not easy available for the clinician. 
Finally, there are no prescribing approaches that recommend treatment 
options for dengue.

The clinical management of dengue comprises both diagnosis and 
treatment. Thus, there is a need for the development of prescriptive 
models (treatment) integrated with classification models (diagnosis) to 
support decision making. The use of clinical data such as signs, symp-
toms and routine laboratory tests for the development of these models 
is important because of the availability and ease of collection in regular 
clinical settings.

3. Theoretical background

3.1. Clinical management of dengue

In this section, we describe the principal aspects of dengue, includ-
ing generalities, diagnosis and recommendations for treatment.
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Table 1. Summary of clinical management of dengue by treatment group recommended by 
WHO [5].

Treatment group Characteristics Management
A No warning signs Paracetamol

Tolerate adequate volumes of oral fluids Drink water
Adequate diuresis Oral intake of rehydration solutions
Normal hemogram Daily monitoring

B Warning signs Hospitalization
Comorbidities Isotonic solutions
Social conditions Hematocrit and platelets monitoring

C Severe extravasation Hospitalization
Severe bleeding Isotonic solutions 5-7 ml/kg/hour
Shock Colloid solutions 10-20 ml/kg/hour
Organ failure Vital signs monitoring

3.1.1. Generalities of dengue
Dengue is an acute infection caused by a virus of the flavivirus 

group. To date, there are four (4) serotypes of the virus (DENV-1, 
DENV-2, DENV-3 & DENV-4). The infection is transmitted from per-
son to person by the bite of an Aedes mosquito [21]. Dengue can be 
classified according to the severity of the disease into: 1) non-severe 
dengue without warning signs (NoWS-Dengue), 2) non-severe dengue 
with warning signs (YesWS-Dengue) and, 3) SD. This classification 
was recommended by a WHO expert group in 2009 [5]. Dengue has 
various forms of clinical expression: undifferentiated fever, headache, 
general malaise, osteomyoarticular pain, with or without exanthema 
and leukopenia. Severe forms of the disease are characterized mainly 
by hypovolemic shock caused by plasma extravasation, with moderate 
or severe thrombocytopenia and major bleeding in the gastrointestinal 
tract and other locations [22]. Dengue is also capable of expressing itself 
through the so-called “atypical” forms, which are relatively infrequent 
and result from particularly intense involvement of an organ or system: 
encephalopathy, cardiomyopathy or hepatopathy, among others [23].

3.1.2. Diagnosis of dengue
The definitive and confirmatory diagnosis of dengue is made using 

direct methods such as virus isolation, detection of viral nucleic acid 
or antigens; and indirect methods such as detection of antibodies pro-
duced against the virus [2]. However, these laboratory tests can take a 
long time, which could cause the patient with dengue to develop com-
plications and die. To solve this problem, there are dengue diagnosis 
guidelines published by WHO [5]. These guidelines state that the first 
step in the diagnosis of dengue is the general evaluation of the patient 
by the physician to classify the patient into a group: NoWS-Dengue, 
YesWS-Dengue & SD. The physical examination, analysis of the medical 
history, and laboratory tests such as a complete blood count, allow the 
identification of warning signs and evaluation of the patient’s hydration 
status. Classification of the patient into a group constitutes the second 
stage in the clinical management of dengue. The use of this guide is 
crucial to provide adequate management of the disease due to the wide 
spectrum of clinical manifestations of dengue.

3.1.3. Recommendations for treatment
The third step in the clinical management of dengue is treatment. 

The information obtained in the previous two steps is vital to provide 
an adequate and timely treatment for the patient with dengue. Table 1
summarizes the clinical management of dengue, by treatment group, 
based on the WHO guidelines. The treatment routes for dengue are cat-
egorized into three groups (A, B & C). In group A, we have patients 
who do not present warning signs or comorbidities and who tolerate 
oral water volumes. In addition, this group includes patients with ad-
equate diuresis. In group B, we have patients with warning signs or 
pre-existing conditions such as diabetes mellitus, obesity, renal failure, 
pregnancy, among others. Patients with some social conditions, such as 
living alone or living far from a health institution, are also classified 
in this group. Finally, group C constitutes all patients with any of the 

following complications: severe plasma extravasation, severe bleeding, 
shock, and severe organ deterioration.

3.2. ACODAT

The high amount of data generated today continues to increase con-
siderably. For this reason, it is necessary to develop new tools for data 
manipulation to extract meaningful knowledge. ACODAT is one of these 
strategies, which consists of a set of data analysis tasks that must be per-
formed together to achieve an objective in a given system or situation 
[24]. This set of tasks interacts, and has different roles in the cycle [25, 
26]: observing the process, analyzing and interpreting what happens in 
it, and making decisions to achieve the objective for what the cycle was 
designed.

The performance of successive tasks connected allows solving com-
plex problems that require a lot of knowledge for the solution [8]. The 
tasks in an ACODAT can be classified into three types [27]: observation, 
analysis and decision making. Observation tasks are those in charge of 
collecting data and information about the system or environment. The 
analysis tasks are in charge of interpreting or diagnosing the system 
using data. This function is performed by building knowledge models 
about the behavior of the cycle. Finally, the decision-making tasks are 
those in charge of performing decision-making activities to improve the 
process.

4. Methodology

In this section, we describe the methodology to create an ACODAT 
for the clinical management of dengue. Then, we specify each of ACO-
DAT’s tasks. Finally, we show the implementation of these tasks on 
specific datasets to support decision-making related to clinical manage-
ment of dengue.

MIDANO is a methodology for data analytic based on organizational 
characterization that has been defined for the development of appli-
cations based on data analysis, and especially, ACODAT [28]. In this 
paper, we use the MIDANO methodology with a little modification for 
the development of this work. The MIDANO methodology consists of 
three main phases (see Fig. 1). The objective of phase 1 is to know ev-
erything related to the organization to define the objective of the data 
analysis application. This stage focuses on identifying and conceptu-
alizing the solution to a problem, from the perspective of developing 
applications based on data analysis. Phase 2 is in charge of data prepa-
ration and treatment. This process is based on the ETL paradigm (E = 
Extraction of data from its sources, T = Transformation of data, and 
L = Loading of data). The main objective of this stage is to generate 
quality data in order to create knowledge models, and define the mul-
tidimensional data model of ACODAT. The objective of phase 3 is the 
implementation of the data analysis tasks in the ACODAT to generate 
knowledge models (descriptive, predictive, classification, prescriptive, 
among others) [29]. In our work, the first phase was used to char-
acterize the problem. In addition, we included data preparation and 
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Fig. 1. MIDANO methodology. Adapted from [29].

treatment (second phase) inside the ACODAT, such a way that the data 
is processed online (real-time) by the cycle to make the process more 
autonomous. Also, the second phase was responsible to identify the data 
sources needed to build the ACODAT. Next, we explain –in detail– each 
of the MIDANO phases applied to the clinical management of dengue.

4.1. Characterization of the dengue context

The first phase of the MIDANO methodology is to identify sources 
to extract knowledge in an organization [29]. In this case, we met with 
dengue clinical experts to identify those knowledge sources. The clini-
cal experts in dengue expressed the difficulties presented in the hospital 
environment: 1) problems with the labeling of patients with each type 
of dengue due to unintentional errors in the database entry, 2) difficul-
ties in the classification of patients with dengue due to the high number 
of variables to analyze in a short time, added to this, the lack of expe-
rience of some physicians for a correct classification of the patient with 
dengue, and, 3) difficulties in the palliative treatment of dengue for the 
same reasons expressed above.

4.2. Identification and analysis of data sources

The second phase of MIDANO corresponds to the identification of 
data sources that can help develop clinical DSS for dengue. In this case, 
the most suitable option is the use of open databases published by the 
Colombian government through the National Institute of Health (INS 
in Spanish). The data that health institutions report to the Colombian 
national health institute were identified. These data correspond to de-
mographic variables such as age, clinical variables such as signs and 
symptoms, and finally, results of laboratory tests. In MIDANO method-
ology, this phase also considers the preparation and treatment of the 
data; however, to make the process more dynamic, we included the 
processing of the data within the ACODAT.

4.3. Specification of the ACODAT for the clinical management of dengue

The last phase of MIDANO corresponds to the specification of ACO-
DAT. This paper proposes an ACODAT for the clinical management of 
dengue. Fig. 2 shows the architecture of ACODAT for clinical man-
agement of dengue. This ACODAT is composed of three steps with 
interconnected tasks for the improvement of dengue decision-making 
at the hospital level. Step 1, called monitoring, comprises the tasks of 
data verification and correction. Step 2, called disease analysis, consists 
of the task of classifying patients based on their signs, symptoms and 
laboratory tests. Finally, step 3, called treatment decision making, com-
prises the prescription task, which consists of recommending the best 

treatment option for a given patient. The data analysis tasks used tech-
niques that belong to different fields of artificial intelligence (AI), such 
as ANN and genetic algorithm (GA) which belong to the field of com-
putational intelligence; and SVM which belongs to the ML field.

4.3.1. Task 1: data verification and correction
The results obtained in modeling depend largely on the quality of the 

data [30]. The first task of our ACODAT is to detect and correct possible 
errors to perform the next tasks in the best way. Missing data is very 
common in this kind of data; for this reason, rows with missing data 
are removed from the dataset. Another problem with dengue datasets is 
the imbalance of their classes, because one of the classes (SD) is always 
in lower proportion to the other two classes (NoWS-Dengue & YesWS-
Dengue). For this reason, an oversampling technique was used.

4.3.2. Task 2: classification
After data are prepared and verified, they are passed to the second 

ACODAT task. This task uses classification techniques to determine the 
type of dengue in patients. For this task, we used ANN and SVM. The 
main characteristics of this task are shown in Table 2.

4.3.3. Task 3: prescription
This task uses a list of prescriptions for dengue –described in the 

WHO guidelines– for the clinical management of dengue. Based on the 
results of the previous task, a GA optimizes the best treatment option 
for a particular patient. Table 2 shows the characteristics of this task.

4.4. Implementation of ACODAT for the clinical management of dengue

In this section, we implemented ACODAT for the clinical manage-
ment of dengue using datasets from two regions of Colombia.

4.4.1. Datasets
The Data used for this implementation are those stored in the 

database of the Colombian epidemiological surveillance system (SIVIG-
ILA in Spanish), which correspond to records of dengue patients re-
ported by health institutions to the Colombian National Health Institute, 
the entity in charge of managing this type of information in Colombia. 
For the experiments, we used data from the city of Medellin (2008-
2018) and the department of Córdoba (2010-2021) [31]. We chose 
these regions because they are endemic for dengue. According to epi-
demiological reports, the annual incidences reported are 161-745 and 
51-503 per 100,000 inhabitants for Medellín and Córdoba, respectively 
[32].

Medellín and Córdoba datasets were composed of 52,051 and 
16,670 patients, respectively. Both datasets had 36 variables, of which 
14 were eliminated because they did not contribute to our study or were 
not related to the clinical management of dengue, for example: address, 
type of social security, city and department codes, among others. Fi-
nally, 22 variables were selected corresponding to the signs, symptoms 
and laboratory tests that the medical professional observes or detects in 
each patient suspected of dengue. Table 3 shows each of the variables 
included in the datasets, their type and a brief description. All predictor 
variables in the datasets are binary (except age, which was numeri-
cal), where 1 represents the presence of the sign or symptom and 0 
represents the absence. The target variable is categorical with 3 classes 
corresponding to the WHO classification of dengue (No WS-Dengue, Yes 
WS-Dengue & SD).

4.4.2. Implementation of task 1: data verification
In general, health data have some very common particularities, such 

as low quality [30]. In the case of dengue data, there are many errors 
for different reasons. One of the reasons is the speed of the medical 
professionals in entering the dengue notification forms to the health 
authorities. Also, the high demand for hospital care causes medical pro-
fessionals to enter unintentional errors into the datasets. For example, 
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Fig. 2. Architecture of ACODAT for clinical management of dengue.

Table 2. Description of the ACODAT’s tasks for clinical management of dengue.
Task name Characteristics of the task

Description Data source Analytics type Technique Knowledge model
Data verification Verification of data 

and correction of errors
Datasets of National Institutes 
of Health about dengue

Description Verification 
Oversampling

Descriptive

Classification Classification of a patient 
by their variables

Previous task Classification 
Prediction

ANN
SVM

Predictive

Prescription Determination of the best 
treatment option for dengue

Previous task Optimization Genetic algorithm Prescriptive

a very common error in the databases is to find patients with NoWS-
Dengue classified as having SD.

Missing data treatment was carried out using the listwise method, 
which consists of eliminating all the data of an observation if there is 
at least one missing data. For class balancing, we used the Synthetic 
Minority Oversampling Technique (SMOTE) due to the low frequency 
of the SD category. Table 4 shows the distribution of dengue type in the 
datasets after applying preprocessing techniques.

For this first task, a Python 3.5 program was written to verify and 
correct the data. We used libraries such as Pandas [33] to extract and 
process the structured data. The Imbalanced-learn library [34] was used 
to correct the imbalance of the classes. The steps to follow in this task 
are the following: 1) extract the structured database of patients with the 
three types of dengue, 2) verify if there are errors in the patient labels; 
for example, if there are patients without warning signs classified as SD, 
reassign the label as NoWS-Dengue, 3) eliminate rows with missing data 
because the value of the variable for that patient cannot be established, 
4) Balance the classes using the oversampling technique that consists 
of increasing the number of samples of lower frequency in the dataset 
[35]. In this case, the records for the SD class. Fig. 3 represents the 
activities or subtasks performed in this task. Fig. 3. Activities or sub-tasks related to task 1 (data verification and correction).
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Table 3. Variables used to build the ACODAT for clinical management of dengue.
Code Variable Type of variable Description
V1 Age Demographic Time elapsed since the birth of an individual
V2 Fever Sign/symptom Increase in body temperature
V3 Cefalea Symptom Pain and discomfort located in any part of the head
V4 Pain BE Symptom Pain behind eyes
V5 Myalgias Symptom Muscle aches
V6 Arthralgias Symptom Joint pain
V7 Rash Sign/symptom Skin exanthema
V8 Abd. pain Sign/symptom Intense pain, located in the epigastrium and/or right hypochondrium
V9 Vomit Symptom Violent expulsion by the mouth of what is contained in the stomach
V10 Lethargy Sign/symptom State of tiredness and deep and prolonged sleep
V11 Hypotens. Sign Excessively low-blood pressure on the artery wall
V12 Hepat. Sign Condition of having an enlarged liver
V13 Muc. hemo. Sign/symptom Manifestations of mild to severe bleeding in the nasal mucosa, gums, skin, female genital tract, brain, lungs, digestive tract and 

hematuria
V14 Hypoterm. Sign/symptom Decrease of body temperature
V15 High hem. Lab. test Indirect increase in hematocrit test
V16 Low plat. Lab. test Decrease of platelet levels in the blood
V17 Edema Sign/symptom Swelling caused by excess fluid trapped in body tissues
V18 Extrav. Sign It is characterized by serous spills at the level of various cavities
V19 Bleeding Sign/symptom Blood leaks from the arteries, veins or capillaries through which it circulates, especially when it is produced in very large 

quantities
V20 Shock Sign Manifestation of severity evidenced by cold skin, thready pulse, tachycardia and hypotension
V21 Org. fail. Sign Affectation of several organs due to the extravasation of liquids
V22 Dengue category Target Type of dengue based on the severity

Table 4. Distribution of dengue categories in the datasets.
Dataset Dengue category Original After listwise deletion After balancing
Medellín No WS-Dengue 27,230 10,210 10,210

Yes WS-Dengue 12,669 11,123 11,123
SD 437 123 11,186
Total 52,051 21,456 32,519

Córdoba No WS-Dengue 9,905 4,563 4,563
Yes WS-Dengue 6,179 5,134 5,134
SD 586 231 5,623
Total 16,670 9,928 15,320

Fig. 4. Steps related to task 2 (classification).

4.4.3. Implementation of task 2: classification
The second task of the ACODAT classified the patients in the three 

labels of the dataset. Fig. 4 shows the activities in this task. The labels 
were NoWS-Dengue, Yes-WS-Dengue & SD. This task was performed 
using ANN and SVM techniques, which were chosen for their high per-
formance for classification with clinical datasets [19].

This task had as input the clean and verified dataset product of the 
previous task (data verification and correction). We divide the dataset 
in 70% for training and validation, and 30% for testing. We used 10-
fold cross-validation to find the best combination of hyperparameters 
and used different configurations for both ANN and SVM. In the case 
of ANN, we used a multi-layer perceptron with a single layer, and for 
SVM, we used SVM in its classifier version. Table 5 shows the different 
configurations of hyperparameters for each implemented technique.

The implementation of this task was performed in Python 3.5 using 
the Scikit-learn library [36] for modeling and the Numpy library [37] for 
matrix and vector processing.

4.4.4. Implementation of task 3: prescription
Task 3 was focused on decision-making. In this case, it was focused 

on determining the best treatment option for a patient with a particular 
type of dengue. Fig. 5 shows the steps of this task. The implementation 
of this task was performed using a GA to find an optimal solution to the 
problem. The first step of this task was to identify some prescriptions 
recommended by WHO in the guidelines for the treatment of dengue. 
We identified six prescriptions: paracetamol (! ), drinking water (" ), 
oral rehydration solutions (#$%), isotonic solutions 5-7 ml/kg/hour 
(&%), colloid solutions 10-20 ml/kg/hour ('%) and hospitalization ((). 
These are the main prescriptions recommended by WHO for the treat-
ment of dengue (see Table 1 and [5] for more information).

Fig. 6 summarizes the methodological framework for the creation of 
a prescriptive model using a GA. The prescriptions were binary coded 
to feed the GA. The steps to find the optimal solution were: 1) gener-
ation of random binary chromosomes representing different solutions 
(alternative prescriptions). The number of generations depended on 
having individuals with prescriptions greater than or equal to 95% as-
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Table 5. Hyperparameter settings used to build the ANN and SVM models.
Technique Hyperparameter Options
ANN Number of hidden units 16, 32, 64, 128, 256

Learning rate 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5
Activation function tanh, ReLU
Optimizer Gradient descent, Adam

SVM Kernel Linear, radial, sigmoid
C 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0
gamma 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0

Fig. 5. Steps related to task 3 (prescription).

sertiveness. 2) estimation of the fitness of each chromosome using a 
function, 3) creation of new individuals using genetic operators. In this 
step, two parent chromosomes with the best fitness are selected, and 
crossover and mutation operators are used in them. 4) generation of a 
new population for a new iteration/generation. Fig. 7 shows a graphical 
representation of the chromosomes, crossover and mutation processes. 
The crossover and mutation probabilities were set to 0.5, respectively.

Several studies have shown that these probability values generate 
the best performance results on similar problems [38, 39, 40]. The 
crossover operator takes two selected parents and cuts the chromosomes 
at a randomly chosen position to produce two initial and two final gene 
subsets. The final subsets are then swapped, producing two new com-
plete chromosomes. The mutation operator is applied to each offspring 
individually, and consists of the random alteration of each component 
gene of the chromosome. Regarding the fitness functions to evaluate the 
possible solutions, these were established based on the type of dengue. 
All the fitness equations proposed have as output a value between 0 and 
100 that corresponds to the fitness of a solution (chromosome) to solve 
the problem, being 0 not suitable at all and 100 very suitable. The vari-
ables involved in these functions are: the list of prescriptions described 
above (! , " , #$%, &%, '%, (), "!), {) = 1,2,3}, which corresponds 
to the penalty when unsuitable treatment options are recommended 
for the type of dengue, *) which corresponds to the result of the fit-
ness function for each type of dengue. The )+ℎ value corresponds to the 
dengue type. Finally, the - value is a random number to increase the 
searching space.

"!1 = &% × 2 +'% × 2 (1)
*1 = (-(30,40) × ! + -(50,60) ×" ) × 0.8"!1 × 0.1( (2)
"!2 = ! +'% × 2 (3)
*2 = (-(65,75) × &% + -(15,25) ×#$%) × 0.8"!2 × 0.11−( (4)

"!3 = ! +" × 2 (5)
*3 = (-(65,75) ×'% + -(15,25) × &%) × 0.8" !3 × 0.081−( (6)

All fitness equations were constructed with the help of dengue clini-
cal experts, who assigned the coefficients for each variable or treatment 
option depending on its importance in the clinical management of the 
disease for each type of dengue. Eq. (2) is the fitness function for NoWS-
Dengue. In this type of dengue, the use of recommendations such as the 
application of IS and CS is not recommended, so the fitness function 
penalizes the use or the presence of this recommendation in a chromo-
some during the optimization process (see Eq. (1)). For this case, the 
clinical experts in dengue assigned a coefficient of 0.8 to penalize the 
use of these strategies in this type of patient. In addition, the fact of 
being hospitalized (H) is penalized, because a patient with no warning 
signs does not need to be hospitalized [5]. For this case, the experts as-
signed a coefficient of 0.1 for this variable, because it is not so serious 
for the patient to be hospitalized. Random intervals are included to sim-
ulate the fact that prescriptions are not absolute and a prescription will 
not work the same for all patients. In these random intervals, a little 
more weight is given to W since hydration is key to keeping the patient 
from getting worse [5]. In Eq. (4) corresponding to YesWS-Dengue, the 
use of CS is penalized because they are patients who are not in severity 
and do not require this type of treatment (see Eq. (3)). Besides, there 
is a severe penalty if the patient is not hospitalized, since patients with 
warning signs need to be closely monitored given the high risk of wors-
ening [5]. In the same way as in Eq. (2), experts assigned coefficients 
for each treatment variable. Finally, Eq. (6) represents the fitness func-
tion for SD. In this function, the use of P and W is penalized (see Eq. (5)) 
because these patients are in a state of severity and do not tolerate the 
use of oral solutions or medications. Finally, it is penalized if the pa-
tient is not hospitalized, since patients with SD need to be treated on 
an emergency basis [5]. In the same way as in Eq. (2) and Eq. (4), ex-
perts assigned coefficients for each treatment variable to build fitness 
functions.

Due to the lack of datasets with dengue treatment results, we imple-
mented this prescriptive task in some specific scenarios. We use a binary 
vector to represent the patient’s age, clinical and laboratory variables, 
where 0 means the absence of the variable and 1 means the presence 
of the variable. For the type of dengue, we used 1 = NoWS-Dengue, 
2 = YesWS-Dengue and 3 = SD. With respect to treatment options, 
1 means that this treatment option is recommended for that patient, 
while 0 represents that this treatment option is not recommended. The 
implementation of this task was done using the Python 3.5 Pandas and 
Numpy libraries [33, 37].

5. Results

In this section, we show the results of each of the tasks implemented 
in ACODAT. First, we show the main characteristics of the cleaned and 
corrected datasets. Second, the results of the classification model and, 
finally, the results of the prescription in specific scenarios.

5.1. Clean and corrected dataset

The first task aims to detect and correct errors in the dataset. Table 4
shows the results of the dataset after applying different data science 
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Fig. 6. Methodological flowchart to create a prescriptive model using a GA.

Fig. 7. Example of chromosomes, crossover and mutation processes in a GA.

techniques for data correction. Finally, we used 32,519 and 15,320 
records to generate the classification models for Medellín and Córdoba, 
respectively.

The description of the categorical variables in the dataset was done 
in the previous section. The only quantitative variable was age, and its 
distribution is shown in Fig. 8. Plots A, B and C in Fig. 8 represent the 
age distribution in the Medellín dataset, while plots D, E and F rep-
resent the age distribution in the Córdoba dataset. The distribution of 
age, in the three dengue categories, showed similar results for both the 
Medellín and Córdoba datasets. The Kolmogorov-Smirnoff test was per-

formed to test the normality of this variable. The results showed that 
they do not follow a normal distribution (. < 0.001 for the three cate-
gories). The right-skewed density curves in Fig. 8 confirm the results, 
where the average age is greater than the median.

5.2. Classification models

Table 6 and Fig. 9 show the performance results of this task, and 
the optimal values of the hyperparameters for each technique. Plot A 
in Fig. 9 corresponds to the performance of the classification model on 
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Fig. 8. Age distribution in the datasets according to the dengue category (yellow = NoWS-Dengue, blue = YesWS-Dengue, red = SD). A, B and C correspond to the 
Medellín dataset, while D, E and F correspond to the Córdoba dataset. The solid and dash lines indicate the mean and the median, respectively. The p-values are the 
result of normality test for each class.

Table 6. Quality of developed models used to classify dengue patients.
Model Hyperparameters Dataset

Medellín Córdoba
Accuracy F1-Score Accuracy F1-Score

ANN ∙ 256 hidden units 0.979 0.978 0.977 0.977
∙ ReLU
∙ Adam
∙ / = 0.01

SVM ∙ Radial kernel 0.981 0.981 0.972 0.971
∙ C = 10
∙ 0 = 10

the Medellin dataset, while Plot B represents the performance on the 
Córdoba dataset. The implemented models showed an excellent perfor-
mance to classify patients based on severity. The best performing model 
was the one developed with the Medellin dataset, with an accuracy of 
0.981 and AUC of 0.98. However, all models had a high performance 
with accuracies above 0.97.

5.3. Prescriptive model

In this section, we show the results of the prescriptive model in spe-
cific scenarios. We chose three scenarios (one for each type of dengue) 
to show the ability of the model to prescribe treatment for dengue in 
each disease variant.

5.3.1. Scenario 1
Patient 65 years old with following symptoms: fever, headache, 

myalgias. The previous task (classification) classifies this patient as 
NoWS-Dengue. This information is received by the prescriptive task, 
and based on the fitness function assigned for this type of dengue 
(Eq. (2)), it optimizes the solution that corresponds to the best treat-
ment option for this patient. Table 7 shows the vectors corresponding 
to the patient variables, the result of the classifying task, and the result 

of the prescriptive task showing the options that are recommended for 
this particular patient. In this case, the output of the predictive model 
is used by the prescriptive model to optimize the optimal treatment for 
this patient.

The results show that the prescriptive model recommends the use of 
P, W and ORS. This result is correct because, in this patient, it is only 
important to rehydrate to maintain plasma volume and P to relieve 
symptoms such as fever, headache and muscle aches. Regarding the 
other decision variables, it is not necessary to apply IS or CS because 
there are no signs indicating fluid accumulation in the patient’s body. 
Furthermore, this type of patient does not need to be hospitalized, so 
the prescriptive model does not recommend this treatment option. In 
summary, the prescriptive model makes a correct recommendation with 
respect to the WHO recommendations.

