
|

Vehicle routing optimization in bicycle sharing systems

JUAN DAVID PALACIO DOMÍNGUEZ

Tesis

Asesor

Juan Carlos Rivera Agudelo

UNIVERSIDAD EAFIT

ESCUELA DE CIENCIAS

DOCTORADO EN INGENIERÍA MATEMÁTICA

MEDELLÍN

2022

Vehicle routing optimization in
bicycle sharing systems

Juan David Palacio Domı́nguez
Master of Science in Engineering

A thesis submitted for the degree of Doctor of Philosophy at

Universidad EAFIT in 2022

School of Applied Sciences and Engineering

A mis padres, por su infinito amor y paciencia durante estos años.

A mi abuela, su fortaleza nunca dejará de ser un motivo de inspiración.

iiiAcknowledgments

Firstly, I thank my parents, Ana and Jesús, for their love and company. Their unconditional support

makes this process easier.

I thank my advisor Juan Carlos Rivera, for giving me the opportunity to develop this project and for

share his creativity and his virtually infinite number of ideas in every step of the way. I really enjoy

to work with Juan learning a lot from the very beginning.

I also would like to thank Juan G. Villegas for his valuable advice throughout this process, my

master and undergraduate studies. Thanks for being a friend and role model from early beginnings.

I thank my friends Valentina Gutiérrez and Carolina Castañeda for their unconditional support and

for being there even in the hard days. This process cannot be done without their company, advise,

laughs and so many special moments. One of the most important learning during these years is

about pure and real friendship.

I also thank Paola, Leandro, Jhonatan and Santiago at Modelado Matemático research group. My

stay as student at EAFIT was a great experience thanks to their support. Thanks to Paula Escudero

for giving me the opportunity to work with her and for help to activate my mind and body sharing

many high-speed rides to EAFIT.

I thank Felipe Isaza for give me the opportunity to start a life as full professor at Universidad de

Medellı́n. I would like to thank Ximena Gaviria, Natalia Gómez, Luisa Villa, Marı́a Isabel Mejı́a

and Alina Avendaño for their advice, support (and even predictions) in the last steps of this process.

Thanks to a very special team: Ana Marı́a, Isabela, Catalina, Jhon Jander, Sebastian, Juan José and

Daniel; lunches, coffees, laughs and classes were fuel to finish this thesis.

I would like to thank Claudia Velasquez and Ricardo Bernal for show me how to live with well-being

when days turned gray.

Thanks to Professors Juan José Salazar, José Manuel Belenguer, Hasan Murat Afsar, Pablo Maya,

William Guerrero and Mario César Vélez for accepting the invitation to be part of the jury of my

thesis proposal evaluation and qualifying exams. The projects I developed and reviews on thesis

proposal help me to complete successfully this process.

Finally, I would like to thank Lucia Quintero for taking care of many key administrative matters

during the PhD studies. Thanks also to the Mathematical Engineering PhD program committee at

EAFIT, specially to Andrés Sicard for reading and giving feedback on the thesis proposal.

iv

Abstract

Vehicle routing problems (VRPs) are a set of combinatorial optimization problems with large number

of applications mainly in logistics context for services delivery and good distributions. This thesis

studies a set of VRPs that arises in a particular sharing mobility context: bicycle sharing systems

(BSSs). BSSs operate with the aim to alleviate traffic congestion and air pollution. By the use of

bikes for short trips in an urban area, the use of automobiles is reduced as well as potential health

issues caused by CO2 emissions. A successful BSS logistic operation involves decision making

processes that may be supported via Operation Research (OR) techniques. Precisely, this document

study three problems that may arise in BSSs logistic context: The the one-commodity pickup and

delivery traveling salesman problem (1–PDTSP), the one-commodity pickup and delivery vehicle

routing problem with length constraints (1–PDVRPLC) and the two-echelon bicycle repositioning

problem with split demand (2E–BRPSD)

The first part addresses the 1–PDTSP. In the 1–PDTSP a single capacitated vehicle picks up

and delivers commodity units in a set of locations with a predefined demand. In BSS contexts,

this problem is tackled as the static bike repositioning problem (BRP). For this problem, this

thesis describes a mixed-integer linear programming model (MILP) and a metaheuristic algorithm

based on evolutionary local search (LS) and variable neighborhood descent (VND). Similarly, this

document also studies the SD1PDTSP which is a 1–PDTSP version where the split demand is

allowed. For the SD1PDTSP an MILP is also described.

The second part is devoted to the 1–PDVRPLC. The 1–PDVRPLC is a generalization of

1–PDTSP where multiple vehicles are available. To solve the 1–PDVRPLC, an MILP is described

as well as two matheuristic algorithms based on large neighborhood search (LNS) procedures.

The first matheuristic strategy is a multi-start iterated LNS, where destroy and repair operators are

replaced by a single MILP. The second matheuristic is an adaptive LNS, where several destroy

methods are available and an MILP repairs solutions. Additionally, an exact algorithm that efficiently

enumerates possible repaired solutions is described. The algorithm replaces MILP in adaptive LNS

strategy and some dominance rules are presented to speedup the enumeration process.

Finally, the third part defines 2E–BRPSD. In the 2E–BRP, the repositioning operation is

completed within a two-echelon configuration. While a set of vehicles visits stations (second

echelon), a single vehicle supports that operation by picking up or delivering bikes in stations

selected as satellite depots. For the 2E–BRPSD, an MILP is presented as well as four metaheuristic

algorithms.

ABSTRACT v

Keywords: Operation research, Combinatorial optimization, Metaheuristics, Matheuristics,

Vehicle routing problem Mixed-integer linear programming, Bicycle sharing systems, Bicycle

repositioning problem.

Contents

Abstract . iv

Contents vi

List of Figures x

List of Tables xi

List of Abbreviations xv

1 General Introduction 1
1.1 Nonprofit and public operations: definition and context 2

1.2 Vehicle routing and transportation in public and nonprofit contexts 3

1.3 Bicycle sharing systems: service planning problems and OR perspective 5

1.4 Purpose of the thesis . 9

1.5 Contributions . 10

1.6 Structure of the manuscript . 12

2 State of the Art 15
2.1 Vehicle routing problems with pickup and delivery features 15

2.1.1 One-commodity and multi-commodity pickup and delivery VRPs 15

2.1.2 Dial-a-ride problems . 19

2.2 Vehicle routing optimization in non-commercial contexts 21

2.2.1 Home and health care logistics . 21

2.2.2 Disaster relief logistics . 24

2.2.3 Other applications . 25

2.3 Vehicle routing optimization models in bicycle sharing systems 26
vi

CONTENTS vii

2.3.1 Static bicycle repositioning problems . 27

2.3.2 Dynamic bicycle repositioning problems 31

2.4 Concluding remarks . 32

3 1–PDTSP: mathematical models and metaheuristic approaches 35
3.1 Introduction . 35

3.2 Problem definition and mixed integer linear models 36

3.2.1 The 1–PDTSP . 36

3.2.2 The SD1PDTSP . 39

3.3 A multi-start evolutionary local search algorithm for the 1–PDTSP 41

3.3.1 General framework . 44

3.3.2 Greedy randomized construction . 45

3.3.3 Variable neighborhood descent . 48

3.3.4 Perturbation . 50

3.3.5 Multi-start iterated local search and greedy randomized adaptive search

procedure . 51

3.4 Computational experiments . 52

3.4.1 Data sets . 52

3.4.2 Results on mixed integer lineal models . 54

3.4.3 Analysis on split delivery, temporal storage and vehicle capacity 57

3.4.4 MILPs benchmark . 60

3.4.5 Results on MS-ELS . 61

3.5 Concluding remarks . 70

4 Mathematical models and solution approaches for 1–PDVRP 75
4.1 Introduction . 75

4.2 Problem definition and mixed integer linear models 76

4.2.1 The 1–PDVRP . 76

4.2.2 The 1–PDVRP with tour length constraints 78

4.2.3 Symmetry breaking constraints . 80

4.3 Large neighborhood search based matheuristic . 81

4.3.1 General structure . 82

4.3.2 Variable neighborhood descent procedures 82

4.3.3 Split procedure for the 1–PDVRP . 92

viii CONTENTS

4.3.4 MILP-based destroy and repair operator 92

4.3.5 Concatenation and perturbation functions 95

4.3.6 Set partitioning based post-optimization procedure 96

4.4 Adaptive large neighborhood search algorithm . 97

4.4.1 General structure . 98

4.4.2 Adaptive control of the algorithm . 100

4.4.3 Destroy operators . 101

4.4.4 A MILP as repair operator . 102

4.4.5 Removing a route: MILP approach . 105

4.5 An enumeration algorithm for solution repairing 106

4.5.1 General structure . 106

4.5.2 Dominance rules for partial solutions . 109

4.6 Computational experiments . 110

4.6.1 Instances and experiments configuration 110

4.6.2 Results on mixed integer lineal model . 111

4.6.3 Matheuristic algorithms: comparative results 113

4.6.4 Comments on multi-start iterative LNS matheuristic performance 119

4.6.5 Comments on adaptive features for LNS-based algorithms 121

4.6.6 Comments on enumeration algorithm for ALNS-based strategies 122

4.7 Concluding remarks . 124

5 The two-echelon BRP with split delivery 129
5.1 Introduction and motivation . 129

5.2 A brief review on two-echelon routing problems 131

5.3 Mathematical model for the 2E–BRPSD . 133

5.4 Hybrid constructive algorithm for the 2E–BRPSD 137

5.4.1 Greedy randomized construction . 138

5.4.2 Variable neighborhood descent . 140

5.4.3 Split . 141

5.4.4 Local search . 141

5.4.5 Finding feasible satellite depots . 143

5.4.6 Central route construction . 144

5.4.7 Global feasibility verification . 145

5.5 A set partitioning problem based matheuristic . 146

CONTENTS ix

5.5.1 Sets of central and secondary routes for the 2E–BRPSD 146

5.5.2 SPP mathematical formulation for the 2E–BRPSD 147

5.6 Generalized traveling salesman problem based matheuristic for the 2E–BRPSD . . 149

5.6.1 Set partitioning problem for secondary routes 150

5.6.2 An enhanced GTSP mathematical formulation 151

5.6.3 An alternative procedure for secondary route selection 153

5.7 Computational experiments . 154

5.7.1 Data sets . 155

5.7.2 Results on 2E–BRPSD MILP . 156

5.7.3 Results on matheuristic algorithms . 156

5.7.4 Results on EnCicla instances . 169

5.8 Concluding remarks . 172

6 General conclusions and future research directions 173

Bibliography 179

List of Figures

3.1 Optimal solution for a 1–PDTSP instance with 20 nodes 39

3.2 Optimal solution for a SD1PDTSP instance with 20 nodes 42

3.4 Optimal solution for second SD1PDTSP instance with 20 nodes 42

3.3 Optimal solution for a second 1–PDTSP instance with 20 nodes 43

3.5 Flow chart for MS-ELS algorithm . 44

3.6 Example of a feasible solution for the 1–PDTSP. 47

3.7 Example of an unfeasible solution for the 1–PDTSP 47

3.8 Objective function value versus time (s) for instance n100q10A 67

4.1 Instance 1 solved as 1–PDVRP without route length constraints (f ∗ = 5263) 79

4.2 Instance 1 solved as 1–PDVRPLC with T = 2631 (f ∗ = 5669) 80

4.3 String cross example . 90

4.4 Concatenate operation example . 95

4.5 Removing adjacent nodes to a random arc . 102

4.6 Example on repair MILP sets . 103

4.7 Destroy methods weight for different sizes of 1–PDVRPLC 122

4.8 Goals weight for different sizes of 1–PDVRPLC . 123

5.1 An example of a 2E–BRPSD solution for Encicla in Medellı́n (Colombia). 130

5.2 Optimal solution for a 2E–BRPSD instance with 20 stations and four vehicles 136

5.3 Example for route index computation . 153

x

List of Tables

3.1 MILPPD results for the 1–PDTSP . 55

3.2 MILPSD results for the SD1PDTSP . 55

3.3 Computational results on MILP for 1–PDTSP instances with |N| ≤ 40 55

3.4 Computational results on MILP for 1–PDTSP instances with |N| ∈ {50,60} 56

3.5 Computational results on MILP for 1–PDTSP instances with |N|= 100 57

3.6 Computational results on MILP for 1–PDTSP instances with |N| ≥ 200 57

3.7 Computational results on MILP for EnCicla instances 58

3.8 Split delivery and temporal storage impact on objective function 59

3.9 Expected cost improvement for instances with non-optimal solution 60

3.10 Cost improvements for Q variations . 61

3.11 Benchmark results based on Salazar-González and Santos-Hernández (2015) 61

3.12 Parameter values for solution strategy . 62

3.13 Computational results for small instances . 63

3.14 Computational results for large instances . 65

3.15 Average solution for MS-ELS vs. best solutions for GRASP and GA 66

3.16 CPU times (s) comparison for large instances . 67

3.17 Computational results on MS-ELS for EnCicla instances 69

3.18 Computational results for EnCicla instances with warm start on MILP 71

4.1 Results on 1–PDVRPLC instances . 112

4.2 Average cost increase based on α = |K|−1 . 113

4.3 Average CPU time (s) for the 1-PDVRPRL MILP . 113

4.4 Comparative results on LNS-based algorithms for instances with |N|= 20 115

4.5 Comparative results on LNS-based algorithms for instances with |N|= 30 116

4.6 Comparative results on LNS-based algorithms for instances with |N|= 40 117
xi

xii LIST OF TABLES

4.7 Comparative results on LNS-based algorithms for instances with |N| ≥ 50 118

4.8 Comparative results on LNS-based algorithms for instances with T L = 3000 120

4.9 Comparative results on CPU times (s) for LNS-based algorithms 121

4.10 Results on LNS procedure and SPP IP for the MS-ILNS 121

4.11 Repair MILP in ALNS-Math vs. EA on K′ . 124

4.12 Repair MILP in ALNS-Math vs. EA on K . 124

4.13 Repair MILP in ALNS-Math vs. EA on K and sorted routes 125

5.1 Values for vehicles load when visiting central route stations 137

5.2 Feasible path for a secondary route . 143

5.3 Unfeasible path for a secondary route . 143

5.4 Number of vehicles for 2E–BRPSD instances . 156

5.5 MILP results for total traveling cost on 2E–BRPSD instances 157

5.6 MILP gaps and CPU times (s) for 2E–BRPSD instances 158

5.7 Comparative results on matheuristic algorithms for instances with 20 stations 160

5.8 Comparative results on matheuristic algorithms for instances with 30 stations 161

5.9 Comparative results on matheuristic algorithms for instances with 40 stations 162

5.10 Comparative results on matheuristic algorithms for instances with 50 stations 163

5.11 Comparative results on matheuristic algorithms for instances with 60 stations 164

5.12 Results on matheuristic algorithms for instances with |N| ≥ 100 166

5.13 CPU times for 2E–BRPSD matheuristic strategies (s) 167

5.14 CPU time distribution for hybrid constructive algorithm components 167

5.15 CPU time distribution for SPP-based algorithm components 167

5.16 CPU time distribution for GTSP-based algorithm components 168

5.17 MILP results on EnCicla instances . 170

5.18 GTSP-based matheuristic results on EnCicla instances 171

List of Algorithms

3.1 MS-ELS for the 1–PDTSP: general structure . 46

3.2 Variable neighborhood descent for the 1–PDTSP 49

3.3 Perturbation for MS-ELS . 51

4.1 LNS framework . 81

4.2 Multi-start iterative LNS matheuristic . 83

4.3 Variable neighborhood descent algorithm . 84

4.4 String exchange for 1–PDVRPLC . 87

4.5 String relocation for 1–PDVRPLC . 88

4.6 String cross for 1–PDVRPLC . 91

4.7 Split algorithm for PDVRPs. Adapted from Prins (2004) 93

4.8 ALNS framework . 98

4.9 Adaptive LNS matheuristic . 99

4.10 Enumeration algorithm for solution repairing . 106

4.11 Repair solution algorithm . 108

5.1 Hybrid constructive algorithm for the 2E–BRPSD 138

5.2 Hamiltonian tour construction . 139

5.3 Split algorithm for PDVRPs. Adapted from Prins (2004) 142

5.4 Checking feasibility for satellite depots . 144

5.5 SPP based algorithm for the 2E–BRPSD . 146

5.6 GTSP-based algorithm for the 2E–BRPSD . 149

xiii

List of Abbreviations

Abbreviations

1–PDTSP One-commodity pickup and delivery traveling salesman problem

1–PDTSP–RD One-commodity pickup and delivery vehicle routing problem with restricted depot

1–PDVRP One-commodity pickup and delivery vehicle routing problem

1–PDVRPLC One-commodity pickup and delivery vehicle routing problem with length constraints

2E–1PDP Single-vehicle two-echelon one-commodity pickup and delivery problem

2E–LRP Two-echelon location routing problem

2E–MTVRP-SS Two-echelon multiple-trip vehicle routing problem with satellite synchronization

2E–BRP Two-echelon bicycle repositioning problem

2E–BRPSD Two-echelon bicycle repositioning problem with split delivery

2E–VRP Two-echelon vehicle routing problem

ABC Artificial bee colony

ALNS Adaptive large neighborhood search

B&C Branch and cut

BA Bat algorithm

BRP Bicycle repositioning problem

BSS Bicycle sharing system

CVRP Capacitated vehicle routing problem

D&R Destroy-and-repair

DARP Dial-a-ride problem

DBMEA Discrete bacterial memetic evolutionary algorithm

DSS Decision support system

E2E–VRP Electric two-echelon vehicle routing problem

2E–EVRP–BSS Electric two-echelon vehicle routing problem with battery swapping stations

ELS Evolutionary local search

xv

xvi LIST OF ABBREVIATIONS

GA Genetic algorithm

GRASP Greedy randomized adaptive search procedure

GTSP Generalized traveling salesman problem

HHCP Home health care problem

ILS Iterative local search

ILP Integer linear program

LNS Large neighborhood search

LP Linear program

m–PDTSP Multi-commodity pickup and delivery traveling salesman problem

MA Memetic algorithm

MILP Mixed-integer linear program

MS–ELS Multi-start evolutionary local search

MS–ILNS Multi-start iterated large neighborhood search

MS–ILS Multi-start iterated local search

NN Neural network

PRTTA Population algorithm based on randomized tabu threesholding

SA Simulated annealing

SD1PDTSP Split delivery one-commodity pickup and delivery traveling salesman problem

SDTSP Split delivery traveling salesman problem

SPP Set partitioning problem

TS Tabu search

TSP Traveling salesman problem

TTRP Truck and trailer routing problem

VND Variable neighborhood descent

VNS Variable neighborhood search

VRP Vehicle routing problem

VSS Variable space search

Chapter 1

General Introduction

The International Federation of Operational Research Societies (IFORS) describes OR as ”the

development and the application of a wide range of problem-solving methods and techniques applied

in the pursuit of improved decision-making and efficiency, such as mathematical optimization,

simulation, queuing theory and other stochastic models. The OR methods and techniques involve the

construction of mathematical models that aim at describing a problem. Because of the computational

and statistical nature of most of the techniques, OR also has strong ties to computer science

and analytics” (IFORS, 2022). OR deals with decision problems by formulating and analyzing

mathematical, simulation and statistical models of complex engineering and management problems

with the aim to provide insights about possible solutions.

Precisely, to design and analyze OR models, mathematics, economics and computer science

fields works jointly to develop, for instance, optimization models and algorithms able to find

the best possible solution to quantitative problems. In that sense, this thesis is devoted to the

solution of a family of vehicle routing problems in a particular nonprofit context of sustainable

transportation: bicycle sharing systems logistics. The document provides problem definitions,

mathematical formulations and solution strategies for the studied problems through operations

research techniques.

Routing decisions in bicycle sharing system contexts and other nonprofit or public applications

are not typically made through classical capacitated vehicle routing formulations and algorithms.

Apart from total costs minimization, a key factor in logistics for decision makers in nonprofit and

public operations, is to reduce the user disatisfaction. Then, features as pickups and deliveries, split

demands or even synchronization issues must be considered to ensure an efficient operation of the

studied system.
1

2 CHAPTER 1. GENERAL INTRODUCTION

This chapter presents an overview of nonprofit and public operation concept and some of its

applications where vehicle routing problems arise. This chapter also describes BSSs logistics as a

family of combinatorial optimization problems showing the relevance of transportation and routing

decisions in these systems as the main context of this document.

1.1 Nonprofit and public operations: definition and context

The commercial and nonprofit sector organizations are different from each other in several aspects.

Objectives, conditions, providers, users and even the type of services offered may be different if the

organization profile is profit or nonprofit. These differences among the sectors have been studied in

several disciplines and OR is not the exception (Balcik et al., 2010).

Precisely, this document follows the ideas in Balcik et al. (2010) for public services and their

providers. The authors state public services as ”services provided to the society by public and/or

nonprofit sector organizations”. Although many public services are provided by government

organizations, there exist nonprofit agencies offering some of these public services. Services

provided by government agencies include healthcare and public health, education, recreational

facilities, water and energy supply and telecommunications. Moreover, transportation also arises

in several contexts as public service: emergencies, disaster relief services, special care for elderly

people and nursing (home healthcare), public transportation systems.

Organizations providing public services and the commercial sector have substantial differences

in goals and consequently, metrics for operations performance in both sectors must be also different.

In OR contexts, for commercial services, profits and operational costs are commonly used to

measure efficiency as a metric for companies performance. Effectiveness also emerges as a second

metric for private and commercial sector as the level to which these companies reach their goals.

Aside profits, costs or resource utilization levels to measure efficiency and effectiveness in

commercial companies, for public sector and nonprofit organizations there exists a different set of

metrics. Equity and fairness criteria arise as measures for their operation performance. While private

organizations work for a desired efficiency, in nonprofit contexts, additional questions emerge: is

that efficiency gained in a fair way? does it provide a similar benefit for all the population involved

or affected with decisions? In other words, are those who are affected by the decision treated fairly

or equitably? (Marsh and Schilling, 1994). Balcik et al. (2010) agree with Marsh and Schilling

(1994) and state that there are three main questions when equity and fairness are involved in making

decisions processes for public or nonprofit sectors: fairness based on what?, who should benefit?,

and how is fairness measured?