5.3.2. Scenario 2
Patient 35 years old with: headache, myalgias, arthralgias, vomiting, 

abdominal pain. Using the result of the previous task, this patient is 
classified as YesWS-Dengue. The GA uses the fitness function of Eq. (4)
to choose the best solutions for this particular patient. A chromosome 
with the best fitness is obtained. In Table 8, we can observe the age, 
signs, symptoms and laboratory tests of this patient represented in a 
vector. In addition, we can observe the type of dengue classified by 
the previous task, and, finally, we observe the best treatment options 
for this patient. In this scenario, the most important finding is that the 
patient presents two warning signs, such as vomiting and abdominal 
pain. Based on these findings, the prescriptive model recommends P, 
W, ORS, application of IS and H.

The presence of fever and pain in the patient confirms the recom-
mendation of analgesics such as P. The use of ORS and W is recom-
mended in this type of patient, since hydration is an important aspect to 
prevent dengue complications. However, as this patient presents some 
warning signs, such as vomiting and abdominal pain, the application 
of IS is necessary to help with the patient’s hydration. Regarding hos-
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Fig. 9. ROC curves to evaluate the quality of the models used to classify dengue patients. A = Medellín dataset, B = Córdoba dataset.

pitalization, the model prescribes that it is one of the best treatment 
options, due to the patient’s warning signs. This type of patient must be 
constantly monitored and assessed to avoid complications and death. In 
summary, the prescriptive model developed makes a correct recommen-
dation with respect to the clinical management guidelines for dengue 
published by WHO.

5.3.3. Scenario 3
Case 3: Patient 49 years old with: fever, myalgias, arthralgias, shock. 

Using the result of the previous task, this patient is classified as having 
SD. The GA uses the fitness function of Eq. (6) to choose the best so-
lutions for this particular patient. In Table 9, we can observe the age, 
signs, symptoms and laboratory tests of this patient represented in a 
vector. In addition, we can observe the type of dengue classified by the 
previous task, and, finally, we observe the best treatment options for 
this patient. In this case, the most important manifestation of the pa-
tient is shocked.

The use of P, W and ORS are not the best options. The prescriptive 
model does not recommend any of these options because it does not 
find them feasible for this patient. Instead, the prescriptive model rec-
ommends the application of IS and CS to restore the patient’s plasma 
volume. In addition, the prescriptive model recommends hospitaliza-
tion, since this patient should be hospitalized immediately for adequate 
treatment and follow-up. In summary, the prescriptive model recom-
mends optimal and feasible treatment options for patients with SD. The 
recommendations made by the prescriptive model are in accordance 
with the recommendations published by the WHO.

6. Discussion

The clinical management of dengue is of vital importance to reduce 
mortality rates from the disease. Diagnosis and treatment must be op-
timal and prompt to avoid complications leading to death. We set out 
to develop an ACODAT to support decision-making in the clinical man-
agement of dengue.

Our proposal monitored data quality and corrected possible errors 
related to missing data, misclassification of dengue patients, and balanc-
ing of dengue categories. The quality of the models depends to a large 
extent on the quality of the data. The excellent quality of the classifi-
cation models obtained in ACODAT’s task 2 indicates the quality of the 
data used to train these models. Although in recent years data-driven 
strategies continue to increase, this aspect remains a challenge for mod-
eling in medicine.

Dengue classification was performed using two ML techniques 
widely used in the medical field. ANN and SVM are excellent tech-
niques for finding linear and nonlinear variable relationships in medical 
datasets. Few works have been developed using SIVIGILA datasets for 

dengue classification. The work of Hoyos et al. [19] developed a classi-
fication model using FCM. The results of this work showed an accuracy 
of 0.89. The results of our model showed a higher performance (see 
Table 6 and Fig. 9), perhaps because the relationships were extracted 
from the data and not assigned by experts, as occurs with FCM.

On the other hand, to date, there is no specific treatment for dengue. 
However, WHO has published treatment guidelines to alleviate symp-
toms and avoid complications. The non-specificity of signs and symp-
toms makes it difficult to choose the appropriate treatment in specific 
scenarios. The development of computer-aided strategies could support 
decision-making in clinical settings. In this sense, our work is the first 
study to report a prescriptive model to generate treatment recommen-
dations based on WHO guidelines. The prescriptive model developed 
has the capacity to prescribe suitable actions for the palliative treat-
ment of dengue.

We qualitatively compare our work with other similar works using 
some criteria listed below: A) The proposed approach uses AI tech-
niques for the classification of dengue. B) The proposed approach uses 
a technique of AI to recommend the best option for the treatment of 
dengue. C) The proposed approach automates the clinical management 
of dengue (diagnosis and treatment). D) The proposed approach is intu-
itive, extensible y easily adaptable (e.g., if it can become a multi-agent 
clinical decision-making system [41]).

Table 10 shows the comparison between previous works and our 
research. The study by Chatterje et al. [18] implemented a hybrid ap-
proach to dengue classification using gene expression data. The authors 
used an ANN enhanced with the Cucko search optimization algorithm. 
The type of ANN used was the multi-layer perceptron with a single hid-
den layer in its structure. The aim of this work was to classify patients 
into different dengue classes; however, 2009 WHO dengue classifica-
tion was not used. The authors used 1997 WHO dengue classification, 
which proposed to classify dengue into classic dengue, dengue hemor-
rhagic fever and dengue shock syndrome. Additionally, the data used 
were genetic, which is not easy or inexpensive to collect in routine clin-
ical practice. Finally, this work does not present treatment options for 
the disease.

Macedo-Hair et al. [42] analyzed the clinical profiles of dengue 
patients to identify clusters of patients, and thus classify them into 
the three types of dengue suggested by WHO. The authors used self-
organizing maps and RF with clinical and laboratory data to identify 
characteristics that could be used as risk criteria for dengue severity. 
The results of this work are interesting because they show the charac-
teristics of each disease group; however, it only focused on the diagnosis 
or classification of the disease and the recommendation of the best treat-
ment option was not addressed.

Park et al. [43] implemented predictive models to classify patients 
with dengue. The authors used clinical and laboratory variables that 
fed into structural equation models. This was the first work that imple-
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Table 7. Results of classification and prescription tasks for a patient with NoWS-Dengue.
Variables (age, signs, symptoms and laboratory tests) Dengue type Treatment options
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 P W ORS IS CS H
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - -

↓

Classification task
↓

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 - - - - - -
↓

Prescription task
↓

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

Table 8. Results of classification and prescription tasks for a patient with YesWS-Dengue.
Variables (age, signs, symptoms and laboratory tests) Dengue type Treatment options
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 P W ORS IS CS H
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - -

↓

Classification task
↓

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 - - - - - -
↓

Prescription task
↓

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 1 0 1

Table 9. Results of classification and prescription tasks for a patient with SD.
Variables (age, signs, symptoms and laboratory tests) Dengue type Treatment options
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 P W ORS IS CS H
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 - - - - - - -

↓

Classification task
↓

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 - - - - - -
↓

Prescription task
↓

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 1 1
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Table 10. Criteria for evaluation of our 
work with previous works.

Research Evaluation criteria
A B C D

[18]
[42]
[43]
Our work

mented structural equations applied to clinical data to develop predic-
tive models; however, their work only used children and a small sample 
size to develop the models. It is difficult to generalize these results to 
patients of all ages. Additionally, the work was only focused on diagno-
sis and did not take into account the treatment of the disease.

The approaches and models previously developed and reported in 
the literature only meet two criteria corresponding to the use of ML 
techniques to generate the models, and the intuitiveness, extensibility 
and adaptability to increase their capabilities. It is important to remem-
ber that the clinical management of dengue involves not only diagnosis, 
but also treatment. The prediction or classification of dengue is insuffi-
cient if it does not support decision-making regarding treatment.

With this problem in mind, we proposed an ACODAT for the clin-
ical management of dengue. The proposed approach considers data 
processing, classification and diagnosis of the patient into one of the 
three categories recommended by the WHO. Besides, our approach also 
provides an additional feature, which consists of the recommendation 
of the best treatment option (within a range of initially defined pre-
scriptions) for a patient according to the type of dengue presented. The 
integration of different tasks that use AI techniques in the ACODAT was 
effective and allowed a more efficient clinical management of dengue 
patients, knowing that time is a critical factor for this type of patient. 
The proposed ACODAT was evaluated in different types of dengue. The 
results shown in previous sections demonstrate the diagnostic and pre-
scriptive capability of the proposed approach.

In summary, our model is the only one that meets the four crite-
ria defined in Table 10. Our approach uses AI techniques, not only for 
the classification of dengue, but also for prescribing the best treatment 
options (criteria A and B). To the best of our knowledge, there are no 
reports of automated systems for classifying dengue and recommending 
treatment (criteria C). Using only the variables used in conventional 
dengue diagnosis, our system can classify the clinical picture and rec-
ommend automatically treatment options. According to criteria D, our 
system is intuitive and easy to use, because the clinician only must en-
ter age, signs, symptoms and laboratory tests. With this information, the 
system will automatically classify the patient and then recommend the 
best treatment options for that particular patient. Finally, our system is 
flexible and easily adaptable because it is possible to add new tasks to 
the cycle to consider other important aspects of dengue.

7. Conclusions

This paper proposed a clinical DSS for dengue using ACODAT. The 
objective was to develop a system that allows the processing of data, 
classification of the patient according to the type of dengue, and based 
on this last characteristic, recommendation of the best treatment option 
from a list of available treatments. The ACODAT developed has the abil-
ity to prepare the data and process them so that they are ready for the 
next task of the cycle. The AI techniques used, ANN and SVM, have the 
ability to correctly classify patients with high performance. The GA used 
in the last task of the cycle has the potential to recommend (prescribe) 
the best treatment option according to symptoms, signs and laboratory 
tests. The joint use of data analysis tasks in a cycle had key advan-
tages over separate approaches. One of them is time to diagnose. With 
the proposed approach, it is possible to diagnose and recommend auto-
matically patient treatment. This is very important because the time to 

diagnose and treat dengue is crucial to avoid complications and death 
of patients. To the best of our knowledge, this is the first work that uses 
an autonomic approach to support the clinical management of dengue. 
In addition, it is the first work to propose a prescriptive model for the 
clinical management of this disease.

This study has several limitations. First, some variables involved in 
the overall assessment process by the medical professional were not 
available to be included in the implementation of the models. Second, 
the unavailability of cohort datasets (before/after) to verify whether 
the recommended treatment had a positive impact on patients’ health. 
For this latter, it is necessary to validate the results of this study in real 
hospital environments.

Future work should be aimed at improving the models implemented 
using routine laboratory tests such as white blood cell counts, blood 
levels of liver enzymes and cytokines. In addition, the inclusion of co-
morbidities such as diabetes and arterial hypertension could improve 
the performance of the models due to the influence of these diseases on 
the severity of dengue. Finally, the creation of available datasets with 
prescriptive or treatment variables would be useful to validate the re-
sults of prescriptive models.
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Abstract

Background: The development of computational methodologies to support clinical decision-making

is of vital importance to reduce morbidity and mortality rates. Specifically, prescriptive analytic is

a promising area to support decision-making in the monitoring, treatment and prevention of dis-

eases. These aspects remain a challenge for medical professionals and health authorities.

Materials and Methods: In this study, we propose a methodology for the development of pre-

scriptive models to support decision-making in clinical settings. The prescriptive model requires a

predictive model to build the prescriptions. The predictive model is developed using fuzzy cogni-

tive maps and the particle swarm optimization algorithm, while the prescriptive model is developed

with an extension of fuzzy cognitive maps that combines them with genetic algorithms. We evalu-

ated the proposed approach in three case studies related to monitoring (warfarin dose estimation),

treatment (severe dengue) and prevention (geohelminthiasis) of diseases.

Results: The performance of the developed prescriptive models demonstrated the ability to esti-

mate warfarin doses in coagulated patients, prescribe treatment for severe dengue and generate

actions aimed at the prevention of geohelminthiasis. Additionally, the predictive models can pre-

dict coagulation indices, severe dengue mortality and soil-transmitted helminth infections.

Conclusions: The developed models performed well to prescribe actions aimed to monitor, treat

and prevent diseases. This type of strategy allows supporting decision-making in clinical settings.

However, validations in health institutions are required for their implementation.

Keywords: Prescriptive model, Clinical decision-making, Predictive model, Artificial intelligence
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1. Introduction1

Prescriptive analytic is an area of data analytic that is concerned with generating actions that2

lead to desired outcomes in modeled systems [1]. In healthcare, prescriptive modeling has estab-3

lished itself as a promising area for the improvement of healthcare systems. With the development4

and implementation of prescriptive modeling, it is expected to achieve greater speed and accuracy5

in the monitoring, treatment and prevention of disease, as well as an improvement in the quality6

of health care.7

In this work, we are interested in developing methodologies to generate prescriptive models to8

support decision-making focused on treatment, follow-up and prevention of diseases. The devel-9

opment of methodologies for clinical decision-making has generated much interest in recent years.10

Machine learning, computational intelligence and clinical decision analysis have been widely used11

for this purpose. However, there are some limitations or disadvantages associated with the use of12

such approaches. The complexity of the models for medical professionals to understand is a dis-13

advantage, because they consider machine learning and computational intelligence models as a14

“black box”[2]. With respect to clinical decision models, specifically, decision trees do not take15

into account recurrent events and require individuals with similar characteristics. Markov models16

have been developed to overcome the problems presented by decision trees. However, Markov17

models ignore the interaction between individuals and consider few health states. Another im-18

portant problem is the computational complexity; probability evaluations in Markov decision pro-19

cesses can increase with the complexity of the problem or system to be modeled [3, 4]. Finally,20

another limitation is that clinical decision analysis requires more data than other stochastic mod-21

eling techniques due to variations in transition probabilities at each decision stage [5]. Based on22

these problems, it is necessary to develop methodologies that generate prescriptive models that are23

explainable to medical professionals, that are computationally e�cient regardless of the complex-24

ity of the problem, and that have a minimally acceptable performance with small datasets.25

In this study, we propose an approach for generating prescriptive models to support decision-26

making in clinical settings. Our approach is capable of generating prescriptive models that suggest27
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prescribing actions for treatment, follow-up and prevention of diseases. The combination of fuzzy28

cognitive maps (FCMs) –explainable method– and genetic algorithms (GAs) allowed the devel-29

opment of a methodology for the generation of prescriptive models. The ease of construction and30

interpretation of FCMs brings an added value di↵erent from the models reported in the literature.31

Our approach starts with FCM creation and subsequent characterization of the FCM using the32

nature of the concepts. Each concept is discriminated in two layers: system and action. In the33

first case, they are all those variables measurable in patients such as demographic variables, signs,34

symptoms and laboratory tests. While the action variables are all those related to actions aimed at35

the treatment, follow-up and prevention of diseases. The second stage of our approach consists of36

the initial instantiation of the system, where the medical user sets the desired state for the system37

variables. Finally, an optimization algorithm (GAs) is used to find the optimal action values that38

through the FCM inference system leads to the desired state of the variables related to the sys-39

tem. The proposed approach is tested in three case studies and the results obtained in this research40

demonstrate the capability of the designed prescriptive models to generate prescriptions with high41

accuracy and low error.42

The remainder of this paper is organized as follows: Section 2 shows a literature review about43

the last trends in prescriptive modeling in medical settings. Section 3 describes the methodology44

used to generate the prescriptive models. The next section presents three case studies with the45

datasets for each case study, and the configuration of experiments. Section 5 shows the results46

based on case studies. Section 6 discusses the results and shows a comparison with previous47

works. Finally, Section 7 concludes the paper.48

2. Related work49

Prescriptive analytic is responsible for the generation of prescriptive models that support decision-50

making [1]. In this context, the prescription is a set of actions that the decision-maker executes51

to achieve a given outcome [6]. Prescriptive models can be categorized into three main areas: i)52

prescriptive modeling using machine learning, ii) prescriptive modeling using computational in-53

telligence, and iii) prescriptive modeling using clinical decision analytics. Below, we show some54

studies related to each of these categories.55
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2.1. Prescriptive modeling using machine learning56

Prescriptive analytic has attracted much interest due to its potential application in medical57

environments. The use of machine learning has been widely extended for the development of pre-58

scriptive models to support decision-making in clinical or medical settings [7–9]. For example,59

Bertsimas et al [7] proposed and implemented two machine learning methods (prescriptive opti-60

mal tree and prescriptive support vector machines) to generate prescriptive models that generate61

recommendations to reduce the risk of readmission after surgery. The authors used red blood cell62

transfusion as an actionable feature. The models developed by Bertsitmas et al. have the ability to63

reduce the risk of readmission by 12% and the results are interpretable because the models allow64

the identification of variables that influence the prescription made. Harikumar et al. [8] developed65

a prescriptive analytic solution that uses machine learning approaches to recommend actions in66

diabetes, heart attack, and stroke. The goal was to find the smallest change within the actionable67

characteristics to achieve the change from an undesirable to a desirable class. The capability of the68

developed models was tested on Center for Disease Control and Prevention (CDC) datasets using69

logistic regression, k-nearest-neighbor (KNN) and random forest (RF). The most favorable results70

were for KNN on the stroke dataset (88% accuracy), and for the other datasets the results are very71

similar. Hosseini et al [9] proposed an algorithm to optimize decision variables with respect to a72

variable of interest. The developed algorithm used Bayesian networks to reduce diabetes mortality73

rates, by prescribing the optimal combination of drugs for disease control. The algorithm was74

tested on a dataset of patients with diabetes and had the particularity of generating interpretable75

prescriptive models because the variables influencing the prescription could be identified. The76

models generated by Hosseini et al, obtained an accuracy of 88.75% and an area under the curve77

of 71.15%.78

2.2. Prescriptive modeling using computational intelligence79

Computational intelligence is a subarea of artificial intelligence where fuzzy logic, artificial80

neural networks and evolutionary algorithms are combined. Such approaches have been used for81

the development of prescriptive models in clinical settings [10, 11]. For example, Hoyos et al.82

[10] implemented an autonomous cycle of data analysis tasks where they combined artificial neu-83
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ral networks and GAs to optimize decision-making in the clinical management of dengue. Dengue84

is a disease that has no cure and its treatment is based on alleviating symptoms and avoiding com-85

plications. The models created had the ability to classify dengue and follow the recommendations86

given by the WHO for the treatment of each type of dengue. Chalmers et al. [11] proposed a pre-87

scription approach to optimize the treatment of adolescent idiopathic scoliosis. The goal was to88

identify optimal orthotic corrections that would reduce disease progression using fuzzy logic. The89

developed model had the ability to recommend actions that adjust the orthosis and reduce disease90

progression by 26%.91

2.3. Prescriptive modeling using clinical decision analysis92

Clinical decision analysis is a quantitative approach widely used to optimize decision-making93

in healthcare settings [12]. This approach has been extensively implemented to establish or de-94

termine the optimal expected utility of treatments or interventions as healthcare strategies to re-95

duce costs, morbidity, or mortality rates [13, 14]. The main techniques within decision analysis96

comprise decision trees, Markov decision processes and partially observable Markov decision pro-97

cesses.98

Clinical decision trees allow the optimization of strategies aimed at screening and treatment99

of diseases. This approach has been used to quantify the utility of treatments or strategies based100

on transition probabilities. For example, Kurisu et al. [13] developed a clinical decision analysis101

with decision trees to quantify the utility of various antipsychotic treatment options (risperidone,102

haloperidol, olanzapine, amisulpride, ziprasidone and quetiapine) in patients with delirium. Sen-103

sitivity analysis showed that quetiapine is the best antipsychotic treatment option for patients with104

delirium. Keikes et al [14] implemented decision trees to convert colorectal cancer diagnosis and105

treatment recommendation guidelines into a computational tool for clinical decision support. The106

decision trees developed and implemented generated recommendations for the diagnosis, follow-107

up and treatment of colorectal cancer with a concordance of 81% when compared to recommen-108

dations suggested by an interdisciplinary team of experts.109

Markov chains are a stochastic approach that allows sequential processes to be modeled [15].110

Due to the complexity present in clinical decision-making, Markov models are a useful tool to111
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compare the e↵ectiveness and utility of available treatment combinations, optimize screening poli-112

cies, and prevent disease-related complications [16–20]. For example, Habu [16] conducted a clin-113

ical decision analysis using Markov modeling to evaluate the e�cacy of two treatment strategies114

(proton pump inhibitor vs. potassium-competitive acid blocker) for gastroesophageal reflux. The115

results of the analysis yielded a superiority of the competitive acid blocker with respect to cost-116

e↵ectiveness and the number of days required to treat the disease. These findings were confirmed117

by the sensitivity analysis implemented in the study. Similarly, Shen et al [17] compared the ef-118

ficacy of various combinations of interventions for stroke patients in the convalescent stage. The119

main strategies used for modeling were rehabilitation therapy, use of traditional Chinese medicine,120

and acupuncture treatment. The Markov decision model had the ability to recommend the best pos-121

sible combination of treatments for stroke patients in di↵erent stages of recovery. Eghbali-Zarch122

et al [18] modeled the drug treatment of type 2 diabetes to determine the optimal treatment policy123

to decrease adverse medication reactions that increase the economic burden of the disease and124

decrease quality-adjusted life years. The Markov model could recommend treatment options that125

involve a minimum amount of medication with acceptable expected quality of life.126

Dunlu et al [19] proposed a partially observable Markov decision model to establish the op-127

timal screening policy in the preclinical stages of Alzheimer’s disease. The model aims to maxi-128

mize the quality-adjusted life years and recommends the time when the patient should be screened.129

The results of the cost-e↵ectiveness analysis show that implementing the optimal policies recom-130

mended by the model reduced costs. Prayogo et al [20] formulated models based on partially131

observable Markov sequential processes for the evaluation of screening policies for early diagno-132

sis of lung cancer. Early detection of this type of disease through screening is crucial to decrease133

mortality rates. The research results demonstrated the ability of the proposed model to recommend134

an optimal screening policy that guarantees higher quality-adjusted life years.135

3. Methodology136

In this section, we present the methodology to generate prescriptive models. First, we briefly137

explain the approach used to generate the prescriptive model, which includes the construction of a138

predictive model. Then, we present three case studies with their datasets and their preprocessing139
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prior to model creation. Fig. 1 shows a schematic representation of the general methodology to140

achieve the objective of this study. According to the methodology, the first step is data preparation141

and analysis (cleaning, normalization and balancing). Next, a classical FCM is built to predict142

using particle swarm optimization (PSO), which is then used by our prescriptive-FCM to assess143

the actions it could prescribe, in such a way as to find the most appropriate ones.144

Case study
dataset

Yes

No
Clean dataset?

Preprocessing 
Normalization 

SMOTE

Classical FCM

Splitting 
80% training 
20% testing

Descriptive 
statistics 

PRV-FCM

Predictive model

Prescriptive model

Evaluation 
Accuracy 
Sensitivity
Specificity

Evaluation 
Accuracy 
Sensitivity
Specificity

MAE, MSE, RMSE, R2 

Fig. 1. Methodological general used in this study (PRV-FCM=Prescriptive-FCM).

3.1. Descriptive analysis145

The descriptive analysis consists of examining data to interpret past behavior and learn about146

data distribution, such that we can describe things like, for example, that the classes of a label147

7



are unbalanced, and if there are variables with a lot of noise. In this case, we use descriptive148

statistics to extract information from the datasets in each case study. We used measures of central149

tendency and dispersion to understand the behavior of quantitative data. For qualitative data, we150

used frequency distribution.151

3.2. Generation of the predictive models152

The predictive models were generated using a data-driven PSO-FCM approach. The predictive153

model is used by the prescriptive-FCM to propose several sets of actions (each one is a di↵erent154

prescription), and requires a model/function that determines the quality of the proposed prescrip-155

tions. The predictive model was used for these tasks.156

3.2.1. Data-driven PSO-FCM157

FCM is a technique of computational intelligence that allows modeling systems using concepts158

and relationships. The concepts correspond to the variables of the system to be modeled and the159

relationships correspond to the influence that exists between them [21–24]. FCMs are composed of160

a 5-element tuple ( ) where n is the number of concepts or variables to be modeled, v is an initial161

or activation vector, W is the weight matrix, and f () is an activation function to keep the concept162

values in a desired range r. Eq. 1 shows the main elements of an FCM. The most commonly used163

activation functions for FCMs are shown in Table 1.164

 = hn, v,W, f () (1)

Table 1

Most commonly used activation functions in FCMs.

Activation function Equation Range

Sigmoid f (x) = 1
1+e��⇥x f (x) 2 [0, 1]

Hyperbolic tangent f (x) = e
x�e
�x

ex+e�x f (x) 2 [ � 1, 1]
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FCMs can be built by experts using their knowledge and experience. They can also be built165

with algorithms that extract the relationships from historical data. The relationships are stored in166

square matrices to be used in the inference process. Eq. 2 shows an example of an extracted matrix167

and Fig. 2 shows the FCM constructed with this matrix. In this study, FCMs were constructed168

using the PSO algorithm due to its superior performance when extracting relationships from the169

data [25–27]. In addition, the lack of experts in each domain limited the creation of FCMs using170

expert knowledge and experience.171

C1

C5 C4

C3

C2

W15

W25

W32

W45

W35

Fig. 2. Example of FCM with five concepts and five relationships.

W =

C1 C2 C3 C4 C5
0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

C1 0 0 0 0 w15

C2 0 0 0 0 w25

C3 0 w32 0 0 w35

C4 0 0 0 0 w45

C5 0 0 0 0 0

(2)

PSO is an optimization technique that simulates the behavior of particles in nature [28]. This172

technique can be used for the construction of FCMs and optimization of their weight matrices173

(PSO-FCM) [27]. In this way, an optimized FCM is obtained that can be used to predict a re-174

sponse variable. In this case, each FCM is a particle i and the weight matrix (Wi) is its position.175
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Table 2

Inference functions used for inference in FCMs.

Inference function Equation Main characteristics

Kosko [21] v j(t + 1) = f

 
P

n

i=1,i¬ j
Wi jvi(t)

! The FCM has no memory capacity because
it does not take into account the previous
iteration (v j(t)) during inference.

Modified Kosko [29] v j(t + 1) = f

 
P

n

i=1,i¬ j
v j(t) +Wi jvi(t)

! The FCM has memory capacity because it
takes into account the previous iteration (v j(t))
during inference.

Rescaled [30] v j(t + 1) = f

 
P

n

i=1,i¬ j
(2 ⇥ v j(t) � 1) +Wi j(2 ⇥ vi(t) � 1)

!
It disables null initial values (v j = 0) that are
activated when passed by the activation function.

The algorithm first updates the particle velocity and then its position. Eq. 3 and Eq. 4 show the176

optimization process with PSO.177

vi(t + 1) = vi(t) + r1 · (Wbest

i
–Wi(t)) + r2 · (Wgbest

i
–Wi(t)) (3)

Wi(t + 1) = Wi(t) + vi(t) (4)

where vi is the particle velocity, r1 and r2 are random values with uniform distribution; W
best

i
is178

the best position obtained by a specific particle, while W
gbest

i
is the best position obtained by any179

particle in the swarm.180

After the construction of the FCM and the optimization of its weight matrix, the FCM was181

ready to make predictions using inference rules or functions. To date, several inference functions182

have been reported in the literature, which are used depending on the problem to be solved. Table 2183

shows the most commonly used inference functions reported in the literature.184

3.3. Generation of the prescriptive models185

To generate prescriptive models, we developed a methodology, called prescriptive-FCM. This186

methodology is an extension of FCMs for prescriptive modeling. In the following, we will explain187

the proposed approach. Prescriptive-FCM is a prescriptive modeling approach that uses FCMs188

and GA to generate prescriptions or optimal actions that achieve a desired outcome in the modeled189

system. Before explaining our approach, we will explain the elements that compose Prescriptive-190
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FCM. FCMs were briefly explained in the previous subsection, and a brief explanation of GAs191

follows.192

3.3.1. GA193

A GA is an optimization technique inspired by the general theory of biological evolution.194

This technique reflects natural selection where the fittest individuals are selected to reproduce and195

generate new o↵spring [31]. Fig. 3 shows the methodological framework for a GA. The first steps196

in the development of GAs are problem definition and fitness functions. GAs start with a random197

initial population, whose fitness is calculated using functions that depend on the proposed objective198

(minimization or maximization). Subsequently, this initial population is subjected to selection,199

crossover and mutation processes. These procedures are carried out to vary the composition of200

each of the individuals of the initial population. The individuals with the best fitness are selected201

and the process is repeated until a certain stop condition is reached.202

No

Meet stop criteria?

Definition of fitness
functions Initialization the population

Evaluation

Selection
Generation of new

population with genetic
operators

Optimal individuals

Definition of the problem

Yes

Fig. 3. Methodological framework for a GA.

3.3.2. Prescriptive-FCM203

In this study, we propose a methodology called Prescriptive-FCM to generate prescriptive204

models. Prescriptive-FCM uses three stages for the generation of prescriptive models (see its ar-205
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chitecture in Fig. 4). The first stage consists of the characterization of the concepts of the problem206

to be solved. With these concepts is built the FCM with two layers, according to the nature of207

the concepts. Thus, these two layers constitute the system concepts and the action concepts. The208

former is related to the system to be modeled. For example, in a disease, the concepts related to the209

system could be the symptoms present in the patients. The action concepts, also called prescriptive210

concepts, are actions that, when executed, modify the system concepts. For example, in a medical211

problem, an analgesic could be an action concept. Changes in this variable will generate changes212

in the system variables, in this case, the patient’s symptoms. Particularly, the first layer is defined213

by the previously built predictive model.214

C1

C2 C3

C6

C4

C7

C5w3

w7 w4

w5 w2

w6

w1

C1

C2 C3

C6

C4

C7

C5w3

w7 w4

w5 w2

w6

w1

Action layer

System layer

1. FCM characterization

C1

C2

C3

C4

C5

2. Definition of desired states of
system-concepts

C6 C7
Initialization of action concepts 

C1

C2

C3

C4

C5

C6

C7

C1

C2

C3

C4

C5

C6

C7

Initial vector (vi) Final vector (vf)

FCM building

Genetic operations

Evaluation

3. Optimization of action concepts with GA

Fig. 4. Architecture of Prescriptive-FCM approach.

The second stage of Prescriptive-FCM consists of the definition of the desired state. In this215

stage, the decision maker defines the desired values of the system concepts. For example, if the216

physician wants to lower the fever, then she/he will set this concept to a value of 0 because the217
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goal is to minimize the fever as much as possible. The final stage consists of the optimization of218

the action concepts such that using the inference process of the FCMs leads to the desired system219

concepts. For this last stage, a GA is used that selects, crosses and mutates the values of the action220

concepts. The FCM inference process generates a vector corresponding to system concepts and221

action concepts. The former is used for evaluation with a fitness function (see Eq. 5), while the222

latter are the prescribed variables. The latter is the ones generated by our proposed methodology.223

F =

������ f
 nX

i=1,i¬ j

v
s

j
+Wi jv

s

i

!
� f

 nX

i=1,i¬ j

v
ŝ

j
+Wi jv

ŝ

i

!������ (5)

where v
s is the vector representing the value of the desired concepts, v

ŝ is the vector represent-224

ing the values generated by Prescriptive-FCM, Wi j is the weight matrix of the characterized FCM.225

Finally, f is a function that holds the values in the desired range.226

4. Experiments227

4.1. Data preparation228

For the validation of our approach, we used three case studies related to the monitoring, treat-229

ment and prevention of diseases in public health. Specifically, they correspond to the estimation230

of Warfarin dose in anticoagulated patients, treatment of severe dengue (SD) and prevention of231

soil-transmitted helminth infections. Each case study contained a dataset, which was preprocessed232

using data cleaning technique. First, rows with missing data were removed to decrease bias. The233

normalization process of the variables was performed to scale the variables within the same range234

and thus improve the speed of model training. In electronic health records, it is very common235

to find class imbalance in the objective variables. For this reason, we used synthetic minority236

oversampling technique (SMOTE) to balance the classes before feeding the predictive and pre-237

scriptive algorithms. The characteristics of the variables in each of the datasets are described in238

each case study. For the internal validation process of the models, each dataset was divided into239

80% for training and validation and 20% for testing. We used 10-replicate cross-validation to find240

the optimal hyperparameters of the best model.241
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4.2. Configuration of hyperparameters242

In the development of machine learning models, it is common to use a combination of hyper-243

parameters, and thus find the optimal values that represent the best model to be used in the test set.244

We used a 10-fold cross-validation technique to find the best hyperparameters in each model. For245

this study, we used di↵erent hyperparameter values from similar studies reported in the literature246

depending on the nature of the data in each case study.247

For the optimization of FCM matrices with PSO, we use a grid of random values for initial248

population and iteration steps. For the first case, we use values between 10 and 200, for the second249

hyperparameter, values between 10 and 800. The inference process of FCMs involves activation250

functions and their slope, and inference functions. We established a combination of these hyperpa-251

rameters to find the best model. We implemented the activation functions and inference algorithms252

described in Table 1 and Table 2, respectively. Finally, the slope of the activation functions was253

established with a grid of random values between 0.1 and 1000.254

The search method used in Prescriptive-FCM was a GA. For this case, we used di↵erent com-255

binations of initial population size, crossover and mutation probabilities. The hyperparameter256

grid for the initial population contained random values between 10 and 400 individuals. For the257

probabilities, we used a grid of random values between 0 and 1.258

4.3. Evaluation metrics259

We evaluated the quality of the developed models using several metrics. We use accuracy,260

sensibility and specificity to measure the quality of classification-type predictive models. We261

also use classification metrics to assess the quality of prescriptive models when the prescriptive262

variables are qualitative in nature. When the prescriptive variables are quantitative in nature, we263

use mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE)264

and R
2 metrics. The following is a brief description of each of the metrics used to evaluate the265

performance of the models developed.266

• Accuracy: percentage of correctly classified examples among the total number of classified267

examples. Greater accuracy means a greater performance of the model.268
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Accuracy =
T P + T N

T P + FN + FP + T N
(6)

where T P are the true positives, T N are true negatives, FN are false negatives, and T N are269

true negatives.270

• Sensitivity: measures the ability of the classifier to predict positive cases to those actually271

positive.272

S ensitivity :
T P

T P + FN
(7)

• Specificity: measures the ability of the classifier to predict negative cases to those actually273

negative.274

S peci f icity :
T N

T N + FP
(8)

• MAE: calculated as an average of absolute di↵erences between the correct prescriptive con-275

cepts values and prescriptions.276

MAE =
1
m

mX

i=1

���va

i
� v̂

a

i

��� (9)

where m is the number of records in testing set, v
a

i
is the actual prescriptive value and v̂

a

i
is277

the prescribed value.278

279

• MSE: measures the average square error of our prescriptions. For each point, it calculates280

the square di↵erence between the prescriptions and the prescriptive concepts, and then, av-281

erages those values.282

MS E =
1
m

mX

i=1

(va

i
� v̂

a

i
)2 (10)

• RMSE: is the squared root of the error described above.283

RMS E =

vt
1
m

mX

i=1

(va

i
� v̂

a

i
)2 =

p
MS E (11)
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• R
2: Coe�cient of determination.284

R
2 =

P
m

i=1(v̂a

i
� v̄

a

i
)2

P
m

i=1(va

i
� v̄

a

i
)2 (12)

where v̄
a

i
is the mean of actual prescriptive values.285

4.4. Case study 1: warfarin dose estimation286

Warfarin is the most frequently used anticoagulant worldwide to prevent thromboembolism287

and thrombosis. Establishing the dose of Warfarin is important because a higher dose than neces-288

sary may increase the risk of bleeding and a lower dose may decrease protection against thrombotic289

processes [32]. For coagulation monitoring, physicians use a laboratory test known as the interna-290

tional normalized ratio (INR). The INR value in normal patients is usually 1; however, in patients291

on anticoagulant therapy, INR levels may be between 2 and 3, a range that generally indicates ap-292

propriate anticoagulation for most cases. For patients with values above 3, they present a high risk293

of bleeding or hemorrhage, while values below 2 represent a risk of thrombosis or thromboem-294

bolism [33]. To test our proposed approach, we used a dataset published by The International295

Warfarin Pharmacogenetics Consortium (2009) [34]. Table 3 and Table 4 show the variables used296

in this dataset. For this case, we used sociodemographic variables such as age and race; anthro-297

pometric variables such as height and weight; and the next genetic variables: cytochrome P450,298

family 2, subfamily C, polypeptide 9 (CYP2C9), and vitamin K epoxide reductase complex, sub-299

unit 1 (VKORC1). Additionally, we used INR as a target variable and Warfarin dose as an action300

variable. The INR variable was categorized due to the importance of establishing Warfarin doses301

that maintain INR values between 2 and 3. For this reason, INR was established as controlled302

INR (between 2 and 3) and altered INR (lower than 2 or higher than 3). After the data preprocess-303

ing described in subsection 4.1, the dataset had 3385 records corresponding to 2085 patients with304

controlled INR and 1800 patients with altered INR.305

4.5. Case study 2: Treatment of SD306

Dengue is a disease caused by a virus and transmitted by the bite of a mosquito of the genus307

Aedes spp. The most severe phase of the disease is known as severe dengue, and represents the308
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Table 3

Descriptive statistics of numerical variables of case study 1.

Concept Concept type Variable name Median (Interquartile range)
C1 System Age (years) 65.0[55.0-75.0]
C2 System Height (m) 1.70[1.61-1.78]
C3 System Weight (Kg) 78[65.30-92.30]
C8 Prescriptive Warfarin 31.25[22.50-42.0]

Table 4

Descriptive statistics of categorical variables of case study 1.

Concept Concept type Variable name Category N Percentage (%) CI 95%
C4 System Race

White 1207 49.37 47.39-51.35
Asian 424 17.34 15.84-18.84
Black 328 13.42 12.07-14.77
Other 486 19.87 18.29-21.45

C5 System Amiodarone
No 2286 93.50 92.52-94.48
Yes 159 6.50 5.52-7.48

C6 System Vkorc1
A/A 587 24.01 22.32-25.70
A/G 937 38.32 36.39-40.25
G/G 921 37.67 35.75-39.59

C7 System Cyp2c9
*1/*1 1780 72.80 71.04-74.56
*1/*2 379 15.50 14.07-16.93
*1/*3 215 8.79 7.67-9.91
Other 71 2.90 2.23-3.57

C9 Target INR
Controlled INR 2085 53.70 52.12-55.26
Altered INR 1800 46.30 44.73-47.86

main cause of death from dengue [35]. Studies have reported a mortality rate of over 20% when309

treatment is inadequate or delayed [36]. Currently, dengue has no definitive cure and its treatment310

is based on the relief of signs and symptoms. In addition, treatment is aimed at considerably reduc-311
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ing the complications that the virus causes during its stay in the patient’s body [37]. Establishing312

the optimal treatment policy for severe dengue is important to avoid complications and reduce313

mortality rates associated with the disease. To test the proposed methodology, we used a dataset314

of mortality data from patients with dengue. The data correspond to 398 patients from Córdoba,315

Colombia. The variables used for the generation of the models are shown in Table 5. In this case,316

we used 4 variables related to severe dengue such as, extravasation, shock, hemorrhage and or-317

gan failure. While 4 treatment related variables were used to find the optimal values to minimize318

mortality. In this dataset, all variables used had values of 0 for absence and 1 for presence. For319

the target variable, surviving patients were coded to 0 while deceased patients were coded to 1.320

After preprocessing of the data, defined in subsection 4.1, there were 210 surviving patients and321

188 deceased patients.322

Table 5

Descriptive statistics of variables in case study 2.

Concept Concept type Variable name Category N Percentage (%) CI 95%
C1 System Extravasation 0 277 69.60 65.08-74.12

1 121 30.40 25.88-34.92
C2 System Shock 0 276 69.35 64.82-73.88

1 122 30.65 26.12-35.18
C3 System Bleeding 0 161 40.45 35.63-45.27

1 237 59.55 54.73-64.37
C4 System Organ failure 0 268 67.34 62.73-71.95

1 130 32.66 28.05-37.27
C5 Prescriptive Transfusion 0 276 69.35 64.82-73.88

1 122 30.65 26.12-35.18
C6 Prescriptive Cristalloid solutions 0 277 69.60 65.08-74.12

1 121 30.40 25.88-34.92
C7 Prescriptive Colloid solutions 0 161 40.45 35.63-45.27

1 237 59.55 54.73-64.37
C8 Prescriptive ICU 0 107 26.88 22.52-31.24

1 291 73.12 68.76-77.48
C9 Target mortality Survivor 210 52.76 51.19-54.33

Dead 188 47.24 45.67-48.81

18



Table 6

Descriptive statistics of variables in case study 3.

Concept Concept type Variable name Category N Percentage (%) CI 95%
C1 System Sex

F 397 52.1 48.55-55.65
M 365 47.9 44.35-51.45

C2 System Weight
<20 71 9.32 7.26-11.38
20-40 552 72.44 69.27-75.61
40-60 137 17.98 15.25-20.71
>60 2 0.26 -0.1-0.62

C3 System Indigenous
No 576 75.59 72.54-78.64
Yes 186 24.41 21.36-27.46

C4 System Source of drinking water
1 22 2.89 1.7-4.08
2 4 0.52 0.01-1.03
4 185 24.28 21.24-27.32
5 514 67.45 64.12-70.78
6 37 4.86 3.33-6.39

C5 System Floor of the house
1 675 88.58 86.32-90.84
2 26 3.41 2.12-4.7
3 60 7.87 5.96-9.78
5 1 0.13 -0.13-0.39

C6 System Disposal of human excreta
1 280 36.75 33.33-40.17
2 187 24.54 21.48-27.6
3 295 38.71 35.25-42.17

C7 Prescriptive Child wears closed shoes
1 203 26.64 23.5-29.78
2 240 31.5 28.2-34.8
3 319 41.86 38.36-45.36

C8 System Child washes his hands after defecating
1 234 30.71 27.43-33.99
2 209 27.43 24.26-30.6
3 319 41.86 38.36-45.36

C9 Prescriptive Child washes his hands before eating
1 317 41.6 38.1-45.1
2 191 25.07 21.99-28.15
3 254 33.33 29.98-36.68

C10 Target Geohelminthiasis
Negative 429 56.29 54.73-57.85
Positive 333 43.71 42.15-45.27
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4.6. Case study 3: Prevention of geohelminthiasis323

Soil-transmitted helminth infection or geohelminthiasis is a disease characterized by the inges-324

tion of embryonated eggs of parasites or by penetration through the skin of their infective larvae325

present in humid and warm soils [38]. These infections are facilitated by poverty, illiteracy, lack326

of drinking water and hygienic habits [39]. Prevention of this type of infection is important due to327

the high morbidity that impacts human health leading to stunting, vitamin deficiencies and poor328

cognitive function [40]. It is necessary to establish prevention strategies to reduce the morbidity329

rates associated with these types of infections. Based on these issues, we tested our prescriptive330

approach to generate a model with optimal recommendations that will lead to disease prevention331

and thus minimize the occurrence of parasite infections. The dataset used to test the prescriptive332

approach corresponded to demographic and epidemiological data of 130 school-aged children in333

a rural area of the department of Córdoba, Colombia. The variables used for model generation are334

shown in Table 6. Seven variables are classified as variables directly related to the disease, while335

two variables related to prevention were considered action variables. The target variable indicated336

the clinical condition of the children with respect to the presence or absence of geohelminths.337

After preprocessing of the data, the cleaned and sorted dataset contains 64 healthy or uninfected338

children and 66 infected children.339

5. Results340

In this section, we show the results of the models generated. Each subsection describes the341

results of the descriptive statistics, prescriptive model (and its underlying predictive model) for342

each case study.343

5.1. Case study 1: warfarin dose estimation344

5.1.1. Descriptive statistics345

Descriptive statistics for this case study are summarized in Table 3 and Table 4. For the sta-346

tistical description of the data, measures of central tendency such as median with interquartile347

ranges were used for variables C1, C2 and C3, which had median with interquartile ranges of348

65.0[55.0-75.0], 1.70[1.61-1.78] and 78[65.30-92.30], respectively. For categorical variables, the349
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relative frequency with 95% confidence intervals (95% CI) was used. In this study, the majority350

of individuals were white, with a relative frequency of 49.37% (95% CI = 39-51.35), and 93%351

(95% CI = 92.52-94.48) of patients reported not taking the antiarrhythmic agent amiodarone. The352

variables related to the genotypic conditions of the patients, such as C6 - Vkorc1 with category353

A/G was the most frequent with 38.32% (95% CI = 36.39-40.25) and C7 - Cyp2C9 in category354

*1/*1 showed higher relative frequency than the other categories 72.8% (95% CI = 71.04-74.56).355

5.1.2. Predictive model356

We developed a predictive model using INR as the target variable. This model based on FCM357

has the ability to predict INR, and is built by adjusting the weights of the FCM using PSO (initial358

population = 80 individuals, iterations = 120). This FCM is used by Prescriptive-FCM to evaluate359

the quality of a prescription.360

Table 7

Performance and optimal hyperparameters of the predictive models developed in this work for all case

studies.

Case study Optimal hyperparameters Accuracy Sensitivity Specificity
Warfarin dose Activation function = sigmoid

Slope = 10
Inference function =Modified Kosko

0.65 0.51 0.77
Treatment of SD 0.74 0.79 0.68
Prevention of geohelmintiasis 0.74 0.76 0.73

Table 7 shows the performance of the developed predictive models and the optimal hyperpa-361

rameters of the best model for each case study. Regarding the case study of the warfarin dose362

estimation, the performance of the model developed with the classical FCM approach obtained363

values of 0.65, 0.51 and 0.77 for accuracy, sensitivity and specificity, respectively.364

5.1.3. Prescriptive model365

We developed a prescriptive model that formulated the dose of warfarin for anti-coagulated366

patients. The GA using Prescriptive-FCM optimized the action concept, which in this case is the367

warfarin dose. Because warfarin dose was a numerical variable, the performance of the model368

generated with Prescriptive-FCM was evaluated using MAE, MSE, RMSE, obtaining values of369

2.76, 14.8 and 3.8, respectively. We used R
2 as a measure of agreement between the actual data and370
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that prescribed by the generated model. Fig. 5 shows a plot with the corresponding R
2 value and371

the significance value of the analysis. For this case study, the R
2 value expressed as a percentage372

was 96%.The optimal hyperparameters for this model were initial population of 50 individuals,373

crossover and mutation probabilities of 0.1 and 0.3, respectively.374

R2 = 0.96 − p < 0.001
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Fig. 5. Relationship between the warfarin values prescribed in the dataset and the warfarin values

prescribed by our approach.

5.2. Case study 2: treatment of SD375

5.2.1. Descriptive statistics376

Descriptive statistics for this case study are summarized in Table 5. In this dataset, all variables377

were qualitative. The frequency distribution shows that variable C8 was the most frequent variable378

in the group of patients who presented SD. The least frequent variables in this category were C1379

- extravasation and C6 - use of crystalloid solutions, both with frequencies of 30.40% (95% CI =380

25.88-34.9). The opposite case occurred in the group of patients who did not present SD, these two381

variables C1 and C6 were the most frequent with respect to the others, in both cases the relative382

frequency was 69.60% (95% CI = 65.08- 74.12). ICU stays within this group only occurred in383

26.88% (95% CI = 22.52 - 31.24).384

5.2.2. Predictive model385

The mortality rate for SD can reach 20% if the clinical management of the disease is not done386

in an ideal way [36]. For this case study, we developed a model to predict mortality by SD. As387
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in the previous case study, this procedure was performed by adjusting the weights of the FCM388

constructed by PSO (initial population = 70 individuals, iterations = 140). Table 7 shows the389

performance of the model developed to predict mortality by SD. The developed model had the390

ability to predict whether the patient dies or not with an accuracy of 0.74, sensitivity of 0.79 and391

specificity of 0.68.392

5.2.3. Prescriptive model393

Prescribing treatment in SD is of vital importance to prevent patient death. We developed a394

model for prescribing treatment actions aimed at preventing patient death by SD. Four treatment395

options were used to generate the prescriptive model (see Table 5). Due to the binary nature of396

these actions, we used accuracy as a metric to evaluate the performance of the developed model.397

Table 8 shows that the prescriptive model generated with Prescriptive-FCM for the formulation of398

treatment actions for SD has an accuracy greater than 0.81. The best performance of this model399

was for the prescription of colloid solutions with an accuracy, sensitivity and specificity of 1. The400

optimal hyperparameters for this model were initial population of 100 individuals, and crossover401

and mutation probabilities of 0.5 and 0.5, respectively.402

Table 8

Performance of the prescriptive model for the treatment of SD.

Case study Prescriptive concept Variable name Accuracy Sensitivity Specificity

Treatment of SD

C5 Red blood cells transfusion 0.81 0.64 1.00
C6 Crystalloid solutions 0.87 0.80 0.93
C7 Colloid solutions 1.00 1.00 1.00
C8 Intensive care unit 0.84 0.87 0.83

5.3. Case study 3: Prevention of geohelminthiasis403

5.3.1. Descriptive statistics404

The results of the nine categorical variables that make up this dataset allowed describing it405

statistically using relative frequencies with 95% CI. 52.1% (95% CI = 48.55-55.65) of the individ-406

uals in the dataset were women with weights between 20-40 kg in 72.4% (95% CI = 69.27-75.61)407

and between 40-60 kg in 17.9% (95% CI = 15.25-20.71). Only 24.4% (95% CI = 21.6-27.46)408
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of the participants reported belonging to an indigenous ethnicity. Variables C4, C5, C6 and C8,409

all of them from the system and related to epidemiological aspects, showed that the origin of the410

water for cooking is mainly from wells in 67.4% (95% CI = 64.12-70.78) or from a river or stream411

in 24.2% (95% CI = 21.24-27.32). Dirt floors predominate in 88.5% (95% CI = 86.32-90.84)412

of the dwellings of these subjects, and excreta disposal is done in toilets without connection in413

38.7% (95% CI = 35.25-42.17) or connected to a septic tank in 36.7% (95% CI = 33.33-40.17)414

mainly. After defecation few participating subjects washed their hands, 30.7% (95% CI = 27.43-415

33.99) said they always washed their hands, while 41.8% (95% CI = 38.36-45.36) said they never416

washed their hands. The two prescriptive variables of the dataset (C7 and C9) showed as results417

that the use of closed footwear is not a common practice among the study subjects, 41.8% (95%418

CI = 38.36-45.36) reported never using this type of footwear, likewise, a similar percentage of419

subjects, 41.6% (95% CI = 38.1-45.1) stated that they washed food before consumption.420

5.3.2. Predictive model421

We developed a predictive model with PSO-FCM (initial population = 50 individuals, itera-422

tions = 150) to predict the presence of geohelminths infections using demographic and epidemio-423

logical variables. The performance of this model can be seen in Table 7. The model predicted the424

parasitosis with an accuracy of 0.74, sensitivity of 0.76 and specificity of 0.73.425

5.3.3. Prescriptive model426

The prevention of geohelminthiasis is important to avoid the spread of parasites in communi-427

ties. We developed a model to prescribe two crucial actions in the prevention of geohelminthiasis.428

The results show the model’s ability to prescribe these actions with accuracies between 0.67 and429

0.74. The developed model had greater sensitivity than specificity for the two prescriptive vari-430

ables used (see Table 9). The optimal hyperparameters for this model were initial population of431

50 individuals, and crossover and mutation probabilities of 0.5 and 0.5, respectively.432

6. Discussion433

In this study, we developed prescriptive models (and its underlying predictive model) to sup-434

port decision-making in clinical settings. We used three case studies: the first, related to the435
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Table 9

Performance of the prescriptive model for the prevention of geohelminthiasis.