1.2. VEHICLE ROUTING AND TRANSPORTATION IN PUBLIC AND NONPROFIT CONTEXTS 3

From a broader perspective, Pollock and Maltz (1994) elaborate a discussion when defining

the term public sector in an OR context. The authors propose four possible criteria to determine

whether decisions are made within a public context, as follows:

• The public (or its representatives) make decisions.

• A public servant directs the organization within which the decision is made.

• The general public pays for the analysis and/or bears the major effects of the decision.

• The ultimate measure of the outcome of a decision or policy is non-monetary.

• Analyses, or other methods used to inform decisions, are subject to public scrutiny.

Based on these criteria, the reader may notice that the research detailed in this document fits

in a set of decision making processes from the public sector definition for OR contexts. As next

sections in this chapters detail, BBSs are defined as a public service and typically operate under

public policies and invariably, the general public has the major effects of decisions made for the

BSSs operation.

1.2 Vehicle routing and transportation in public and nonprofit

contexts

As mentioned before in Section 1.1 there exist many services provided by public and nonprofit

organizations: emergencies, postal services, libraries, health, disaster relief, among others. Although

decision making within this contexts are related to several OR and optimization problems as location,

inventory, scheduling (Castañeda and Villegas, 2017; Gutiérrez and Vidal, 2013; Ni et al., 2018;

Rottkemper et al., 2011), this document focuses on transportation and vehicle routing problems.

Before introducing BSSs routing problems, this section is devoted to describe briefly some of

the vehicle routing problems for most common public services or services provided by nonprofit

organizations. From an extensive list of applications and contexts for transportation problems, a

short description of health care, disaster relief, food distribution (food banks and meals on wheels)

is presented.

Health care (HC) optimization problems have received attention recently since average longevity

and population size are increasing. Therefore, many countries are concerned about how to allocate

budget and ensure resources availability to meet healthcare needs (Rais and Vianaa, 2011). Moreover,

4 CHAPTER 1. GENERAL INTRODUCTION

a different motivation relies on the fact that modern technology allows to offer more decentralized

services to population with the aim to increase coverage rates. From a tactical perspective, many

vehicle routing problems can be addressed in the HC context. In particular, home health care (HHC)

delivery services consider a set of patients previously prescribed by medical staff with treatments

that must take place at patient’s homes. This kind of service is suitable when, based on patient

conditions, it is more comfortable and secure to give care at home, or the beds and rooms are

scarce in hospitals. Additionally, apart from security and comfort, these services are less costly for

hospitals and medical service centers and allow to reduce recovery periods and improve life quality

of patients (Gutiérrez and Vidal, 2013). Classical decisions in HHC contexts include, at least, to

determine a professional assignment, a frequency of visits for each patient and, a service time and

time windows for each visit. In this case, the HHC provider must design routes for each medical

professional in order to satisfy frequencies and the prescribed periods to serve patients. Even though

staff and routing costs represent key values for HHC providers, quality in service should be also

considered as a quality solution measure. From the patient point of view, quality in service includes

minimum waiting times, consistency in terms of the time the service is provided, the prescribed

times to be visited and, the number of different medical professionals that provide the services

(Kovacs et al., 2014).

Disaster relief problems cover four different phases (Altay and Green III, 2006): mitigation,

preparedness, response and recovery. First two concern the pre-crisis. Mitigation is the application

of measures that either prevent the onset of disasters or reduce their impacts, while preparedness

activities train the community to react when a disaster occurs. When the crisis occurs, the post-crisis

phases take place. Response is the deployment of resources and emergency procedures to preserve

life, property, the environment, and the social, economic, and political structure of the community.

Recovery involves the actions in order to stabilize the community and to restore some semblance of

normalcy after the immediate impact of the disaster. Every phase can have different constraints,

features or objectives. For instance, in humanitarian relief distribution problems after a disaster

strikes, response time encloses the main efficiency and equity measures while monetary goals play

a secondary role in such situations. This kind of problems are faced by humanitarian organizations

after a man made or natural disaster such a earthquake or flood occurs and a significant number of

people have been injured. In this context, vehicle routing problems deal with the distribution of

live-saving commodities to injured people while minimum waiting time of visited demand points

are required. Issues related to the amount of goods required are also considered if their availability

is not enough to satisfy the total demand. Then, minimize the unsatisfied demand is a major goal

(De la Torre et al., 2012).

1.3. BICYCLE SHARING SYSTEMS: SERVICE PLANNING PROBLEMS AND OR PERSPECTIVE 5

In food distribution logistics there is a particular application arising in charitable contexts. Meals

on Wheels (MOW) programs were firstly created in the United States by nonprofit organizations

with the aim to provide social services for the elderly and/or poor people. MOW programs operation

is based on delivery of food for that people that is not able to shop or prepare lunches for themselves.

As Bartholdi III et al. (1983) point out, the funding for MOW programs is unstable and often

insufficient, then any additional resource is used to purchase and prepare more food and cover

more people from a waiting list of citizens. Particularly, in the United States, volatility of a MOW

program clients is determined by several founding constraints from federal and state governments

to nonprofit organizations with MOW programs. Due to these constraints, vehicle routing decisions

for MOW operation must be efficient. In this case, efficiency is measured by serving the maximum

number of clients within a list of candidates.

Similarly to MOW programs, food banks are also chariable organizations. Nonetheless, food

banks do not prepare the meals. These banks collect and then, deliver the food directly to needy

people or other nonprofit organizations (e.g., companies offering MOW services). For food banks

organizations, the vehicle routing decisions are made based on problems with pickup and delivery

operations. Moreover as pointed out in Balcik et al. (2010) equity objectives are more important

than cost/distance related objectives when optimizing this operation.

It is worth to mention that public and nonprofit applications are not only related to health

care, humanitarian logistics or food distribution. Previous mentioned contexts are only a subset of

examples of several public or nonprofit applications in which vehicle routing decisions are made.

1.3 Bicycle sharing systems: service planning problems and OR

perspective

The goal of this section is twofold: firstly, it aims to describe the BSSs operation. Then, a set of

service planning problems within a BSS operation from a strategic, tactical and operational point of

view are enumerated. These service planning problems are stated as a justification to study BSSs

using OR techniques. Needless to say, vehicle routing decisions are highlighted within this section

showing the relevance of optimization models and efficient solution strategies. Moreover, this thesis

focuses on station-based BSS problems. There exists a different type of service called free-floating

BSSs. In the free-floating BSS, bikes are freely parked in defined areas along a urban region. In

general, these defined areas are marked with a large rectangle (Zhang et al., 2022). From now, and

since free-floating BSSs are not studied in this thesis, we call BSSs to station-based BSSs. Thus, a

6 CHAPTER 1. GENERAL INTRODUCTION

definition for BSSs follows.

A BSS is mainly composed by a set of stations with limited capacity (i.e., number of bike slots)

distributed along an urban area and a set of bicycles at stations for users. These users can use

the system by taking a bike from one of the available stations (origin) and then, after a short trip,

returning it to the same or a different station (destination). These systems contribute to a more

sustainable mobility and to decrease traffic and pollution caused by combustion based vehicles

transportation. The first BSS started operating in 1965 in Amsterdam, The Netherlands (Dell’Amico

et al., 2014). Nowadays, there exist more than 2100 BSSs around the world offering approximately

17 millions of bikes (Shui and Szeto, 2020).

As Shui and Szeto (2020) point out, a successful operation of a BSS involves several stages of

managerial decisions. Indeed, there are eight main steps to describe the whole service operation

of BSSs: (a) bikeway network design, (b) bicycle station design, (c) fleet sizing design, (d) static

bicycle relocation, (e) static demand management, (f) inventory level management, (g) dynamic

bicycle relocation, and (h) dynamic demand management. A brief description of these steps follows:

(a) Bikeway network design: Lin and Yu (2013) define three types of bikeways: bike paths, bike

lanes, and bike routes. Bike paths are bikeways completely separated from pedestrians and any

vehicle different from bikes. Bike lines are small parts of a sidewalk previously painted for

cyclists; the bike lines may be shared with pedestrians. A bike route is a delimited portion of a

road generally marked with roadside signs for bike users. Sometimes, in bike routes motorized

vehicles are allowed. Bikeway network design problems are related to determining location of

bike paths, lines and routes. In these problems several constraints may arise: safety for cyclists,

service level, impacts on driving space for vehicles and parking lots (Lin and Yu, 2013; Mesbah

et al., 2012; Sohn, 2011).

(b) Bicycle station design: In bicycle station design problems two main decisions are made:

location for stations and capacity (number of bikes slots). Decisions for station location are

relevant as a strategic planning horizon since final locations determine the demand coverage for

each station and therefore, for the BSS service. For this kind of problems, financial constraints

or even objective functions as investment costs or profits are modeled (Frade and Ribeiro, 2015).

Moreover it is possible to find bicycle station design problems in which decisions are also

supported in geographic information systems (GISs). These kind of systems allow decision

makers to know spatial demand distribution and consider in a precise way, geographical aspects

affecting demand patterns (Garcia-Gutierrez et al., 2014; Garcı́a-Palomares et al., 2012; Larsen

et al., 2013; Wang et al., 2016). However, a drawback when using GISs for bicycle station

1.3. BICYCLE SHARING SYSTEMS: SERVICE PLANNING PROBLEMS AND OR PERSPECTIVE 7

design problems relies on a higher complexity for models since the amount of data may increase

significantly.

Despite the relevance of capacity decisions in bicycle station design problems, they are not

considered in free-floating bicycle systems in which bike docks are not required (i.e, users can

leave or pick up a bike at any point of the covered zone of the BSS). In this kind of systems,

costs related to stations operation are negligible but bike relocation in covered zones become

more difficult when compared with traditional BSSs (Shu et al., 2013).

(c) Fleet sizing design: Fleet sizing design problems aim to determine a number of bikes for the

BSS and a number for bicycles at each station. The total number of bikes to deploy for the

whole system is a key decision in fleet sizing design since investment costs must be included

within a strategic planning horizon. Nonetheless, to determine this number, the amount of bikes

for each station must be also estimated. On the other hand, the number of bikes at each station

affects directly the station capacity as a strategic service planning decision (Fricker and Gast,

2016).

(d) Static bicycle reposition: This operation, also called bike relocation, is the problem addressed

in this research and it is probably the most studied research problem in BSSs service planning

context (Shui and Szeto, 2020). A daily successful operation of a BSS requires an adequate

number of available bikes at each station in such a way that the desired number of allocated

bikes is met and the station capacity (i.e., number of bike slots) is not violated. To do so,

a set of capacitated vehicles must visit (all) the stations in order to pick up or deliver bikes

according to the lack or surplus at each location. In the static bike repositioning problem (BRP)

changes on demands are negligible. In fact, the static version of the repositioning operations is

usually performed during the night when the BSS is not available for users or the bikes demand

is minimum. As a matter of fact, impact of repositioning operation is more relevant during

nighttime than daytime (Laporte et al., 2015).

In scientific literature, it is possible to find several variants for the BRP. Objective functions may

include minimization of distance or time required to complete the operation, the minimization

of user demand dissatisfaction or even a combination of both metrics within a bi-objective

representation of the problem. Variants on the strategies for loading an unloading bikes may

also appear: number of visits per station using a vehicle, temporary storage and split delivery

(Palacio and Rivera, 2019; Salazar-González and Santos-Hernández, 2015).

8 CHAPTER 1. GENERAL INTRODUCTION

(e) Static demand management: The static demand management aims to determine strategies and

policies to conduct or direct the bicycle demand in order to maximize the available resource

utilization in the BSS (i.e., stations, bikeways and bicycles). To do so, it is possible to design

policies and regulations or provide deterministic incentives to affect user decisions within a

short and mid term horizon. Princing is also considered as a demand management problem

(e.g., defining bike rental price, booking prices and station-based prices) (Kumar et al., 2016;

Shaheen et al., 2013). In spite of the relevance of static demand management problems, they

have not widely studied so far (Shui and Szeto, 2020).

(f) Inventory level management: Inventory management in BSSs service planning mainly aims

to determine inventory levels of usable and damaged bikes while repositioning operation is

performed (Schuijbroek et al., 2017). As a consequence of these decisions is also possible

to design a preventive and corrective maintenance programs for usable and damaged bikes

respectively. Inventory management problems can be tackled considering a single station

independently or also checking the bicycle inventory levels interaction between several stations

(Datner et al., 2019).

(g) Dynamic bicycle reposition: Similar to the static bicycle repositioning operation, the dynamic

version of the problem uses a set of vehicles with the aim to ensure that the total number of

required bikes and slots are available at each station while the system is available for users (i.e.,

during daytime). Thus, the dynamic reposition requires real-time usage levels as an input within

a time-dependent problem (Reiss and Bogenberger, 2017). Some of the research based on the

dynamic bike repositioning operation as in Regue and Recker (2014) and Zhang et al. (2017)

decompose the problem in three main phases: user demand forecasting, pickup and delivery

quantities determination and vehicle routing.

(h) Dynamic demand management: The dynamic version of demand management problems

mainly seeks to design regulations and incentives to reduce differences between real and

projected state of stations at any time. These incentives can be created to motivate users to

pickup and deliver bikes at stations where excess of bikes and slots is remarkable during the

BSS operation, respectively. One of the most common regulations is called dynamic pricing

incentive which consists on setting prices for bikes usage once each trip has ended. These

prices may depend not only on traveling times but also on origin and destination stations (Singla

et al., 2015). Moreover, BSSs users may also perform a small repositioning task by taking or

delivering a bike in a near station to start or end trips, respectively (Chung et al., 2018). In the

1.4. PURPOSE OF THE THESIS 9

later case, these repositioning operations may represent a benefit for users (e.g., discount for

next trips).

1.4 Purpose of the thesis

As Shui and Szeto (2020) discuss in their recent review, BSSs have been widely study from its

logistic and managerial operations fields. Decisions on transportation and vehicle routing in BSSs

are not the exception and there exists an extensive number of publications and research about these

type of decisions. Particularly, for the static bicycle repositioning problem, being one of the most

studied problems within a BSS service planning context, is still possible to find research gaps. These

gaps may be viewed from three different perspectives: modeling, solution strategies and even, from

repositioning operation design itself.

More precisely, the aim of this thesis is to study the static bicycle repositioning problem

designing new mathematical models and solution strategies. Consequently, this study becomes

relevant not only from a practical position, but also from a theoretical and algorithmic point of view.

Thus, part of this document addresses the BRP as a particular application of the one-commodity

traveling salesman problem (1–PDTSP) or the one-commodity vehicle routing problem (1–PDVRP).

Particularly, sections devoted to the 1–PDTSP and 1–PDVRP aim to describe competitive models

and solution strategies even when large instances for the problem arises. On the other hand and

apart from a theoretical and algorithmic view, this thesis also evaluates key features that naturally

can be added to the operation with the aim to improve its performance. In addition to the inherent

pickup and delivery operation in BRPs, split demand and two-echelon features are also included in

this study.

Four different problems are addressed in this document:

a. The one-commodity pickup and delivery traveling salesman problem (1–PDTSP)

b. The one-commodity pickup and delivery traveling salesman problem with split demand

(SD1PDTSP)

c. The one-commodity pickup and delivery vehicle routing problem with length constraints

(1–PDVRPLC)

d. The two-echelon bicycle repositioning problem (2E–BRP)

10 CHAPTER 1. GENERAL INTRODUCTION

The 1–PDTSP is the case where only a single vehicle is available to perform pickups and

deliveries through the set of nodes (i.e., stations in a BSS). For small BSSs this problem becomes

relevant but, if the number of stations is large enough, then the repositioning operation with

one vehicle lacks of practical interest. In this case, a theoretical motivation allows to develop a

mathematical model and a metaheuristic algorithm with the aim to find competitive results for the

problem.

Similarly to the 1–PDTSP, in the SD1PDTSP, one vehicle must perform a pickup or delivery at

each location. Nevertheless, since demand may be split, multiple visits to each node are allowed.

Solving a new mixed-integer linear programming (MILP) model it is possible to prove that total

traveling cost (e.g., distance) is less than those obtained if only one visit per location is allowed.

From a theoretical perspective, when solving the proposed MILP for the SD1PDTSP via commercial

solver, it is possible to outperform exact methods reported in the literature.

The motivation to study the one-commodity pickup and delivery vehicle routing problem with

length constraints (1–PDVRPLC) is mainly practical. Since several vehicles are available to visit

stations, mathematical model and solution strategies are suitable for real BSSs applications with a

small or large number of stations. In a BRP, as well as in a VRP, optimal routes for the problem

are not typically cost-balanced. Thus, route length conditions may be imposed. Initially, an MILP

allows to include soft constraints on route length. However, to deal with medium and large size

instances of the problem, two matheuristic algorithms are also presented in this document.

Finally, a two-echelon routing structure is combined with the BRP to define a new problem:

the 2E–BRP. In this problem, a vehicle complete a first level (central) route and also support the

repositioning operation for stations belonging to a second level (secondary) routing. In the 2E–BRP,

a subset of stations (satellite depots) is visited twice and there, a split demand operation may also

occurs. Given the structure of the problem and its inherent pickup and delivery feature, two visits

to satellite depots may end up on a temporal storage of bikes or even on a temporal loan of bikes.

These scenarios can be seen as a way to integrate the static repositioning with a dynamic version of

the problem. For the 2E–BRP, a mathematical formulation and three matheuristic algorithms are

described in this thesis.

1.5 Contributions

In the state of the art (Chapter 2), a survey devoted to optimization techniques applied to vehicle

routing problems with pickups and deliveries in public and nonprofit contexts is presented. The state

of the art emphasizes on vehicle routing in BSSs operations but it also describes research on other

1.5. CONTRIBUTIONS 11

applications as disaster relief, health care and food rescue where models and solution strategies are

very similar to those used for BSS decision making processes.

The first problem studied in this document is the 1–PDTSP. Initially, for this problem, an MILP

is proposed. This MILP addresses the classical objective function based on total traveling distance

(as an operative cost) minimization. Moreovoer, in this mathematical formulation, an adaptation

of the Miller, Tucker and Zemlin (MTZ) constraints are included to avoid subtours in the optimal

solution (Miller et al., 1960). The use of these constraints allows to solve the MILP via commercial

solver directly. Since the proposed model is able to solve optimally instances up to 50 nodes,

a metaheuristic algorithm is also developed. The proposed metaheuristic is a hybrid multi-start

evolutionary local search (MS–ELS) where the local search procedure is replaced by a variable

neighborhood descent (VND). The MS–ELS is composed of a greedy randomized algorithm to

construct Hamiltonian tours and these tours are then improved using seven neighborhoods within

the VND. This solution strategy is finally compared with two state-of-art algorithms available in the

literature for the 1–PDTSP.

Similarly, an MILP for SD1PDTSP is presented. In this problem, the pickup or delivery

operation can be split into several smaller pickups or deliveries, and also locations can be used

as temporal storage points with the aim of reducing the cost of the route. At the end of the route,

all pickup and delivery requests must be completely performed. Since the proposed MILP for the

SD1PDTSP is an adaptation of the 1–PDTSTP MILP, the model that includes split demand also aim

to minimize total traveling cost and avoid subtours via MTZ constraints. With this MILP, different

scenarios for vehicle capacity are tested and it is possible to show the benefits of split delivery and

storage when such capacity is tight. MILP results are also compated with a reported exact approach

(a branch-and-cut algorithm) in terms of computational times and solution quality.

From a multi-vehicle perspective, an MILP for the one-commodity pickup and delivery vehicle

routing problem is developed. As mentioned before, since optimal routes for the problem are not

typically cost-balanced an MILP for the 1–PDVRPLC is also presented. In this case, performance

and balance for different length parameters are compared. To address the 1–PDVRPLC two

matheuristic algorithms are developed: A large neighborhood search (LNS) and an adaptive large

neighborhood search (ALNS). Both algorithms include MILPs as destroy and/or repair operators

as exact procedures for the algorithms. Similarly, an exact procedure based on an exhaustive

enumeration algorithm is presented as a solution repairing strategy. To speedup the performance

of the enumeration algorithm, some dominance rules for partial repaired solution are described.

Computational experiments compare the performance on the solution strategies for the 1–PDVRPLC

and on the enumeration algorithm as repair operator.

12 CHAPTER 1. GENERAL INTRODUCTION

Finally, a new variant for the BRP is proposed: the 2E–BRP, where not only routing decisions

are made but a location for satellite depots is also decided. This problem is firstly tackled solving

an MILP via commercial solver. As the number of stations increase, an approximated solution

strategy is required. Thus, MILPs and heuristic procedures are combined to design three different

matheuristic algorithms for the 2E–BRP. The first matheuristic is composed of a constructive phase

to create Hamiltonian tours which are improved via a VND algorithm. To find a multi-vehicle

solution, a split algorithm with limited fleet is also developed. A linear programming model (LP),

checks for feasibility of obtained solutions after central routes are heuristically created. The second

matheuristic is based on a set partitioning problem (SPP). Before solving the adapted SPP, two

sets are heuristically created : the set of central routes and the set of secondary routes. To do so,

the constructive algorithm, VND and split procedure are used. As a final step of the matheuristic

the enhanced SPP formulation retrieve a 2E–BRP solution. The last matheuristic procedure also

combines the constructive algorithm, VND and split procedure to create a large set secondary routes.

A suitable combination of these routes is selected via a SPP integer programming (IP) model. Then

an adapted generalized traveling salesman problem (GTSP) finds the optimal central route subject

to the selected secondary routes. This process is performed in an iterative way with the aim to

improve 2E–BRP solution when varying the subset of selected routes.

To the best of our knowledge, not any of the mathematical formulations and solutions methods

proposed in this document are reported in scientific literature. Thus, they denote the contribution of

this thesis. Similarly, results obtained solving these mathematical models and solution strategies,

provide insights and opportunities for future work in vehicle routing problems with pickups and

deliveries and, particularly in BSS contexts.

1.6 Structure of the manuscript

This manuscript is structured as follows:

Chapter 2 presents a review on problems, mathematical models and solution strategies for

vehicle routing operations in nonprofit and public contexts and particularly in BSS systems. The

chapter is divided in three sections: a) vehicle routing problems with pickup and delivery features, b)

vehicle routing optimization in non-commercial contexts, c) vehicle routing optimization models in

BSSs. The section devoted to pickup and delivery problems summarize two main type of problems:

the one-commodity and multi-commodity problems and, dial-a-ride problems. Then, section related

vehicle routing in non-commercial contexts describes some of the research based on home and health

care logistics, disaster relief logistics, food rescue and delivery problems and other applications.

1.6. STRUCTURE OF THE MANUSCRIPT 13

Lastly, from a more practical perspective, section related to vehicle routing problems in BBSs

describes prior work on the static and dynamic rebalancing problem.

Chapter 3 describes mixed-integer linear programming models for the one-commodity pickup

and delivery traveling salesman problem and one of its variants when split delivery is allowed

(the split delivery one-commodity pickup and delivery traveling salesman problem, SD1PDTSP) .

Then, the chapter also presents a hybrid multi-start evolutionary local search algorithm and variable

neighborhood descent (VND) procedure for the 1–PDTSP. Lastly, the algorithm performance is

compared with two approaches previously reported in the literature.

Chapter 4 presents a mathematical model for the 1–PDVRPLC as well as two metaheuristic

algorithms. The mathematical formulation is an MILP which includes route length aspects as a soft

constraint. With this MILP it is possible to describe several scenarios for route length and evaluate

the impact of this feature on optimal costs and model feasibility. The metaheuristic procedures are

based on an LNS and its adaptive version (ALNS). For both algorithms, an adapted version of split

algorithm is presented as well as exact and heuristic repair strategies for 1–PDVRPLC solutions.

Numerical experiments are described to evaluate the performance on MILP and metaheuristic

strategies.

Chapter 5 introduces the 2E–BRPSD where two-level routing decisions are made. A

mathematical formulation is presented for the 2E–BRPSD as well as three different matheuristic

algorithms. These solution strategies are based on a constructive algorithm, a VND within an

improvement phase and, the split procedure. To find 2E–BRPSD solutions, mathematical models

based on SPP and GTSP are described. Computational experiments are performed to compare the

matheuristic algorithm performance.

Lastly, Chapter 6 as the final section of this manuscript summarizes general conclusions and

future research paths.

Chapter 2

State of the Art

In this chapter, a literature review is presented. This review is classified in three main sections:

a) pickup and delivery features on vehicle routing problems, b) vehicle routing problems in

non-commercial contexts and, c) vehicle routing problems in BSS contexts. Since the main

contributions of this thesis are based on optimization and metaheuristic algorithms, the literature

review is devoted to these techniques. Simulation, decision analysis, game theory, and other

techniques are not included in this thesis.

The first section reviews three pickup and delivery vehicle routing problems: a) the

one-commodity pickup and delivery VRP, b) the multi-commodity pickup and delivery VRP

and, c) the dial-a-ride problem. The second section, vehicle routing problems in non-commercial

contexts, describes prior work on pickup and delivery routing problems in health care, disaster relief

and other non-commercial or public contexts. Finally, last section provides details on BSS routing

problems. Particularly, the BRP and its static and dynamic version.

2.1 Vehicle routing problems with pickup and delivery features

2.1.1 One-commodity and multi-commodity pickup and delivery VRPs

One-commodity pickup and delivery traveling salesman problem

One of the most relevant approaches to pickup and delivery routing problems from a theoretical

perspective is presented in Hernández-Pérez and Salazar-González (2004a). They design a branch

and cut (B&C) algorithm based on an integer linear programming model (ILP) for the 1–PDTSP

in which the total travel distance is minimized. The solution strategy includes Benders cuts,
15

16 CHAPTER 2. STATE OF THE ART

and also an adaptation of nearest insertion as a heuristic to strengthen upper bounds in the tree.

Optimal solutions are reported for instances with up to 50 nodes. Then, in Hernández-Pérez and

Salazar-González (2004b), authors propose two different heuristics. The first one, based on the

nearest neighbor algorithm, computes a modified distance matrix in order to penalize movements

leading to infeasible solutions (e.g., by avoiding edges connecting nodes with similar demand). The

second heuristic consists on modifying the original B&C algorithm described in Hernández-Pérez

and Salazar-González (2004a) to include inequalities is such a way a subset of neighbor solutions

can be explored after a 1–PDTSP solution is found. Both heuristic strategies are able to find small

gaps even when values for the vehicle capacity are tight and the number of nodes is not larger

than 60. Hernández-Pérez and Salazar-González (2007) present new inequalities for the 1–PDTSP

adapted from the CVRP (capacitated vehicle routing problem). These inequalities are added to a

B&C framework and instances up to 100 customers are optimally solved. Results obtained with this

new strategy outperform those reported in Hernández-Pérez and Salazar-González (2004a). Later,

Hernández-Pérez et al. (2009) combine a GRASP with a VND procedure to solve the 1–PDTSP

minimizing the tour total distance. After the constructive phase, the local search is replaced by

a VND (called V ND1) based on edge exchange neighborhoods (2−opt and 3−opt). After the

GRASP scheme is executed, a second VND (V ND2) performs a post-optimization phase using

vertex exchange neighborhoods (forward and backward operators). The instances are randomly

generated and the number of nodes vary from 20 to 100 while the vehicle capacity goes from 10 to

1000. This GRASP/VND approach is able to find optimal solutions for 96.7% of the instances with

up to 50 nodes while new best known solutions are reported for larger instances.

Louveaux and Salazar-González (2009) address a stochastic 1–PDTSP variant in which demand

for some customers is modeled as a random variable with a discrete known distribution. To solve

this problem, authors propose to create many scenarios where each random demand is replaced by

one of its realizations. In this particular problem, apart from routing decisions and initial loads,

vehicle capacity must be also determined to handle feasibility issues. Since large values for vehicle

capacity are unpractical, the minimization of penalties under a fixed vehicle capacity is tackled.

An extensive analysis on vehicle capacity under stochastic demands is also provided in this paper.

Computational experiments include instances up to 400 nodes.

Zhao et al. (2009) describe a genetic algorithm (GA) with a pheromone-based crossover

operator. This operator uses local and global information to generate new offsprings. While

the local information includes edge lengths, adjacency relations, and demands on nodes, the global

information is based on pheromone trails. Each offspring is locally improved using 2−opt moves

and then, the mutation procedure is based on a 3−exchange operator. This evolutionary algorithm

2.1. VEHICLE ROUTING PROBLEMS WITH PICKUP AND DELIVERY FEATURES 17

outperforms the hybrid GRASP/VND presented in Hernández-Pérez et al. (2009) for instances up to

500 nodes, and many new best known solutions for large instances are reported. Later, Mladenović

et al. (2012) describe a variable neighborhood search procedure with four neighborhoods based

on double-bridge and insertion operators. To test this strategy, computational experiments in

Mladenović et al. (2012) include 1–PDTSP instances with up to 1000 nodes.

Han et al. (2016) describe a particular variant of the 1–PDTSP: the 1–PDTSP with restricted

depot (1–PDTSP–RD). The motivation to study the 1–PDTSP–RD relies on the non-practical

assumption in Hernández-Pérez and Salazar-González (2004a) that allows depot to absorb or

provide an infinite number of units. Thus, the 1–PDTSP–RD states that vehicle must leave and

return to depot with no load. To deal with this problem, authors propose an ILP and a heuristic

algorithm. This algorithm firstly creates two Hamiltonian tours, a pickup tour and a delivery tour in

which only nodes with pickup and delivery operations are considered, respectively. As a second

step of the algorithm, both tours are merged following one of three possible rules. Finally, 2−opt

and 3−opt operators are applied as improvement phase. Computational experiments are based on a

randomly generated set of instances as well as on some of the TSP library (TSPLIB) instances with

random values generated for customers demand. In particular, the heuristic algorithm deals with

instances up to 1000 nodes while ILP solves instances with up to 15 nodes.

Tüű-Szabó et al. (2020) propose a discrete bacterial memetic evolutionary algorithm (DBMEA)

for the 1–PDTSP. This strategy is mainly composed of four steps: create an initial population, mutate

bacteria, local search procedures and gene transfer. Firstly, the bacteria population is randomly

created. To mutate, bacteria are cloned and divide in segment which are randomly modified.

Improvement phase includes 2−opt and 3−opt operators. Last step in the DBMEA transfers part of

good quality bacteria to elements classified in a bad quality solution group. The proposed approach

is able to solve instances with up to 100 customers and outperforms the GRASP/VND results

reported in Hernández-Pérez et al. (2009). Recently, Hernández-Pérez et al. (2021) describe a

generalization of the 1–PDTSP: the single-vehicle two-echelon one-commodity pickup and delivery

problem (2E–1PDP). To determine a first echelon in the problem, a capacitated vehicle visits a

subset of customers. For the second echelon, the rest of customers are allocated to visited customers

in the first echelon. In the 2E–1PDP, customers are not previously associated with any echelon.

Authors propose three different mathematical formulations (two MILPs and an ILP) but they are

solved within a B&C framework. After solving instances with up to 60 nodes, results show that the

B&C based on the ILP outperforms those algorithms based on MILP.

18 CHAPTER 2. STATE OF THE ART

One-commodity pickup and delivery traveling salesman problem with split demand

As mentioned before, in the 1–PDTSP exactly one visit to each location is mandatory. The

SD1PDTSP arises when it is possible to split the pickup or delivery quantity if multiple visits

are allowed. The SD1PDTSP is introduced in Salazar-González and Santos-Hernández (2015)

as a generalization of the 1–PDTSP and the split delivery vehicle routing problem (SDVRP).

Since problems addressed on this thesis do not include the SDTSP, the reader may find a detailed

description of the problem and solution methods in Archetti and Speranza (2012), Archetti et al.

(2014) and Ozbaygin et al. (2018).

Salazar-González and Santos-Hernández (2015) propose an MILP to deal with the SD1PDTSP in

which a maximum number of visit to locations is allowed and determined by a parameter. Therefore,

the MILP is also able to deal with the 1–PDTSP if that parameter is set to one. As solution strategy,

the authors adapt the B&C algorithm in Hernández-Pérez and Salazar-González (2004a) to solve

SD1PDTSP instances up to 50 locations. While results are not competitive with other strategies

dealing with the 1–PDTSP, this exact approach provides near to optimal results for the split delivery

case. Apart from Salazar-González and Santos-Hernández (2015), the SD1PDTP is also study in

Hernández-Pérez et al. (2018) with a matheuristic algorithm that applies a constructive procedure and

then, a refinement phase to improve solution quality. The constructive procedure is based on a graph

in which nodes represent potential visits to locations (i.e., each location is represented by several

nodes). Then, the refinement phase uses an adaptation of the MILP presented in Salazar-González

and Santos-Hernández (2015) to improve the quality of route pieces. This matheuristic approach is

used to solve instances with up 500 locations. Recently, Hernández-Pérez and Salazar-González

(2022) solve SD1PTSP with up to 60 nodes via B&C algorithm. In this algorithm, a relaxed MILP

is solved, then feasible and invalid solutions are checked in the subproblem where valid cuts are

generated for invalid solutions.

Multi-commodity pickup and delivery traveling salesman problem

Multiple commodities may be also allowed for PDVRPs. Firstly, Hernández-Pérez and

Salazar-González (2009) present the one-to-one m–PDTSP as a generalization of the TSP, where

each commodity has a single origin and a single destination. In their paper, authors describe two

MILPs and decomposition techniques based on path and flow formulations to solve the problem.

Instances up to 47 nodes were solved and several scenarios for vehicle capacity and number of

commodities were also tested. Next, Rodrı́guez-Martı́n and Salazar-González (2012) present a

matheuristic for the one-to-one m–PDTSP. The authors describe a hybrid approach based on a

2.1. VEHICLE ROUTING PROBLEMS WITH PICKUP AND DELIVERY FEATURES 19

GRASP with a VND for the local search procedure. One of the neighborhoods used within the

VND is based on an MILP. Given a solution and a small set of arcs to be removed, this MILP finds

several solutions by creating different arcs if objective function is improved. This matheuristic

is able to deal with instances up to 100 customers. Later, and apart from heuristic techniques,

Hernández-Pérez and Salazar-González (2014) propose an MILP for the one-to-one m–PDTSP.

They also present two set of valid inequalities. The first one with the aim of strength the linear

relaxation of the mathematical model and the second set aims to remove unfeasible arcs in solutions.

This strategy is embedded on a B&C framework and it is tested on instances up to 30 customers and

three commodities.

Hernández-Pérez et al. (2016) deal with the m–PDTSP within a many to many operation. In

this case, each commodity can be transported from several sources to several destinations. Authors

propose a three-stage heuristic to solve the problem. Firstly, a greedy procedure based on the nearest

neighbor algorithm constructs initial Hamiltonian tours. Next, six local search operators are used

within a VND procedure in order to improve initial solutions. Finally, with a perturbation based on

3−opt, the algorithm escapes from local optima. The proposed algorithm is able to solve instances

with up to 400 customers and five products. Similar to Hernández-Pérez et al. (2016), Lu et al. (2019)

study the many-to-many m–PDTSP and present the population algorithm based on randomized

tabu thresholding (PRTTA). PRTTA combines the search intensification of tabu thresholding with

diversification advantages of evolutionary algorithms. Similarly to multi-start strategies, PRTTA

takes a population of solutions as starting point for the tabu thresholding algorithm. Authors

compare the performance of their strategy with results obtained in Hernández-Pérez et al. (2016)

and prove that PRTTA is able to improves best known upper bound for 96 out of 108 medium and

large instances with up to 400 customers.

2.1.2 Dial-a-ride problems

As mentioned in Doerner and Salazar-González (2014), the dial-a-ride problem (DARP) is

a well-known pickup and delivery routing problem for people transportation in public and

non-commercial contexts. Therefore, it is important to summarize some of the research on this

problem. Even though the DARP has been extensively studied, we focus on the last 12 years

developments.

Initially, Parragh et al. (2010) describe a VNS-based heuristic algorithm to deal with the DARP.

After a preprocessing procedure based on time windows tightening techniques, authors generate an

initial solution under spatial closeness considerations. Then, three different operators for shaking

20 CHAPTER 2. STATE OF THE ART

solutions are embedded within the VNS before the local search is performed. The proposed VNS

is able to find new best known solutions for 16 out of 20 tested instances. Later, Parragh and

Schmid (2013) solve the problem via a hybrid solution strategy based on column generation and

LNS. In this problem, pickup and drop off nodes are fixed (i.e., requested) by users and the total

cost of transportation is minimized in presence of time windows, maximum duration of routes and

vehicle capacity constraints. The solution strategy is able to find new best solutions for some of the

tested instances that vary from 24 to 144 requests. Moreover, the hybrid algorithm delivers new

benchmarks on computational times to solve the instances.

Muelas et al. (2013) use a VNS algorithm to solve the DARP. This VNS includes seven different

neighborhoods andallowing to deteriorate solutions with a decreasing probability with the aim to

scape from local optima. The approach is tested on 12 realistic instances taken from San Francisco

city. Solution quality and computational times are competitive with two different algorithms for

the DARP: the tabu search proposed in Cordeau and Laporte (2003) and the VNS in Parragh et al.

(2010). Later, Liu et al. (2015) present a variant of the DARP which considers multiple trips,

heterogeneous fleet, and manpower planning. The authors propose two different MILPs and a set

of valid inequialities to strength the formulations. They solve the mathematical models via B&C

showing how the inequalities improve significantly lower bounds. These strategies are tested on

instances with up to 22 requests.

Braekers and Kovacs (2016) include service quality in the DARP by modeling driver consistency

in a multi-period planning horizon. The authors propose two MILPs for the problem and solve

them via commercial solver (CPLEX) and also with a B&C strategy. Finally, a metaheuristic

algorithm based on LNS is also tested on instances with three levels of driver consistency and up

to 627 requests. Masmoudi et al. (2017) consider a DARP in which not only vehicles but requests

are heterogeneous. This heterogeneous DARP is solved using a GA that includes local search

procedures (i.e., memetic algorithm). The proposed hybrid GA is able to find best known solutions

for the homogeneous and heterogeneous DARPs in well-known instances. Authors also compared

their algorithm with the state of the art method finding best results in more than 30% of the instances.

Ho et al. (2018) publish a literature review on DARPs. They also provide a taxonomy for the

problem as well as a complete list of solution strategies.

In Masmoudi et al. (2020) a mixed fleet including heterogeneous conventional and alternative

fuel vehicles is tackled. In this problem, decisions on refuel from fuel stations are also made.

Moreover, 2−opt and relocate procedures are used as local search operators, as well as remove and

insert stations for refuel. This ALNS also incorporates five removal operators and four insertion

operators. The solution strategy is tested solving the instances described in Masmoudi et al. (2017)

2.2. VEHICLE ROUTING OPTIMIZATION IN NON-COMMERCIAL CONTEXTS 21

outperforming the previously mentioned GA. Similarly to Masmoudi et al. (2020), Pfeiffer and

Schulz (2021) develop an ALNS to solve a variant of DARP: the DARP with ride and waiting time

minimization. In this problem, authors do not minimize travel times but the difference between

arrival time at delivery location and request time at origin. This ALNS contains seven different

removal operators and five insertion operators. The algorithm is tested on 1600 instances from

real-case scenarios in Hamburg, Germany, with up to 160 locations. Final analysis concludes that it

is possible to reduce waiting times for participating people while the number of vehicles used do

not increase significantly.

Recently, Rist and Forbes (2021) present an MILP and a B&C algorithm to solve the DARP

where apart from classical time windows, ride time constraints are also addressed. The proposed

mathematical model is based on segments of routes that may represent DARP routes. With this

approach, authors are able to prove that their algorithm solves nine DARP well-known instances to

optimality for first time. For large instances, the B&C requires less computational when compared

with state-of-the-art methods. Finally, Ham (2021) proposes a new MILP and three different

constraint programming formulations for the DARP with time windows. The proposed MILP

uses a reduced number of variables since node merging strategies are applied. The best constraint

programming formulation outperforms MILP and it is able to solve instances with up to 60 locations.

2.2 Vehicle routing optimization in non-commercial contexts

This section briefly summarize the literature based on vehicle routing problems in non-commercial

contexts. Since the problems we study in this thesis include pick up and delivery operations, the

scope of this section is also based on pick up and delivery problems.

2.2.1 Home and health care logistics

There exists several particular problems in the health and home care contexts. For research purposes

we are not limited to a single application. We may be interested on home care, home health care

and medicine distribution problems, among others. Here, we describe the main of the research in

these fields.

Melachrinoudis et al. (2007) present a multi-vehicle and multi-depot DARP based on a real

case of a center for addictive behavior health and recovery services (CAB) in Boston, USA. The

DARP aims not only to minimize the total traveled distance but the total excess of riding time

for patients as well as early and late deliveries (before service) and pickups (after services). The

22 CHAPTER 2. STATE OF THE ART

authors develop an MILP and a TS to solve small instances of the problem including up to four

requests and two vehicles. Although the MILP solved via commercial solver is able to find optimal

solutions in hours, the TS approach takes seconds to find near to optimal solutions. Liu et al.

(2013) address a PDVRP with time windows. They study a problem in which is possible to (a) pick

up biological samples from patients home and then deliver them to the labs, (b) pick up unused

medicine, materials and medical waste and take them back to depots (e.g. pharmacies), (c) transport

products from the depots to patients locations and (d) transport materials and special drugs (e.g.

cancer treatments) from hospitals to patients. In this particular problem, delivery nodes can be also

pick up points (patients home). This PDVRP is modeled with two different MILPs and also a GA

and TS procedures are designed. Authors conclude that TS delivers better solutions than the GA

approach for large instances of the problem.

Fikar and Hirsch (2015) design a matheuristic procedure for routing decision of a home health

care provider in Austria. This provider operates multiple vehicles with the aim of deliver nurses to

patients home and then, pick them up after the service is done. In this context, walking routes may be

also defined if a delivery point is different from a pickup location. The authors define this problem

as a many-to-many multi-trip DARP in which all the jobs have to be served. The matheuristic

includes two stages: firstly, walking routes are created and optimized with a set partitioning model.

Then, routing decisions are made with a savings heuristic and a TS algorithm.

Zhang et al. (2015) deal with a special case of the DARP when multiple trips are available

(MTDARP) and time windows are imposed. This patient transportation problem also arises from

the public patient transportation service in Hong Kong. To solve the MTDARP, authors firstly

propose an MILP and then, they describe a memetic algorithm with a population management

procedure. Some real-world instances with up to 185 requests and 11 ambulances are taken from

the Hong Kong hospital authority. Some benchmark instances for the DARP are tested with the

algorithm and the memetic strategy overwhelms state-of-the-art algorithms for this problem. In

a similar context, Lim et al. (2016) describe an application from the non-emergency ambulance

transfer service in Hong Kong in which a multi-trip pickup and delivery problem with time windows

is addressed. Moreover, routing decisions are combined with a manpower planning problem to

formulate a lexicographic set of objectives: (a) maximize the total number of attended clients (b)

minimize the operational costs and (c) balance the staff workload. To solve this problem, an ILS is

proposed where the local search procedure is replaced with a VND. The solution strategy is tested

with instances up to 104 requests and 17 vehicles. The strategy is also adapted to solve the multi-trip

VRP with time windows and results are compared with state-of-the-art algorithms.