Case study Prescriptive concept Variable name Accuracy Sensitivity Specificity
Prevention of
geohelminthiasis

C12 Child wears closed shoes 0.74 0.80 0.74
C14 Child washes hands before eating 0.67 0.78 0.55

estimation of warfarin doses for anticoagulated patients. The second case study related to the436

treatment of dengue fever to reduce mortality rates. Finally, the third case was focused on the437

prevention of soil-transmitted parasitic infections.438

6.1. Warfarin dosing439

The estimation of the warfarin dose is crucial to avoid both bleeding and the presence of clots440

in patients with coagulation disorders. The developed predictive model used demographic and441

genetic variables to obtain an acceptable performance (see Table 7). The results are expected due442

to the lack of clinical and laboratory variables necessary for careful monitoring since there is a443

wide variation in dose response explained by baseline clinical conditions, lifestyles and food con-444

sumption. Including variables such as comorbidities (diabetes and arterial hypertension), would be445

useful because these types of diseases have been reported as risk factors for hemorrhagic compli-446

cations in patients receiving warfarin. Aggregation of these types of variables will possibly allow447

better prediction of the INR. Another variable to take into account when considering the dose of448

warfarin is the intake of vitamin K, since it actively participates in the blood coagulation process.449

To prescribe the appropriate dose of warfarin to maintain a well-controlled INR, it is necessary450

to consider the measurement of vitamin K in the meals eaten by anticoagulated patients, since451

any variation in this may change the amount of warfarin to be taken. [41]. Other variables such452

as lifestyle changes, discontinuation of warfarin, falls or serious injuries, consumption of two or453

more alcoholic beverages per day, becoming pregnant or breastfeeding may a↵ect the INR [33].454

Therefore, it is important to consider some of these changes as variables within the predictive455

models developed.456

Regarding the prescriptive model for estimation of warfarin dose, the results were satisfac-457

tory due to very low error values such as MAE below 2.8, exceeding the performance of previous458
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Table 10

Comparison of models developed to estimate warfarin doses.

Reference Model MAE R2

[34] Clinical 9.9 0.26
[34] Pharmacogenetic 8.5 0.43
[42] Predictive - 0.36
Our work Prescriptive 2.7 0.96

works. Table 10 shows a comparison of the models developed to estimate warfarin dose with the459

dataset used in the present work. The International warfarin Pharmacogenetics Consortium devel-460

oped two models using a clinical and pharmacogenetic algorithm, obtaining values of MAE 9.9461

and 8.5, respectively [34]. Considering the R2 that measures the degree of agreement between the462

actual warfarin values in the dataset and the value prescribed in the developed model, our model463

had a superior performance with values of 0.96. The models developed by this consortium ob-464

tained maximum values of 0.43. Another work developed by Chen et al [42], proposed a weighted465

learning method to estimate warfarin dose on the same dataset used in this study. The results of466

the model generated with the methodology proposed by Chen obtained an R2 of 0.36. Our model467

performed better than the models developed and reported in the literature.468

6.2. SD treatment469

In the second case study, the results demonstrated a good capacity both to predict mortality by470

SD and prescribe treatment options to prevent the patient’s death. The predictive model performed471

well with accuracy values above 74%. The variables defining SD have functional dependencies472

with mortality. Several studies have demonstrated the influence of shock, extravasation, bleeding473

and multiorgan failure on dengue death [43–45]. However, other variables considered as warning474

signs of dengue may be more influential in the prediction. Among these variables are abdominal475

pain, hepatomegaly, which consists of an increase in liver size due to fluid accumulation in the476

abdominal region; small mucosal hemorrhages and edema, which consists of fluid accumulation477

in the tissues underlying organs.478

The prescriptive model for the treatment of SD consisted of prescribing treatment options479
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according to WHO indications. The results showed a good performance of the developed models480

reaching values between 81% and 100% accuracy. Our model has the capacity to prescribe actions481

aimed at reducing the dengue mortality rate. The scarcity of works on prescriptive modeling makes482

it di�cult to compare our work with previous studies. To date, there is no prescriptive model for483

the treatment of SD. An important work to highlight in the palliative treatment of dengue is the one484

performed by Hoyos et al [10] In this work, a prescriptive model was developed using autonomous485

cycles of data analysis tasks based in GAs; however, the work was focused on the three types of486

dengue. In addition, the model developed was validated in specific scenarios and not in a complete487

dataset.488

6.3. Geohelminthiasis prevention489

The prevention of soil-transmitted helminth infections is of public health importance. The490

predictive model generated performed well only using demographic and epidemiological data.491

However, other epidemiological, clinical and laboratory variables could improve the prediction492

performance. These variables could be, for example, maternal or caregiver schooling. In the pre-493

vention of geohelminthiasis, it is important that those responsible for the care of children have494

adequate levels of education since it is possible that people with more schooling are more aware495

of the importance of adopting healthy practices, such as boiling water or washing hands before496

handling food; in addition, these people are more capable of transmitting this knowledge to their497

families. Clinically, geohelminthiases are polymorphic and do not present pathognomonic signs498

and symptoms, many of them are asymptomatic, so the measurement of clinical variables is re-499

lated to the presence of a particular parasitic agent; however, among the general symptoms and/or500

signs are anemia, weight loss and growth retardation. When these symptoms become evident,501

the parasitic infection is in progress, being useful these clinical variables in the prevention of the502

course of the intensity of the infection towards severity [39]. In endemic areas for these parasitic503

infections, the necessary diagnostic tools are often not available and the local epidemiology is un-504

known, overlooking the performance of laboratory tests that yield diagnostics. Often the results of505

a blood count, which shows laboratory variables such as hemoglobin and eosinophil count useful506

in the prediction of geohelminthiasis, are available. These parasites a↵ect nutritional status by507
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various mechanisms by feeding on host tissues, particularly blood, which causes a loss of iron and508

protein. Likewise, by activating TH2 lymphocytes (T helper type 2), they stimulate the secretion509

of IgE, producing an increase in the levels of eosinophils in blood, becoming the main cause of510

eosinophilia in pediatric age [46].511

The prescriptive model generated to prescribe geohelminthiasis prevention actions performed512

acceptably with average accuracy values of 70.5%, perhaps for the reasons mentioned above.513

Additionally, a small sample size in categorical variables does not allow finding functional depen-514

dencies between these variables and the target variable. Despite having used SMOTE to generate515

new training examples of prescriptive variables, the variability of the data is very low and does516

not allow finding the necessary patterns to make a prescription with greater accuracy. According517

to our literature review, to date, no predictive models have been proposed to detect at individual-518

level geohelminthiasis. Previous work has focused mainly on estimating prevalence over a 5-year519

period during a disease control program [47]. Another work has been developed to determine the520

status and distribution of geohelminths in specific regions [48]. In addition, several studies have521

focused on determining the factors that most influence the disease to develop control strategies522

[49, 50]. To the best of our knowledge, this is the first work to report a predictive model to detect523

geohelminthiasis using only demographic and epidemiological variables.524

7. Conclusions525

In recent years, the development of computer-aided strategies to support decision-making in526

clinical settings has increased. The objective of this work was to develop prescriptive models to527

support decision-making in scenarios related to the treatment, follow-up and prevention of diseases528

of public health interest. We used the Prescriptive-FCM methodology which consists of character-529

izing a problem into concepts defined as system concepts and action concepts, by using predictive530

and prescriptive models. The goal is to optimize the action concepts leading to desired outcomes531

of the system concepts. The results demonstrate the ability of the developed models to predict INR532

values and estimate warfarin dosage in patients on anticoagulation therapy. In addition, we proved533

the ability to generate models that predict mortality from SD and prescribe treatment actions to534
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avoid fatalities. Finally, we were able to demonstrate that prescriptive models generate actions535

aimed at the prevention of geohelminth infection.536

Our study demonstrated the ability of our Prescriptive-FCM methodology to generate pre-537

scriptive models that can be applied to any medical problem, whether for treatment, follow-up or538

prevention of public health events. Finally, the generated models were validated on real datasets539

to know their performance.540

This work has some limitations. First, we did the characterization of FCM’s concepts manu-541

ally. The characterization of these variables could be done automatically, speeding up the creation542

of the models. Second, we only use one algorithm (GA) for the optimization of the action concepts543

of each case study. Other optimization algorithms could improve the quality of the developed mod-544

els. Third, we used the data that was available, so variables of interest in the diagnosis, treatment,545

and prevention of the diseases related to each case study were not taken into account. Examples546

of these variables are shown in the Discussion section. Finally, another limitation was that the547

learning of the FCMs (for prediction and prescription) was done in a single stage, using the sys-548

tem concepts and the action concepts together, and also, using the PSO technique, being able to549

use other techniques that may improve the learning process.550

Future work should be aimed at improving the models developed and their implementation in551

clinical settings. The predictive models for each case study can be improved using other techniques552

such as XGBoost and RF, which have shown better performance on structured data. Prescriptive553

modeling could be improved with a two-stage learning for FCMs: initial learning with system con-554

cepts (prediction) and then, learning with action concepts (prescription). Discriminating learning555

by concept type could generate knowledge that could be extracted with the techniques used.556

Finally, the implementation of this type of approach in health institutions would provide useful557

information for both health professionals and governmental authorities to reduce morbidity and558

mortality rates of diseases of public health concern.559
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8. Summary table572

What was already known on the topic?573

• Prescriptive models are a promising area with only initial results for the improvement of574

health systems, which have been developed into the next main areas: i) prescriptive model-575

ing using machine learning and computational intelligence techniques, and ii) prescriptive576

modeling using clinical decision analytics577

What does this study add to our knowledge?578

• The paper proposes a methodology for the development of prescriptive models to support579

decision-making in clinical settings in the context of disease monitoring, treatment and pre-580

vention.581

• The proposed hybrid approach is based on a predictive model developed using fuzzy cogni-582

tive maps and the particle swarm optimization algorithm, and a prescriptive model developed583

with an extension of fuzzy cognitive maps that combines genetic algorithms.584
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• Our approach allows an explainability analysis to detail the prescriptions that are reached,585

tested in the di↵erent case studies.586

• We evaluated the proposed approach in three medical case studies related to monitoring587

(warfarin dose estimation), treatment (severe dengue) and prevention (geohelminthiasis) of588

diseases.589
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Abstract

In this paper, we present a methodology based on fuzzy cognitive maps (FCMs) and metaheuristic

algorithms to generate prescriptive models, called PRescriptiVe FCM (PRV-FCM). FCMs are a set

of concepts interrelated that describe the behavior of a system. This kind of modeling has been

extensively used to build descriptive and predictive models. We propose an extension of FCMs

to develop prescriptive models and support decision-making in di↵erent domains. This adaptation

characterizes FCMs, using system and prescriptive concepts. After that, it uses a metaheuristic

algorithm (in this case, we use a genetic algorithm) to optimize prescriptive concepts based on

system concepts and the stability of the FCM. Our proposed prescriptive approach was imple-

mented and tested in four scenarios where it demonstrated its capability to find solutions that lead

to desired values for the variables of interest. Specifically, no significant di↵erences were found

between the values of the prescriptive variables in the datasets and those generated by PRV-FCM.

Keywords: Fuzzy cognitive maps, Prescriptive models, Metaheuristics, Modeling, Genetic

algorithm

1. Introduction1

Prescriptive modeling is a domain of business analytics, which aims to recommend actions2

within a system to reach the desired objective (Poornima and Pushpalatha, 2020). It is one of the3
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areas that has attracted the most interest in recent years because it provides valuable support for4

decision-makers (Lepenioti et al., 2020). In this paper, we propose a methodology to generate5

prescriptive models using fuzzy cognitive maps (FCMs) and metaheuristic algorithms. FCMs are6

a set of nodes, also called concepts, which represent variables within a system; and arrows directed7

between them that indicate the influence of one concept on another (Kosko, 1986). Metaheuristic8

algorithms are techniques used to search solutions in an n-dimensional space, imitating eventually9

the behavior of individuals in nature (Sharma and Tripathi, 2022). These types of algorithms are10

commonly used to solve optimization problems.11

The use of FCMs is interesting because of their ease of construction, reasoning and interpre-12

tation (Pelaez, 2019; Aguilar, 2001). FCMs have been widely used in descriptive (Stylios and13

Groumpos, 2004; Sánchez et al., 2019), diagnostic (Hoyos et al., 2022) and predictive modeling14

(Puerto et al., 2019; Mago et al., 2012; Papageorgiou et al., 2009); however, it has not been suf-15

ficiently used for prescriptive modeling. Despite the increase in the development of frameworks16

to generate prescriptive models (see Section 2), a common finding in all of them is that the pre-17

scriptive model uses as input the output of a predictive model. That is, the framework contains a18

predictive model that generates an output, and based on this output, the prescriptive model gener-19

ates recommendations.20

In previous works, we have presented the development of prescriptive models for healthcare21

environments. For example, in Hoyos et al. (2022), we presented a prescriptive model for dengue22

treatment using a genetic algorithm (GA) and prior predictions with artificial neural networks23

(ANNs) and support vector machines (SVMs). However, it was only the application of an existing24

algorithm on a dataset. Additionally, the prescriptive part could not be validated due to the lack of25

datasets with prescriptive variables.26

Unlike our previously published work, in this case, we present a new technique that combines27

FCMs with optimization algorithms for the generation of prescriptive models. Our methodology28

has the particularity of generating prescriptive models with excellent performance in a variety of29

domains such as business, health and education. Our methodology uses an initial desired instance30

of the system, the FCM inference process, and an optimization algorithm to find the optimal values31

of the action or decision options. Furthermore, because it uses the FCM inference process, it32

2



allows generating prescriptive models that can be explained using previously defined relationships33

between concepts. This methodology is validated in di↵erent datasets with system and prescriptive34

variables.35

The main contribution of this work is a methodology to generate prescriptive models using36

FCMs and metaheuristic algorithms. Our methodology consists, first, in the characterization of the37

FCM where a division of the map into two layers is established: system concepts and prescriptive38

concepts. System concepts are the set of variables that describe/define the system to be modeled.39

Prescriptive concepts are action variables that the decision-maker executes to obtain a desired40

result in the system.41

The discrimination of the concepts in two layers allows using a metaheuristic algorithm to42

optimize the prescriptive concepts, and thus obtain the desired result in the concepts related to43

the system. The metaheuristic algorithm optimizes the concepts of the prescriptive layer using44

as fitness function only the concepts that by the business logic can be modified. At the end, we45

obtain the values of the prescriptive variables that lead to desired results for the system concepts,46

depending on the proposed problem.47

Our framework, which is called PRescriptiVe FCM (PRV-FCM), is validated in four case stud-48

ies to demonstrate its ability to prescribe actions within a system. We use one synthetic and three49

real datasets in the experiments. The real datasets correspond to business, medical and education50

domains. Based on the results obtained, our methodology can be used in any application domain51

and has the potential to generate prescriptive models that support decision-making in organiza-52

tions.53

The remainder of this paper is organized as follows: Section 2 shows a literature review of the54

last trends in prescriptive modeling and optimization approaches. Section 3 describes an overview55

of FCMs (learning and inference process). Section 4 shows our proposed prescriptive approach56

with its stages. Section 5 shows the specification of the case studies. Section 6 shows the exper-57

iments and results. Section 7 discusses the results and shows a comparison with previous works.58

Finally, Section 8 concludes the paper.59
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2. State-of-the-art60

In this section, we show a brief literature review on prescriptive modeling and the current status61

of optimization approaches and models in di↵erent fields of science.62

2.1. Prescriptive analytics63

Business analytics is a discipline that uses data to find patterns and extract knowledge (Lopes64

et al., 2020). In this discipline can be defined di↵erent models, for example: i) descriptive model-65

ing, ii) predictive modeling and iii) prescriptive modeling, among others. In descriptive modeling,66

the objective is to investigate what has occurred using the data (Lopes et al., 2020). Predictive67

modeling is concerned with predicting what is going to happen, and prescriptive modeling is con-68

cerned with suggesting or prescribing the best decision options. In some cases, the latter type of69

modeling uses the output of predictive modeling and artificial intelligence (AI) techniques to op-70

timize and provide automated decisions (Lepenioti et al., 2020). While descriptive and predictive71

modelings are the most studied domains in business analytics (Lepenioti et al., 2020; Hoyos et al.,72

2021); prescriptive modeling is a less studied area, and its research interest is increasing due to its73

importance for decision making.74

Over the last years, the number of papers focused on the proposal of frameworks for the gener-75

ation of prescriptive models in di↵erent application domains is increasing Lepenioti et al. (2020).76

Lepenioti et al. (2020) reviewed the main approaches to generate prescriptive models. These ap-77

proaches depend on the category of methods used to build them, e.g., mathematical programming78

(Berk et al., 2019; Dey et al., 2019), logic-based rules (Ramannavar and Sidnal, 2018; Srinivas79

and Ravindran, 2018), simulation (Jank et al., 2019), and machine learning (ML) (Hoyos et al.,80

2022; Revathy and Mukesh, 2020). In what follows, we explain some recent works in the previous81

categories.82

2.1.1. Mathematical programming83

Berk et al. (2019) used a robust and adaptive optimization approach to improve human resource84

planning by modeling uncertainty in hiring requests in a corporation. The methodology proposed85

by Berk et al. allowed to prescribe hiring actions to maximize their benefits and reduce negative86
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scenarios. Dey et al. (2019) proposed a hybrid approach implementing computational intelligence87

techniques such as, ANNs and GAs to optimize the combination of steel properties in the industry.88

The goal of the Dey et al’s approach was to find the combination of composition and processing89

parameters for steel to meet desired conditions. The models developed by Dey et al. demonstrated90

their ability to recommend actions to improve the quality of the steel produced.91

2.1.2. Rules-based on logic92

Ramannavar and Sidnal (2018) proposed a context model for the analysis of resumes to rec-93

ommend or prescribe the best job for a particular candidate. The goal was to map a job o↵er to a94

resume. To achieve the goal, they used logic-based models, discovering hierarchical correlations95

between concepts extracted from resumes. Srinivas and Ravindran (2018) developed a generic96

framework for optimizing an appointment system in hospital environments. The developed frame-97

work first predicts an outcome based on patient data, and then prescribes the best decision with98

logical rules. The proposed framework outperforms benchmark rules reported in the literature.99

2.1.3. Simulation100

Jank et al. (2019) used prescriptive modeling to improve product portfolio designs in the in-101

dustry. The proposed model supported product managers in designing product portfolios to align102

them with company objectives. Jank et al. used ANNs to quantify the correlations between product103

portfolio metrics and the company’s strategic objectives to maximize success.104

2.1.4. Machine learning105

Revathy and Mukesh (2020) used prescriptive models to assure the privacy of information in106

Hadoop (a distributed processing platform). The goal was to generate a prescriptive model to107

distribute the data on nodes to avoid data leaks. The developed model recommends strategies to108

protect data from misuse by classifying the nodes in the system based on the information sensitiv-109

ity. This model was based on unsupervised learning and suggest the node where the information110

must be placed. Finally, Hoyos et al. (2022) developed an autonomous cycle of data analysis tasks111

to predict severity with ANNs and SVMs; and prescribe the best treatment options for dengue112

fever with a GA. The application developed by Hoyos et al. could predict severity with high ac-113
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curacy (98%), and based on that result, it prescribed the best actions for every patient based on114

World Health Organization guidelines for diagnosis and treatment of dengue.115

2.2. Optimization approaches116

The development of optimization approaches and models has increased in recent years. Here,117

we present some interesting works that have generated important results in several areas of knowl-118

edge.119

Singh and Shukla (2022) developed a hybrid precoding multiple optimization algorithm for120

both minimizing the bit error rate in Mm-wave massive MIMO system and maximizing the en-121

ergy and spectral e�ciency of millimeter-wave wireless communications. Simulations performed122

during the research showed improved e�ciency and cost when compared to other conventional123

algorithms reported in the literature. Pozna et al. (2022) combined the particle filter algorithm124

and the particle swarm optimization algorithm to minimize the energy consumption of integral125

servo systems. The coupling of these two techniques allows particle generation and a broadening126

of the search field to avoid local minima. The proposed approach allowed significant energy re-127

duction in the fuzzy control system used in the experiments. The comparative results with other128

metaheuristics reinforce the capabilities of the proposed hybrid approach for energy reduction in129

the studied systems. Zamfirache et al. (2022) proposed an optimization approach that integrates130

the gray wolf optimization algorithm, reinforcement learning and iteration policies. The objec-131

tive of the proposed approach was to train ANNs to optimize servo motor tracking control. The132

proposed approach was compared with approaches based on reinforcement learning and iteration133

policies that implement PSO and down gradient for optimization. However, the use of the gray134

wolf optimizer generates better results for the defined problem.135

3. Fuzzy cognitive maps (FCMs)136

In this section, we present an overview of FCMs, and their learning and inference processes.137

3.1. Mathematical notation138

In this subsection, the mathematical notation used in this article is briefly described. Vectors139

will be represented in lowercase letters (v) and matrices with capital letters (W). Both with bold140
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letters. Vectors are by default represented as columns. We used the notation a 2 R to indicate141

that an element is a scalar, the notation v 2 Rn to indicate a vector of length n. To indicate that an142

element is a matrix, we use the convention W 2 Rn⇥n. Superscripts are used to indicate the type143

of1 variable, while subscripts indicate a specific element in a vector (the i-th element) or matrix144

(the i-th and j-th element).145

3.2. Overview of FCMs146

FCMs are directed graphs that were introduced by Kosko (1986), taking as an initial idea147

the development of cognitive maps developed by Axelrod (1976). The map consists of nodes148

representing concepts and arrows representing relationships or influences between them. Nodes149

are causally related variables within a system, where one variable can cause some kind of e↵ect150

on another. This type of relationship is represented with arrows directed from a source node151

to a destination node. Fig. 1 shows an example of FCM with five nodes or concepts and five152

relationships. The subindex in the edge value indicates the direction of that relationship, i.e. W15153

indicates that the relationship goes from concept 1 (C1) to concept 5 (C5).154

C1

C5 C4

C3

C2

W15

W25

W32

W45

W35

Fig. 1. Example of an FCM with five concepts and five relationships.

An FCM is composed of five main elements, summarized by the following expression (Hoyos155

et al., 2022):156
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⌦ = hn, v,W, f (· · · ), ri (1)

Where ⌦ represents the tuple that contains all the elements of an FCM; n is the number of157

nodes or variables, v is an activation or initial vector —v 2 Rn— that stores the value of the158

concepts or nodes at time t = 0 (see Eq. 2); W is a matrix that stores the causal relationships159

between the concepts, —W 2 Rn⇥n— (an example of a weight matrix for the FCM of Fig. 1 is160

shown in Eq. 3); finally, f (· · · ) is a nonlinear activation function that keeps the values within a161

given range determined by r. This range of r depends on the activation function used.162

v(0) = (v1(0), v2(0), . . . , vn(0)) (2)

W =

C1 C2 C3 C4 C5
0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

C1 0 0 0 0 w15

C2 0 0 0 0 w25

C3 0 w32 0 0 w35

C4 0 0 0 0 w45

C5 0 0 0 0 0

(3)

Di↵erent activation functions can be used such as sigmoid and hyperbolic tangent. The use of163

each of them depends on the system to be simulated, i.e. the sigmoid function keeps the concept164

values between 0 and 1, while the hyperbolic tangent keeps them between -1 and 1. Table 1 shows165

the equations for some of the activation functions used in FCMs.166

3.3. Learning of FCMs167

The construction and optimization of FCMs can be carried out by two main approaches (Aguilar,168

2013; Aguilar and Contreras, 2010): i) definition of concepts and assignment of relationships by169

domain experts, and ii) optimization of the matrix that stores relationships between concepts. In170

the latter approach, ML algorithms are used to compute the matrix using historical data to fit171

specific patterns. It is worth mentioning that in the latter approach, human intervention is not172

necessary.173
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Table 1

Example of activation functions used in FCMs.

Activation function Equation Range

Bivalent f (x) =

8>><
>>:

1 x > 0
0 x  0

f (x) 2 {0, 1}

Trivalent f (x) =

8>>>>><
>>>>>:

1 x > 0
0 x = 0
�1 x < 0

f (x) 2 {�1, 0, 1}

Sigmoid f (x) = 1
1+e��⇥x f (x) 2 [0, 1]

Hyperbolic tangent f (x) = ex�e�x

ex+e�x f (x) 2 [ � 1, 1]

One of the most widely used algorithms for the construction of FCMs is Particle Swarm Op-174

timization (PSO). PSO is a search algorithm described by Kennedy and Eberhart (1995), which175

is inspired by the behavior of insect swarms in nature. It can be used to train the weights matrix176

of an FCM where each particle i is an FCM and its position is a candidate weight matrix (Wi).177

The process consists of two stages to move the particle to a new position: i) update the particle178

velocity, ii) update the particle position (Salmeron et al., 2017). Formally, the PSO algorithm can179

be described by two equations. First, the update of the velocities:180

vi(t + 1) = vi(t) + r1 · (Wbest
i –Wi(t)) + r2 · (Wgbest

i –Wi(t)) (4)

Where vi(t) is the velocity of particle i at instant t, r1 and r2 are two random values generated181

during the search process; Wbest
i is the best position the particle has passed through throughout the182

search process and Wgbest
i is the best global position of the whole swarm.183

After the particle velocities are updated, the positions are updated using the following equation:184

185

Wi(t + 1) =Wi(t) + vi(t) (5)

Finally, the algorithm generates the best weight matrix (Wi) using previous updates. We used186

this algorithm to create and train FCMs (the predictive models) using synthetic and real datasets,187

due to the lack of domain experts and avoid bias introduced by humans.188
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3.4. Inference of FCMs189

The reasoning or inference process of FCMs is carried out by successive multiplication of an190

activation vector v with a square matrix W corresponding to the influences between those concepts.191

One of the goals of this process is to predict an outcome. The inference procedure is iterative192

through time t and ends when the steady-state is reached. The equilibrium point is achieved when193

the di↵erence between the value of the concept at time t + 1 and the value of the concept at time t194

is less than or equal to 0.0001. As an example, the following expression represents the calculation195

of the vector values in the first iteration of the inference process using the Kosko function (Kosko,196

1986):197

v(1) =

2
6666666666666666664

WT
1

WT
2
...

WT
4

3
7777777777777777775

2
6666666666666666664

v1(0)
v2(0)
...

vn(0)

3
7777777777777777775

(6)

For simulation with FCMs, di↵erent inference functions have been developed such as the one198

developed by Kosko (Kosko, 1986), the modified Kosko (Stylios and Groumpos, 2004), and the199

rescaled one (Papageorgiou, 2011). Table 2 shows the equations of each of the inference functions200

and their main characteristics.201

4. Our proposed prescriptive approach: PRV-FCM202

In this work, we propose a methodology to generate prescriptive models with FCMs and meta-203

heuristic algorithms, called PRV-FCM. Prior to the generation of the prescriptive model, an FCM204

must be built for each specific problem. In this research, we used data-driven PSO-FCM for the205

construction of the predictive models with FCMs. In this case, FCMs were not built based on206

expert knowledge and experience but based on historical data, due to better model performance207

when this approach is used.208

The generation of a prescriptive model with PRV-FCM requires three steps: i) Characterization209

of the FCM, ii) Initial instantiation of the FCM, and, iii) Inference and optimization processes.210

Fig. 2 represents the methodological framework to generate prescriptive models using PRV-FCM.211

In the following, we describe briefly the stages of our approach.212
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Table 2

Main properties of inference functions used for reasoning in FCMs.

Inference function Equation Main characteristics

Kosko (Kosko, 1986) v j(t + 1) = f
 
Pn

i=1,i¬ j Wi jvi(t)
!

It does not include
the values of the
concepts in the
previous iteration.
The FCM has no
memory capacity
and the change
between iterations
tends to be abrupt.

Modified Kosko (Stylios and Groumpos, 2004) v j(t + 1) = f
 
Pn

i=1,i¬ j v j(t) +Wi jvi(t)
!

It includes the value
of the concept in the
previous iteration;
therefore, the FCM
has memory capacity
and the change after
each iteration is done
in a smoother way.

Rescaled (Papageorgiou, 2011) v j(t + 1) = f
 
Pn

i=1,i¬ j(2 ⇥ v j(t) � 1) +Wi j(2 ⇥ vi(t) � 1)
!

Solve the problem
with initial concept
values of 0, which
when passed to the
activation function
take values of 0.5 in
the second iteration.
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Fig. 2. Methodological framework to generate prescriptive models using PRV-FCM.

4.1. Characterization of the FCM213

The first step consists of characterizing the FCM by classifying its concepts into two main214

layers: the system layer (blue area in Fig. 3) and the action layer (green area in Fig. 3). The first215

layer contains the concepts that are related to the system, which describe it. In the action layer,216

there are the prescriptive or action concepts that wish to be found for the system to reach the217

desired state. In the following, we define each of the concepts involved in the prescriptive model:218

1. system-related concepts (vs): are those that belong to the system to be studied. System con-219

cepts are the variables that describe a system that relate to each other to achieve an objective.220

12



For example, a disease is a biological system where the system concepts correspond to signs,221

symptoms and alterations in the body of the sick person. This kind of concept is classified222

into changeable and non-changeable:223

• Non-changeable concepts (vnc): are those that cannot be modified in the logic of the224

system. For example: in a biological system, biological sex is a non-changeable con-225

cept in real-time.226

• Changeable concepts (vc): are those that can change during the simulation of the sys-227

tem. For example: in a biological system, changeable concepts could be those that can228

be minimized or maximized for a particular objective. Some examples of minimiza-229

tion could be symptoms of a patient with a disease. These concepts are the ones to be230

optimized following decision guidelines that are represented by the action concepts.231

2. Action concepts (va): are those that act on the changeable concepts of the system to optimize232

them to achieve a desired result in the system. These concepts have a causal e↵ect on some233

changeable concepts related to the system. Moreover, these variables are the ones that make234

up the prescriptive model. An example of this type of concept could be a treatment (i.e.235

analgesic), which has an e↵ect on reducing a patient’s symptom (i.e. headache).236

Fig. 3 shows a general example of an FCM to define a prescriptive model. In this figure, we237

can see the types of concepts for this problem: system-related and action concepts. Thus, to use an238

FCM as a prescriptive model, three types of concepts and causal relationships to the changeable239

concepts are defined.240

4.2. Initial instantiation of the system-related concepts241

The system’s initial vector – vs(0) – corresponds to the values of the system concepts desired242

by the decision maker. This vector serves as input to PRV-FCM to find the values of the action243

concepts leading to that initially defined system state.244

vs(0) =

2
6666666666664

vs
i (0)
...

vs
o(0)

3
7777777777775
=

2
6666666666664

vnc
i (0)
...

vnc
p (0)

3
7777777777775
[

2
6666666666664

vc
i (0)
...

vc
q(0)

3
7777777777775

(7)
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C1

C2 C3

C6

C4

C7

C5w3

w7 w4

w5 w2

w6

Action concepts

System-related concepts

w1

Fig. 3. Example of an FCM used as a prescriptive model. The non-changeable concepts are represented in

red, while the changeable in dark blue.

where, vnc(0) is a vector with non-changeable concepts and p is the number of them, and the245

vector vc(0) stores the changeable system-related concepts and q is the number of them.246

4.3. Optimization process247

In this section, we describe the process for finding the optimal action values that lead to the248

desired values of the system concepts. The optimization mechanism internally uses the PRV-FCM249

inference process to generate solutions and, once evaluated, they are discarded or selected. A more250

in-depth explanation of this process is described below.251

Algorithm 1 describes the steps of the optimization process, which are carried out to obtain the252

optimal values of action concepts that generate the desired values of the system concepts. In our253

case, we used a GA for the optimization process, however, any metaheuristic can be used to obtain254

these values. GA is a probabilistic search technique used to find the optimal subset of features255

for a specific problem. This algorithm is an ideal choice for the optimization of prescriptive con-256

cepts with FCMs due to several reasons: 1) its ease of implementation and versatility; the general257

structure of a GA is the same regardless of the problem to be solved. 2) the ability to operate258
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simultaneously with several solutions, instead of working sequentially like other techniques. 3)259

They use the information provided by the objective function and do not require other methods or260

auxiliary knowledge. These features make it more easily adaptable to di↵erent problems.261

The input parameters of the algorithm are the initial vector of desired system concepts vs(0).262

The algorithm must initially know the desired values of the system, a matrix of weights W that263

corresponds to the relationships that exist between all the concepts, a stop condition of the algo-264

rithm to avoid an infinite loop, the dimensions of the action vector, and the fitness function F to265

evaluate the individuals generated in the process.266

To start the optimization process with the GA (Step 1), the generation counter is set to 0 (Step267

2). Step 3 is the random generation of a population of individuals or vectors va(0) with dimension268

s corresponding to the action concepts. A solution (individual) is a set of possible values for each269

of the action concepts. The vector va(0) is defined as follows:270

va(0) =

2
6666666666664

va
i (0)
...

va
s(0)

3
7777777777775

(8)

where va(0) stores the prescriptive concepts and s is the number of them.271

For the inference process, an initial vector v(0) is required. This vector is constituted by an272

initial vector of the system vs(0) corresponding to the desired state of the system that was defined in273

the previous stage. The other component of the initial vector is an initial action vector va(0), which274

was randomly generated at the beginning of the process and is the objective vector to optimize.275

These two vectors are combined to form the initial vector (Step 4). This step is important, so that276

the dimensions of the weight matrix should match the dimensions of the initial vector and thus the277

dot product is performed correctly (see Eq. 6). The initial vector is defined as:278

v(0) = vs(0) [ va(0) =

2
6666666666664

vs
i (0)
...

vs
o(0)

3
7777777777775
[

2
6666666666664

va
i (0)
...

va
s(0)

3
7777777777775

(9)

Subsequently, with the constructed initial vector v(0), the inference process is performed (Step279

7). Unlike a classical FCM that consists of a five-element tuple (see Eq. 1), PRV-FCM is repre-280
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Algorithm 1: Optimization algorithm to generate optimal values of action concepts
Input : vs(0) = desired system vector, W = weigh matrix, F = fitness function, sc = stop

condition

Output: Optimal va

1 begin

2 Set the generations counter g = 0

3 Generate randomly one population P(0) of individuals va

4 Generate initial vector v(g) with the combination of vs(0) and va

5 while sc is not met do

6 for each initial vector v(g) do

7

v f inal = f
 nX

i=1

Wv(g)
!

8 for each final vector v f inal 2 P(g) do

9 Split final vector v f inal in vâ and vŝ

10 Evaluation of fitness:

11

F =
������ f

 nX

i=1,i¬ j

Wi jvs
i

!
� f

 nX

i=1,i¬ j

Wi jvŝ
i

!������

12 end

13 end

14 Selection of best individuals vâ by genetic operators

15 Generation of a new population P(g + 1)

16 g = g + 1

17 end

18 return optimal va

19 end
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sented as a twelve-element tuple. Eq. 10 represents mathematically all the PRV-FCM elements281

and Table 3 shows a comparison between classical FCM and PRV-FCM elements.282

 = hn,W, f (· · · ), r, vs, o, vnc, p, vc, q, va, si (10)

Table 3

Comparison of elements used in classical FCMs and our proposed prescriptive approach (PRV-FCM).

Element
Definition
Classical FCM PRV-FCM

n Total number of variables total number of variables
W Weight matrix for the FCM Weight matrix for PRV-FCM
f (· · · ) Threshold function Threshold function
r Range of concept values Range of concept values
vs – System concepts
o – Number of system concepts
vnc – Non-changeable concepts
p – Number of non-changeable concepts
vc – Changeable concepts
q – Number of changeable concepts
va – Action concepts
s – Number of action concepts

The inference process consists of the iterative computation (t iterations) of initial vector v(0)283

with the weight matrix W to obtain a final stable vector. This process is defined by the equations284

described in Table 2. However, for the practical case, we will use a modification of the inference285

function proposed by Kosko (1986):286

v f inal = f
 mX

i=1

Wv(t)
!

(11)

The result of the inference process is a final vector that corresponds to the steady state of PRV-287

FCM (Step 8). This final vector is divided again into action vector vâ and system vector vŝ (Step288

9). The fitness of the action vector is evaluated using the vs(0), vŝ and a fitness function (Steps289
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10 and 11). We proposed several fitness functions (see Table 4). For this explanation, we use the290

following function:291

min
������ f

 mX

i=1,i¬ j

Wi jvs
i

!
� f

 mX

i=1,i¬ j

Wi jvŝ
i

!������ (12)

s.t. ll < vŝ < lu (13)

where vs
i indicates the desired state of the system concepts, vŝ

i indicates the vector of systems292

concepts as a result of inference with the PRV-FCM; ll and lu are lower and upper limits ([0, 1] or293

[-1, 1], depending on the inference function used), respectively.294

Table 4

Fitness functions used to generate prescriptive models with PRV-FCM.

Fitness function Equation

Prescriptive Kosko F =
������ f

 
Pn

i=1,i¬ j Wi jvs
i

!
� f

 
Pn

i=1,i¬ j Wi jvŝ
i

!������

Prescriptive Modified Kosko F =
������ f

 
Pn

i=1,i¬ j vs
j +Wi jvs

i

!
� f

 
Pn

i=1,i¬ j vŝ
j +Wi jvŝ

i

!������

Prescriptive rescaled F =
������ f

 
Pn

i=1,i¬ j(2 ⇥ vs
j � 1) +Wi jvŝ

i

!
� f

 
Pn

i=1,i¬ j(2 ⇥ vŝ
j � 1) +Wi jvŝ

i

!������

Subsequently, crossover and mutation genetic operators are applied to the action vector to295

select the best individuals (Step 14) and create a new population with the best individuals (Step296

15). The main objective of this stage is to find the values of the action concepts that when used297

in the inference process minimize the di↵erence between the initial values of system concepts298

and the values of system concepts generated during the inference process. Finally, when the stop299

condition is reached, the optimal values for the action concepts are obtained (Step 18), and thus,300

they constitute the optimal prescriptive variables that lead to the desired state of the system.301
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5. Specification of the case studies302

In this section, we specify case studies to validate the proposed approach. We used several303

case studies from di↵erent domains. We tested our methodology in a synthetic dataset, and after304

in three real datasets. Although work on prescriptive modeling continues to increase, there are305

still challenges that need to be addressed. For example, there is currently a low availability of306

datasets with prescriptive variables included. Of the selected case studies, only one dataset had307

variables considered prescriptive. We reviewed hundreds of datasets that were hosted in di↵erent308

repositories and could be downloaded to determine the nature of the features present in each of309

them and used this criterion for the selection of case studies. Finally, we selected datasets where310

system-related variables could be assumed to be prescriptive variables (see Section 7 for more311

details).312

5.1. Synthetic case study313

To carry out this first case study, we generated a balanced synthetic dataset for classification314

with 1000 records, 10 features and a binary class.315

Table 5

Features included in the synthetic dataset.

Concept Concept type

C1 System
C2 Prescriptive
C3 System
C4 System
C5 System
C6 System
C7 System
C8 System
C9 Prescriptive
C10 System
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5.2. Wine case study316

For this case study, we use the red wine quality dataset available in UCI ML datasets (Cortez317

et al., 2009). This dataset comprises 1599 records, 11 physicochemical variables, and the class318

(wine quality). Table 6 shows the 11 variables used in this case.319

Table 6

Features included in the red wine dataset.

Feature Concept Concept type
Fixed acidity (g(tartaric acid)/dm3) C1 System
Volatile acidity (g(acetic acid)/dm3) C2 System
Citric acid (g/dm3) C3 System
Residual sugar (g/dm3) C4 System
Chlorides (g(sodium chloride)/dm3) C5 System
Free sulfur dioxide (mg/dm3) C6 Prescriptive
Total sulfur dioxide (mg/dm3) C7 System
Density (g/cm3) C8 Prescriptive
pH C9 System
Sulphates (g(potassium sulphate)/dm3) C10 System
Alcohol (vol.%) C11 System
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Fig. 4. Frequency distribution of the classes in the red wine dataset (Plot A corresponds to the frequency

distribution of the classes in the original dataset. Plot B corresponds to the frequency distribution after

reducing the classes to two categories).
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The wine quality is defined by an expert team by assigning a score between 0 and 10 (Cortez320

et al., 2009). This score is considered the class within the red wine dataset. Although the score can321

be assigned from 0 to 10, in the dataset, there were no wines with class categories below 3 or above322

8. In addition, some categories were unbalanced, and there were categories with few instances (see323

Plot A in Fig. 4). To overcome this problem and avoid using oversampling techniques for each324

minority class, we reduced the categories to two categories: low quality, when wine quality is325

lower and equal to 5 (class = 0); and high quality, when wine quality is greater than 5 (class = 1).326

At the end, we obtained a balanced dataset with 744 records for class 0 and 855 for class 1 (see327

Plot B in Fig. 4).328

Table 7

Features included in the diabetes dataset.

Feature Concept Concept type

Number of times pregnant C1 System
Plasma glucose concentration a 2 hours in an oral glucose tolerance test C2 Prescriptive
Diastolic blood pressure (mm Hg) C3 Prescriptive
Triceps skin fold thickness (mm) C4 System
2-Hour serum insulin (mu U/ml) C5 System
Body mass index (weight in kg/(height in m)ˆ2) C6 System
Diabetes pedigree function (familiar and genetic antecedents) C7 System
Age (years) C8 System

5.3. Diabetes case study329

Our third case study corresponds to diabetes, which is a disease characterized by high levels of330

glucose in the blood and complications related to this blood alteration (Pangaribuan and Suharjito,331

2014). In this case, we used the Pima Indians Diabetes Database from the National Institute of332

Diabetes and Digestive and Kidney Diseases (Smith et al., 1988). The dataset is composed by 768333

patients and 9 features, including the class (500 patients for class 0 = negative for diabetes, and334

268 patients for 1 = positive for diabetes). Table 7 shows the variables included in this dataset.335

We used Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002) to balance336

the classes, and at the end, we obtained 1000 records, 500 for each class.337
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Table 8

System-related categorical features included in the student academic performance dataset.

Feature Feature type Concept Concept type Categories
Gender Demographic C1 System Male, female

Nationality Demographic C2 System

Kuwait, Lebanon, Egypt,
Saudi Arabia, USA, Jordan,
Venezuela, Iran, Tunis,
Morocco, Syria, Palestine,
Iraq, Lybia

Educational stages Academic C3 System
Lowerlevel, Middle School,
High School

Grade levels Academic C4 System
01, 02, 03, 04, 05, 06, 07,
08, 09, 10, 11, 12

Classroom Academic C5 System A, B, C

Topic Academic C6 System

English, Spanish, French,
Arabic, IT, Math, Chemistry,
Biology, Science, History,
Quran, Geology

Semester Academic C7 System First, Second
Responsible parent Academic C8 System Mother, Father
Parent answering survey Behavioral C13 System Yes, No
Parent school satisfaction Behavioral C14 System Yes, No
Student absence days Behavioral C15 System Above-7, Under-7

5.4. Student performance case study338

Student academic performance is conceived as a construct that depends not only on student339

motivation, but also on other factors such as student-student relationships, demographic, socio-340

economic and psychological variables (Kumar and Pal, 2011). To test our approach, we used341

an educational dataset, called Student Academic Performance, with 480 students and 16 features342

(academic, demographics and behavioral) (Amrieh et al., 2016). This dataset has information343

collected from a Learning Management System called K360, which allows students access to344

online educational resources. Table 8 shows the categorical variables, and Table 9 shows the345

numeric features included in this dataset. These last variables will be the prescriptive concepts.346

For this experiment, we drop the variable place of birth because of its high correlation with the347
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variable nationality (0.95). With respect to the class, we created two classes based on students’348

grade: class 0 when the grade is lower than 70, and class 1 when the grade is greater or equal to349

70. We used SMOTE to balance the classes (353 records for each class).350

Table 9

Action numerical features included in the student academic performance dataset.

Feature Feature type Concept Concept type
Raised hand Behavioral C9 Prescriptive
Visited resources Behavioral C10 Prescriptive
Viewing announcements Behavioral C11 Prescriptive
Discussion groups Behavioral C12 Prescriptive

6. Experiments and results351

In this section, we present the experiments set up to test the proposed approach. Additionally,352

we present the results of the generated models. First, we give an overview of the data preparation;353

then, we present the metrics to evaluate the performance of the models and finally, we present the354

results of the prescriptive models and their corresponding predictive model.355

6.1. Data preparation356

Normalization process was implemented to convert values in the range from 0 and 1 before357

feeding the FCMs (see Eq. 14). Specific processes of modification of variables in datasets are358

described in each case study’s subsection. For all experiments, datasets were divided in training359

and testing in a proportion 70%/30%, respectively, and we use 10-fold cross-validation to find out360

the best configuration of hyperparameters (see Fig. 5).361

xnorm =
xi � xmin

xmax � xmin
(14)

6.2. Evaluation metrics362

We used accuracy as a metric for classification; mean absolute error (MAE), mean squared363

error (MSE), and root-mean-square error (RMSE) as error metrics to evaluate the prescriptive364
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models; and prescriptive success rate (PSR) to determine the quality of the prescription. It’s365

important to mention that we used accuracy as a metric because all datasets were balanced at the366

moment of developing the models, and error metrics because the prescriptive variables in datasets367

were numerical. In the following, we describe briefly each of these metrics.368

• Accuracy: percentage of correctly classified examples among the total number of classified369

examples. Greater accuracy means a greater performance of the model.370

Accuracy =
T P + T N

T P + FN + FP + T N
(15)

where T P are the true positives, T N are true negatives, FN are false negatives and T N are371

true negatives.372

• MAE: calculated as an average of absolute di↵erences between prescriptive concepts values373

and prescriptions.374

MAE =
1
m

mX

i=1

���va
i � v̂a

i

��� (16)

where m is the number of records in the testing set, va
i is the actual prescriptive value and v̂a

i375

is the prescribed value.376

377

• MSE: measures the average square error of our prescriptions. For each point, it calculates378

the square di↵erence between the prescriptions and the prescriptive concepts, and then av-379

erages those values.380

MS E =
1
m

mX

i=1

(va
i � v̂a

i )2 (17)

• RMSE: is the squared root of the error described above.381

RMS E =

vt
1
m

mX

i=1

(va
i � v̂a

i )2 =
p

MS E (18)
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• PSR: calculated as a ratio between prescribed values by PRV-FCM and actual values in the382

dataset. The numerator should be lower than the denominator to assure values between 0383

and 1.384

PS R =
Ps

i=1
Pm

j=1 v̂a
iPs

i=1
Pm

j=1 va
i

(19)

6.3. Training, validation and testing385

After data preparation, the model development process consisted of three stages: i) training, ii)386

validation and iii) testing. Seventy percent of the data from each case study was used for training387

and validation, while 30% was used for testing in cases not seen by the model. We used the388

10-fold cross-validation technique to determine the best model and its hyperparameters. The 10-389

fold cross-validation process can be seen in Fig. 5. Specifically, this process divides the training390

dataset into ten subsets, taking nine for training and one for validation. Subsequently, it repeats the391

process by taking one subset di↵erent from the previous one for validation and the remaining nine392

for training. After ten training and validation processes, the best performing model and associated393

hyperparameters are selected. The best selected model is applied to the test data set to evaluate its394

performance on previously unseen models.395

The whole dataset

Training dataset Testing dataset

Validation fold
Training fold

Selection of the
best model and

hyperparameters

Iteration 1

Iteration 2

Iteration 3

Iteration 10

Final evaluation

70% 30%

Fig. 5. Schematic representation of 10-fold cross-validation.

For the case of predictive models, we use a grid of hyperparameters for tuning. We used the396

sigmoid and hyperbolic tangent activation functions with random values of slopes. We also use the397
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Kosko, modified Kosko and Rescaled inference functions for the reasoning process with the FCM.398

For the case of prescriptive models, we used a random grid of values for the hyperparameters399

of the GA such as initial population, number of generations, crossover probability and mutation400

probability.401

6.4. Synthetic dataset402

6.4.1. Predictive model403

Before prescription with PRV-FCM, we generated an FCM using PSO. For that, using the404

training set from the previous dataset, we adjust the weights of FCM, and test using the testing405

set. The generated FCM was able to classify with 96% accuracy. Table 10 shows the results of the406

evaluation on the testing set, including the optimal hyperparameters. The results of this case study407

show an excellent performance of the model for prediction, and this result was expected because408

the dataset was built with well-di↵erentiated clusters that allowed classifying the classes with high409

accuracy.410

6.4.2. Prescriptive model411

We selected two concepts from previously developed FCM as prescriptive variables: C2 and412

C9 (see Table 5). This decision was made because these two variables had no incoming influences413

on them, and in this way, we ensured that the value of them is not altered by other variables in the414

system. The idea is to find the optimal values of these prescriptive concepts that achieve a desired415

result in the system concepts. To find out these values, the PRV-FCM used a GA with di↵erent416

hyperparameters such as population, number of generations, crossover and mutation probabilities.417

The best configuration were: population = 50, number of generations = 20, crossover = 0.3 and418

mutation = 0.4. Table 11 shows the evaluation of PRV-FCM with respect to MAE, MSE and419

RMSE. The prescription results show an excellent performance of the model generated with PRV-420

FCM, such that it prescribes actions to achieve desired results of the system concepts in the dataset.421

The di↵erent levels of error measured between the values of the prescriptive variables in the dataset422

and the prescriptive values generated by PRV-FCM are very low (MAE < 0.014, MSE < 0.0004423

and RMSE < 0.019) and demonstrate that our approach is useful for generating prescriptive models424

that optimize actions to achieve desired outcomes.425
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6.5. Wine quality dataset426

6.5.1. Predictive model427

To test the inference process, we generated an FCM using PSO. For that, using the training428

set generated from the previous dataset, we adjust the weights of generated FCM, and test in the429

testing set. The developed FCM was able to predict wine quality with 71% accuracy. Table 10430

shows the results of the evaluation on the testing set, including the optimal hyperparameters.431

Several predictive models have been developed with the previously described dataset in this432

case study. Our predictive model performed slightly better than that reported by Kumar et al.433

(2020), who developed a predictive model obtaining the best model with SVMs and an accuracy434

of 68%. On the other hand, our model had a similar performance to the one developed by Laughter435

and Omari (2020) where with Random Forest they obtained a performance of 72% accuracy. This436

comparison shows the competitive capacity of our model to predict wine quality using physic-437

ochemical characteristics as predictor variables. The performance of the predictive model was438

good, however, it could be improved by using other variables related to wine quality. For exam-439

ple, a high concentration of metals such as iron, aluminum and copper can alter the organoleptic440

properties of wine, and thus, its quality. In addition, these molecules have the ability to modify441

the turbidity and color of wine due to the formation of complexes with molecules present in wine442

such as tannins and anthocyanins (Frank and Kowalski, 1984).443

6.5.2. Prescriptive model444

In the wine dataset, there were no action concepts per se, but some concepts that can be modi-445

fied by the decision-maker to achieve the desired result. We assume these variables as prescriptive446

concepts. For this case, we selected two of the FCM concepts as prescriptive variables: C6 and447

C8 (see Table 6). This decision was made because these two variables had no incoming influences448

on them, and in this way, we ensured that the value of them is not altered by other variables in449

the system. The idea is to find the optimal values of these prescriptive concepts that achieve a450

desired result in the system concepts. To find out these values, the PRV-FCM used a GA with dif-451

ferent hyperparameters. The best configuration was population = 50, number of generations = 20,452

crossover = 0.5 and mutation = 0.5. Table 11 shows the evaluation of PRV-FCM with respect to453
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MAE, MSE and RMSE. As in the synthetic case study, the prescriptive results for this case study454

were excellent, finding MAE, MSE and RMSE values below 0.02, 0.0007 and 0.03, respectively.455

The prescriptive model generated with PRV-FCM has the ability to generate recommendations on456

prescriptive variables that lead to improved wine quality. Finally, because this dataset has not been457

used in any prescriptive model previously, unfortunately, we cannot compare it quantitatively with458

previous studies.459

6.6. Diabetes dataset460

6.6.1. Predictive model461

The inference process was tested using an FCM built with PSO (with it was adjusted the FCM462

weights). Then, the FCM was tested in a testing set. The developed FCM model was able to463

predict diabetes with 70% accuracy. Table 10 shows the results of the evaluation in the testing set,464

including the optimal hyperparameters. Our model performed inferior to studies reported in the465

literature. For example, Olisah et al. (2022) and Hasan et al. (2020) developed predictive models466

for diabetes using feature selection techniques to improve model performance. The two studies467

presented performances above 90% using SVMs and correlation-based techniques, respectively.468

Despite the superiority of these models, our model has the advantage of being interpretable, where469

the inference process could be used to evaluate the behavior of variables over time.470

The diagnosis or detection of diabetes is composed of the analysis of blood glucose levels,471

symptoms and risk factors present in the patient (Elliott and Pfotenhauer, 2022). The performance472

of predictive models for diabetes can be improved by using all the risk factors or symptoms used473

in the diagnosis of the disease. The acceptable performance of our predictive model could also474

be explained by the fact that many known symptoms of diabetes such as polydipsia, polyuria,475

polyphagia, abdominal girth, or risk factors such as physical exercise and obesity, were not avail-476

able within the dataset. In addition, the small size of the dataset could influence the performance477

of the developed model. Several studies have shown that increasing the dataset size improves the478

performance of predictive models (Rácz et al., 2021; Barbedo, 2018; Quintero et al., 2021).479
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6.7. Prescriptive model480

In the diabetes dataset there were no action concepts per se, but some concepts that can be481

modified by the decision-maker to achieve the desired result. We assume these variables as pre-482

scriptive concepts. For this case, we selected two of the FCM concepts as prescriptive variables:483

C2 and C3 (see Table 7). This decision was made because these two variables had no incoming484

influences on them, and in this way, we ensured that the value of them is not altered by other485

variables in the system. The algorithm finds the optimal values of these prescriptive concepts to486

achieve a desired result in the system concepts. To find out these values, the PRV-FCM used a487

GA with di↵erent hyperparameters, and the best configuration was population = 150, number of488

generations = 30, crossover = 0.5 and mutation = 0.3. Table 11 shows the evaluation of PRV-FCM489

with respect to MAE, MSE and RMSE. The very low values of MAE < 0.02, MSE < 0.0002490

and RMSE < 0.015 of the prescriptive model generated with PRV-FCM demonstrate the ability of491

the model to generate recommendations that decrease the risk of diabetes. Like the wine quality492

dataset, the diabetes dataset has not been used in the literature to generate prescriptive models that493

generate recommendations or prescriptions to reduce the risk of diabetes.494

6.8. Student performance dataset495

6.8.1. Predictive model496

To test the inference process, we generated an FCM using PSO and the training set from the497

previous dataset. Then, the FCM is tested in the testing set. Table 10 shows the results of the498

evaluation in the testing set, including the optimal hyperparameters. The FCM model can predict499

student academic performance with an accuracy of 85%. The performance of our predictive model500

was good and outperforms the results reported in the literature. Two studies reported by Amrieh501

et al. (2016, 2015) used this dataset to predict academic performance. The best performance of all502

experiments performed in the two studies was 80% accuracy using ANNs. Another work applied503

in the educational field was developed by Tan et al. (2014), who implemented a hybrid prediction504

approach composed of ANNs and structural equations to create a framework that identifies the505

factors that influence the adoption of mobile learning based on the technology acceptance model506

and psychological constructs. The results of applying the approach to academic datasets show that507

29



the technology acceptance model, social influence variables and academic qualifications signifi-508

cantly influence the intention to adopt mobile learning. According to these results, our model is509

superior because it better represents the functional dependencies between the predictor variables510

and student academic performance. Additionally, our model can be used to evaluate the behavior511

of student-performance-related variables in di↵erent scenarios.512

6.8.2. Prescriptive model513

In the student academic performance dataset, there were action concepts per se, such as C9,514

C10, C11 and C12 (see Table 9). These variables are behavioral, and the decision-maker decides515

if execute them or not. In other words, they are the actual actions that the student can take to516

achieve the desired result, in this case, to improve academic performance. The algorithm finds the517

optimal values of these prescriptive concepts that achieve a desired result in the system concepts.518

To find out these values, the PRV-FCM used a GA with the next configuration: population = 200,519

number of generations = 50, crossover = 0.2 and mutation = 0.3. Table 11 shows the evaluation of520

PRV-FCM with respect to MAE, MSE and RMSE. The results showed that the model generated521

with PRV-FCM generates prescriptions with very low error rates (MAE < 0.04, MSE < 0.0023 and522

RMSE < 0.048), which demonstrates that PRV-FCM is a useful methodology for the generation523

of prescriptions in the educational field.524

Table 10

Performance and optimal hyperparameters of predictive models generated by classical FCMs for each

dataset.