2.2. VEHICLE ROUTING OPTIMIZATION IN NON-COMMERCIAL CONTEXTS 23

Detti et al. (2017) present a DARP with side constraints to model a real-world case in Italy for a

non-emergency patient transportation problem. The DARP includes multiple depots (e.g., hospitals),

heterogeneous fleet with vehicles that are compatible with patients conditions (e.g., patients on

wheelchairs). A VNS and a TS algorithm are developed to solve the problem with real instances

up to 100 requests and 80 vehicles. Both strategies are compared and the VNS with five different

shaking procedures provides better solutions than TS on average. Shi et al. (2018) include stochastic

travel and service time in a home health care routing problem. In this kind of problems, caregivers

must deliver drugs to patients in their location and also must pickup bio-waste and bio-samples. To

deal with the stochastic features, authors propose to reduce the problem to a deterministic MILP

and solve it using a commercial solver. This MILP is able to find optimal solutions for instances up

to 25 nodes. Therefore, four heuristic strategies are also presented: a hybrid GA, SA, bat algorithm

(BA) and a firefly algorithm. Since the SA outperforms the other metaheuristics, the stochastic

version of the problem is also addressed via SA with instances up to 100 nodes.

Osaba et al. (2019) describe a BA to solve a drug distribution with pharmacological waste

collection problem. The main decisions rely on deliveries of prescription drugs and collection of

pharmacological waste and expired medicines. This problem is modeled as a multi-attribute VRP (

also known as a rich VRP) including pickups and deliveries, asymmetric travel times, forbidden

roads and constraints on the cost of each route. The solution strategy is compared with an evolutive

algorithm, a evolutionary SA and a firefly algorithm on a real instance based on Bizkaia (Spain)

street map and pharmacy locations. To emulate large instances (up to 1000 nodes) authors randomly

generate new locations.

Fathollahi-Fard et al. (2020) address the home health care problem (HHCP). In the HHCP, nurses

must visit patients at home starting their route in a pharmacy where drugs and medical instruments

are collected. Once all patients are visited, nurses must leave biological samples in a laboratory.

To tackle this problem, authors present an MILP and a lower bound based on Lagragian relaxation

for the home health care problem (HHCP). Similarly, and due to the problem complexity, three

heuristic algorithms and a metaheuristic based on SA and VNS are also developed. Tested instances

include up to 200 patients and 20 nurses where hybrid metaheuristic is able to find solutions while

Lagrangian relaxation provides lower bounds only for small and medium size problems.

Finally, and due to the COVID-19 pandemic, Pacheco and Laguna (2020) describe a pickup

and delivery vehicle routing problem for face shields distribution in Burgos (Spain). Since large

manufacturer were unable to satisfy total demand, small companies and even citizens volunteered to

manufacture the commodity. Thus, governments agencies and non-profit companies seek to deliver

raw material to manufactures and also to pickup masks at manufactures and deliver them at hospitals

24 CHAPTER 2. STATE OF THE ART

and health centers. To solve this problem, authors develop an iterative tabu search procedure and

solve real instances based on data from Burgos. Daily, up 30 pickup points and 65 delivery points on

average were included as locations to solve the problem with eight available vehicles, on average.

2.2.2 Disaster relief logistics

In disaster relief operations, Yi and Kumar (2007) address a multi-commodity PDVRP with split

demand in which the main decisions are based on dispatching goods to distribution centers and the

evacuation process of injured people to hospital and medical centers after a disaster occurs. Since in

this kind of context is not proper to think that total demand of a node is always less than the vehicle

capacity, a split demand delivery may be required. The objective function of this problem is the

weighted sum on the total number of unsatisfied injured people and the unsatisfied demand. An

MILP and an ACO algorithm is proposed to solve this problem. In particular, the ACO procedure

builds vehicle routes in a first stage, and then decision on how to dispatch the multiple commodities

(i.e., goods and injured people). The MILP is solved via commercial solver and the ACO is able to

deal with instances up to 80 nodes and 65 vehicles. As expected, computational times increase for

large instances showing that ACO outperforms the commercial solver performance.

Jotshi et al. (2009) design a methodology for dispatching and routing emergency vehicles in

post-disaster situations. Authors integrate two different problems: the patient pickup problem and

the patient delivery problem. To deal with pickup operations, some key aspects are considered:

patient priorities, distance from dispatching location and clustering criteria. Similarly, delivery

problem takes into account the distance from patient location to hospitals, waiting time on hospital

once the patient is delivered and hospital capacity. Although the methodology to solve this integrated

problem is based on a simulation model, decisions for routing are made via shortest path algorithms.

Wohlgemuth et al. (2012) deal with the last mile planning problem and logistic operations in a

disaster relief chain. From a dynamic perspective, authors model this problem as a PDVRP since

most of the locations (nodes) can receive and send goods. Additionally, time dependent travel

times and time windows are included in the formulation of the problem with the aim to estimate

non-served on time locations. As solution strategies, an MILP and a TS algorithm in which total

travel time and the number of vehicles are minimized using a weighted sum objective function.

Sabouhi et al. (2019) describe an integrated evacuation and distribution logistic systems in

which routing and scheduling decisions are made. Pickup and delivery operations are determined

by evacuation of affected people to shelters and by providing supplies, respectively. In this process,

split delivery is also allowed since demand at some locations can exceed vehicle capacity. This

2.2. VEHICLE ROUTING OPTIMIZATION IN NON-COMMERCIAL CONTEXTS 25

problem is modeled as an MILP minimizing the arrival times of vehicles. The authors also present a

memetic algorithm (MA) able to find optimal and near optimal solutions for small (up to 15 affected

areas and seven shelters) and large instances, respectively. This metaheuristic strategy is also tested

for real case study in Tehran (Iran). Sakiani et al. (2020) incorporate inventory management to

routing decisions for a multi-period problem where operational and deprivation costs are minimized.

In a first stage of the problem, relief goods and supply are distributed from distribution centers to

local depots. Moreover, redistribution decisions can be made between local depots. Thus, pickup

and delivery operations arise. Lastly, vehicles transport commodities from local depots to demand

points. To solve the problem, a SA based matheuristic is proposed. While SA finds values for

routing decision variables, an MILP determine inventory levels and loading/unloading quantities.

Sample instances do not exceed 20 locations (distribution centers and local depots). A real case

study based on a earthquake in Iran is also described.

2.2.3 Other applications

Despite home health care and disaster relief are two of the main applications for pickup and delivery

operations in non-commercial contexts, there exist other emerging applications as food rescue and

delivery problems and library VRPs.

Food rescue and delivery problems

Rey et al. (2018) define the food rescue and delivery problem (FRDP) theoretically inspired on

the PDVRP and in a practice sense on the collection and re-distribution of food for hunger relief.

Initially, authors state a 2-index formulation (MILP) for the FRDP with multiple vehicles and

homogeneous capacity. To solve this formulation, they propose a Bender’s decomposition approach

within a cutting plane algorithm to generate subtour elimination constraints. On the other hand,

a heuristic strategy is proposed with a cluster-first route-second algorithm in which ideas from ?
are taken to make routing decisions. Three different set of experiments are performed in Rey et al.

(2018): small instances up to 50 nodes solved via cutting-plane algorithm, large instances up to 300

nodes with the heuristic approach and a real case from Sydney, Australia with 200 nodes. Later,

Nair et al. (2018) present the periodic version of the FRDP by modeling a scheduling and routing

scheme in which days and times to visit food providers and welfare agencies are determined. For

routing decisions, the total transportation cost is minimized and pickup and delivery quantities are

established. This combined problem is tackled via commercial solver using an MILP and with a TS

procedure which final solution is improved using a post-optimization LS algorithm based on 2−opt

26 CHAPTER 2. STATE OF THE ART

movements. As well as Rey et al. (2018), Nair et al. (2018) solve a real-case instance from Sydney,

Australia and also some literature instances with up to 334 nodes.

Eisenhandler and Tzur (2019) describe a humanitarian pickup and distribution problem which

is particularly relevant for perishable products distribution (i.e., to store products in warehouses

for long periods is not allowed). Decisions in this problems are not only based on routing and

pickup or delivery quantities but also on which pickup and delivery locations are visited (donation

suppliers and agencies, respectively). Authors propose an MILP for the problem and also, a LNS

algorithm with 12 possible neighborhoods is presented. Instances in this study include a real case

scenario from Israel food bank with up to five suppliers and 62 welfare agencies. A second set of

instances includes from four to 12 suppliers and 10 welfare companies. A final data set with 22

instances is randomly generated with up to 100 locations. Alhindi et al. (2020) address a similar

problem for a non-profit institution in Makkah (Saudi Arabia). In this particular case, an MILP and

a simulation model are described. Authors show the benefits on optimization techniques by solving

the mathematical formulation via commercial solver if 20 pickup locations are available.

Library vehicle routing problem

Apart for the previously mentioned problems, it is possible to find research on PDVRPs based on

other nonprofit contexts. One example is based on the library vehicle routing problem (LVRP)

which include pickup and delivery features. Chen et al. (2015) address the LVRP, formulated as a

paired many-to-many pickup and delivery problem. More precisely, this LVRP consists on finding

routes in which items (e.g., books, videos, library materials) are picked up and delivered in satellite

libraries (branches). In this particular application, three minimization objectives are combined in

a weighted sum: total travel time, deviations from the average vehicle travel time and unsatisfied

demand of items. To deal with this problem, authors propose an MILP and a two-stage solution

algorithm based on: first, insertion methods to create initial solutions and second, a bee colony

optimization method to improve solutions found in the first stage. These strategies are tested with

real data obtained from San Francisco (USA) library system where 26 library branches are available.

2.3 Vehicle routing optimization models in bicycle sharing

systems

This section presents a state of the art on static and dynamic bike repositioning problems. Since

free-floating BSSs are not studied in this thesis, all the literature presented in this section is devoted

2.3. VEHICLE ROUTING OPTIMIZATION MODELS IN BICYCLE SHARING SYSTEMS 27

to station-based BBS services. Some of the most relevant work in free-floating services may be

found in Cheng et al. (2021); Du et al. (2020); Liu et al. (2018); Mahmoodian et al. (2022); Pal and

Zhang (2017); Usama et al. (2019).

2.3.1 Static bicycle repositioning problems

In BSSs, probably the most studied problem is the BRP. The most recent research based on the

problem, begin with Raviv et al. (2013). They formulate two MILPs for the BRP which consider

the minimization of the weighted sum of operational cost and users dissatisfaction as objective

function. To measure the user dissatisfaction with the system, authors propose an index based on

the number of shortage events. These shortages can emerge not only if a user wishes to take a bike

and the station is empty but also if the user want to return a bike in a station with no parking slots

available. To solve this problem, two different MILPs models are tested on instances with up to

60 stations based on certain locations of Vélib (BSS in Paris) and then, a complete real instance

of 104 stations and one or two vehicles. Relative small gaps are obtained within a maximum time

of 18,000 seconds. Chemla et al. (2013) code a B&C procedure for the BRP. This algorithm is

based on an MILP relaxation for the problem and provides lower bounds when several visits to

each vertex are allowed. On the other hand, a TS with four different neighborhoods is also designed

to find upper bounds. Instances that vary from 20 to 100 stations are evaluated and it is possible

to find small gaps (less than 5% as an average) for instances with up to 60 stations. For the set of

largest instances, gaps increase and the local search procedure is not quite efficient since the size of

neighborhoods grows significantly.

Dell’Amico et al. (2014) present four MILPs for the multi-vehicle BRP in which the total

distance of the routes is minimized. They solve these mathematical models via B&C algorithm.

The solution strategy was tested in 65 instances adapted from 22 different BSSs around the world

and the formulation with best computational performance is able to solve optimally all the instances

with up to 50 nodes in less than 15 minutes. Authors also present a real-world case using data

from Reggio Emilia in Italy. Although the Reggio Emilia BSS has only 13 stations and about 100

bikes, they analyze travel flows, user behavior and, finally, the occupation levels in each station in

order to build the real instance. Similar to Raviv et al. (2013), Ho and Szeto (2014) model penalty

functions to minimize the cost associated to unsatisfied demand as a single objective function.

Nevertheless, they do not consider the operational cost of the route (i.e., total distance). To deal with

the single-vehicle case, the authors use a TS procedure and also test an MILP in CPLEX. The TS

algorithm includes three different neighborhoods based on removal, insertion and exchange moves

28 CHAPTER 2. STATE OF THE ART

and the computational experiments are based on 156 instances varying from 30 to 400 stations.

Forma et al. (2015) propose a 3-step matheuristic based on: (a) a clustering process supported

on savings heuristic, (b) an MILP for vehicles routing though clusters and (c) an MILP (adapted

from Raviv et al. (2013)) for repositioning decisions in a reduced network (i.e., each cluster). In

this paper, authors also include in their mathematical formulations new constraints to ensure that

total time allocated for static repositioning is not violated. For instances up to 150 stations, the

matheuristic outperforms the arc-indexed formulation in Raviv et al. (2013) obtaining smaller gaps.

For some larger instances (up to 200 stations) it was not possible to find optimal solutions but gaps

are not larger than 2.52%. Rainer-Harbach et al. (2015) propose a greedy randomized adapted

search procedure (GRASP) to solve the BRP. This GRASP is also extended to a PILOT algorithm

able to evaluate candidates to add to solutions in a recursive way. Authors also develop a VND as

a third solution strategy which outperforms GRASP/PILOT in medium size instances. However,

GRASP/PILOT finds better solutions than those reported by VND in large instances.

Similar to Chemla et al. (2013), Erdoğan et al. (2015) deal with the BRP when several visits to a

single node are allowed. Apart from the presented heuristic algorithms for the problem in previous

articles, authors describe an exact approach based on a separating algorithm for Bender’s cuts. To

test the algorithm, instances with up to 60 nodes are solved to optimallity within a computational

time of two hours. Kadri et al. (2016) propose a branch-and-bound (B&B) procedure to solve

the BRP when minimizing the total waiting time of stations. While lower bounds are computed

by skipping some constraints of the problem and via lagrangian relaxation, the upper bounds are

calculated by means of a GA, a greedy search (GS) or a nearest neighbor procedure (NNP). For

instances with up to 30 stations the B&B delivers solutions with gap up to 13% from the optimal

solution within a maximum computational time of 7,200 seconds. For larger instances, GS finds

better quality solutions than GA and NNP. Nevertheless, GS requires larger computational times.

Dell’Amico et al. (2016) propose a destroy and repair (D&R) metaheuristic for the BRP with

maximum length tour, a variation of the BRP that includes constraints for maximum duration for

each route. Initially, the D&R algorithm starts with a constructive phase in which a variant of savings

heuristic is used to find an initial solution. Next, after some nodes are removed from routes, the

solution is repaired via insertion procedure or the adapted savings algorithm. Finally, local search

procedures are embedded in a VND framework. This D&R metaheuristic is tested on instances

with up to 500 stations and the previously reported B&C algorithm (Dell’Amico et al., 2014) is also

adapted in order to find lower bounds for problem. For small instances (less than 50 stations) it is

possible to find optimal solutions. Larger instances are solved but gaps increase, nevertheless new

best known solutions are presented. Alvarez-Valdes et al. (2016) present a two-stage methodology

2.3. VEHICLE ROUTING OPTIMIZATION MODELS IN BICYCLE SHARING SYSTEMS 29

to address the rebalancing problem. First, they estimate shortages of bicycles and free slots at each

station for each possible number of available bikes at the beginning of a time period. Second, they

propose an MILP to find the optimal number of bikes that each station must have in order minimize

the total dissatisfaction. Then, the routes for the vehicles are designed minimizing not only the total

cost but also the variation over the duration of the set of routes. To do so, these authors solve a

minimum cost flow problem to estimate the number of bikes that should be transported along the

network. Then, an insertion heuristic guides the route construction. Results for this approach are

based on the Palma de Mayorca’s BSS case which is a small system with 28 stations. Results show

that although a perfect balance on service times is not possible for a time horizon of one week, the

routes never differ by more than 15 minutes. Espegren et al. (2016) propose an MILP to solve the

BRP with an heterogeneous fleet. In this case, multiple visits to each station are allowed and the

objective of the model relies on minimize a non-perfect repositioning operation (i.e., minimize the

dissatisfaction of users). The authors tested this MILP on real-world instances with up to 14 stations

from a BSS in Oslo, Norway.

Cruz et al. (2017) design an iterated local search (ILS) algorithm for the single-vehicle case

of the BRP. The proposed ILS includes up to four different perturbation operators and a VND

procedure instead of a local search. The authors coded six different neighborhoods and they are

explored in a random fashion (RVND). This algorithm allows split demand and deliver solutions in

which only stations with non-zero demand must be visited. After a parameter tuning and a selection

of perturbation operators subset, this ILS outperforms the tabu search presented by Chemla et al.

(2013) for instances with up to 60 stations. Moreover, for larger instances with up to 100 nodes,

the ILS finds new best known solutions for instances previously reported in the literature. Finally,

Ho and Szeto (2017) also address the BRP with penalty functions for unsatisfied demand. Authors

propose a hybrid large neighborhood search (HLNS) algorithm. This hybrid metaheuristic includes

five removal (destroy) operators, five insertion (repair) operators and a TS applied to the most

promising solutions. Testing instances with up to 518 stations, the HLNS is able to outperform a

proposed MILP coded on CPLEX and the matheuristic described in Forma et al. (2015).

Wang and Szeto (2018) propose a new variant for the BRP called the green repositioning

problem with broken bikes. This study is the first one that includes environmental issues for static

and multi-vehicle BRPs. The authors present an MILP for the problem in which the total CO2

emissions are minimized. The mathematical model is tested using small real-world instances of

Citybike in Vienna via commercial solver. To solve a large instance with 90 stations, a clustering

method based on nearest neighbor heuristic is used before the solver is called. They also discuss

some properties and critical factors that increase vehicle emissions. Indeed, emissions increase as

30 CHAPTER 2. STATE OF THE ART

the percentage of broken bikes also increase. Nontheless, the study also analyze multiple-visit to

stations and prove that this is a key factor to reduce CO2 emissions. Bulhões et al. (2018) tackle

the multi-vehicle and multiple-visit BRP via ILS. A B&C algorithm is also described in order to

compute lower bounds. These solution strategies jointly finds optimal solutions for most of the

real-world instances originally presented in Dell’Amico et al. (2014) using up to three vehicles.

Later, Wang and Szeto (2021b) also deal with the green repositioning problem with broken bikes

for the single-vehicle version of the problem. This study includes an enhanced artificial bee colony

algorithm to generate the routes and two different methods (one network flow mathematical model

and one heuristic) are used to compute the loading and unloading quantities. The algorithm also

includes a local search procedure to improve solutions. The authors test the performance of the

algorithm solving instances with up to 300 stations.

Lu et al. (2020) describe a MA based on a greedy constructive procedure to generate initial

solutions, an ELS for the improvement phase and an adaptive randomized mutation procedure. This

algorithm is able to improve best known solutions for 46% of the evaluated instances with up to 564

stations. Computational times also outperform the D&R algorithm described in Dell’Amico et al.

(2016). Pan et al. (2020) develop a TS algorithm and a heuristic algorithm called capacity range

length heuristic which is based on some of the properties for feasible insertions moves in a BRP

route. Authors compare the performance of these strategies and conclude that TS is able to improve

solutions reported with the B&C in Dell’Amico et al. (2014) and the D&R algorithm in Dell’Amico

et al. (2016) even for large instances with 564 stations.

Lee et al. (2020) describe a selective BRP in which not all the pickup stations must be visited.

In this study, the authors show that it is possible to improve service level for bikes availability if

this repositioning strategy is implemented. The proposed selective pickup and delivery BRP aims

to minimize the total travel time and the number of used vehicles for the relocation operation. To

solve the problem, a genetic algorithm is coded and real-world instances based on a BSSs from

Gangnam-district in Seoul with 95 stations are tested.

Recently, Fu et al. (2022) proposed a robust optimization approach to address demand uncertainty

by jointly considering strategic and tactical decisions as station location and bike rebalancing,

respectively. Specifically, the model determines stations location, initial inventories and service

areas for vehicles. To deal with this problem, authors present an MILP with non-convex constraints.

Therefore, duality theory is applied to reformulate the problem and it is solved via row generation.

Tested instances include up to 55 stations. Finally, Jia et al. (2021) include traffic conditions to BRP

with a mixed fleet of internal combustion vehicles and electric vehicles. The problem is described

via MILP and also a hybrid SA algorithm with variable neighborhood structures is used to solve it.

2.3. VEHICLE ROUTING OPTIMIZATION MODELS IN BICYCLE SHARING SYSTEMS 31

Authors randomly generated nine instances with up to 100 stations and prove that hybrid SA with

variable neighborhood structures, outperforms SA and VNS as separated algorithms also developed

for the problem.

2.3.2 Dynamic bicycle repositioning problems

Initially, Contardo et al. (2012) describe the dynamic BRP motivated by shortages of bikes at some

station during peak hours. The authors present a mathematical formulation able to solve small

instances when total unmet demand is minimized. Moreover, they present two decomposition

schemes. The first one, based on Dantzig-Wolfe decomposition, finds lower bounds for the problem.

The second strategy follows a Benders decomposition strategy to find values for continuous decision

variables. To test these strategies, Contardo et al. (2012) solve 120 instances with three different

sizes: 25, 50 and 100 stations. Despite decomposition strategies are able to find lower and upper

bounds, final gaps increase significantly as the size of the instances also increases. Caggiani

and Ottomanelli (2013) describe a simulation model for the dynamic BRP where variations of

demand are considered. Thus, distribution patterns, repositioning flows and time intervals between

repositioning operations are evaluated. Authors show the benefits on this simulation model by

computing users satisfaction measured as the probability of finding an available bike or a free slot

to deliver a bike.

Kloimüllner et al. (2014) propose four different algorithms to deal with the dynamic version

of the BRP: a greedy construction heuristic, a preferred iterative look ahead technique (PILOT)

algorithm, a VNS and GRASP. Instances with a number of stations that varies from 30 to 90 were

used to test the algorithms. Some scenarios (i.e., demand values) were taken from Vienna BSS.

Authors conclude that VNS metaheuristic outperforms the other three proposed algorithms for most

of the evaluated instances. Zhang et al. (2017) describe a multi-commodity time-space network

flow model. Since this formulation is non-linear, authors reformulated it as an MILP. The proposed

solution strategy is mainly based on a two-stage approach where firstly a linear relaxation of the

MILP is solved and then, routes are assigned to determine upper bounds. Tested instances were

taken from real scenarios from Washington and Paris BSSs with up to 200 stations.