Case study
Hyperparameters

Accuracy (%)Activation function Slope Inference function
Synthetic Sigmoid 1 Modified Kosko 96.67
Wine Sigmoid 10 Modified Kosko 70.62
Diabetes Sigmoid 1 Modified Kosko 69.86
Student academic performance Sigmoid 10 Modified Kosko 84.91
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Table 11

Performance of prescriptive models developed with PRV-FCM. NA = not applicable.

Case study FCM concept Variable name MAE MSE RMSE

Synthetic
C2 NA 0.01146 0.00024 0.01559
C9 NA 0.01341 0.00035 0.01872

Wine
C6 Free sulfur dioxide 0.01761 0.00066 0.02583
C8 Density 0.01991 0.00069 0.02644

Diabetes
C2

Plasma glucose concentration a 2 hours
in an oral glucose tolerance test

0.01112 0.00020 0.01429

C3 Diastolic blood pressure 0.00743 0.00010 0.01000

Student
academic
performance

C9 Raised hands 0.02674 0.00120 0.03466
C10 Visited resources 0.03358 0.00188 0.04337
C11 Viewing announcements 0.03560 0.00222 0.04717
C12 Discussion groups 0.00999 0.00018 0.01349

6.9. Comparison of means525

We performed a mean comparison test between the values of the variables in the dataset and the526

values of the variables prescribed by our approach. This is another way to test if our approach can527

generate prescriptive models with excellent performance because this comparison uses a hypothe-528

sis test to determine significant di↵erences between two sets of data. Before comparing means, we529

tested the normality of the data using the Lilliefors test (Lilliefors, 1967). We used Student’s t-test530

and Wilcoxon signed-rank test to compare the means between the two groups. The student’s t-test531

was used when the two groups to be compared followed a normal distribution, while the Wilcoxon532

test was used when at least one comparison group did not follow a normal distribution. These tests533

use the following hypothesis to test:534

• H0 : X̄actual = X̄prescribed535

• H1 : X̄actual , X̄prescribed536

Where H0 is the null hypothesis stating that there are no significant di↵erences between the537

prescriptive values of the dataset and the prescriptive values generated by our PRV-FCM approach.538

H1 is the alternative hypothesis that states that there are significant di↵erences between the pre-539
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scriptive values of the dataset and the prescriptive values generated by our PRV-FCM approach. A540

significance value of 0.05 was established. If p < 0.05, the null hypothesis is rejected.541

The results of this test are shown in Table 12. For all prescriptive variables in all case studies,542

p > 0.05 were found, indicating that there are no significant di↵erences between the prescriptive543

values in the dataset with the prescriptive values generated with our approach. The p-value indi-544

cates the probability that the prescriptive values could have occurred under the previously defined545

null hypothesis (H0). The higher the p-value, the closer the values prescribed by PRV-FCM are546

to the values included in the dataset. With respect to this comparison, the best performance was547

for the prescriptive models generated for diabetes and student academic performance case studies,548

which yielded p-values above 0.934 for all prescriptive variables. This result is possible because549

variables in these two datasets follow a normal distribution. For this reason, the parametric Stu-550

dent’s t-test was used. It has been shown that this type of parametric test has greater statistical551

power than non-parametric tests such as the Wilcoxon test (Amandeep and Robin, 2015; Grech552

and Calleja, 2018). With respect to the variables C2 and C9 of the synthetic dataset and C8 for the553

wine dataset, they did not follow a normal distribution, a test with statistical power lower was used;554

therefore, the p-value is lower because a higher variability of the data influences the comparison555

test. Despite of these results, we can confirm the excellent performance of our approach to gener-556

ate prescriptive models. To ensure full transparency of the results obtained with our approach, the557

synthetic data, those used for statistical comparison and the architecture of the FCM models are558

available in (Hoyos, 2023). Links to the datasets of the other case studies are cited in Section 5.559

In summary, the prescriptive models generated with PRV-FCM in all case studies presented560

excellent performance with very low error rates and without significant di↵erences between the561

actual and prescribed values. This demonstrates the general capacity of our approach for gener-562

ating prescriptive models with excellent performance in any domain. A broader discussion of the563

results obtained with respect to prescriptive models is made in the next section.564

7. Discussion565

In this paper, we propose a methodology to generate prescriptive models. The main objective566

of this type of model is to find ideal actions that lead to the desired outcome. To test our approach,567
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Table 12

Mean comparisons between the values in the dataset and prescribed values using PRV-FCM. NA = not

applicable († indicates the Wilcoxon test was performed because the corresponding variable did not follow

a normal distribution, ? indicates the Student’s t-test was performed because the corresponding variable

follows a normal distribution).

Case study Prescriptive concept Variable name
Mean±SD

pActual Prescribed

Synthetic
C2 NA 0.448±0.305 0.432±0.315 0.844†
C9 NA 0.523±0.313 0.500±0.317 0.776†

Wine
C6 Free sulfur dioxide 0.216±0.128 0.216±0.127 0.966?
C8 Density 0.522±0.101 0.528±0.101 0.672†

Diabetes
C2

Plasma glucose concentration a 2 hours
in an oral glucose tolerance test

0.547±0.130 0.547±0.129 0.973?

C3 Diastolic blood pressure 0.557±0.172 0.558±0.169 0.970?

Student
academic
performance

C9 Raised hands 0.568±0.250 0.570±0.247 0.961?
C10 Visited resources 0.697±0.263 0.694±0.257 0.934?
C11 Viewing announcements 0.449±0.239 0.449±0.250 0.999?
C12 Discussion groups 0.462 + 0.256 0.462±0.257 0.987?

we use four case studies in di↵erent domains. The results shown in the previous section demon-568

strate the capabilities of our approach to generate prescriptive models with excellent performance.569

In this section, we first analyze the results of the prescriptive models developed. Subsequently, we570

made a quantitative comparison with papers that used the same datasets that we used in the present571

study. Then, in the qualitative comparison, we focused on comparing computational intelligence572

models that had a similar architecture to the ones we used to develop our approach. In this case,573

we specifically refer to FCM and GAs.574

7.1. Analysis of results of the prescriptive models575

The generation of prescriptive models is increasing; however, the availability of data with576

prescriptive variables or actions is low. Therefore, in two case studies (wine and diabetes), we577

assumed some system variables to be “prescriptive”. In those cases, the generated “prescriptive”578

model would behave as a recommender, let’s see why. Fig. 6 represents the di↵erence between579

actions variables and system variables defined as prescriptives:580

• A variable is prescriptive when it is considered an action within the system (see side A in581
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Fig. 6). That is, this variable acts on the other concepts in the system, but there is no variable582

acting on it. For example, if we have a patient with a febrile illness, then the symptom fever583

is the system concept, while taking paracetamol is considered the prescriptive variable that584

will decrease the fever. Additionally, there is no variable within the logic that acts on the585

paracetamol.586

• On the other hand, we have system variables that can be modified, but by actions that are not587

within the initial system or dataset. In these cases, the variable can behave as prescriptive,588

and a system could recommend modifications on this variable but not the action to modify it589

(see side B in Fig. 6). For example, body temperature is a system variable that can be used590

as a prescriptive variable. In this case, A prescriptive system might recommend raising or591

lowering the temperature, but does not specify the action to change the body temperature592

values.593

It is crucial to keep this aspect in mind to explain the results of each case study.594

C3C2C1 w23w12

C3C1 w13

Action
variable

System variable assumed
to be prescriptive

System concept

Action
variable System concept

B

A

No included in datasets Included in datasets

Included in datasets

Fig. 6. Di↵erence between using a system variable as “prescriptive” (A) and action or prescriptive variable

(B). In case A, a system concept is used as a prescriptive, but this concept is not an action. In case B, the

system has action variables or prescriptive variables per se.
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For the synthetic case study, prescriptive variables were assumed, due to the lack of context595

within the dataset. We assumed variables C2 and C9 because they were variables that did not have596

the influence of other variables in the FCM. These variables are considered actions or prescriptive597

because the decision-maker uses them to generate the desired outcome in the simulated system.598

According to the results of the prescriptive model, with our approach, it is possible to find the599

optimal values of decision-driven actions to obtain desired results with excellent performance (see600

Table 11).601

Wine quality is a characteristic of wine obtained through the process where experts assign a602

quality score to di↵erent types of wine with di↵erent physicochemical characteristics (Cortez et al.,603

2009) (see Table 6). According to the prescriptive model, we identified prescriptive variables such604

as sulfur dioxide free and density. It is important to remember that these variables (sulfur dioxide605

and density) are not actions per se. They are system variables that we assign them the role of606

prescriptive to test our approach due to the lack of datasets with actions or prescriptions. For607

this particular case, what the prescriptive model does is to recommend what should be done with608

these two variables. For example, if the decision-maker wants to improve the quality of the wine,609

the model, in this case, will recommend that he/she adjusts the density values, but it will not610

specifically give him/her the action to change the density values to improve the quality of the611

wine. The decision-maker will be able to modify the wine density using di↵erent actions that were612

not initially included in the system, as they were not present in the dataset.613

Diabetes is a disease that has high morbidity rates due to its associated complications. Our614

third case study consisted of generating both a predictive model to classify patients and a prescrip-615

tive model to recommend values for blood glucose concentrations and diastolic blood pressure.616

Similar to the previous case study, we assumed these variables as prescriptive, due to the lack of617

datasets with actions aimed at treating the disease. The performance of the model in prescribing618

is very outstanding, with very low errors when comparing what was prescribed with what was619

stored in the dataset (see Table 11). Our approach allows generating prescriptive models with high620

performance, even if the variables being prescribed are not prescriptive or actions themselves (in621

these last two cases, recommendations).622

Student academic performance is a fundamental aspect in education and di↵erent strategies623
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Table 13

Behavior of prescriptive models generated with PRV-FCM according to types of prescriptive variables in

the case studies’ datasets.

Case study Prescriptive Recommender
Synthetic
Wine
Diabetes
Student academic performance

have been developed to maximize it in schools and universities. Unlike the case studies on wine624

and diabetes, in this dataset, there are prescriptive variables or actions (see Table 13), i.e., the625

decision-maker (in this case, the student) performs them directly to obtain the desired results. For626

this case study, it was not necessary to assume system variables as prescriptive because they are627

behavioral variables collected in the dataset. Clear examples are the variables raised hands and628

Visited Resources that correspond to the number of times the student raises his/her hand and the629

number of times he/she visits the academic resources available on the online education platform,630

respectively.631

Thus, of the real datasets used in this work, only the student academic performance dataset has632

been used for prescriptive modeling. Harikumar et al. (2022) proposed an approach for prescrip-633

tive models. They used two classifiers (logistic regression and SVMs) and the student academic634

performance dataset, to demonstrate the applicability of their approach. The action variables se-635

lected by Harikumar et al. corresponded to the same variables that we selected to test our approach636

(see Table 9). For a quantitative comparison, we calculated the PSR defined in Eq. 19. Hariku-637

mar et al reported a PSR of 66% with logistic regression and 98% with SVMs. The PSR of our638

approach was 96%, a higher value than the logistic regression and a slightly lower than SVMs639

reported by Harikumar et al.640

Although our approach was slightly inferior to the approach developed with SVMs by Hariku-641

mar et al., our approach has two advantages over this work: 1) usability: our approach proved642

to be excellent for prescribing in di↵erent fields or domains; Harikumar’s approach is limited to643

preserving data privacy. 2) interpretability: our approach uses FCMs, which are interpretable and644
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allow knowing the behavior of the variables over time (iterations); Harikumar et al’s work used645

SVMs, known as a black box technique where it is di�cult to know the behavior of the variables646

involved in the prescription.647

7.2. Qualitative comparison with previous works648

In this section, we compare our approach with previous work using qualitative criteria. Ta-649

ble 14 shows the criteria used and the evaluation.650

He et al. He (2008) implemented a decision-oriented immune algorithm with FCMs. The651

results showed its capability for goal-oriented decision-making; however, there was no validation652

of the approach using synthetic or real data sets. In addition, the case study used does not allow653

for the real prescription because there were no prescriptive variables or actions per se. Thus, the654

model developed by He yue et al. is a recommender system that recommends what to do, but not655

how to do it.656

Dey et al. (2019) implemented evolutionary and ML techniques such as GA and ANNs to657

recommend actions. The approach proposed by Dey et al. used a desirability function to improve658

the quality of steel in the industry, with the ability to recommend the properties that steel should659

have to be of the desired quality. Thus, the model recommends the properties but not the actions660

that lead to those properties. An advantage of this model is that it does not need a prior predictive661

model to recommend the desired characteristics.662

Hoyos et al. (2022) implemented data analysis tasks to prescribe dengue treatment. The authors663

used a GA to find the optimal values of disease treatment options as reported by WHO. The664

prescriptive model developed had the ability to prescribe actions that reduce the severity of dengue.665

The only disadvantage of this model is the dependence on the output of a previous predictive666

model. The prescriptive model uses as input the outcome of the dengue severity prediction, and667

based on that outcome, it prescribes the best possible actions that minimize the severity of the668

disease.669

Chalmers et al. (2015) proposed a prescriptive analysis approach to identify optimal orthotic670

corrections for adolescent idiopathic scoliosis. The authors implemented fuzzy logic to predict671

whether changes in bracing would improve or worsen the patient’s deformity. This study was able672

37



to obtain good results to recommend actions to reduce the progression of the disease. The disad-673

vantage of this study is the dependence on a previous predictive model. The prescriptive model674

developed needs to know the outcome of the prediction to generate an appropriate prescription.675

Another disadvantage of this model is its application. The model recommends adjusting variables676

to obtain the desired outcome but does not prescribe the action itself.677

In summary, we propose a prescriptive approach using FCMs and metaheuristic algorithms,678

called PRV-FCM. The prescriptive and recommender capability of our approach has been vali-679

dated on synthetic and real datasets. PRV-FCM has the ability to either recommend, prescribe, or680

perform both tasks with high performance. Regarding this last aspect, overfitting is one of the con-681

cerns that arise when models have excellent performance. Overfitting is a problem characterized682

by the inability of the model to generalize on unseen data. In our case, we use data partitioning683

into training and validation (70%) and testing (30%) to reduce overfitting. The random selection684

of subsets in the 10-run cross-validation process reduces the overfitting, considering that, if the685

solution performs consistently on several subsets of the population, its performance is likely to be686

consistent on unseen data. The results shown in this paper are the product of the application of the687

models on previously unseen data.688

The convergence of the proposed algorithm is not a↵ected by the metaheuristic because it uses689

the values of the final state of the FCM, which is a numerical vector and represents the stability690

of the system after successive multiplications with the weight matrix. Particularly, although our691

algorithm uses the combination of the metaheuristic algorithm and the FCM inference process,692

these processes are not combined within the learning process. The result of the inference process693

is a final numerical vector, which is used as the fitness function, while the metaheuristic searches694

the prescriptive values in the search space.695

Finally, PRV-FCM only requires instantiating an FCM to obtain optimal prescriptions. Finally,696

our approach is intuitive because it is only necessary to define the variables involved in the system;697

it is extensible and easily adaptable to any domain in which it can be used.698
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Table 14

Results of qualitative comparison among our work and previous prescriptive approaches.

Qualitative criteria
Work
He (2008) Dey et al. (2019) Hoyos et al. (2022) Chalmers et al. (2015) Our work

Prescriptive capability
Recommender capability
Validated on datasets
Intuitive, extensible and easily adaptable

8. Conclusions699

In this paper, we proposed a methodology to generate prescriptive models using FCMs and700

metaheuristic algorithms. First, we define a discriminated FCM with system concepts and action701

concepts. Subsequently, we implemented a GA to find the optimal values of action variables that702

lead to the desired outcome of the system variables using FCM inference. The results showed the703

ability of our approach to be used in di↵erent fields. We tested it on several datasets, one synthetic704

and others in the fields of business, health and education, with excellent performance.705

The main goal of the proposed methodological framework was not to improve the performance706

of current FCM approaches but to introduce a useful methodology for the generation of prescrip-707

tive models. The particularity of our approach is the ability to recommend or prescribe actions,708

its good behavior with scarce datasets, and finally, its ease of use and adaptability to any area of709

knowledge.710

This work has some limitations, such as: i) the use of experts at the beginning of the method-711

ological framework to select the variables of interest, both system and action variables. Further-712

more, in datasets where no action variables are stored, the human must select which system vari-713

ables behave as prescriptive to generate the prescriptive models. ii) Other metaheuristic algorithms714

were not used to optimize the action concepts.715

Future work should be aimed at using other metaheuristic techniques to improve the optimiza-716

tion process of our approach. In addition, automate the process so that the algorithm automatically717

selects prescriptive variables, for example, detecting those variables of interest that have no influ-718

ence of other variables on them, di↵erentiating them from variables that can be modified within the719

logic of the system. Also, testing other optimization algorithms or experts to build the FCMs could720
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improve the performance of the developed models. Finally, a two-stage learning (first with the721

system concepts and then with the action concepts) could be useful to generate better-performing722

prescriptive models.723
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Abstract

Federated learning is a distributed machine learning approach developed to guarantee the privacy

and security of data stored on local devices. In healthcare, specifically in diseases of public health

interest such as dengue, it is necessary to develop strategies that guarantee such data properties.

Therefore, the aim of this work was to develop three federated learning approaches for fuzzy cog-

nitive maps for the prediction of mortality and the prescription of treatment of severe dengue. The

validation of the approaches was performed on severe dengue datasets from two dengue endemic

regions in Colombia. According to the results, the use of federated learning significantly improves

the performance of models developed in centralized environments. Additionally, the use of fed-

erated learning allows guaranteeing the privacy and security of each client’s data due to the local

training of the models. Federated learning is a useful tool in healthcare because it guarantees the

privacy and security of patient data. Our results demonstrated the ability of aggregated models to

predict mortality and prescribe treatment for severe dengue.

Keywords: Fuzzy cognitive maps, Federated learning, Clinical decision-making, Predictive

modeling, Prescriptive modeling
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1. Introduction1

Dengue is a febrile disease caused by a virus of the Flaviviridae family, and is transmitted2

by the bite of female Aedes mosquitoes [1]. It causes a clinical picture ranging from asymp-3

tomatic processes to severe disease; with a wide spectrum of clinical manifestations such as fever,4

headache, retro-ocular pain to severe signs such as shock, severe bleeding, multi-organ failure and5

death [2]. Based on severity, World Health Organization (WHO) categorized the disease into three:6

i) dengue without alarm signs, ii) dengue with alarm signs, and iii) severe dengue (SD), which in-7

cludes dengue shock syndrome [3]. The latter category is an important cause of mortality and has8

reached a rate of 44% [4]. Dengue infection has spread globally, being endemic in more than 1209

countries worldwide, mainly in Africa, Western Pacific, Southeast Asia and the Americas, gener-10

ating a high epidemiological, economic and social impact [5]. According to the WHO, more than11

3.8 billion people are at risk of infection and approximately 100 to 400 million infections occur12

annually worldwide, with approximately 25% of them showing some type of symptom [6].13

Diagnosis and treatment of dengue are the main components of the clinical management of the14

disease. Diagnosis is made by interpreting signs and symptoms to classify the patient according to15

the severity of the clinical picture, which can be challenging for health personnel due to the vari-16

ability of clinical manifestations present in infected patients. Additionally, dengue presents similar17

clinical manifestations to other febrile diseases such as Zika, chikungunya and leptospirosis, with18

which a di↵erential diagnosis should be made [7]. On the other hand, laboratory tests such as19

detection of dengue antigens, antibodies against the virus and viral isolates, allow confirmation of20

the disease, but may cause delays in areas that do not have all the health services [8]. There is cur-21

rently no specific antiretroviral treatment for dengue available in developing countries. Therefore,22

available treatment focuses on alleviating signs and symptoms and avoiding complications leading23

to death, and clinical management of dengue remains a challenge for health professionals [9].24

One way to address the problem of clinical management is through the development of computer-25

aided approaches that use predictive modeling for diagnosis and prescriptive modeling for treat-26

ment. The development of such methods can support medical decision-making in relation to the27

course of disease, which could have an impact on reducing mortality rates due to timely classifi-28
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cation and appropriate treatment [10].29

The validation of models, approaches and methodologies for the diagnosis and treatment of30

dengue is quite widespread. However, the works reported in the literature present some limitations.31

First, the published studies focus on developing complex models that are not very understandable32

for the medical professional, who is interested in knowing how the model classifies patients ac-33

cording to their severity. Moreover, they maximize predictive performance by compromising the34

interpretability of predictor variables in di↵erent situations or scenarios. Second, there are few35

studies focused on the clinical management of dengue in a comprehensive manner. Most of the36

studies only emphasize one of the two components: diagnosis or treatment; however, it is cru-37

cial to integrate both processes to optimize medical decision-making aimed at improving health38

care. Third, the reported works use the traditional machine learning (ML) approach, which gath-39

ers dengue data in one place for training. This may raise issues with respect to the privacy and40

security of the data used. Transporting and sending the data from one place to another can cause41

loss, damage and violate laws related to personal data protection.42

Therefore, it would be of great clinical utility to generate decision support approaches for43

the diagnosis and treatment of dengue that provide understandable and explainable results for44

clinicians. It would also be of clinical interest to develop systems that, in addition to predicting an45

outcome, also allow treatment to be prescribed according to the specific patient scenario. Finally,46

the use of distributed learning approaches such as federated learning that guarantee data security47

and privacy would be a great added value.48

In this sense, the main contributions of our work are the definition of three approaches as med-49

ical support tools for the diagnosis and treatment of dengue, specifically SD. These approaches are50

characterized by using federated learning with fuzzy cognitive maps (FCMs) and optimization al-51

gorithms for the generation of predictive and prescriptive models. The first approach implemented52

is based on the similarity of the feature space among the participating clients or sites where the53

signs and treatment options of SD are identical. The second is based on the objective, where the54

only feature in common among all clients or parties is a decision variable (for our application55

domain, it was SD mortality). Each client or party has di↵erent characteristics related to mortality56

and treatment of SD. Finally, the third approach uses parameter learning transfer to send informa-57
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tion from one site/party to another. Specifically, the implemented approach transmits the learned58

parameters from SD treatment to mortality prediction. The novelties proposed in the present study59

are focused on several aspects: i) the generation of federated learning approaches with a di↵erent60

architecture (approaches 1 and 2) from that reported in the literature; ii) the application domain,61

since to date there are no reports on the implementation of federated learning with FCMs for the62

diagnosis and treatment of dengue; iii) the combination of predictive and prescriptive models in a63

single architecture that allows integrated support for decision-making with respect to the diagnosis64

and treatment of dengue.65

This paper is organized as follows: Section 2 shows the related works about the last trends in66