Shui and Szeto (2018) introduces a new BRP based on the minimization of user dissatisfaction

(i.e., unmet demand) and CO2 emission costs within a bi-objective model. To compose the dynamic

nature of the problem, authors model a multi-period operational horizon in which demands vary

at each station and at each period. This problem is split in a set of steps, each step solves a single

period of the problem as a static version of the repositioning operation. The solution strategies rely

32 CHAPTER 2. STATE OF THE ART

on an enhanced ABC algorithm and a GA. The size of the instances vary from 30 to 180 and for

most of the instances, ABC algorithm outperforms the GA. Authors also present an analysis of the

impact of several variables (e.g., weight of each objective, length of the service time horizon, time

for load and unload bikes) on unmet demand and CO2 emissions.

Later and apart from mathematical programming models and heuristic approaches, Legros

(2019) develop a DSS based on a Markov decision process. This Markov process aims to minimize

the rate of arrival of unsatisfied users. In this paper, authors design a one-step policy with the aim

to determine prioritization rules throughout the set of stations. This one-step policy outperforms

other policies build as simpler prioritization rules. Recently, Zhang et al. (2021) propose a model in

which station demand is defined via neural network (NN). The NN forecasts the number of bikes

and bike slots required in fixed time intervals for each location. To solve the problem, a hybrid

metaheuristic is proposed with the aim to minimize penalty costs for unmet demand. This strategy

combines an adaptive genetic algorithm and a granular tabu search named AGA-GTS. While the GA

finds an initial repositioning plan, the GTS solves the repositioning problem under demand patterns

provided by NN. To test the solution strategy, instances with 91 stations and based on Shouguang

(China) BSS are solved.

Lastly, Wang and Szeto (2021a) consider a mixed fleet of internal combustion engine vehicles

and battery electric vehicles in the dynamic BRP with multiple charging technologies. As objective,

this problem aims to minimize the of penalty costs and the charging costs of vehicles within a

weighted sum function. The solution strategy is based on a hybrid ABC algorithm and a dynamic

programming model. Test instances include a subset of the 100 most active bike stations from

Washington BSS.

2.4 Concluding remarks

The vehicle routing problem and its associated features in shared mobility contexts as BBSs (e.g.,

pickup and delivery) have been widely studied. Exact methods made possible to find optimal

solutions for small instances of the problem. However, given the complexity of VRPs, many authors

consider the use of heuristic, metaheuristic and hybrid strategies to solve instances associated

with real case studies of BSSs. On the other hand, solution strategies for BRPs and 1–PDVRPs

have been adapted to include other desirable features related to the operation design for BSSs

(e.g., split delivery, routes lengths), or related to operation efficiency (e.g., CO2 emissions, users

dissatisfaction).

2.4. CONCLUDING REMARKS 33

In spite of the extensive research on pickup and delivery vehicle routing optimization within

theoretical and practical contexts as in BSSs, there still exist gaps between repositioning problems

and solution strategies to solve them. Moreover, so far there is not evidence of publications based

on several VRP key features for bike sharing mobility (e.g., collaborative and two-echelon routing).

Therefore, this research aims to fill some of those gaps by developing models and metaheuristic

or hybrids strategies to support decision making processes within vehicle routing optimization in

BSSs contexts.

Chapter 3

One-commodity pickup and delivery
traveling salesman problems: mathematical
models and metaheuristic approaches

3.1 Introduction

This chapter addresses the 1–PDTSP and the SD1PDTSP, which are generalizations of the

well-known traveling salesman problem. The 1–PDTSP aims to find a Hamiltonian tour in which

a set of supply points (pickup locations) and demand points (delivery locations) are visited once

while the total traveled distance is minimized. The SD1PDTSP, is a relaxed case of the 1–PDTSP

where locations can be visited several times. In the SD1PDTSP, the pickup or delivery operation

can be split into several smaller pickups or deliveries, and also locations can be used as temporal

storage points with the aim of reducing the cost of the route.

With the aim to solve large instances of the 1–PDTSP, this chapter describes a hybrid

metaheuristic based on multi-start evolutionary local search and variable neighborhood descent

to solve the problem. To test the performance of the algorithm, instances with up to 500 nodes

available in the literature are solved. It is possible to demonstrate that the approach is able to

provide competitive results when comparing to other existing strategies. Since a direct application

of the 1–PDTSP arises as the bicycle repositioning problem (BRP), the proposed metaheuristic

algorithm is used to solve a set of real-case instances based on EnCicla, the BSS in the Aburrá

Valley (Antioquia, Colombia).

Moreover, only Salazar-González and Santos-Hernández (2015) and Hernández-Pérez et al.
35

36 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

(2018) have tackled the SD1PDTSP. This chapter addresses this problem by providing four main

contributions: a) a new mathematical formulation for the SD1PDTSP, b) a numerical analysis of the

benefits on split demand and temporal storage in PDTSPs, c) a metaheuristic algorithm able to solve

the 1–PDTSP and, d) a set of computational experiments solving instances with up to 60 locations,

showing a competitive performance based on results in Salazar-González and Santos-Hernández

(2015). Properties and benefits of split demand for the 1–PDTSP are considered again in Chapter 5.

The remainder of this chapter is structured as follows. Section 3.2 formally defines the 1–PDTSP

and the SDPDTSP, and describes the proposed MILPs to deal with both problems. Section 3.3

describes a multi-start evolutionary local search algorithm to solve the 1–PDTSP. Then, Section

3.4 summarizes the main results on MILPs and the metaheuristic approach. Finally, Section 3.5

outlines some conclusions.

3.2 Problem definition and mixed integer linear models

This section presents a mathematical formulation for the 1–PDTSP as well as an MILP for the

SD1PDTSP by including new constraints to the 1–PDTSP model. A graphical description for the

split delivery and the temporally storage operations and their impacts in two small instances are

also presented.

3.2.1 The 1–PDTSP

In the 1–PDTSP a set of locations and a capacitated vehicle are given. The locations are classified

as supply points (pickup locations) and demand points (delivery locations). One commodity

is transported between the locations using the available vehicle. Each supply point provides a

certain amount of the commodity and these units can be delivered to one or several demand points

(Hernández-Pérez and Salazar-González, 2004b). Additionally, one of these locations is set as a

depot where the vehicle starts and ends the tour. Thus, the 1–PDTSP aims to find a Hamiltonian

tour in which the total traveled distance is minimized and the vehicle capacity is satisfied. Moreover,

an initial load must be determined for the vehicle.

A well-known application for the 1–PDTSP relies on the operation of BSSs. The BRP has been

mainly tackled in its static version which assumes that there are no changes on stations demands

(this mainly occurs at night when BSSs are not available for users). On the other hand, on dynamic

BRPs, pickup and delivery quantities may vary (e.g. the repositioning operation is performed during

the BSS operation).

3.2. PROBLEM DEFINITION AND MIXED INTEGER LINEAR MODELS 37

The 1–PDTSP is modeled on a complete and directed graph G= (N,A) where N= {0,1, ...,n}
is the set of nodes and A is the set of arcs between each pair of nodes. Without loss of generality,

the location 0 is the depot but it is also considered as a node in the problem. For each arc (i, j) ∈A,

there exists a positive traveling cost from i to j (i ̸= j) as ci j. Additionally, for each node i (i ∈N),

a parameter qi (where qi ∈ Z) represents the demand on node i. If qi < 0, then node i requests a

pickup of |qi| units. On the other hand, if qi > 0, then a delivery operation is requested in node i and

qi units must be unloaded. These operations are performed by one available vehicle with capacity

Q. It is assumed, without loss of generality, that |qi| ≤ Q. With the aim to describe a mathematical

model for the 1–PDTSP, a binary decision variable, yi j is defined where (i, j) ∈ A. Variable yi j

takes the value of one if the vehicle traverses the arc (i, j) and zero otherwise. Moreover, a variable

li j denotes the load of the vehicle on arc (i, j) when it is used in the solution. Finally, variable

zi j assigns a label for arc (i, j) with the aim to avoid subtours in final solution. The proposed

mathematical formulation for the 1–PDTSP is a mixed-integer linear programming model (MILP)

as follows:

min f = ∑
(i, j)∈A

ci j · yi j (3.1)

subject to,

∑
j∈N
i̸= j

yi j = 1, ∀ i ∈N (3.2)

∑
j∈N

yi j = ∑
j∈N

y ji, ∀ i ∈N (3.3)

li j ≤ Q · yi j, ∀ (i, j) ∈A (3.4)

∑
j∈N

l ji− ∑
j∈N

li j = qi, ∀ i ∈N (3.5)

∑
j∈N

z ji− ∑
j∈N

zi j = 1, ∀ i ∈N\{0} (3.6)

zi j ≤ |N| · yi j, ∀ (i, j) ∈A (3.7)

yi j ∈ {0,1}, ∀ (i, j) ∈A (3.8)

zi j, li j ≥ 0, ∀ (i, j) ∈A (3.9)

The objective function in (3.1) aims to minimize the total traveled distance. Equations in (3.2)

ensure that each node is visited exactly once, while constraints in (3.3) enforce to leave a node

once it is visited. Constraints in (3.4) limit the maximum load when traversing any arc, to the

38 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

vehicle capacity. Equations in (3.5) force the model to ensure a flow conservation along the used

arcs. Inspired on Miller et al. (1960), equations in (3.6) state a coefficient for each arc and avoid

subtours in the solution. Constraints in (3.7) limit the maximum value of arc coefficients. It is

worth to mention that for classical TSP and VRP formulations, constraints (3.4) and (3.5) prevent

subtours. Nevertheless, for pickup and delivery operations, as qi can be negative, (3.4) and (3.5)

are not enough. Constraints in (3.8) and (3.9) define the domain of decision variables. Note that

variables li j and zi j could be integer, but given the structure of the formulation, a continuous domain

will lead to integer values.

It is worth to mention that for 1–PDTSP meet that qi ≤ Q ∀i ∈ N. Each node in N, even the

depot (node 0) is visited exactly once (see equation (3.2)). However, the depot is able to absorb or

provide the remaining number of units to ensure flow conservation for any 1–PDTSP instance as

follows:

q0 =−
|N|

∑
i=1

qi (3.10)

Conditions described in (3.2) also force the vehicle to visit even the nodes with demand equal

to zero. Note that if nodes where qi = 0 must not be visited, they can be removed from the set N

as a preprocessing procedure. To describe graphically a 1–PDTSP solution, Figure 3.1, shows the

optimal tour for a vehicle with capacity Q = 10 considering an instance with 20 nodes. While the

first value near to each location represents the number of units to pick up or deliver, the second one

denotes the load of the vehicle when entering to such location. To compute this load, lk is defined as

the number of units in the vehicle after visiting k nodes. Thus, if i is the k-th visited location, lk is

computed as: lk = lk−1−qi. For example, in this solution, the vehicle traverses the arc (0,10) with

a load of 10 units. Then, in node 10, nine units are delivered and the vehicle arrives to node 9 with a

load equal to one. In node 9 there is not pickup or delivery operation, thus arc (9,18) is traversed

with one unit in the vehicle. In location 18, the vehicle picks up seven units. Note that at the end of

the path, the vehicle goes into 0 with three units which represent the same initial load to begin the

tour.

Any Hamiltonian tour is a feasible solution for the 1–PDTSP if the load of the vehicle does not

exceed the capacity Q and it does not become negative. In more general way, when completing

a Hamiltonian tour for 1–PDTSP it is possible to check feasibility if the difference between the

minimum and the maximum load of the vehicle is not greater than Q. This is a straightforward way

to check feasibility in a 1–PDTSP solution:

3.2. PROBLEM DEFINITION AND MIXED INTEGER LINEAR MODELS 39

Figure 3.1: Optimal solution for a 1–PDTSP instance with 20 nodes

max
i∈N
{li}−min

i∈N
{li} ≤ Q (3.11)

The reader may notice that depending on initial values for l (i.e., l0) the minimum load in a

path may end up in values less than zero or for maximum loads, values could be greater than Q.

However, if (3.11) is meet, feasible values for initial load can be deduced. If mini∈N{li}< 0, then

a real value for minimum load is |mini∈N{li}|. On the other hand, if values for maxi∈N{li} are

greater than Q, then real maximum load is Q−maxi∈N{li}.

3.2.2 The SD1PDTSP

As mentioned before, in the 1–PDTSP exactly one visit is mandatory to each location . Nevertheless,

it is possible to split the pickup or delivery quantity if multiple visits are allowed. This variant,

which is known as the SD1PDTSP, is introduced in Salazar-González and Santos-Hernández (2015)

as a generalization of the 1–PDTSP and the split delivery traveling salesman problem (SDTSP). The

SD1PDTSP can be modeled by introducing new constraints on model in (3.1)–(3.9). In the split

delivery scenario, the vehicle can visit a location i several times in order to meet the total pickup or

delivery quantity (i.e., qi). Let qv
i be the number of units to pickup or deliver in location i on visit

v. Then, a feasible solution must satisfy that ∑v qv
i = qi. On MILP (3.1)–(3.9) (henceforth called

40 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

MILPSD), the total demand of each location is described by equations in (3.5). Therefore, to allow

multiple visits to node i (i ∈N), constraints in (3.2) can be replaced by constraints (3.12):

∑
j∈N
i ̸= j

yi j ≥
⌈
|qi|
Q

⌉
, ∀ i ∈N (3.12)

It is worth to mention that constraints in (3.12) also allow to that demand in nodes can exceed

vehicle capacity (i.e., |qi|> Q). In addition, when one or more locations are visited several times by

the vehicle, the number of arcs in the solution becomes greater than |N|. Then, constraints in (3.7)

are replaced for a similar set of constraints defined in 3.13:

zi j ≤ 2 · |N| · yi j, ∀ (i, j) ∈A (3.13)

The expression 2 · |N| is an upper bound for the value of variables zi j. Given the continuous

nature of these variables, the value of the upper bound does not affect the performance of MILPs.

Replacing equations in (3.2) by expression in (3.12) and updating the upper bound for zi j as in

(3.13), a set of constraints Ω is defined by expressions in (3.3) to (3.6), and (3.8) to (3.13). Then,

the SD1PDTSP can be modeled as follows:

min f = ∑
(i, j)∈A

ci j · yi j

subject to, Ω

Finally, if multiple visits can be performed to location i, expressions in (3.5) allow to a couple

of variables li j and l ji to take values not necessarily equal to qi. This would lead to take location i as

a temporal storage point where units can be picked up in a later visit or some units can be taken

away from i temporally until a future visit occurs.

Next, two graphical examples for the the SD1PDTSP are presented. It is important to remember

that if several visits are performed, then ∑v qv
i = qi must be satisfied. Nonetheless, conceptually

speaking, if ∑v |qv
i |= |qi|, the set of operations correspond to split, which means that a delivery (or

a pickup) is divided into several smaller deliveries (or pickups); on the contrary, if ∑v |qv
i | ̸= |qi|, the

set of operations correspond to temporary storage, which means that a delivery (or a pickup) is the

result of several deliveries and pickups. In the second case, qi and each qv
i do not have the same

sign.

Figure 3.2 depicts the optimal solution of instance showed in Figure 3.1 if it is solved as a

SD1PDTSP. In this new solution, location 4 is visited twice. Firstly, the vehicle goes from location

3.3. A MULTI-START EVOLUTIONARY LOCAL SEARCH ALGORITHM FOR THE 1–PDTSP 41

2 to location 4 with a load of nine which is not enough to supply the demand of ten units. Secondly,

a split delivery is performed; the vehicle delivers all the load in location 4. Thirdly, it visits location

7 picking up five units. Fourthly, it goes back to location 4 with a load of five and as a second

delivery, supply the pending demand (i.e., one last unit). Finally, the vehicle leaves location 4 with

four units. The total cost of this route is 4759.

In a similar way, Figure 3.3 depicts the optimal solution of a different instance solved as a

1–PDTSP. The total cost of this route 4976. If this instance is solved as a SD1PDTSP, the total cost

of the route is 4787 and the solution is shown in Figure 3.4 . In this case, there are two locations

visited twice (i.e., locations 18 and 15). Firstly, as in first instance, the demand on location 18 is

split. Initially, with a load of 9 units, the vehicle visits 18, it leaves all the load and pickup eight

units in location 13. Then, it goes back to 18, complete the supply and it moves to 15 with a load

of seven. Although the vehicle arrives in 15 with seven units, an optimal decision is to supply the

demand (one unit), store five there and then going to location 2 with a load of one. After location 16

is visited, the vehicle goes back to 15 completely empty and pickup the five units stored previously.

The route continues visiting location 10.

3.3 A multi-start evolutionary local search algorithm for the

1–PDTSP

This section presents an MS-ELS to deal with the 1–PDTSP. Firstly, the general structure of the

procedure is described. Also this section provides some details about the main components of the

proposed algorithm: construction phase based on a greedy randomized procedure, improvement

phase designed as a VND and the perturbation operator. This section also briefly describes GRASP

and ILS as two particular cases of MS-ELS. It is worth to mention that in spite of the good

performance of this algorithms in related routing problems, evolutionary components within these

strategies have shown promising results (Prins, 2009).

42 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

Figure 3.2: Optimal solution for a SD1PDTSP instance with 20 nodes

Figure 3.4: Optimal solution for second SD1PDTSP instance with 20 nodes

3.3. A MULTI-START EVOLUTIONARY LOCAL SEARCH ALGORITHM FOR THE 1–PDTSP 43

Figure 3.3: Optimal solution for a second 1–PDTSP instance with 20 nodes

Evolutionary local search (ELS) procedure is a metaheuristic framework mainly based on

evolutionary strategies and local search algorithm. ELS is initially presented in Wolf and Merz

(2007) for the solution of optimization problems in telecommunications. However, routing problems

have been also addressed with ELS procedures. Some of these problems are the capacitated VRP

(Prins, 2009), the capacitated arc routing problem with split delivery (Belenguer et al., 2010), the

truck and trailer routing problem (Villegas et al., 2010) and the multitrip cumulative capacitated

vehicle routing problem (Rivera et al., 2013). Figure 3.5, depicts the main steps of a MS-ELS: after

each one of several starting solution is build and improved, perturbations are made for a number of

iterations and best solutions update the incumbent in each iteration. This process continues until a

number of start solutions are reached. MS-ELS can be also seen as a generalization of GRASP and

multi-start iterated local search metaheuristics. Firstly, the greedy randomized construction heuristic

ensures diversity in the search space. Then, the classical local search in GRASP, is replaced by

an ELS which allows to explore in a better way the solution space near to a local optimum before

restart a different search from a different starting solution (Duhamel et al., 2011).

44 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

Figure 3.5: Flow chart for MS-ELS algorithm

3.3.1 General framework

As mentioned before, ELS is a metaheuristic based on an evolutionary algorithm and a local search

procedure. In an ELS, a single solution is constructed and then, improved via local search. For a

number of iterations (MaxIterations), the obtained solution is perturbed and next, it is improved

MaxChildren times. The algorithm returns the best overall solution found. In a multi-start ELS, the

ELS is performed MaxStarts times. For the sake of clarity, hereinafter, a list of nodes represents a

solution. The order of the list denotes the path to follow by the vehicle, obtaining a Hamiltonian

cycle. For solution s, an objective function value is computed as sum of the travel costs traversing

the arcs between nodes in the path.

3.3. A MULTI-START EVOLUTIONARY LOCAL SEARCH ALGORITHM FOR THE 1–PDTSP 45

The Algorithm 3.1 depicts the MS-ELS for the 1–PDTSP. Starting with an incumbent value

for the objective function z̄ = ∞, MaxStarts solutions (s0) are constructed via greedy randomized

algorithm (line 4) and improved using a VND procedure (line 5). If the objective function of

resulting solution s is better than the incumbent solution s̄, the latter is updated (lines 6 to 9).

For each one of the predefined MaxIterations, a set of MaxChildren perturbation processes are

performed on s and immediately, the perturbed resulting solutions sp are improved calling the VND

procedure again (line 14). After each improvement, the algorithm updates the best solution on the

current iteration (s′) if improved (lines 15-18). Similarly, lines 20 to 23 update the best solution of

the current start and lines 25 to 28 update the incumbent solution.

Following sections describe the components of the algorithm depicted in Algorithm 3.1: the

construction procedure based on a greedy randomized algorithm, the VND as improvement phase

of the MS-ELS, and the perturbation procedure.

3.3.2 Greedy randomized construction

In order to generate several initial solutions, a randomized heuristic based on nearest neighbor

greedy algorithm is proposed. However, as Hernández-Pérez and Salazar-González (2004b) point

out, the nearest neighbor algorithm for the TSP, hardly finds a feasible 1–PDTSP solution if the

vehicle capacity is tight. Then, following the procedure in Hernández-Pérez et al. (2009), the

traveling costs ci j, are redefined for arcs (i, j) ∈ A by penalizing connections between pair of

stations of the same type (e.g. two stations with pickup requests). Thus, new values for ci j are

stored in c′i j ∀ (i, j) ∈A as follows (Hernández-Pérez et al., 2009):

c′i j =

{
ci j +

(K−Q)·∑(i, j)∈A ci j

10·Q·|N| · (2Q−|qi−q j|) if |qi +q j| ≤ Q,

∞ otherwise,
(3.14)

where K is the sum of units delivered or picked up. As described in Equation (3.10), 1–PDTSP

instances are balanced in terms of the demands. Thus, the total units to deliver is equal to the

total units to pick up. In order to illustrate the motivation to redefine traveling costs in ci j,

Figures 3.6 and 3.7 depict a feasible and an unfeasible solution for a 1–PDTSP instance with

seven nodes, respectively. For both solutions and similar to example in Figure 3.1, the left

side number near to each node, denotes its demand while the right side number represents the

load of the vehicle when entering that node. Solution in Figure 3.6 is a Hamiltonian tour in

which a certain amount of units is delivered immediately after a pickup operation is performed.

On the contrary, in Figure 3.7, a constructive solution starts at depot (node 0) with an initial

46 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

Algorithm 3.1: MS-ELS for the 1–PDTSP: general structure
1: function MS-ELS(MaxStarts, MaxIterations, MaxChildren)
2: z̄←− ∞, s̄←− /0
3: for i = 1 to MaxStarts do
4: s0←− GreedyRandomizedAlgorithm(seed)

5: s←− VND(s0)

6: if f (s)< z̄ then
7: s̄←− s
8: z̄←− f (s)
9: end if

10: for j = 1 to MaxIterations do
11: z′←− ∞, s′←− /0
12: for p = 1 to MaxChildren do
13: sp←− Perturbation(s)
14: s′′←− VND(sp)

15: if f (s′′)< z′ then
16: s′←− s′′

17: z′←− f (s′′)
18: end if
19: end for
20: if f (s)< z′ then
21: s′←− s
22: z′←− f (s)
23: end if
24: end for
25: if f (s′)< z̄ then
26: s̄←− s′

27: z̄←− f (s′)
28: end if
29: end for
30: return s̄
31: end function

load of zero units. Then, nodes 2 and 6 are consecutively visited picking up seven and three

units, respectively. Note that after leaving node 6 and delivering six units at node 5, the

solution become unfeasible since vehicle capacity is violated if any of the non-visited nodes (1,

3 and 4) are reached. Once values in c′i j are computed, the construction phase for a solution s follows:

3.3. A MULTI-START EVOLUTIONARY LOCAL SEARCH ALGORITHM FOR THE 1–PDTSP 47

Figure 3.6: Example of a feasible solution for the 1–PDTSP.

Figure 3.7: Example of an unfeasible solution for the 1–PDTSP

a. Select a node i as the first visited location at random. Let p←− 1 and s[p]←− i.

b. Compute ξ as the minimum between a restricted candidate list size (ϕ) and the number of

feasible non-visited nodes. Define R as the set of the ξ closest and feasible (i.e. the vehicle

capacity is not violated) non-visited nodes after the node i is served.

c. If |R| > 0, then choose a node j from R at random. If R = /0, the constructed solution so far

leads to an unfeasible path as in Figure 3.7. Therefore, go to step (a).

d. Let p←− p+1 and s[p]←− j. If p < |N| then define i←− j and go to step (b), else stop.

Since each iteration of the constructive phase, requires to include a set of nodes in R, conditions

in (3.11) are adapted to check whether a location j is feasible to add in a partial solution with size

p−1 (Hernández-Pérez and Salazar-González, 2004b):

max
i=1,..,p−1

{li, lp−1−q j}− min
i=1,..,p−1

{li, lp−1−q j} ≤ Q (3.15)

48 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

The proposed constructive strategy differs from the one presented in Hernández-Pérez et al.

(2009). While this new algorithm always end up with a feasible solution, the procedure described in

Hernández-Pérez et al. (2009) does not guarantee a feasible result and then, not any repair procedure

is required in the proposed solution strategy.

3.3.3 Variable neighborhood descent

VND is a deterministic variant of variable neighborhood search (VNS) which explores sequentially

several neighborhoods represented by local search operators (Hansen and Mladenović, 2001; Hansen

et al., 2017). Given an incumbent solution s, the set of solutions reachable from s, Nk(s), is explored

when the local search operator k (k≤kmax) is applied via function LocalSearch. If LocalSearch

function retrieves a solution with a cost smaller than f (s), then s is updated and the search starts

again from the first local search operator (k = 1). On the contrary, if s is not improved, then

LocalSearch is performed using the operator k+1. The algorithm ends up if no improvement is

found throughout the set of kmax neighborhoods.

As improvement phase for the MS-ELS, the proposed VND is depicted in Algorithm 3.2. While

the general structure of VND described above is mainly stated in lines 4 to 13 of the algorithm,

an additional function called Reverse (line 21) is used with the aim to explore different regions

of the solution space. Function Reverse simply changes the orientation of the path in solution s

(i.e, the function returns s in the opposite direction). As mentioned in Hernández-Pérez and

Salazar-González (2004b), the feasibility of solution s is independent of the orientation of the path.

Then, since VND does not handle unfeasible solutions, function Reverse always delivers a feasible

solution as well. An additional cycle is added to VND algorithm (line 3) just to ensure that after a

solution is improved, function Reverse is applied. The sequential exploration based on local search

operators is performed h times, with hmin≤h≤hmax, and each time, after first iteration, the operator

Reverse is applied. This iterative procedure also may stop before, if no improvement is found after

its first call (b=true).

The sequential exploration based on several neighborhoods with the aim to improve solutions

quality within our VND is based on the following two edge-exchange (EE) and five chain-exchange

(CE) operators for the LocalSearch function (i.e., kmax = 7). All operators follow the best

improvement rule instead of first improvement criterion.

2−opt and 3−opt: These neighborhoods are the first (for k = 1, 2−opt) and the last one (for k = 7,

3−opt) in our VND implementation. Hernández-Pérez et al. (2009) prove the good performance of

3.3. A MULTI-START EVOLUTIONARY LOCAL SEARCH ALGORITHM FOR THE 1–PDTSP 49

Algorithm 3.2: Variable neighborhood descent for the 1–PDTSP
1: function VND(s, kmax, hmin, hmax)
2: s′←− s, h←− 0, b←−False
3: while (h≤ hmax and b =False) or (h < hmin) do
4: k←− 1
5: while k ≤ kmax do
6: s′′←− LocalSearch(s′, Nk(s′))
7: if f (s′′)< f (s′) then
8: s′←− s′′

9: k←− 1
10: else
11: k←− k+1
12: end if
13: end while
14: if f (s′)< f (s) then
15: s←− s′

16: b←−False
17: else
18: b←−True
19: end if
20: if h < hmax or b = False then
21: s′←− Reverse(s′)
22: end if
23: h←− h+1
24: end while
25: return s′

26: end function

2−opt and 3−opt as EE local search operators within a VND to solve the 1–PDTSP. As mentioned

before and contrary to Hernández-Pérez et al. (2009), the proposed version of VND does not deal

with unfeasible solutions. In this implementation of these operators, the local search procedures

find less-cost solutions while unfeasible paths are discarded.

Both neighborhood structures follow the ideas proposed in Lin (1965) to speed up the search

process. For each location i, the procedure stores a list of its k nearest neighbors and it also sorts

them in increasing order according to travel costs in ci j. Thus, 2−opt operator only scans for

possible exchanges between each location i and the k closest nodes to i. Similarly, 3−opt procedure,

evaluates k interchanges for each one of the k nearest neighbors for each location i. Therefore, the

complexity of the 2−opt and 3−opt are O(|N| · k) and O(|N| · k2), respectively. Finally, since the

number of locations may vary significantly, adequate values for k depend on |N|. Large values for k

would lead to a scenario in which k = |N| and the complexity becomes O(|N|2) and O(|N|3) for

50 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

2−opt and 3−opt, respectively.

Or−opt(λ): After 2−opt exploration, VND calls Or−opt(λ) neighborhoods. Or−opt operators

are firstly described in Or (1976), and then mentioned in Babin et al. (2007) as one of the best

known CE improvement heuristics for the TSP. It aims to improve a solution by first moving a chain

of λ consecutive nodes (i.e. stations) to a different location in the solution path. Moreover, Or−opt

heuristic also allows to firstly reverse chains and then move them as described. The proposed VND

includes four variations on Or−opt(λ) setting λ = {2,3} and then, reversing chains in both cases.

From now, these movements are called Or−opt(2), Or−opt(3), Or−optr(2), and Or−optr(3),

respectively. Thereby, these four combinations are neighborhoods two to five of the VND algorithm

(k = {2,3,4,5}).
Given the structure of this VND and particularly, the use of function Reverse, Or−opt(λ)

operators are adapted only to check for feasible and improvement movements in which chains are

moved to previous positions in the path. Therefore, intermediate stations are shifted forward λ

positions. The complexity for each one of the four Or−opt(λ) movements is O(|N|2).

Move backward: This is the sixth neighborhood within the VND (k = 6). This operator attempts

to find better solutions by moving a location from its original position to a previous one in the path.

This operator can be seen as a special case of our Or−opt(λ) movements if λ = 1 and therefore,

the complexity of move backward operator remains as O(|N|2).

Finally, as mentioned before, an order to evaluate neighborhoods within the VND is setting: (i)

2−opt, (ii) Or−opt(2), (iii) Or−opt(3), (iv) Or−optr(2), (v) Or−optr(3), (vi) move backward

and (vii) 3−opt. This particular order established for the neighborhoods relies on their complexity.

As Resende and Ribeiro (2016) point out, and appropriate order can save a significant amount of

computation time. Thus, small neighborhoods may be explored first while more complex or large

neighborhoods are evaluated later. In the case of this VND, the complexity of all the neighborhoods

from (i) to (vi) is O(|N|2) while 3−opt is computed in O(|N|3).

3.3.4 Perturbation

Algorithm 3.3 depicts the proposed perturbation function which is mainly based on the 2−opt

operator described before in Section 3.3.3. Perturbation function applies a 2−opt movement on

np sequences of locations from a solution s. For each sequence, i.e. σi j = (si,si+1, ...,s j−1,s j), the

3.3. A MULTI-START EVOLUTIONARY LOCAL SEARCH ALGORITHM FOR THE 1–PDTSP 51

starting point i is chosen in a random fashion between the first position in s and the position |N|−β

where β is the size of the sequence to change (line 4). 2−opt operator used in the perturbation

function (line 5) only searches the first feasible movement. Thus, perturbation strategy does not

check whether the objective function improves and a perturbed solution sp may end up with a higher

value for the objective function (i.e. f (sp)> f (s)). It is worth to mention that large values for np

and β would lead to a significant increase in computational time and resulting solution sp may be

significantly different from s. Then, small values are desirable and are shown later in Section 3.4.5.

Nonetheless, if no feasible movement is found along the np sequences, the perturbation procedure

delivers the initial solution s.

Algorithm 3.3: Perturbation for MS-ELS

1: function PERTURBATION (s, np, β)
2: sp←− s
3: for i = 1 to np do
4: Select at random r ∈ [1, |N|−β]
5: sp←− 2-opt(sp, r, r+β)
6: end for
7: return sp
8: end function

3.3.5 Multi-start iterated local search and greedy randomized adaptive
search procedure

ILS was introduced by Lourenço et al. (2003) as a hybrid metaheuristic based on a heuristic

composed by a constructive algorithm, an improvement strategy as local search and a perturbation

function. ILS metaheuristic improves a solution s by calling a local search algorithm. Then, an

iterated process is started where the incumbent solution is perturbed and improved by a local

search algorithm on each iteration. Solution s is replaced by the local optima solution at the end

of each iteration in case of improvement. An ILS with more than one initial solution is called

MS-ILS. Using the notation introduced in Section 3.3.1, MS-ILS and ILS can be seen as special

cases of MS-ELS in Algorithm 3.1 where MaxChildren = 1 for MS-ILS, and MaxStarts = 1 and

MaxChildren = 1 for ILS.

On the other hand, Feo and Resende (1995) define GRASP as a multi-start metaheuristic

that consists of two steps: construction and improvement (e.g. local search procedure). While

the first one aims to build a solution, the second one finds a local optimum using a local search

algorithm. After a fixed number of constructive solutions, GRASP ends and returns the best overall

52 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

solution. Note that GRASP can also be described as a special case of MS-ELS metaheuristic in

which MaxStarts > 1, MaxIterations = 0 and MaxChildren = 0 in Algorithm 3.1. In order

to show the impact of having these values for parameters MaxIterations and MaxChildren or

those as described previously for MS-ILS, a comparison between GRASP, MS-ILS and MS-ELS

is performed in Section 3.4.5. It is worth to mention that our constructive algorithm described in

Section 3.3.2 can be seen as greedy, randomized, and adaptive since at each step of the procedure, a

node is added to solution in a random fashion after restricted candidate list is updated.

3.4 Computational experiments

The computational experiments presented in this section are based on MILPs described in Section

3.2 and the MS-ELS algorithm depicted in Algorithm 3.1. This section firstly describes the sets of

instances used for computational experiments. Then, results solving the 1–PDTSP and SD1PDTSP

MILPs are presented. These models were solved via commercial solver (Gurobi 8.1) setting a

maximum computation time of 3600 seconds for each instance. Lastly, this section also reports

the results obtained via MS-ELS for 1–PDTSP without a fixed maximum computation time. The

mathematical models and the metaheuristic algorithm were coded in Visual C++ for Windows 10

running on an Intel Core i7 at 2.70GHz with 8.00 GB of RAM.

3.4.1 Data sets

To test MILPs and MS-ELS performance, two different data sets are solved. The first one is a set

of benchmark instances previously reported in the literature. On the other hand, the MS-ELS is

also tested on instances generated using data from the operation of EnCicla, the BSS in the Aburrá

Valley (Antioquia, Colombia).

1–PDTSP benchmark instances

The benchmark instances are available at http://hhperez.webs.ull.es/PDsite/. These

instances are classified in two sets. The first one, composed of small number of nodes with |N| ∈
{20,30,40,50,60} and the second set with large instances in which |N| ∈ {100,200,300,400,500}.
Node demands vary from -10 to 10 (i.e., qi ∈ [−10,10] ∀ i ∈ N). Vehicle capacity may vary

from ten to 40, being ten the smallest possible value to find feasible solutions and therefore, the

hardest configuration to solve (Hernández-Pérez et al., 2009). For each size of the problem, ten

instances are available named from A to J. Thus, 100 instances were solved. Hernández-Pérez and

http://hhperez.webs.ull.es/PDsite/

3.4. COMPUTATIONAL EXPERIMENTS 53

Salazar-González (2004a) and Hernández-Pérez and Salazar-González (2004b) provide a detailed

description about the instances generation.

EnCicla BSS instances

The Aburrá Valley (Antioquia, Colombia) is a region located in the south central part of Antioquia

department in Colombia. This valley is composed by ten urban areas from north to south: Barbosa,

Girardota, Copacabana, Bello, Medellı́n, Envigado, Itagüı́, Sabaneta, La Estrella and Caldas.

Since 1980, Área metropolitana del Valle de Aburrá (AMVA) is the public entity responsible for

planning and management on some common policies of Aburrá Valley territory as transportation,

environmental policies, among others.

AMVA as authority on mobility and transportation management is the main sponsor of EnCicla,

the public bicycle sharing system in Aburrá Valley. EnCicla began its operation in 2011 with six

stations and 105 bikes. Later, in 2013, the system increased the number of stations and bicycles to

13 and 420, respectively. In 2017, 52 stations were available for users and currently, the system is

under expansion again and a total of 100 new stations are under construction and 1000 new bikes

will be added to the system. Bicycles from EnCicla are available for users from Monday to Friday,

starting at 5:30 in the morning to 22:00. On Saturdays, the system operates from 6:30 to 16:00.

Nowadays, EnCicla has more than 80 000 active users.

In order to test the performance of 1–PDTSP MILP and MS-ELS using real data from a BSS, a

set of instances based on EnCicla were designed. The information required to build the instances

was provided by Subdirección de Movilidad department (SMD) in AMVA for the operation of

EnCicla for 36 days in March and April, 2017 when 52 stations served the system. SMD reports the

number of bikes available at the beginning and end of the BSS operation in each station for each

one of the 36 days. Thus, it is possible to compute for 35 days, the number of bikes picked up or

delivered at each station during the night repositioning operation. To do so, bt
i and et

i are defined

as the number of bikes available at station i before starting and after finishing operations at day t,

respectively. Then, the number of bikes (qt
i) to pickup or deliver at station i at day t is calculated as:

qt
i = et−1

i −bt
i, ∀ i ∈N\{0}, t = 1, ..,T (3.16)

where T denotes the number of days to analyze (i.e., number of instances to solve). Values for

qt
0 are calculated as showed before in equation (3.10) to ensure flow conservation throughout the

system. Google maps services were used to get the geographical position for each one of the 52

stations and then, calculate an euclidean distance between each pair (i, j) of them (ci j). Finally,

54 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

for this set of instances the vehicle capacity was set to 45 (i.e. the largest capacity for a vehicle in

EnCicla fleet).

3.4.2 Results on mixed integer lineal models

1–PDTSP small benchmark instances

Tables 3.1 and 3.2 summarize the computational results when solving the set of 1–PDTSP benchmark

instances with MILPPD and MILPSD, respectively. These tables report the number of times that

each MILP is able to provide an optimal solution for each size of the instances and the three tested

values for the vehicle capacity. Average gap (Avg. gap) is computed as Avg.gap = UB−LB
UB where

UB and LB are the best solution and the best lower bound reported by the optimizer. The average

computational time in seconds required to find the solution (Avg. time) is also included in the tables.

In particular, as Table 3.1 shows, for the 1–PDTSP it is possible to find the optimal solution for

all the instances with up to 40 locations. For larger instances with 50 and 60 locations, the number

of optimal solutions increases and computation time decreases as the vehicle capacity is extended.

This is an expected result since large values of Q leads to a classical TSP. For the largest instances

(60 locations) and the smallest value for the vehicle capacity (the hardest case), solutions obtained

with MILPPD do not deliver more than 5.64% of gap on average.

When solving MILPSD, the optimizer is also able to find the optimal solution for all the instances

up to 40 locations (see Table 3.2). Moreover, if split delivery and temporal storage are allowed,

the optimal solution is found for an additional instance with 50 locations and the tightest value for

Q. Average gaps decrease for hardest instances (with 50 and 60 locations and Q = 10) if locations

may be visited more than once. In this particular case, the average gap decrease from 5.64% (see

Table 3.1) to 2.17%. A similar behavior is obtained for larger values of vehicle capacity. When split

delivery and storage are allowed, notice that computational times for small instances are larger when

they are compared with the 1–PDTSP case. For example, while MILPPD requires 59.42 seconds,

the MILPSD is solved in 120.74 seconds on average for |N|= 30 and Q=10. On the contrary, for

instances with more than 30 locations in which split delivery and storage are allowed, computational

times are always less than the reported in Table 3.1 for the 1–PDTSP.

As mentioned before, the hardest configuration for the 1–PDTSP arises when vehicle capacity

coincides with the largest demand on nodes (i.e., Q = maxi∈N{|qi|}. Then, we present some results

on this particular configuration. Tables 3.3 and 3.4 summarize the results obtained when solving the

1–PDTSP benchmark instances using MILPPD. Firstly, for the 30 instances with up to 40 nodes,

it is possible to find the optimal solution in less than 3600 s. Thus, Table 3.3 reports for each

3.4. COMPUTATIONAL EXPERIMENTS 55

Table 3.1: MILPPD results for the 1–PDTSP

Q = 10 Q = 20 Q = 40
|N| # Optimal Avg. Avg. # Optimal Avg. Avg. # Optimal Avg. Avg.

solutions gap time (s) solutions gap time (s) solutions gap time (s)
20 10/10 0.00% 3.46 10/10 0.00% 0.49 10/10 0.00% 0.17
30 10/10 0.00% 59.42 10/10 0.00% 61.19 10/10 0.00% 0.96
40 10/10 0.00% 989.57 10/10 0.00% 53.52 10/10 0.00% 1.81
50 5/10 1.73% 2368.12 9/10 0.20% 1133.59 10/10 0.00% 13.80
60 1/10 5.64% 3569.99 8/10 0.38% 1201.49 10/10 0.00% 18.44

Table 3.2: MILPSD results for the SD1PDTSP

Q = 10 Q = 20 Q = 40
|N| # Optimal Avg. Avg. # Optimal Avg. Avg. # Optimal Avg. Avg.

solutions gap time (s) solutions gap time (s) solutions gap time (s)
20 10/10 0.00% 3.82 10/10 0.00% 0.90 10/10 0.00% 0.21
30 10/10 0.00% 120.74 10/10 0.00% 10.84 10/10 0.00% 1.52
40 10/10 0.00% 655.45 10/10 0.00% 25.82 10/10 0.00% 2.54
50 6/10 0.81% 2070.46 9/10 0.12% 821.88 10/10 0.00% 18.85
60 2/10 2.17% 3313.65 8/10 0.23% 1128.40 10/10 0.00% 26.56

Table 3.3: Computational results on MILP for 1–PDTSP instances with |N| ≤ 40

|N|= 20 |N|= 30 |N|= 40
Instance Opt. Time (s) Instance Opt. Time (s) Instance Opt. Time (s)
n20q10A 4963 7.48 n30q10A 6403 101.64 n40q10A 7173 1034.12
n20q10B 4976 1.45 n30q10B 6603 9.08 n40q10B 6557 661.14
n20q10C 6333 8.23 n30q10C 6486 80.44 n40q10C 7528 222.30
n20q10D 6280 2.19 n30q10D 6652 21.85 n40q10D 8059 1675.57
n20q10E 6415 4.11 n30q10E 6070 3.30 n40q10E 6928 1574.83
n20q10F 4805 1.86 n30q10F 5737 5.20 n40q10F 7506 1635.10
n20q10G 5119 1.01 n30q10G 9371 187.46 n40q10G 7624 842.43
n20q10H 5594 2.10 n30q10H 6431 6.91 n40q10H 6791 733.63
n20q10I 5130 6.02 n30q10I 5821 21.50 n40q10I 7215 140.12
n20q10J 4410 1.29 n30q10J 6187 25.27 n40q10J 6512 212.75

Avg. 3.57 46.26 873.20

instance, the value for the objective function (column Opt.) and the time in seconds that the solver

required to prove optimality. Secondly, for the 20 instances with 50 and 60 nodes, the solver finds

the optimal solution in eight cases (i.e. 40% of the instances) as Table 3.4 shows. Columns LB and

UB report the lower and upper bound reported by the solver, respectively. Column gap, computed

as (UB−LB)/UB shows that this ratio is not greater than 5.50% and 11.70% for 50 and 60 nodes

instances, respectively.