FCMs for prediction and prescription. Also, it presents the main studies about federated learning67

for medical environments. Section 3 describes the methodology used to develop the federated68

learning approaches, and Section 4 describes the experiments to validate them. Section 5 shows69

the results for each approach and discusses them. Finally, Section 6 concludes the paper.70

2. Related work71

In this section, we present the main works related to the use of FCMs for prediction and72

prescription. Additionally, we present the main studies about federated learning for healthcare.73

2.1. FCMs74

FCMs are computational intelligence algorithms that allow modeling complex systems using75

concepts and relationships between them [11]. In the following, we present a literature review on76

the implementation of this type of algorithm for prediction and prescription.77

2.1.1. FCMs for prediction78

FCMs use inference functions to make predictions based on the interconnection among the79

concepts [12]. The development of clinical decision support systems for prediction with FCMs80

has increased in recent years due to the simplicity of construction and ease of interpretation of81

results. In previous work, we developed a clinical decision support system for dengue diagnosis82

based on FCMs [13]. We used the knowledge and experience of clinical experts in dengue to83
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construct the FCM with signs, symptoms, and laboratory test results. The constructed FCM model84

had the ability to classify dengue severity (dengue with and without warning signs, and SD) with85

89% accuracy and the additional ability to assess the behavior of severity-related variables. In86

addition, we developed another previous work with SD prediction models using FCMs trained87

with the particle swarm optimization algorithm [14]. The models were trained using historical88

data from two endemic cities in Colombia and their peak performance reached 74% accuracy due89

to small sample sizes.90

FCMs have also been widely used for predicting the risk of outbreaks or epidemics of viral91

diseases such as dengue [15, 16]. For example, Pelaez [15] proposed a model based on FCMs to92

predict the risk of presenting tropical viral diseases such as dengue. The authors trained FCMs with93

unsupervised learning to represent causal relationships and knowledge related to environmental94

conditions, symptoms, and historical data related to tropical viral diseases. The historical data for95

training the FCMs corresponded to seasonal outbreaks and epidemics in Ecuador. The proposed96

model had the potential to improve the chances of early forecasting of seasonal diseases related97

to tropical regions. Jayashree et al [16] used FCMs using expert knowledge to build a system that98

classified the risk of dengue outbreak in tropical regions of Southern India. The results showed99

that the performance of FCM was superior when compared to other techniques such as Bayesian100

classifier, decision tree, support vector machines, and multilayer perceptron. The classification of101

risk into low, moderate and high allows health authorities to establish prevention strategies in the102

regions to prevent the spread of the disease.103

2.1.2. FCMs for prescription104

FCMs have now started to be used to prescribe actions leading to desired outcomes in complex105

modeled systems. Reported work in the literature using FCMs to support decision-making related106

to dengue treatment is scarce. However, they have been used for the treatment of other diseases107

such as urinary tract infections and cancer. Papageorgiou [17] developed a computational tool108

based on FCMs for treatment management of urinary tract infections. The results of the evaluation109

of the software on a small sample of diseased patients demonstrated its capability for classification110

and recommendation of suggested treatments.111
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For cancer treatment, several studies have been performed for treatment management using ra-112

diotherapy [18, 19]. Papageorgiou [18] used FCMs for computational modeling of the complexity113

of the clinical radiation procedure to calculate the final dose that should be administered in cancer114

patients. The model was built with a combination of expert knowledge and fuzzy rule extraction115

from the data. The system was able to handle uncertainty, is simple, and is less complex than116

other previously reported models. Papageorgiou and Stylios [19] determined the success of the117

radiation therapy process by implementing FCMs as a modeling technique. The proposed system118

had a hierarchical structure to simulate and evaluate the radiation therapy process. The developed119

model was evaluated in point scenarios to demonstrate its performance with prior determination120

of treatment variables by the medical professional.121

According to our literature review, only one work has used FCMs for dengue treatment pre-122

scription. Hoyos et al [14] developed an extension of FCMs with optimization algorithms for123

the generation of prescriptive models. The proposed algorithm uses a genetic algorithm to op-124

timize prescriptive variables leading to desired system values. The methodology was tested in125

the treatment of SD. The evaluation of the generated model showed a good performance yield-126

ing accuracies between 81% and 100% accuracy for recommending treatment options for SD,127

which constitutes an excellent tool to support decision-making for the treatment of SD and reduce128

mortality rates.129

2.2. Federated learning in medical environments130

Federated learning is a distributed ML approach developed by Google [20]. This approach131

allows training models with distributed data anywhere in the world, such that local models are132

trained with their data and its parameters are shared in a federated server to build a global model.133

The main feature of this approach is that the data never leave their original location. This type134

of methodology is useful to attack the problem of guaranteeing data security and privacy, mainly,135

in clinical environments [21]. Federated learning in recent years has attracted the attention of the136

scientific community due to its interesting ability to generate global models avoiding data sharing137

between involved parties [22]. This distributed ML approach has been widely used in healthcare138

due to the security and privacy of data in this domain. Additionally, this approach can be used to139
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transfer learning from one healthcare institution to another [23].140

Several surveys and literature reviews have provided comprehensive reviews of the work re-141

ported in the literature on architectures, approaches, use, and application of federated learning142

for healthcare [24–27]. For example, Antunes et al [24] present a systematic literature review143

where they discuss the main problems of federated learning, possible solutions and the most fre-144

quently used ML methods. Additionally, they propose an architecture based on the results of the145

systematic review. A survey by Nguyen et al [25] presents the main advances and requirements146

for a correct implementation of federated learning with the internet of medical things. The au-147

thors review several current researches and analyze di↵erent aspects such as medical imaging,148

remote health monitoring and data management. Prayitno et al [26] provide a systematic review149

of current advances in federated learning for healthcare applications with a data-centric perspec-150

tive. The review evaluates the use of reference datasets, data protection strategies, data partitioning151

and distribution properties. Finally, Xu et al [27] conducted a survey presenting a general review152

on federated learning, specifically, issues related to data privacy, system challenges, and possible153

solutions to statistical challenges in implementing federated learning in medical environments.154

According to our literature review, there are no papers that have implemented federated learn-155

ing for dengue analysis. However, di↵erent works on federated learning have been reported for156

other events of interest in public health. This type of work can be classified into two main groups157

based on the types of data used: i) federated training for unstructured data, mainly the use of158

biomedical images; and ii) federated training for structured data. In the following, we will show159

some relevant works developed in each group.160

2.2.1. Federated learning for unstructured data161

Unstructured data are those that do not have a defined structure. Within this group, we find162

images, text and audio. In clinical environments, the most commonly used data type to implement163

federated learning approaches are medical images such as X-ray images, CT scans, nuclear mag-164

netic resonance and histopathological images. Thus, several works have been developed to detect165

COVID from chest X-ray images [28], brain tumor detection [29], and histopathological image166

analysis [30]. Feki et al [28] proposed a federated collaborative learning approach with deep167
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learning for COVID-19 screening in several healthcare institutions without sharing data among168

them. The authors used two pre-trained convolutional neural network architectures, VGG16 and169

ResNet50. The accuracy of the models in the federated approach was similar for both VGG16170

and ResNet50 when compared to the centralized approach. Sheller et al [29] compared a feder-171

ated learning approach with collaborative data sharing learning. The study was conducted across172

several institutions storing brain tumor images. The models developed with federated learning173

were able to achieve superior performance to the data sharing approach with the additional value174

of ensuring privacy and confidentiality of the data used. Adnan et al [30] proposed a di↵erentially175

private federated learning approach for medical image analysis, specifically, histopathological im-176

ages across multiple healthcare institutions. Although models with federated learning performed177

well, learning with centralized data obtained better accuracy values.178

2.2.2. Federated learning for structured data179

Structured data are those composed of data frames where the columns correspond to patient180

variables or characteristics and the rows represent the records of each patient. This type of data181

has been widely used in building federated learning approaches and models [31–35]. For exam-182

ple, Brisimi et al [31] developed an algorithm to generate federated predictive models with sparse183

Support Vector Machine to predict hospitalizations due to cardiac diseases. The results showed184

the ability of federation to generate a global model with local models trained on several hospi-185

tals, however, the global model did not perform superior to the local models. Dang et al [32]186

implemented mortality prediction models in intensive care units of several hospitals in a federated187

environment using two aggregation algorithms (FedAvg and FedProx) and two training approaches188

(local and centralized). Of all the approaches implemented, FedProx performed the best, however,189

there was no significant di↵erence between centralized training and federated training. Rahman et190

al [33] developed regression models in a federated environment to predict the length of hospital191

stay of patients in ten hospitals. The models were evaluated and the results showed that the per-192

formance of the models increases when the number of aggregated clients in the federated server193

increases. Kerkouche et al [34] proposed a federated learning approach that preserves data privacy194

for the prediction of in-hospital mortality. The authors found a relationship between model per-195
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formance and patient-level privacy. Increasing the level of privacy decreases prediction accuracy.196

Finally, Salmeron & Arevalo [35] developed an approach based on FCMs for breast cancer diag-197

nosis, and additionally, preserve data privacy. The development of this approach allowed obtaining198

performance of federated global models superior to the local models and the model trained with199

centralized data.200

3. Methodology201

In this section, we describe the general methodology of the present study. First, we show a202

global workflow where we schematically represent the activities performed in our research for203

the development of models under the federated approach and the traditional ML approach. Then,204

we present the techniques used to build the predictive models (data-driven PSO-FCM) and pre-205

scriptive models (PRV-FCM). Finally, we describe the federated learning approaches reported in206

the literature and the proposed approaches. Fig. 1 shows a schematic representing the workflow207

of this research. Initially, 80% of the data is used for training and validation of the models. We208

use 5-fold cross-validation to tune hyperparameters and select the best predictive and prescriptive209

models. The evaluation of these models was done with the remaining 20% of the data. Specif-210

ically, for the proposed federated approaches, predictive and prescriptive models are trained and211

tested on local datasets. The parameters of these models are aggregated to build a global model.212

For the traditional approach, the data were pooled to obtain a single dataset to perform training213

and testing on the corresponding data. At the end, we performed a comparison of all the predictive214

and prescriptive models obtained.215

3.1. Data-driven PSO-FCM216

Predictive models were generated using FCMs due to their simplicity of construction, and217

inference and interpretability skills. An FCM is a computational intelligence technique that simu-218

lates human reasoning with concepts and relationships [11, 36]. Concepts correspond to variables219

within a system and relationships are the influence between those concepts. An FCM can be rep-220

resented by a matrix that shows the relationships among the concepts. For example, Eq. 1 shows a221
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Fig. 1. Flowchart representing the main activities performed in this research.

matrix for five concepts and five relationships among them, represented by the values of wi j. Fig. 2222

shows a schematic representation of the FCM defined in the matrix of Eq. 1.223

W =

C1 C2 C3 C4 C5
0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

C1 0 0 0 0 w15

C2 0 0 0 0 w25

C3 0 w32 0 0 w35

C4 0 0 0 0 w45

C5 0 0 0 0 0

(1)

FCMs have been mainly used for description, prediction, and lately, they have been used for224

prescription. These three aspects are developed using inference rules that allow an initial state225

vector to reach a stable state. For the construction of the predictive models, we used the data-226

driven PSO-FCM technique. This technique uses the particle swarm optimization algorithm on227
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Fig. 2. Example of an FCM with five variables and five relationships.

datasets to find an FCM that describes relationships between the variables. The data-driven PSO-228

FCM algorithm is defined by:229

vi(t + 1) = vi(t) + s1r1 · (Wbest
i –Wi(t)) + s2r2 · (Wgbest

i –Wi(t)) (2)

Wi(t + 1) = Wi(t) + vi(t) (3)

where vi is the particle velocity; r1 and r2 are random values with uniform distribution; s1 is230

the cognitive coe�cient, responsible for the particle tending to move towards the position where it231

has obtained the best results so far; s2 is the social component, also known as collective behavior,232

it is responsible for the particle tending to move towards the best position found by the swarm233

so far; Wbest
i is the best position obtained by a specific particle, while Wgbest

i is the best position234

obtained by any particle in the swarm. For this case, each particle i is an FCM, while the position235

is a candidate matrix to build each FCM.236

3.2. Prescriptive-FCM237

The generation of prescriptive models was developed with the PRV-FCM methodology [37].238

This methodology uses the inference process of FCMs and optimization algorithms to find optimal239
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values of prescriptive variables that lead to the desired results to the concepts of the system. PRV-240

FCM first characterizes variables depending on their nature into prescriptive or action variables241

and system variables. Prescriptive variables are actions that a decision maker can perform to242

solve a problem, while system variables are those related to the system to be modeled. After243

initializing the system with desired values, an optimization algorithm is used to find the values of244

the prescriptive variables that lead to the desired values to the system variables.245

3.3. Federated learning246

Federated learning is a distributed ML approach developed in 2017 [20]. Federated learning247

allows to collaboratively generate a shared ML model by keeping all training data at its place of248

origin or collection, decoupling the ability to do ML from the need to store the data in the cloud.249

Federated learning works like this: one party downloads the current model, improves it by learning250

from local data, and then summarizes the changes as a small update. Only this model update is251

sent to the cloud, via encrypted communication, where it is immediately averaged with updates252

from other parties to improve the shared model. All training data remains in its original location,253

and no individual updates are stored in the cloud.254

To date, three main approaches have been developed, known as horizontal federated learning,255

vertical federated learning, and federated learning with transfer learning. Fig. 3 shows a schematic256

representation of each. A brief explanation of each follows.257
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Fig. 3. Schematic representation of federated learning approaches reported in the literature. A y B

represents horizontal and vertical federated learning, respectively, while C represents federated learning

with transfer learning.
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3.3.1. Horizontal federated learning258

Scheme A in Fig. 3 shows horizontal federated learning. This type of federated learning is suit-259

able in the case where the features/variables of the two datasets overlap a lot, but the records/data260

overlap little. Horizontal federated learning consists of splitting the datasets horizontally (by the261

dimension of the records), and then, extracting the part of the data where the features/variables are262

the same but the records are not exactly the same [38].263

3.3.2. Vertical federated learning264

Vertical federated learning is shown in Scheme B in Fig. 3. Vertical federated learning is suit-265

able in the case where the features/variables of the two datasets overlap little, but the records/data266

overlap a lot. Vertical federated learning consists of splitting the datasets vertically (by the dimen-267

sion of the features/variables), and then, extracting the part of the records that are the same, but268

the features or variables are not exactly the same [39].269

3.3.3. Federated transfer learning270

A representation of federated learning with transfer learning is shown in Scheme C in Fig. 3.271

In the case where the records and variables in the two datasets rarely overlap, the data is not272

segmented, but transfer learning is used to overcome the missing data or labels. In this approach,273

models are trained on one dataset and applied to another dataset from another related domain.274

[40].275

3.4. Our proposed approaches276

In this section, we describe each of our federated learning approaches. Fig. 4 shows schematic277

representations of each of the approaches.278

3.4.1. Total federated FCM279

Scheme A in Fig. 4 shows this approach. We call this approach total federated learning be-280

cause all the variables in client 1 have the same characteristics/features as those in client 2. A clear281

example is all the signs, symptoms, laboratory tests and classification of dengue in di↵erent cities282

in Colombia.283
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Fig. 4. Schematic representation of our federated learning approaches. A represents total federated

learning; B represents target-based federated learning; and C represents federated learning with transfer

learning.

For this case, the local models are trained by generating a weight matrix Wl
i , where i is the284

model number and l indicates that the model is local. Each local model sends the parameters to285

the server and this calculates an updated matrix by aggregating the information using the arithmetic286

average. Subsequently, the updated matrix WG
i j is sent to each of the parties so that the updated287

model is used everywhere. The aggregation of the parts is performed with the average using the288

following equation:289

WG
i j =

1
n

nX

c=1

Wc
i j (4)

Where WG
i j is the global matrix aggregated with the two local model matrices, n is the number290

of clients used, and c is the client/site number.291

3.5. Federated target-based FCM292

In target-based federated learning, only one characteristic is common among the parties in-293

volved, and it corresponds to the target (see Scheme B in Fig. 4). This case is focused on pre-294

dictive models. For example, one city has signs, another city symptoms, and finally, another city295

laboratory tests. In our problem, the only common variable is the label or target for the diagnosis296

or prediction of mortality due to SD. From that, a global model is constructed that includes all the297

variables from all the cities. Since in this case, there are no common concepts, simply the weights298

corresponding to the concepts of the di↵erent parts of the architecture are added. At the end, each299

city has a global model with all the characteristics to be used. The aggregation process is done300
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according to the following equation:301

WG =

2
666664

0 Wi j

Wkl 0

3
777775 (5)

Where WG is the global matrix, Wi j is the local matrix of local model 1, and Wkl is the local302

matrix of local model 2.303

3.6. Federated FCM with transfer learning304

The federated FCM with learning transfer is useful for the development of prescriptive models.305

Scheme C in Fig. 4 shows the design of this approach. For this variant, the concepts are divided306

into system and action. In one part are the action concepts that act on the system concepts. For307

example, treatment concepts that influence signs or symptoms. In another part are the system con-308

cepts that influence the prediction. The aggregation process is done using Eq. 5. In that particular309

case, the predictive model of the second party is previously trained/built, and then, it is transferred310

for the second party to use to build the predictive model.311

4. Experiments312

In this section, we describe the experiments to validate the proposed approaches. First, we313

describe the datasets used. Then, we show the statistical validation process using 5-fold cross-314

validation. Subsequently, we present the evaluation metrics, and finally, we present a brief de-315

scription of the experimental setup for the generation of local and global models in each proposed316

approach.317

4.1. Datasets318

For the validation of our approaches, we used two datasets from two dengue endemic regions319

in Colombia: Medellı́n and Córdoba. According to data from the National Institute of Health,320

this municipality and department are endemic because of the dengue incidence rates they show321

annually of 161-745 and 51-503 per 100,000 inhabitants for Medellı́n and Córdoba, respectively322

[41]. The selected datasets correspond to dengue mortality. Dataset 1 corresponds to the city323

of Medellı́n with 400 records collected between January 2008 and December 2019. Dataset 2324
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corresponds to the department of Córdoba and contained 398 records collected between January325

2010 and December 2021. Table 1 shows the variables included in the datasets. The first variables326

define SD and were selected according to WHO guidelines for the diagnosis of this type of dengue.327

The variables related to SD and its mortality are: extravasation, shock, bleeding and organ failure.328

The variables related to the treatment of this type of dengue are: blood transfusion, crystalloid329

solutions, colloid solutions and access to intensive care units. Finally, the decision/target variable330

was mortality due to SD, where 0 means that the patient recovered while 1 indicates that the patient331

died. The preprocessing of these datasets is described in [42].332

Table 1

Brief description of the variables included in the datasets used for the experiments.

Concept Variable type Variable name Description
C1 Sign Extravasation It is characterized by serous spills at the level of various cavities.
C2 Sign Shock Manifestation of severity evidenced by cold skin, thready pulse,

tachycardia and hypotension.
C3 Sign Bleeding Blood leaks from the arteries, veins or capillaries through which it

circulates, especially when it is produced in very large quantities
C4 Sign Organ failure A↵ectation of several organs due to the extravasation of liquids.
C5 Prescriptive Blood transfusion Routine medical procedure in which the patient receives donated

blood in a vein in the arm.
C6 Prescriptive Crystalloid solutions Solutions containing water, electrolytes and/or sugars in di↵erent

proportions.
C7 Prescriptive Colloid solutions Solutions with high molecular weight particles capable of increasing

plasma oncotic pressure and retaining water in the intravascular space.
C8 Prescriptive ICU Intensive care unit
C9 Target Mortality Dengue mortality

4.2. Statistical validation333

Eighty percent of the data was used for training and validation. During this process, the hy-334

perparameters were tuned to select the best model with 5-fold cross-validation. The best model335

was evaluated on the testing set corresponding to the remaining 20% of the data. The evaluation336

process on the test set was repeated 100 times to perform a mean or median comparison test to337

determine if there were significant di↵erences between the performances of the developed mod-338

els. Before performing the comparison test between models of the same approach, the distribution339
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of the data was determined using the Lilliefors test [43]. For this statistical test, we defined the340

following hypotheses:341

• H0: the data come from a normal distribution.342

• H1: the data do not come from a normal distribution.343

According to the result of the Lilliefors test, we use Student’s t-test because the data follows344

a normal distribution. The hypotheses for the comparison between two groups can be defined as345

follows:346

• H0 : µ̄local = µ̄global347

• H1 : µ̄local , µ̄global348

In this way, it was possible to test the ability of the models to predict and prescribe on pre-349

viously unseen data. Additionally, it was possible to test whether the di↵erence in model per-350

formance was statistically significant. For all experiments, we defined the significance level at351

0.05.352

4.3. Evaluation of the models353

We evaluated the models developed using classification metrics due to the categorical nature354

of the variables included in the datasets. In the following, we present the three metrics used with355

a brief description and their corresponding equation.356

• Accuracy: percentage of correctly classified examples among the total number of classified357

examples.358

Accuracy =
T P + T N

T P + FN + FP + T N
(6)

where T P are the true positives, T N are true negatives, FN are false negatives, and T N are359

true negatives.360
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• Sensitivity: it measures the ability of the classifier to predict positive cases to those actually361

positive.362

S ensitivity :
T P

T P + FN
(7)

• Specificity: it measures the ability of the classifier to predict negative cases to those actually363

negative.364

S peci f icity :
T N

T N + FP
(8)

4.4. Total federated FCM365

Fig. 5 shows the architecture for this approach. In this first approach, the variables are exactly366

the same in all clients/sites. Here, we see that both the local models and the global model present367

the same variables (blue = concepts related to prediction, green = concepts related to prescription,368

red = target). In the following, we explain the local and global training of the models; as well as369

their evaluation.370

4.4.1. Local training on clients371

For this first case, the local training was carried out with all the variables related to the prescrip-372

tion to avoid mortality in patients with SD. The training was performed on each dataset of each373

client/site, separately. The training of the FCMs was carried out with the data-driven PSO-FCM374

technique, which has demonstrated its excellent performance for the optimization of matrices that375

generate FCMs. Subsequently, the prescriptive modeling technique PRV-FCM was used to find376

the optimal values of prescriptive variables. Each of these clients/sites shares the parameters, in377

this case, the weights matrix corresponding to the relationships between the modeled variables.378

4.4.2. Global training on the federated server379

After all the clients, in our case cities, train their models, the FCM construction parameters are380

shared to a global server, where a global model is created using the aggregation method defined in381

Eq. 4. One of the advantages of this approach is that the sample size of the training is increased382

because the patients in one client are di↵erent from those in the other clients. In this way, we383

increase the sample size for training. This global model is then sent to all clients, and the trained384

model is updated so that it can be used by each client.385
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prescription, respectively. The red concept corresponds to the target).
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4.5. Federated FCM based on the target386

Fig. 6 shows the architecture for this approach. In this approach, only the target (this variable387

is represented in red color in Fig. 6) is common across all client data. In the following, we briefly388

explain the configuration of local and global training.389

4.5.1. Local training on clients390

In this case, the common variable is the prediction class or target. To simulate this case,391

we eliminate variables in the Medellin and Cordoba dataset. In each client/site, we leave two392

di↵erent variables so that only the target is repeated. In this way, a di↵erent predictive model of393

SD mortality is created for each client. The training is developed using the PSO algorithm to find394

the optimal weight matrix to build the FCM.395

4.5.2. Global training on the federated server396

The aggregation process on the federated server is a little di↵erent from the first approach.397

In this case, we do not use averaging to aggregate the models because the relationships between398

the concepts and the target are not repeated. Therefore, it is only su�cient to aggregate the two399

matrices into one, adding the weights of each of the clients. This process is done using Eq. 5 to400

create the global model. At the end, a global model is obtained that represents the information401

of all clients/sites. This model is updated for each of the clients so that it can be used to predict402

mortality from SD.403

4.6. Federated FCM with transfer learning404

Fig. 7 shows the architecture of the federated FCM with transfer learning. In the latter ap-405

proach, learning will be transferred from one client to another because the target is located at a406

single client/site (see Fig. 4). For this approach, we used parameter-based transfer learning because407

the sample size in the two clients was approximately similar. In addition, the sign/symptom-related408

variables were common across the participating clients in the federation. We were interested in409

transfer learning because of the possibility of learning in one domain and making predictions or410

prescriptions in a di↵erent but related test domain. In healthcare, it is common to find healthcare411

institutions with treatment-related data and other institutions that collect only diagnosis-related412
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data. Specifically, training local models with data that represent the therapeutic process of dengue,413

and that the extracted knowledge can be transferred to other settings, which would be of great414

utility to support clinical decision-making. To achieve this goal, two processes were performed:415

i) a local training of the prescription model (see local model 1 in Fig. 7) and its subsequent eval-416

uation; ii) the second step consisted of a retraining of the predictive model (see local model 2 in417

Fig. 7) leaving constant the parameter values of the initial prescriptive model. Next, we explain418

the training of the variables at the local level and their update in the global model.419

4.6.1. Local training on clients420

The local training of each client will be di↵erent due to the presence of di↵erent variables. For421

example, client 1 has the prescriptive variables acting on the diagnostic variables, while client 2422

has only the diagnostic variables with the target variable. For the first case (client 1), the PRV-423

FCM algorithm was used to build the prescriptive models (local model 1), while for the second424

step (client 2) the data-driven PSO-FCM algorithm was used to train the predictive model and425

generate local model 2.426

4.6.2. Global training on the federated server427

The creation of the global model was performed using the aggregation process defined in428

Eq. 5. This process is responsible for integrating the prediction and prescription FCMs to generate429

a federated global model.430

5. Results and discussion431

In this article, we aimed to develop and implement three federated learning approaches for432

FCMs to support clinical decision-making in dengue, specifically SD. In this section, we show433

the results obtained from the implementation of each of the proposed approaches on the described434

datasets. Then, we will discuss each of the results obtained in each approach. Finally, we compare435

our work with previous studies.436
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Table 2

Performance of the models developed with the total federated FCM approach. * indicates the average for

all prescriptive variables. NA = not applicable.

Data type Model Data configuration Task Accuracy Sensitivity Specificity

Signs, treatment options and target

Local 1 Local data from Medellı́n
Prediction 0.68 0.68 0.50

Prescription 0.87* 0.75* 1.00*

Local 2 Local data from Córdoba
Prediction 0.74 0.77 0.51

Prescription 0.86* 0.89* 0.81*

Global federated NA
Prediction 0.76 0.85 0.67

Prescription 0.96* 0.92* 0.97*
Global non-federated Centralized data Prescription 0.88* 0.83* 0.94*

5.1. Total federated FCM437

Table 2 shows the results of the local models and the global models applied to the previously438

described datasets. Fig. 8 shows the result of 100 simulations performed during the evaluation439

process of the models with a total federated learning approach. Additionally, it shows the sta-440

tistical comparison of the performance of the predictive and prescriptive models. Both Local 1441

and Local 2 models obtained good results for prescription with accuracy values of 0.87 and 0.86,442

respectively. However, it can be seen that the global federated predictive and prescriptive models443

were superior to all the local models, including the model with centralized data. Regarding sensi-444

tivity and specificity, the results showed the same trend of accuracy where federated global models445

performed better than local and centralized models.446

Total federated learning consisted of a federated learning approach where all client variables447

are common. In this way, local models can be trained with di↵erent data and the sample size can448

be increased to improve prediction or prescription performance. The results of the local predictive449

models showed the ability to predict SD mortality. The results were acceptable, with accuracies450

between 0.68 and 0.74. Federated learning improved these results with 0.76. This demonstrates the451

ability to increase the sample size with federated learning. The same was true for the prescriptive452

models. The federated global model performed better than local models perhaps because the453

sample size was larger.454

Although this accuracy is good, we only used a few variables for SD. The use of only 4 system455

variables and 4 prescriptive variables is too few to develop more robust models. Additionally, the456
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Table 3

Performance of the models developed with the target-based approach. * indicates the average for all

prescriptive variables. NA = not applicable.

Model Data configuration Data type Task Accuracy Sensitivity Specificity

Local 1 Local data from Medellı́n Two signs, two treatment options and target
Prediction 0.71 0.76 0.48

Prescription 0.75* 0.67* 0.80*

Local 2 Local data from Córdoba Two signs, two treatment options and target
Prediction 0.69 0.66 0.61

Prescription 0.85* 0.78* 0.85*

Global federated NA All signs, treatment options and target
Prediction 0.76 0.90 0.66

Prescription 0.95* 0.91* 0.96*
Global non-federated All data centralized All signs, treatment options and target Prescription 0.88* 0.83* 0.94*

sample size is small, which is a limitation of the models to generalize. It is necessary to increase457

the sample size by adding other cities in Colombia and integrating new variables to explain their458

influence on mortality from SD.459

5.2. Target-based federated FCM460

Table 3 shows the accuracy, sensitivity and specificity of the models based on target-based fed-461

erated FCM. Fig. 9 shows the result of 100 simulations performed during the evaluation process462

of the models with a total federated learning approach. Additionally, it shows the statistical com-463

parison of the performance of the predictive and prescriptive models. In this approach, the target464

is the only variable in common between the clients. As in the first approach, the results showed465

that the federated global model performs better than the local models and the centralized model.466

One of the methodological novelties of the present work is the federated FCM approach based on467

the target variable. On many occasions, we have data in di↵erent locations and their only common468

feature is the target. This approach allows building global models where features are not repeated469

between datasets in di↵erent locations.470

The results show the ability of our approach to predict in local environments with few variables.471

Local models 1 and 2 use two prescriptive variables and two diagnostic variables. Despite the small472

number of variables, the performance of the models is satisfactory. Additionally, the federated473

global model has the ability to predict and prescribe better than a model with centralized data. The474

sensitivity and specificity of the federated global models developed in this approach had higher475

performance, however, the predictive models are better able to classify positive cases than negative476
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Table 4

Performance of the models developed with the transfer learning federated approach. * indicates the

average for all prescriptive variables. NA = not applicable.

Model Data configuration Data type Task Accuracy Sensitivity Specificity
Local 1 Local data from Medellı́n Signs and treatment options Prescription 0.95* 0.94* 0.93*
Local 2 Local data from Córdoba Signs and target Prediction 0.69 0.71 0.50

Global federated NA Signs, treatment options and target
Prediction 0.73 0.86 0.61

Prescription 0.98* 0.96* 0.99*
Global non-federated All data centralized Signs, treatment options and target Prescription 0.88* 0.83* 0.94*

cases (see Table 3). It is clear that the performance could be improved, either by increasing the477

size of the data used or by adding variables that explain the influence on dengue severity and478

mortality. The results of applying this approach to the data demonstrated that the use of clinical479

and treatment data are useful for predicting mortality and prescribing treatment to prevent death.480

The presence of warning signs established by the WHO has been shown to influence the severity481

and can be used as predictors of mortality from SD. Adding these types of variables to the models482

could improve their performance to obtain more robust models.483

5.3. Federated FCM with transfer learning484

Table 4 shows the accuracy, sensitivity and specificity of the models based on target-based485

federated FCM. Fig. 10 shows the result of 100 simulations performed during the evaluation pro-486

cess of the models with a total federated learning approach. Additionally, it shows the statistical487

comparison of the performance of the predictive and prescriptive models. In this latter learning488

approach, we can observe the ability of the federated global model to predict and prescribe with489

excellent performance outperforming the local models and the non-federated centralized model. In490

this case, as in the two previous approaches, the accuracy, sensitivity and specificity of the models491

were superior in the federated global model. The implementation of federated learning to transfer492

learning from prescription to prediction allows the integration of diagnosis and treatment of SD.493

The federated FCM approach with transfer learning is an approach, which can be used to494

transfer learning from one domain to another. In our case, we were able to transfer learning from495

SD treatment to the mortality prediction domain.496

Of the three approaches, this was the one that gave the best results for the prescription. It is497
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true that the division of the data in this approach allowed separating the domains, and only left the498

important variables in each part of the architecture. In the client with prescriptive variables and499

clinical manifestations, the relationship between treatment and the defining signs of SD is evident.500

Predicting SD mortality with only the defining variables remains a challenge. Using only four501

variables to predict mortality from this type of dengue is not enough to have models with excellent502

performance.503

Finally, the statistical tests performed, whose significance values (p-values) are inserted in504

Fig. 8, Fig. 9 and Fig. 10 for the three approaches show that there are significant di↵erences505

between the models developed.506
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Fig. 8. Boxplots to compare the models’ performance in a total federated learning approach. A and B

correspond to the predictive and prescriptive models, respectively. Abbreviations: LM1 = local model 1,

LM2 = Local model 2, GM = global model, CE = centralized approach.

27



µmean = 0.71

µmean = 0.69

µmean = 0.76

pBonferroni−adj. = 0.00
pBonferroni−adj. = 2.43e−13

pBonferroni−adj. = 0.00

0.70

0.75

0.80

LM1
(n = 100)

LM2
(n = 100)

GM
(n = 100)

Type of model

A
cc

ur
ac

y
Pairw

ise test: G
am

es−H
ow

ell, Bars show
n: significant

A

µmean = 0.87
µmean = 0.86

µmean = 0.96

µmean = 0.88

pBonferroni−adj. = 0.00
pBonferroni−adj. = 4.41e−10

pBonferroni−adj. = 9.26e−14
pBonferroni−adj. = 4.74e−09

pBonferroni−adj. = 0.00
pBonferroni−adj. = 0.00

0.85

0.90

0.95

1.00

1.05

LM1
(n = 100)

LM2
(n = 100)

GM
(n = 100)

CE
(n = 100)

Type of model

A
cc

ur
ac

y
Pairw

ise test: G
am

es−H
ow

ell, Bars show
n: significant

B

Fig. 9. Boxplots to compare the models’ performance in a target-based federated learning approach. A and

B correspond to the predictive and prescriptive models, respectively. Abbreviations: LM1 = local model 1,

LM2 = Local model 2, GM = global model, CE = centralized approach.

5.4. Comparison with previous work507

In this section, we compared the results of the present work with previously developed ap-508

proaches published in the literature. Initially, we performed a qualitative comparison with other509

federated learning approaches that have been implemented in medical settings. On the other hand,510

since this is the first paper to propose federated learning approaches for FCMs for the clinical man-511

agement of SD, we compared our results with prediction and prescription models for the clinical512

management of SD with centralized approaches.513
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Fig. 10. Boxplots to compare the models’ performance in federated transfer learning. A and B correspond

to prescriptive and predictive models, respectively. Abbreviations: LM1 = local model 1, LM2 = Local

model 2, GM = global model, CE = centralized approach.

5.5. Qualitative comparison514

We performed a qualitative comparison of our work with other studies due to the lack of515

research implementing federated learning for SD. We used qualitative criteria defined in Table 5516

for comparison with other approaches reported in the literature. The first criterion is related to517

the use and implementation of artificial intelligence techniques for the generation of predictive518

models for diagnosis. The second criterion evaluates the use and implementation of prescriptive519

models for disease treatment. The third criterion evaluates the ability of proposed systems to have520

an integration of predictive and prescriptive models in the federated learning environment. Finally,521

the last criterion indicates the ability of the approach to be intuitive and easily adaptable.522
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Table 5

Qualitative comparison between previous studies and our work.

Qualitative criteria
Work
[35] [44] [45] [46] Our work

AI models with FL for diagnosis
AI models with FL for treatment
Integration of AI models with FL for diagnosis and treatment
Ease of use and adaptability

Federated learning has been widely implemented in di↵erent fields of medical application523

[35, 44–46]. For example, Salmeron and Arevalo [35] developed a federated learning approach524

using computational intelligence techniques such as PSO and FCM for cancer diagnosis. The au-525

thors implemented an identical structure of FCMs across all clients or federation participants and526

demonstrated the ability of the federated approach to generate models with higher performance527

than local models. However, this work does not integrate prescriptive models with federated learn-528

ing, nor does it integrate disease diagnosis and treatment. The proposed system is intuitive and529

easily adaptable. Another work developed by Li et al [44] supports decision-making in colorectal530

cancer prognosis by using random forests to build multi-center predictive models. The approach531

proposed by Li et al is easy to use, adaptable to any medical institution and is aimed at supporting532

decision-making with respect to diagnosis, guarantees the privacy of patient data, but does not gen-533

erated treatment-oriented actions. Liu and Yang [45] trained a robot with deep learning to support534

physicians with the treatment of patients with depression. The work developed by Liu and Yang535

is novel and ensures privacy of patient data with federated learning. However, this approach only536

focuses on treatment and does not support decision-making for a depression diagnosis. Finally,537

a work developed by Li et al [46] preserved data privacy using a federated learning approach for538

Alzheimer’s disease detection. The developed system used classification models and performed539

well in diagnosing the disease. Moreover, it can be adapted for the aggregation of new features to540

increase prediction performance.541

In contrast to the previously presented work, we implemented three federated learning ap-542

proaches with di↵erent architectures for predictive and prescriptive model generation. These ap-543
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proaches use di↵erent configurations to support decision-making in the diagnosis and treatment544

of SD using AI techniques. The integration of predictive and prescriptive models for diagnosis545

and treatment could be more useful than generating models only for diagnosis or only for treat-546

ment. The systems generated in each of our proposed approaches are also intuitive and their easy547

adaptation would allow the addition of other important variables for the analysis of SD.548

5.6. Quantitative comparison549

Although the availability of data regarding SD mortality remains scarce, which has led to the550

development of models based on the expertise of experts [13], our models performed well for551

both predicting and prescribing when compared to previous work based on data reported in the552

literature. For example, Hoyos et al [42] developed prediction models for SD mortality using553

the same dataset used in the present study. The authors developed the models with FCMs with554

average accuracies of 0.74. Another similar work is developed by Chattopadhyay et al. [47]555

where they developed classification models to predict dengue death with a maximum performance556

of 0.72 of accuracy in a smaller sample size (100 patients). Regarding prescriptive models, the557

PRV-FCM methodology yielded excellent results due to its ability to find optimal values using558

the FCM inference process and optimization algorithms. Our results confirm the results reported559

by several previous studies where the prescriptive capability of PRV-FCM in medical settings has560

been demonstrated.561

6. Conclusions562

We set out to develop three federated learning approaches for FCMs to support clinical decision-563

making in dengue, specifically SD. Each approach consisted of clients/sites with di↵erent/equal564

data depending on their settings. For each approach, predictive and prescriptive models were built565

using FCMs and optimization algorithms. The results showed that the three federated learning566

approaches with FCMs outperform local models trained on private data. Additionally, the feder-567

ated approach outperforms models trained with centralized data. Finally, it is shown that federated568

learning approaches are useful for fields of science where data security and privacy must be guar-569

anteed.570
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This work has some limitations. For example, the approaches are distributed but centralized,571

because a single federated server does the aggregation process. If this server has problems or is572

unavailable due to some circumstances, then the global model cannot be updated. For this reason,573

it is necessary to develop decentralized federated models. For example, an aggregation process574

can be performed in all the nodes of the system, so that if one node stops working, the others have575

a backup of the information and the aggregation information is not lost.576

Another limitation of the present study is the number of clients used for the simulations. In577

this case, we only used two clients due to data availability. It is recommended to apply these578

approaches on larger clients to analyze the predictive and prescriptive capabilities of both local and579

global models. Finally, the approaches were not validated in licensed clinical institutions. Strict580

validation of these approaches in hospitals or clinics in Colombia would be useful to understand581

its usefulness in decision-making in clinical settings.582
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[35] J. L. Salmeron, I. Arévalo, A Privacy-Preserving, Distributed and Cooperative FCM-Based Learning Ap-687

proach for Cancer Research, Lecture Notes in Computer Science (including subseries Lecture Notes in688

Artificial Intelligence and Lecture Notes in Bioinformatics) 12179 LNAI (2020) 477–487. doi:10.1007/689

978-3-030-52705-1_35.690

[36] H. Sánchez, J. Aguilar, O. Terán, J. Gutiérrez de Mesa, Modeling the process of shaping the public opinion691

through multilevel fuzzy cognitive maps, Applied Soft Computing 85 (2019) 105756. doi:10.1016/j.asoc.692

2019.105756.693

[37] W. Hoyos, J. Aguilar, M. Toro, PRV-FCM: an extension of fuzzy cognitive maps for prescriptive modeling,694

Preprint submitted to a journal (2022).695

35

http://dx.doi.org/10.3390/app112311191
http://dx.doi.org/10.1007/s41666-020-00082-4
http://arxiv.org/abs/1911.06270
http://dx.doi.org/10.1016/j.asoc.2021.107330
http://dx.doi.org/10.1038/s41598-020-69250-1
http://dx.doi.org/10.1038/s41598-022-05539-7
http://dx.doi.org/10.1016/j.ijmedinf.2018.01.007
http://dx.doi.org/10.1007/978-3-030-63076-8_18
http://dx.doi.org/10.1016/j.jksuci.2022.07.006
http://dx.doi.org/10.1145/3450439.3451859
http://dx.doi.org/10.1007/978-3-030-52705-1_35
http://dx.doi.org/10.1007/978-3-030-52705-1_35
http://dx.doi.org/10.1007/978-3-030-52705-1_35
http://dx.doi.org/10.1016/j.asoc.2019.105756
http://dx.doi.org/10.1016/j.asoc.2019.105756
http://dx.doi.org/10.1016/j.asoc.2019.105756


[38] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, Y. Gao, A survey on federated learning, Knowledge-Based Systems 216696

(2021) 106775. doi:10.1016/j.knosys.2021.106775.697

[39] L. Li, Y. Fan, M. Tse, K. Y. Lin, A review of applications in federated learning, Computers and Industrial698

Engineering 149 (2020). doi:10.1016/j.cie.2020.106854.699

[40] S. Saha, T. Ahmad, Federated transfer learning: Concept and applications, Intelligenza Artificiale 15 (2021)700

35–44. doi:10.3233/IA-200075. arXiv:2010.15561.701

[41] J. K. Lim, M. Carabali, E. Camacho, D. C. Velez, A. Trujillo, J. Egurrola, K. S. Lee, I. D. Velez, J. E. Osorio,702

Epidemiology and genetic diversity of circulating dengue viruses in Medellin, Colombia: A fever surveillance703

study, BMC Infectious Diseases 20 (2020). doi:10.1186/s12879-020-05172-7.704

[42] W. Hoyos, J. Aguilar, M. Raciny, M. Toro, Clinical decision making through prescriptive modeling, Preprint705

(2022) 1–25.706

[43] H. W. Lilliefors, On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown, Journal707

of the American Statistical Association 62 (1967) 399–402. doi:10.1080/01621459.1967.10482916.708

[44] J. Li, Y. Tian, Y. Zhu, T. Zhou, J. Li, K. Ding, J. Li, A multicenter random forest model for e↵ective prognosis709

prediction in collaborative clinical research network, Artificial Intelligence in Medicine 103 (2020) 101814.710

doi:10.1016/j.artmed.2020.101814.711

[45] Y. Liu, R. Yang, Federated Learning Application on Depression Treatment Robots(DTbot), in: 2021 IEEE712

13th International Conference on Computer Research and Development, ICCRD 2021, Institute of Electrical713

and Electronics Engineers Inc., 2021, pp. 121–124. doi:10.1109/ICCRD51685.2021.9386709.714

[46] J. Li, Y. Meng, L. Ma, S. Du, H. Zhu, Q. Pei, X. Shen, A Federated Learning Based Privacy-Preserving Smart715

Healthcare System, IEEE Transactions on Industrial Informatics 18 (2022) 2021–2031. doi:10.1109/TII.716

2021.3098010.717

[47] S. Chattopadhyay, A. Chattopadhyay, E. Aifantis, Predicting Case Fatality of Dengue Epidemic: Statistical718

Machine Learning Towards a Virtual Doctor, Journal of Nanotechnology in Diagnosis and Treatment 7 (2021)719

10–24. doi:10.12974/2311-8792.2021.07.2.720

36

http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1016/j.cie.2020.106854
http://dx.doi.org/10.3233/IA-200075
http://arxiv.org/abs/2010.15561
http://dx.doi.org/10.1186/s12879-020-05172-7
http://dx.doi.org/10.1080/01621459.1967.10482916
http://dx.doi.org/10.1016/j.artmed.2020.101814
http://dx.doi.org/10.1109/ICCRD51685.2021.9386709
http://dx.doi.org/10.1109/TII.2021.3098010
http://dx.doi.org/10.1109/TII.2021.3098010
http://dx.doi.org/10.1109/TII.2021.3098010
http://dx.doi.org/10.12974/2311-8792.2021.07.2

	Introduction and research context
	Problem statement and motivation
	Research objectives
	General objective
	Specific objectives

	Contributions and research scope
	Thesis organization

	State of the art
	Motivation
	Identification of the article
	Abstract
	Link to the full article

	Predictive models for the clinical management of dengue
	Motivation
	Identification of the article
	Abstract
	Link to the full article

	Prescriptive models for the clinical management of dengue
	Motivation
	ACODAT for the clinical management of dengue
	Motivation
	Identification of the article
	Abstract
	Link to the full article

	Clinical decision-making through prescriptive modeling
	Motivation
	Identification of the article
	Abstract
	Link to the full article

	PRV-FCM: an extension of FCMs for prescriptive modeling
	Motivation
	Identification of the article
	Abstract
	Link to the full article


	Federated learning approaches for FCMs to support clinical decision-making in dengue
	Motivation
	Identification of the article
	Abstract
	Link to the full article

	Conclusions
	Summary
	Limitations and future work

	References
	Appendix Dengue models based on machine learning techniques: A systematic literature review
	Appendix A clinical decision-support system for dengue based on fuzzy cognitive maps
	Appendix An autonomous cycle of data analysis tasks for the clinical management of dengue
	Appendix Clinical decision-making through prescriptive modeling
	Appendix PRV-FCM: an extension of FCMs for prescriptive modeling
	Appendix Federated learning approaches for FCMs to support clinical decision-making in dengue
	Dengue models based on machine learning techniques: A systematic literature review
	1 Introduction
	2 Methodology
	2.1 Search strategy
	2.2 Selection procedure
	2.3 Preliminary analysis

	3 Analysis of reviewed papers
	3.1 Diagnostic models of dengue
	3.1.1 Early diagnosis of dengue
	3.1.2 Seroprevalence of dengue
	3.1.3 Cytokines
	3.1.4 Raman spectroscopy
	3.1.5 Plasma leakage and severity

	3.2 Epidemic models of dengue
	3.2.1 Spatial-temporal analysis of dengue
	3.2.2 Distribution of the vector
	3.2.3 Search-index data
	3.2.4 Social networks
	3.2.5 Prediction of morbidity and mortality
	3.2.6 Thermal images

	3.3 Strategy evaluation models to control dengue
	3.3.1 Copepods
	3.3.2 Entomopathogenic fungi
	3.3.3 Wolbachia strains
	3.3.4 Vaccination
	3.3.5 Fumigation

	3.4 A general analysis of data types and machine-learning techniques for dengue modeling

	4 Discussion
	4.1 Limitations of the studies and challenges
	4.1.1 Diagnostic models
	4.1.2 Epidemic models
	4.1.3 Intervention models

	4.2 General summary

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

	A clinical decision-support system for dengue based on fuzzy cognitive maps
	Abstract
	1 Introduction
	2 Theoretical background
	2.1 Medical background
	2.1.1 Introduction to dengue
	2.1.2 Clinical course of dengue
	2.1.3 Conventional diagnosis of dengue

	2.2 Fundamentals of FCMs
	2.2.1 Introduction to FCMs
	2.2.2 Reasoning of FCMs


	3 Methodology
	3.1 Selection of experts
	3.2 Concepts and relationships
	3.3 Design of the model
	3.4 Inference
	3.5 Interpretation
	3.6 Decision

	4 Computational experiments
	4.1 Dataset
	4.2 Classification of dengue based on the severity
	4.2.1 Case 1: A patient with DWS-negative
	4.2.2 Case 2: A patient with DWS-positive
	4.2.3 Case 3: A patient with SD

	4.3 Analysis of risk factors
	4.3.1 Scenario 1: A patient with DWS-negative
	4.3.2 Scenario 2: A patient with DWS-positive
	4.3.3 Scenario 3: A patient with severe extravasation

	4.4 Comparisons with other ML techniques
	4.4.1 Results for ANN
	4.4.2 Results for SVM

	4.5 Comparison of this model with other works

	5 Conclusions
	Acknowledgements 
	References

	An autonomous cycle of data analysis tasks for the clinical management of dengue
	1 Introduction
	2 Related work
	2.1 Early detection of dengue
	2.2 Dengue classification
	2.3 Dengue treatment

	3 Theoretical background
	3.1 Clinical management of dengue
	3.1.1 Generalities of dengue
	3.1.2 Diagnosis of dengue
	3.1.3 Recommendations for treatment

	3.2 ACODAT

	4 Methodology
	4.1 Characterization of the dengue context
	4.2 Identification and analysis of data sources
	4.3 Specification of the ACODAT for the clinical management of dengue
	4.3.1 Task 1: data verification and correction
	4.3.2 Task 2: classification
	4.3.3 Task 3: prescription

	4.4 Implementation of ACODAT for the clinical management of dengue
	4.4.1 Datasets
	4.4.2 Implementation of task 1: data verification
	4.4.3 Implementation of task 2: classification
	4.4.4 Implementation of task 3: prescription


	5 Results
	5.1 Clean and corrected dataset
	5.2 Classification models
	5.3 Prescriptive model
	5.3.1 Scenario 1
	5.3.2 Scenario 2
	5.3.3 Scenario 3


	6 Discussion
	7 Conclusions
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	Acknowledgements
	References

	Introduction
	Related work
	Prescriptive modeling using machine learning
	Prescriptive modeling using computational intelligence
	Prescriptive modeling using clinical decision analysis

	Methodology
	Descriptive analysis
	Generation of the predictive models
	Data-driven PSO-FCM

	Generation of the prescriptive models
	GA
	Prescriptive-FCM


	Experiments
	Data preparation
	Configuration of hyperparameters
	Evaluation metrics
	Case study 1: warfarin dose estimation
	Case study 2: Treatment of SD
	Case study 3: Prevention of geohelminthiasis

	Results
	Case study 1: warfarin dose estimation
	Descriptive statistics
	Predictive model
	Prescriptive model

	Case study 2: treatment of SD
	Descriptive statistics
	Predictive model
	Prescriptive model

	Case study 3: Prevention of geohelminthiasis
	Descriptive statistics
	Predictive model
	Prescriptive model


	Discussion
	Warfarin dosing
	SD treatment
	Geohelminthiasis prevention

	Conclusions
	Summary table
	Introduction
	State-of-the-art
	Prescriptive analytics
	Mathematical programming
	Rules-based on logic
	Simulation
	Machine learning

	Optimization approaches

	Fuzzy cognitive maps (FCMs)
	Mathematical notation
	Overview of FCMs
	Learning of FCMs
	Inference of FCMs

	Our proposed prescriptive approach: PRV-FCM
	Characterization of the FCM
	Initial instantiation of the system-related concepts
	Optimization process

	Specification of the case studies
	Synthetic case study
	Wine case study
	Diabetes case study
	Student performance case study

	Experiments and results
	Data preparation
	Evaluation metrics
	Training, validation and testing
	Synthetic dataset
	Predictive model
	Prescriptive model

	Wine quality dataset
	Predictive model
	Prescriptive model

	Diabetes dataset
	Predictive model

	Prescriptive model
	Student performance dataset
	Predictive model
	Prescriptive model

	Comparison of means

	Discussion
	Analysis of results of the prescriptive models
	Qualitative comparison with previous works

	Conclusions
	Introduction
	Related work
	FCMs
	FCMs for prediction
	FCMs for prescription

	Federated learning in medical environments
	Federated learning for unstructured data
	Federated learning for structured data


	Methodology
	Data-driven PSO-FCM
	Prescriptive-FCM
	Federated learning
	Horizontal federated learning
	Vertical federated learning 
	Federated transfer learning 

	Our proposed approaches
	Total federated FCM

	Federated target-based FCM
	Federated FCM with transfer learning

	Experiments
	Datasets
	Statistical validation
	Evaluation of the models
	Total federated FCM
	Local training on clients
	Global training on the federated server

	Federated FCM based on the target
	Local training on clients
	Global training on the federated server

	Federated FCM with transfer learning
	Local training on clients
	Global training on the federated server


	Results and discussion
	Total federated FCM
	Target-based federated FCM
	Federated FCM with transfer learning
	Comparison with previous work
	Qualitative comparison
	Quantitative comparison

	Conclusions