56 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

Table 3.4: Computational results on MILP for 1–PDTSP instances with |N| ∈ {50,60}

|N|= 50 |N|= 60
Instance LB UB Time (s) gap Instance LB UB Time (s) gap
n50q10A 6987 6987 619.84 0.00% n60q10A 8190 8653 3600.00 5.35%
n50q10B 9488 9488 2721.35 0.00% n60q10B 8514 8514 2957.56 0.00%
n50q10C 8913 9110 3600.00 2.16% n60q10C 9141 9462 3600.00 3.39%
n50q10D 10085 10294 3600.00 2.03% n60q10D 10650 11243 3600.00 5.27%
n50q10E 9492 9492 2190.77 0.00% n60q10E 9224 9487 3600.00 2.77%
n50q10F 8398 8887 3600.00 5.50% n60q10F 8388 9499 3600.00 11.70%
n50q10G 7126 7126 582.89 0.00% n60q10G 8565 9153 3600.00 6.42%
n50q10H 8545 9019 3600.00 5.26% n60q10H 8424 8424 2083.92 0.00%
n50q10I 8329 8329 3523.04 0.00% n60q10I 8869 9524 3600.00 6.88%
n50q10J 8456 8456 249.89 0.00% n60q10J 8236 9138 3600.00 9.87%

Avg. 2428.78 1.49% 3384.15 5.16%

1–PDTSP large benchmark instances

Results on instances with 100 nodes are presented in Table 3.5. For each one of the ten instances it

was possible to find a feasible solution but no optimality proof was delivered by the optimizer. For

this size of instances, gap is always less than 30% and around 20% on average. For instances in

which |N| is greater or equal than 200, Table 3.6 reports lower bounds since the solver is not able to

find any feasible solution in less than 3600 seconds. Moreover, there are five cases in which the

optimizer does not report lower bounds in less than 3600. Nonetheless, it is possible set a naive

estimation of this bound (NLB) for instances B, D, F, G and I with 400 nodes as:

NLB = ∑
i∈N

min
j:(i, j)∈A

{ci j} (3.17)

EnCicla BSS instances

For the BSS instances from EnCicla operation, Table 3.7 reports the lower bound, upper bound,

gap and computational time required to solve each instance. Similarly to 1–PDTSP benchmark

instances, the column gap in Table 3.7 is computed as (UB−LB)/UB. Thus, the optimizer reports

the optimal solution for 28 out of 35 instances obtaining a maximum gap of 5.29% (see instance 6)

and also a gap of 0.34% on average. Vehicle capacity and traveling costs are constant for the whole

set of 35 instances. Hence, only demand on stations differentiate each instance. Results in Table 3.7

show that objective function (UB) values are very sensitive to changes in stations demand since UB

takes values from 2534 to 3440. This variation implies an increase in UB up to 35% with respect to

its minimum value. Similarly, changes in units to pick up and deliver at each station have an impact

3.4. COMPUTATIONAL EXPERIMENTS 57

Table 3.5: Computational results on MILP for 1–PDTSP instances with |N|= 100

Instance LB UB gap
n100q10A 11021 14206 22.42%
n100q10B 12179 15277 20.28%
n100q10C 13118 17506 25.07%
n100q10D 13488 17822 24.32%
n100q10E 10955 13194 16.97%
n100q10F 10900 12736 14.42%
n100q10G 11052 15751 29.83%
n100q10H 11976 13680 12.46%
n100q10I 13072 15141 13.66%
n100q10J 12357 15865 22.11%

Avg. 20.15%

on the computation time required to solve instances. While instance 34 is solved optimally in 4.22

seconds, one hour is not enough to close the gap for the instance 6 (5.29% of gap). This allows to

conclude that CPU times required to solve EnCicla instances via commercial solver are also highly

sensitive to variations on demands.

3.4.3 Analysis on split delivery, temporal storage and vehicle capacity

Since Table 3.2 evidences that split delivery or temporal storage help to decrease gaps and computing

times, it is interesting to analyze how these properties affect the objective function quality. Table 3.8

shows the main results for those instances with an optimal solution delivered by Gurobi when

Table 3.6: Computational results on MILP for 1–PDTSP instances with |N| ≥ 200

|N|= 200 |N|= 300 |N|= 400 |N|= 500
Instance LB Instance LB Instance LB Instance LB

n200q10A 14954 n300q10A 17416 n400q10A 23112 n500q10A 20387
n200q10B 15530 n300q10B 17420 n400q10B 10612 a n500q10B 19259
n200q10C 14010 n300q10C 16374 n400q10C 20939 n500q10C 22456
n200q10D 18033 n300q10D 19443 n400q10D 10517a n500q10D 22155
n200q10E 16215 n300q10E 20776 n400q10E 18021 n500q10E 22144
n200q10F 17999 n300q10F 18779 n400q10F 10282a n500q10F 20735
n200q10G 14883 n300q10G 18151 n400q10G 10348a n500q10G 19314
n200q10H 18032 n300q10H 16606 n400q10H 18463 n500q10H 26866
n200q10I 15245 n300q10I 18456 n400q10I 9885a n500q10I 22348
n200q10J 16273 n300q10J 16929 n400q10J 18879 n500q10J 22335

aNaive lower bound (NLB) computed as in equation (3.17)

58 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

solving MILPPD and MILPSD. Table 3.8 reports the number of times that MILPSD delivers a solution

with split delivery or storage in at least one location and we compute the average and maximum

cost saving (Avg. cost saving and Max. cost saving, respectively) for those instances in which

Table 3.7: Computational results on MILP for EnCicla instances

Instance LB UB gap Time (s)
1 2737 2737 0.00% 194.43
2 2769 2769 0.00% 115.25
3 2781 2781 0.00% 1315.59
4 2722 2722 0.00% 400.55
5 3074 3074 0.00% 3556.01
6 3258 3440 5.29% 3600.00
7 3002 3068 2.15% 3600.00
8 2746 2746 0.00% 961.45
9 2803 2803 0.00% 1731.30

10 2760 2760 0.00% 69.45
11 2838 2838 0.00% 944.08
12 2723 2723 0.00% 47.54
13 2648 2648 0.00% 19.56
14 2936 2936 0.00% 2223.79
15 2621 2621 0.00% 308.82
16 2793 2793 0.00% 155.91
17 2777 2818 1.45% 3600.00
18 2891 2891 0.00% 3254.71
19 2684 2684 0.00% 58.03
20 2569 2569 0.00% 24.20
21 2791 2817 0.92% 3600.00
22 2859 2859 0.00% 3443.89
23 2794 2794 0.00% 75.66
24 2653 2653 0.00% 35.50
25 2878 2878 0.00% 865.95
26 2595 2595 0.00% 178.14
27 2874 2888 0.48% 3600.00
28 2536 2536 0.00% 5.09
29 2781 2781 0.00% 74.07
30 2574 2574 0.00% 10.44
31 2793 2793 0.00% 2433.94
32 2852 2852 0.00% 819.73
33 2784 2799 0.54% 3600.00
34 2534 2534 0.00% 4.22
35 2752 2782 1.08% 3600.00

Avg. 0.34% 1386.50

3.4. COMPUTATIONAL EXPERIMENTS 59

fMILPSD < fMILPPD . Saving for one instance is computed as follows:

cost saving =
fMILPPD− fMILPSD

fMILPSD

×100% (3.18)

If vehicle capacity is 10, then at least in 80% of the instances (4 out of 5 when |N|=40) is better

to visit more than once at least one location. Similarly, for Q = 10, average cost improvements vary

from 2.59% to 3.58% as the number of locations decreases. For instances with |N| =20 it is possible

to find cost improvements up to 9.10%. As the value for Q increases, the vehicle may not need

to visit several times a location if its capacity is large enough. If Q = 20, the number of instances

in which split delivery or temporal storage is recommended as well as the average and maximum

cost savings, decrease. For the largest Q value, allowing several visits to a location do not improve

objective function value.

It is worth to mention that values in Table 3.8 are computed with instances in which the optimal

solution is found when solving MILPPD and MILPSD . Nevertheless, there exits a small subset

of instances in which optimal solutions are not reported by the solver but an objective function

improvement can be expected if split delivery or storage is allowed. Table 3.9 shows for each one

of these instances that the solver provides a final lower bound (LB) for MILPPD greater than the

upper bound (UB) found by MILPSD. Then, similarly to equation (3.18), a minimum expected cost

saving is computed as follows:

Min. expected cost saving =
LBMILPPD−UBMILPSD

UBMILPSD

·100%

For the nine instances reported in Table 3.9, a minimum cost improvement equal to 2.06% is

expected on average. Moreover, for these instances, final gaps obtained with MILPSD, are tighter

than those computed when solving MILPPD.

Since split delivery or temporal storage improve the quality of objective function, it is worth to

analyze briefly how an increase on vehicle capacity reduces the total cost of the route. To do so,

Table 3.8: Split delivery and temporal storage impact on objective function

Q = 10 Q = 20 Q = 40

|N| Split or Avg. cost Max. cost Split or- Avg. cost Max. cost Split or Avg. cost Max. cost
storage saving saving storage saving saving storage saving saving

20 9/10 3.58% 9.10% 0/10 0.00% 0.00% 0/10 0.00% 0.00%
30 9/10 3.01% 5.44% 3/10 0.99% 2.00% 0/10 0.00% 0.00%
40 10/10 2.74% 6.83% 2/10 0.78% 1.44% 0/10 0.00% 0.00%
50 4/5 2.50% 3.47% 4/9 0.71% 1.24% 0/10 0.00% 0.00%
60 1/1 2.59% 2.59% 1/8 0.18% 0.18% 0/10 0.00% 0.00%

60 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

only those instances with optimal solution when solving both MILPs are considered. Table 3.10

reports the average cost improvement as a percentage if the vehicle capacity is doubled when Q

takes the value of 10 and 20 and a single or multiple visits are allowed to locations. Table 3.10

shows that if only one visit per location is allowed, then an increase on vehicle capacity leads to a

higher improvement on the objective function values. As expected, in presence of split delivery or

temporal storage, cost saving are lower since the vehicle is able to use shorter arcs in the optimal

solution with a tighter capacity.

3.4.4 MILPs benchmark

Up to date, only the B&C strategy described in Salazar-González and Santos-Hernández (2015)

deals with the SD1PDTSP. In that article, authors use a subset of the benchmark instances solved to

test MILPPD and MILPSD. Particulary, when |N|=30. Therefore, MILPs performance is compared

with the solution strategy proposed in Salazar-González and Santos-Hernández (2015). Table

3.11 shows the results reported in Salazar-González and Santos-Hernández (2015): lower and

upper bounds as well as computational times in seconds for the 1–PDTSP and the SD1PDTSP. In

particular, for the 1–PDTSP, while the B&C is able to deliver four out of ten optimal solutions

as upper bounds, the MILPPD closes the gap for the whole set of instances. If split deliveries are

allowed, while the strategy described in Salazar-González and Santos-Hernández (2015) reports

upper bounds equal to the optimal solution for nine out of ten instances, MILPSD reports a 0.00% of

gap for all of them. Finally, objective function values and computational times required to solve the

tested instances outperform those reported in Salazar-González and Santos-Hernández (2015).

Table 3.9: Expected cost improvement for instances with non-optimal solution

|N| Q Instance
MILPPD MILPSD Min.expected

UB LB gap UB LB gap cost saving
50 10 n50q10C 9221 8896 3.52% 8842 8706 1.54% 0.61%
50 10 n50q10D 10,275 10,052 2.17% 9944 9819 1.26% 1.09%
50 10 n50q10E 9492 9492 0.00% 9238 9154 0.91% 2.75%
50 10 n50q10F 8684 8374 3.57% 7716 7716 0.00% 8.53%
50 10 n50q10I 8329 8227 1.22% 8000 8000 0.00% 2.84%
60 10 n60q10B 8514 8406 1.27% 8384 8313 0.85% 0.26%
60 10 n60q10D 11,112 10,663 4.04% 10,626 10,482 1.36% 0.35%
60 10 n60q10F 9507 8441 11.21% 8335 8025 3.72% 1.27%
60 10 n60q10J 9302 8296 10.81% 8226 8226 0.00% 0.85%

Average 4.20% 1.07% 2.06%

3.4. COMPUTATIONAL EXPERIMENTS 61

Table 3.10: Cost improvements for Q variations

|N| From Q = 10 to Q = 20 From Q = 20 to Q = 40
MILPPD MILPSD MILPPD MILPSD

20 27.50% 23.52% 6.53% 6.53%
30 31.07% 28.02% 8.96% 8.57%
40 30.71% 27.50% 6.95% 6.77%
50 23.78% 21.07% 8.89% 8.54%
60 24.05% 20.95% 6.74% 6.71%

Average 27.42% 24.21% 7.62% 7.43%

Table 3.11: Benchmark results based on Salazar-González and Santos-Hernández (2015)

1–PDTSP SD1PDTSP

Instance Q
B&C a MILPPD B&Ca MILPSD

LB UB time (s) f ∗ time (s) LB UB time (s) f ∗ time (s)
n30q10A 10 5724.8 6727 1253.9 6403 111.96 5654.1 6256 2266.4 6256 55.65
n30q10A 10 6193.2 6603 165.8 6603 14.65 5478.6 6603 591.1 6603 168.51
n30q10C 10 5215.5 6486 1197.9 6486 60.89 5149.3 6348 2278.5 6348 281.18
n30q10D 10 5450.0 6652 2698.4 6652 19.34 5279.2 6380 3811.8 6380 12.13
n30q10E 10 5691.2 6070 588.1 6070 4.25 5402.5 6052 942.6 6052 18.35
n30q10F 10 5392.5 5737 600.4 5737 7.48 5225 5727 1008.4 5727 18.99
n30q10G 10 8705.8 9371 2135.1 9371 311.63 8641.7 9005 3994.7 9005 549.31
n30q10H 10 5191.5 6433 457.9 6431 8.52 5020.4 6164 4598.6 6164 15.85
n30q10I 10 5156.2 5864 310.4 5821 28.14 4969.5 5596 4839.8 5596 71.96
n30q10J 10 5865.7 6192 224.8 6187 27.35 5601.4 6090 1712.5 5868 15.42

aSalazar-González and Santos-Hernández (2015)

3.4.5 Results on MS-ELS

This section presents the results based on the MS-ELS strategy. As mentioned before, as MS-ELS

is a generalization of GRASP and MS-ILS, variations on values of parametersMaxStarts,

MaxIterations and MaxChildren are performed to run MS-ILS and GRASP. Moreover, since

running times of MS-ELS, MS-ILS and GRASP are roughly proportional to the number of calls

to the VND (Rivera et al., 2013), experiments run with a number of 300 calls to control the

execution time and fairly compare the algorithms performance. After testing several configurations

for MaxStarts, MaxIterations, and MaxChildren within MS-ELS and MS-ILS, best results on

average with values are reported in Table 3.12. For GRASP, MaxIterations and MaxChildren are

always set to zero. Table 3.12 also shows the final values for parameters required in the construction

phase, VND scheme, 2−opt and 3−opt operators and perturbation function.

Table 3.13 presents the computational results for the set of small instances (i.e. |N| ≤ 60).

62 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

Table 3.12: Parameter values for solution strategy

Solution framework
MS-ELS MS-ILS GRASP

MaxStarts 5 15 300
MaxIterations 12 20 0
MaxChildren 5 1 0

Greedy randomized construction
ϕ 10

VND
hmin 1
hmax 2

2−opt and 3−opt
k 2 ·

√
|N|

Perturbation
np 4
β 6

This table shows the name of the instance and column Opt reports the value of the objective

function for the optimal solution; these values were retrieved from results in Section 3.4.2 and

from Hernández-Pérez et al. (2009). For each instance, Table 3.13 compares five different methods

for the 1–PDTSP and BRP: the hybrid GRASP/VND in Hernández-Pérez et al. (2009), the GA

in Zhao et al. (2009) and the three proposed strategies, GRASP, MS-ILS and MS-ELS. For each

strategy, columns # opt. show the number of times the optimal solution was found over ten runs

(for the GRASP/VND this information is not available in Hernández-Pérez et al. (2009)). Columns

Avg. display the average value for the objective function and columns gap (%) show the difference

between the average objective function retrieved (zAvg) and the optimal solution reported in columns

Opt (z∗). This gap is computed as follows:

gap(%) =
zAvg− z∗

z∗
×100 (3.19)

For instances in which |N|= 20, the five strategies deliver the optimal solution in each one of

the ten runs. Similarly, GA and the proposed solution algorithms are able to provide the optimal

solution for instances with 30 nodes in all runs. For instances with |N|= {40,50,60}, gaps delivered

by MS-ELS are smaller than those reported by the other four methods. Moreover, the number

3.4. COMPUTATIONAL EXPERIMENTS 63

Table 3.13: Computational results for small instances
GRASP/VNDa GAb GRASP MS-ILS MS-ELS

Instance Opt.c Avg.
gap #

Avg.
gap #

Avg.
gap #

Avg.
gap #

Avg.
gap

(%) opt (%) opt (%) opt (%) opt (%)
|N|=20
n20q10A 4963 4963.0 0.00 10 4963.0 0.00 10 4963.0 0.00 10 4963.0 0.00 10 4963.0 0.00
n20q10B 4976 4976.0 0.00 10 4976.0 0.00 10 4976.0 0.00 10 4976.0 0.00 10 4976.0 0.00
n20q10C 6333 6333.0 0.00 10 6333.0 0.00 10 6333.0 0.00 10 6333.0 0.00 10 6333.0 0.00
n20q10D 6280 6280.0 0.00 10 6280.0 0.00 10 6280.0 0.00 10 6280.0 0.00 10 6280.0 0.00
n20q10E 6415 6415.0 0.00 10 6415.0 0.00 10 6415.0 0.00 10 6415.0 0.00 10 6415.0 0.00
n20q10F 4805 4805.0 0.00 10 4805.0 0.00 10 4805.0 0.00 10 4805.0 0.00 10 4805.0 0.00
n20q10G 5119 5119.0 0.00 10 5119.0 0.00 10 5119.0 0.00 10 5119.0 0.00 10 5119.0 0.00
n20q10H 5594 5594.0 0.00 10 5594.0 0.00 10 5594.0 0.00 10 5594.0 0.00 10 5594.0 0.00
n20q10I 5130 5130.0 0.00 10 5130.0 0.00 10 5130.0 0.00 10 5130.0 0.00 10 5130.0 0.00
n20q10J 4410 4410.0 0.00 10 4410.0 0.00 10 4410.0 0.00 10 4410.0 0.00 10 4410.0 0.00
Average 0.00 0.00 0.00 0.00 0.00

|N|=30
n30q10A 6403 6406.8 0.06 10 6403.0 0.00 10 6403.0 0.00 10 6403.0 0.00 10 6403.0 0.00
n30q10B 6603 6603.0 0.00 10 6603.0 0.00 10 6603.0 0.00 10 6603.0 0.00 10 6603.0 0.00
n30q10C 6486 6486.0 0.00 10 6486.0 0.00 10 6486.0 0.00 10 6486.0 0.00 10 6486.0 0.00
n30q10D 6652 6655.1 0.05 10 6652.0 0.00 10 6652.0 0.00 10 6652.0 0.00 10 6652.0 0.00
n30q10E 6070 6070.0 0.00 10 6070.0 0.00 10 6070.0 0.00 10 6070.0 0.00 10 6070.0 0.00
n30q10F 5737 5737.0 0.00 10 5737.0 0.00 10 5737.0 0.00 10 5737.0 0.00 10 5737.0 0.00
n30q10G 9371 9371.0 0.00 10 9371.0 0.00 10 9371.0 0.00 10 9371.0 0.00 10 9371.0 0.00
n30q10H 6431 6431.2 0.00 10 6431.0 0.00 10 6431.0 0.00 10 6431.0 0.00 10 6431.0 0.00
n30q10I 5821 5821.0 0.00 10 5821.0 0.00 10 5821.0 0.00 10 5821.0 0.00 10 5821.0 0.00
n30q10J 6187 6187.4 0.01 10 6187.0 0.00 10 6187.0 0.00 10 6187.0 0.00 10 6187.0 0.00
Average 0.01 0.00 0.00 0.00 0.00

|N|=40
n40q10A 7173 7188.5 0.22 8 7179.0 0.08 9 7175.4 0.03 8 7182.7 0.14 10 7173.0 0.00
n40q10B 6557 6568.5 0.18 5 6564.5 0.11 4 6566.4 0.14 6 6563.8 0.10 7 6561.5 0.07
n40q10C 7528 7528.4 0.01 10 7528.0 0.00 5 7529.6 0.02 7 7528.6 0.01 10 7528.0 0.00
n40q10D 8059 8135.6 0.95 8 8075.4 0.20 4 8097.8 0.48 5 8095.0 0.45 10 8059.0 0.00
n40q10E 6928 6959.3 0.45 10 6928.0 0.00 3 6941.2 0.19 3 6931.2 0.05 10 6928.0 0.00
n40q10F 7506 7590.5 1.13 10 7506.0 0.00 4 7544.1 0.51 5 7538.3 0.43 10 7506.0 0.00
n40q10G 7624 7682.8 0.77 10 7624.0 0.00 3 7660.6 0.48 6 7645.3 0.28 10 7624.0 0.00
n40q10H 6791 6795.7 0.07 10 6791.0 0.00 5 6801.0 0.15 9 6793.7 0.04 10 6791.0 0.00
n40q10I 7215 7219.0 0.06 8 7215.2 0.00 4 7220.9 0.08 6 7217.5 0.03 10 7215.0 0.00
n40q10J 6512 6513.3 0.02 10 6512.0 0.00 10 6512.0 0.00 10 6512.0 0.00 10 6512.0 0.00
Average 0.38 0.04 0.21 0.15 0.01

|N|=50
n50q10A 6987 6996.7 0.14 10 6987.0 0.00 1 6993.7 0.10 6 6989.6 0.04 10 6987.0 0.00
n50q10B 9488 9512.6 0.26 8 9501.8 0.15 2 9513.0 0.26 3 9497.9 0.10 10 9488.0 0.00
n50q10C 9110 9133.7 0.26 1 9119.5 0.10 1 9128.2 0.20 2 9143.9 0.37 5 9113.5 0.04
n50q10D 10260 10464.3 1.99 2 10354.8 0.92 1 10458.1 1.93 3 10428.5 1.64 5 10265.4 0.05
n50q10E 9492 9625.1 1.40 7 9574.5 0.87 1 9656.0 1.73 3 9589.3 1.03 10 9492.0 0.00
n50q10F 8684 8773.2 1.03 8 8692.5 0.10 1 8741.4 0.66 4 8735.4 0.59 10 8684.0 0.00
n50q10G 7126 7217.4 1.28 9 7133.5 0.11 1 7230.5 1.47 4 7178.9 0.74 10 7126.0 0.00
n50q10H 8885 9006.5 1.37 1 8956.9 0.81 2 9007.9 1.38 1 9062.1 1.99 3 8893.2 0.09
n50q10I 8329 8412.5 1.00 7 8357.5 0.34 1 8422.9 1.13 3 8391.2 0.75 3 8344.1 0.18
n50q10J 8456 8666.1 2.48 1 8475.8 0.23 0 8595.1 1.64 2 8529.3 0.87 10 8456.0 0.00
Average 1.12 0.36 1.05 0.81 0.04

|N|=60
n60q10A 8602 8726.6 1.45 5 8634.8 0.38 1 8719.9 1.37 1 8709.3 1.25 10 8602.0 0.00
n60q10B 8514 8683.2 1.99 10 8514.0 0.00 2 8604.8 1.07 2 8593.9 0.94 10 8514.0 0.00
n60q10C 9453 9565.6 1.19 3 9485.5 0.34 1 9582.8 1.37 1 9585.3 1.40 1 9479.8 0.28
n60q10D 11059 11320.6 2.37 1 11140.2 0.73 1 11282.5 2.02 1 11296.0 2.14 1 11121.6 0.57
n60q10E 9487 9724.8 2.51 1 9592.1 1.11 0 9614.7 1.35 1 9615.0 1.35 5 9494.7 0.08
n60q10F 9063 9437.2 4.13 1 9192.2 1.43 1 9292.2 2.53 1 9221.3 1.75 3 9115.6 0.58
n60q10G 8912 9107.9 2.20 1 8996.0 0.94 1 9082.0 1.91 1 9059.9 1.66 1 8955.8 0.49
n60q10H 8424 8467.3 0.51 3 8472.3 0.57 1 8460.2 0.43 1 8458.4 0.41 10 8424.0 0.00
n60q10I 9394 9529.6 1.44 1 9505.8 1.19 2 9502.2 1.15 1 9519.5 1.34 1 9452.9 0.63
n60q10J 8750 8956.5 2.36 1 8803.3 0.61 1 8894.1 1.65 1 8913.6 1.87 3 8788.7 0.44
Average 2.01 0.73 1.48 1.41 0.31

aResults taken from Hernández-Pérez et al. (2009)
bResults taken from Zhao et al. (2009)
cResults taken from Hernández-Pérez et al. (2009)

64 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

of times that MS-ELS finds the optimal solution is greater or equal that the number of optimal

values obtained with GRASP and MS-ILS, except for instance n60q10I. Similarly, there exist

improvements on average solutions if the evolutionary component is added to GRASP and ILS

algorithms. Quality on solutions found by GA (Zhao et al., 2009) is higher than the one delivered

by GRASP/VND from Hernández-Pérez et al. (2009) and proposed GRASP and MS-ILS. However,

MS-ELS outperforms GA and GRASP/VND algorithms. Note also that proposed GRASP is able to

find better solutions on average than the hybrid GRASP/VND from Hernández-Pérez et al. (2009).

This result allows to conclude that Or−opt(λ) operators and function Reverse within the VND

help significantly finding better local optimum solutions for small instances. Hernández-Pérez et al.

(2009) define k = 4 ·
√
|N| for 2−opt and 3−opt neighborhood size while MS-ELS runs with a

fixed value for k = 2 ·
√
|N| and therefore, less computational effort is required for these local

search operators.

Table 3.14 summarizes the results on large instances. Due to the outperforming behavior

of MS-ELS over GRASP and MS-ILS for the smaller instances, this table only compares the

evolutionary local search strategy with the GRASP/VND (Hernández-Pérez et al., 2009) and GA

(Zhao et al., 2009). For each one of the strategies, columns Best report the minimum value for

objective function found by the algorithm. It is worth to mention that optimal solutions have

not been reported in the literature for these instances. Columns Avg. and Std. dev. show the

average and standard deviation for objective function. Standard deviation values are not available in

Hernández-Pérez et al. (2009) for the GRASP/VND. Finally, Table 3.14 also presents the differences

on solution quality between our solution strategy and the GRASP/VND and GA in columns gap

GRASP/VND and gap GA, respectively. As example, gap GA is computed as follows:

gapGA(%) =
BestMS−ELS−BestGA

BestGA
×100 (3.20)

where BestMS−ELS and BestGA are the best solution found by MS-ELS and GA, respectively. Gap

GRASP/VND is computed in a similar way. Lastly, Table 3.14 also shows column gap LB in which

the lower bound (LB) obtained vian MILP and BestMS−ELS value are compared:

gapLB(%) =
BestMS−ELS−LB

BestMS−ELS
×100 (3.21)

The proposed evolutionary local search strategy is able to find better solutions than GA for 46

out of 50 large instances (i.e. 92% of the instances) and outperforms GRASP/VND in all cases.

Standard deviation for the MS-ELS over ten runs is less than the reported in Zhao et al. (2009) for

the GA, except for instances in which |N| = 300. Nevertheless, for this ten instances, MS-ELS

3.4. COMPUTATIONAL EXPERIMENTS 65

Table 3.14: Computational results for large instances

GRASP/VNDa GAb MS-ELS

Best Avg. Best Avg.
Std.
dev.

Best Avg.
Std.
dev.

gap
GRASP/VND

gap
GA

gap
LB

|N|=100
n100q10A 11874 12087.6 11828 11922.6 71.3 11760 11834.7 41.5 -0.96% -0.57% 6.28%
n100q10B 13172 13582.6 13114 13301.6 157.1 12938 13084.1 65.0 -1.78% -1.34% 5.87%
n100q10C 14063 14421.3 13977 14095.2 147.2 13958 13991.2 24.5 -0.75% -0.14% 6.02%
n100q10D 14490 14787.5 14253 14406.4 111.9 14297 14407.7 69.7 -1.33% 0.31% 5.66%
n100q10E 11546 12502.6 11411 11436.4 52.4 11419 11503.2 69.9 -1.10% 0.07% 4.06%
n100q10F 11734 12010.7 11644 11699 34.5 11613 11732.5 50.2 -1.03% -0.27% 6.14%
n100q10G 12049 12366.9 12038 12120.2 104.8 11889 11972.3 39.9 -1.33% -1.24% 7.04%
n100q10H 12892 13169.2 12818 12906.2 125.1 12742 12799.1 30.8 -1.16% -0.59% 6.01%
n100q10I 14048 14390.2 14032 14137.2 95.9 13799 13918.6 63.5 -1.77% -1.66% 5.27%
n100q10J 13430 13737.6 13297 13516.8 216.4 13240 13402.9 73.5 -1.41% -0.43% 6.67%
Average 111.7 52.8 -1.26% -0.59% 5.90%

|N|=200
n200q10A 18013 18564 17686 17987 201.9 17642 17749.1 57.0 -2.06% -0.25% 15.24%
n200q10B 18154 18932.5 17798 18069.4 243.1 17393 17888.2 232.5 -4.19% -2.28% 10.71%
n200q10C 16969 17280.3 16466 16751.2 245.8 16430 16563.3 113.5 -3.18% -0.22% 14.73%
n200q10D 21565 22285.7 21306 21564.4 207.3 21244 21520.6 153.0 -1.49% -0.29% 15.11%
n200q10E 19913 20643.2 19299 19713 358.9 19422 19582.8 117.8 -2.47% 0.64% 16.51%
n200q10F 21949 22284.6 21910 22144 247.7 21536 21649.2 101.9 -1.88% -1.71% 16.42%
n200q10G 17956 18627.7 17712 17797.8 80.6 17564 17721.3 107.4 -2.18% -0.84% 15.26%
n200q10H 21463 22084.9 21276 21584 278.4 19921 21219.3 480.9 -7.18% -6.37% 9.48%
n200q10I 18606 19184.8 18380 18509.8 149.6 18068 18415.2 213.9 -2.89% -1.70% 15.62%
n200q10J 19273 19839.5 18970 19274.2 205.5 18763 19224.1 208.8 -2.65% -1.09% 13.27%
Average 221.9 178.7 -3.02% -1.41% 14.24%

|N|=300
n300q10A 23244 24052.9 23242 23592 265.1 22973 23172.6 176.5 -1.17% -1.16% 24.19%
n300q10B 23187 23845.6 22934 23028.6 114.9 22779 23011.6 145.9 -1.76% -0.68% 23.53%
n300q10C 21800 22516.6 21922 22083.4 189.6 21029 21774.6 429.8 -3.54% -4.07% 22.14%
n300q10D 25971 26462.1 25883 26289.8 253.5 25448 25664.3 186.8 -2.01% -1.68% 23.60%
n300q10E 27420 27892.1 27367 27923.8 358.5 26412 26994.3 446.4 -3.68% -3.49% 21.34%
n300q10F 24852 25278.2 24826 25055.4 171.8 23507 24391.3 589.8 -5.41% -5.31% 20.11%
n300q10G 24308 24760.5 23868 24300.6 412.0 23632 23907.8 184.5 -2.78% -0.99% 23.19%
n300q10H 22684 23116.5 21625 21965 278.5 21513 22031.6 289.6 -5.16% -0.52% 22.81%
n300q10I 24633 25492.6 24513 24959.2 330.1 24112 24697.1 391.0 -2.12% -1.64% 23.46%
n300q10J 23086 23530.2 22810 23045 351.1 22796 23097.3 201.4 -1.26% -0.06% 25.74%
Average 272.5 304.2 -2.89% -1.96% 23.01%

|N|=400
n400q10A 31486 31912 31678 31964.4 309.9 30522 30977.2 257.7 -3.06% -3.65% 24.28%
n400q10B 24883 25606.4 24262 24752.4 283.2 24226 24711.4 196.5 -2.64% -0.15% 56.20%
n400q10C 28942 29463.2 28741 29287.4 603.6 28405 28580.0 121.6 -1.86% -1.17% 26.28%
n400q10D 24597 25308.6 24508 24794.8 320.1 23604 24223.8 306.3 -4.04% -3.69% 55.44%
n400q10E 25548 26120 25071 25473 276.4 24497 25087.4 330.1 -4.11% -2.29% 26.44%
n400q10F 27169 27755.1 26681 27362.8 411.6 26409 26959.8 315.2 -2.80% -1.02% 61.07%
n400q10G 24626 25088.4 23891 24290.4 273.0 24052 24287.6 159.2 -2.33% 0.67% 56.98%
n400q10H 26030 26468.8 25348 25811.4 351.5 25245 25496.9 194.2 -3.02% -0.41% 26.86%
n400q10I 28992 29596.6 28714 29261.6 488.7 28172 28659.3 272.6 -2.83% -1.89% 64.91%
n400q10J 26204 26916.2 26010 26489.4 281.6 25494 25711.3 191.9 -2.71% -1.98% 25.95%
Average 360.0 234.5 -2.94% -1.56% 42.44%

|N|=500
n500q10A 28742 29323.6 28857 29258.8 478.3 27923 28218.9 265.1 -2.85% -3.24% 26.99%
n500q10B 27335 27711.1 26648 27454.8 525.7 26309 26596.6 181.5 -3.75% -1.27% 26.80%
n500q10C 31108 31692.7 30701 31426.8 609.4 29787 30469.1 336.6 -4.25% -2.98% 24.61%
n500q10D 30794 31428.4 30994 31442.2 376.9 30017 30200.1 231.6 -2.52% -3.15% 26.19%
n500q10E 30674 31371.7 30905 31154.6 231.3 28731 29897.1 497.7 -6.33% -7.03% 22.93%
n500q10F 28957 29812.3 28882 29241 244.9 28112 28540.6 353.1 -2.92% -2.67% 26.24%
n500q10G 27198 27958.2 27107 27473 212.5 26519 26738.8 197.0 -2.50% -2.17% 27.17%
n500q10H 36857 37361.1 37626 38142.4 258.8 35855 36154.2 223.5 -2.72% -4.71% 25.07%
n500q10I 31045 31536 30796 31044.6 306.0 29713 30239.3 293.7 -4.29% -3.52% 24.79%
n500q10J 31412 31877.9 31255 32310 617.9 30028 30618.1 328.2 -4.41% -3.93% 25.62%
Average 386.2 290.8 -3.65% -3.47% 25.64%

aResults taken from Hernández-Pérez et al. (2009)
bResults taken from Zhao et al. (2009)

66 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

delivers better solutions than the genetic algorithm. Moreover, it is worth to comment that as the

number of nodes increases, the average differences between MS-ELS and the other algorithms (i.e.

gap GRASP/VND and gap GA), also increase. This is, the solution quality of MS-ELS strategy on

average, becomes higher than the one provided by other methods if |N| is larger. It can be seen also,

if the average solution provided by the MS-ELS is compared with the best solution delivered by

GRASP/VND and GA. Table 3.15, presents the percentage of instances in which average objective

function value found via MS-ELS is less than the best solution reported using other two strategies.

For the largest subset of instances (|N|= 500) average solutions from MS-ELS outperform the best

solution found via GRASP/VND and GA.

Regarding computational times, MS-ELS performance is compared with GRASP/VND and

GA. Table 3.16 presents the average CPU time (in seconds) required to solve each subset of large

instances. This table also shows the time needed to construct solutions as well as the time that the

MS-ELS requires to improve solutions via VND. In general, MS-ELS requires more computational

effort to find solutions with a better solution quality. Nevertheless, the proposed strategy is able

to find on average a similar solution quality within computational times as those reported in

Hernández-Pérez et al. (2009) and Zhao et al. (2009). Fig. 3.8 depicts for instance n100q10A, the

evolution of the objective function value for the best solution found. Values for objective function

solving the 1–PDTSP via MS-ELS are similar for GRASP/VND and GA when computational times

coincide with those reported in Table 3.16 for instances with 100 nodes. In addition, MS-ELS

continues improving solution until the end of time horizon (28 seconds), which indicates that it can

find even better solutions if more time is given.

Table 3.17 summarizes the results obtained on EnCicla instances solving the 1–PDTSP via

MS-ELS. This table shows a comparison between the proposed metaheuristic strategy and the exact

approach based on MILP in Section 3.2. For each instance, column Best reports the minimum value

found by the MS-ELS for the objective function as well as the number of times this solution is

delivered after 10 runs of the MS-ELS (column # best). Then, the value in column Best is compared

with the lower bound reported by the optimizer after the MILP is solved (see Table 3.7). Table 3.17

reports whether the best solution found is the optimal. Average for the objective function value over

the ten runs is also computed (column Avg). Since in Table 3.7, a lower and upper bound (LB and

Table 3.15: Average solution for MS-ELS vs. best solutions for GRASP and GA

100 200 300 400 500
GRASP/VND 100% 100% 80% 100% 100%
GA 40% 20% 50% 50% 100%

3.4. COMPUTATIONAL EXPERIMENTS 67

Table 3.16: CPU times (s) comparison for large instances

|N| GRASP/VNDa GAb MS-ELS
Construction VND Total

100 8.85 21.12 0.81 27.21 28.02
200 41.76 95.23 3.54 110.75 114.29
300 117.86 212.59 9.82 279.14 288.96
400 220.4 358.22 24.97 650.01 674.98
500 391.47 570.15 39.67 927.96 967.63

aResults taken from Hernández-Pérez et al. (2009)
bResults taken from Zhao et al. (2009)

Figure 3.8: Objective function value versus time (s) for instance n100q10A

UB, respectively) are available, gaps between the best solution delivered by the MS-ELS and these

bounds are reported. Thus, columns Min. gap in Table 3.17 are computed as follows: Min. gapLB =

Best−LB/Best and Min. gapUB = Best−UB/Best, regarding lower and upper bound values from

MILP, respectively. Average gaps over the ten runs are also reported in columns Avg. gap. Finally,

the average CPU time required to solve each instance via MS-ELS is also showed.

Note that MS-ELS is able to find the optimal solution for 28 out of the 35 EnCicla instances.

For the remaining seven instances, in which MS-ELS do not deliver the optimal value for the

objective function, the metaheuristic finds at least the same upper bound reported by the optimizer

when MILP is solved. For instances 6, 7 and 35, the MS-ELS improves the upper bound found via

commercial solver when the MILP is solved. In these cases, column Min. gapUB shows negative

values. Lastly, MS-ELS is able to find minimum gap of 0.27% on average, when solutions are

compared with LB values.

68 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

There exist limitations if a real-scenario repositioning operation is treated as a 1–PDTSP. These

limitations are derived from two main facts to remark. Firstly, in the static version of the BRP,

stations are served during the night or while bike demands are negligible. Secondly, in the 1–PDTSP,

a single vehicle is available to visit all the locations. Then, only small size BSS can be served since

services times (load and unload bikes) and traveling times between stations are also included in the

operation for one vehicle. The main motivation to study EnCicla instances is not related to test the

1–PDTSP in large bike repositioning operation instances. The purpose within these experiments

is to evaluate the performance and solution quality of the solution strategy on a different set of

instances in which demands, and node locations were not generated randomly. In real scenarios, for

BSS with a large number of stations, the repositioning operation using a single vehicle would lead

to non-practical problems.

When solving MILP for EnCicla instances (see Table 3.7) it is possible to find optimal solutions

for 28 out of 35 instances in less than one hour and an average gap of 0.34%. These results

evidence an adequate performance for the exact strategy. However, it is possible to conduct an

additional experiment for this subset of instances in order to reduce the CPU time required and

improve solution quality for instances with no optimality proof. This experiment consist on using

the solution delivered by MS-ELS as a warm start for MILPPD. This warm start (the final solution

of MS-ELS), is read by the solver as an upper bound once the branch-and-bound process begins.

Table 3.18 summarizes the main results obtained with this solution strategy. For each instance, Table

3.18 reports the upper and lower bound from the optimizer (see columns UB and LB, respectively).

Thus, the gap is computed as (UB−LB)/UB×100. The CPU time required in seconds to solve

the mathematical model (MS-ELS times are already reported in Table 3.17) is also shown. Table

3.18 recalls gap and CPU time if a warm start is not available with the aim to easily display for the

reader variations on performance if warm start is used. Column ∆ time shows the variation on CPU

time if a start solution is available. This variation is computed as

∆ time = (timeMILP− timeWS)/timeMILP×100

where timeMILP and timeWS are the CPU times required to solve the mathematical model avoiding

and including the initial solution, respectively. Moreover, column ∆ gap, s the improvement

on gap between solving the MILP without a start solution and the warm start strategy: ∆ gap=

gapMILP−gapWS where gapMILP and gapWS are the gaps reported by the optimizer when solving

MILP including and skipping the initial solution, respectively.

Table 3.18 shows that warm start improves gaps for some instances. Nonetheless, there is not

3.4. COMPUTATIONAL EXPERIMENTS 69

Table 3.17: Computational results on MS-ELS for EnCicla instances

Instance Best # best Opt. Avg.
MILP LB MILP UB Avg.

time (s)Min. gapLB Avg. gap Min. gapUB Avg. gap
1 2737 3 * 2775.57 0.00% 1.38% 0.00% 1.38% 12.85
2 2769 4 * 2790.60 0.00% 0.77% 0.00% 0.77% 14.69
3 2781 2 * 2807.20 0.00% 0.93% 0.00% 0.93% 14.30
4 2722 7 * 2730.57 0.00% 0.31% 0.00% 0.31% 15.20
5 3074 8 * 3080.67 0.00% 0.21% 0.00% 0.21% 17.12
6 3364 1 3415.93 3.15% 4.61% -2.26% -0.72% 13.32
7 3066 3 3100.23 2.09% 3.16% -0.07% 1.03% 13.03
8 2746 4 * 2762.83 0.00% 0.61% 0.00% 0.61% 16.12
9 2803 5 * 2865.13 0.00% 2.15% 0.00% 2.15% 14.01

10 2760 6 * 2766.57 0.00% 0.23% 0.00% 0.23% 15.86
11 2838 6 * 2853.90 0.00% 0.55% 0.00% 0.55% 15.17
12 2723 4 * 2734.20 0.00% 0.41% 0.00% 0.41% 14.41
13 2648 7 * 2650.83 0.00% 0.11% 0.00% 0.11% 15.74
14 2936 3 * 2942.10 0.00% 0.21% 0.00% 0.21% 14.66
15 2621 5 * 2628.77 0.00% 0.29% 0.00% 0.29% 16.17
16 2793 6 * 2806.40 0.00% 0.47% 0.00% 0.47% 17.07
17 2818 3 2850.43 1.45% 2.55% 0.00% 1.11% 13.59
18 2891 7 * 2894.33 0.00% 0.11% 0.00% 0.11% 14.87
19 2684 6 * 2692.53 0.00% 0.31% 0.00% 0.31% 12.91
20 2569 7 * 2575.97 0.00% 0.27% 0.00% 0.27% 16.15
21 2817 3 2832.00 0.92% 1.45% 0.00% 0.53% 14.97
22 2859 2 * 2868.30 0.00% 0.32% 0.00% 0.32% 15.11
23 2794 4 * 2844.90 0.00% 1.76% 0.00% 1.76% 14.37
24 2653 6 * 2660.57 0.00% 0.28% 0.00% 0.28% 17.05
25 2878 6 * 2887.60 0.00% 0.33% 0.00% 0.33% 14.73
26 2595 5 * 2608.53 0.00% 0.51% 0.00% 0.51% 16.29
27 2888 4 2912.40 0.48% 1.31% 0.00% 0.83% 13.35
28 2536 1 * 2781.13 0.00% 2.56% 0.00% 2.56% 19.29
29 2781 3 * 2824.10 0.00% 1.52% 0.00% 1.52% 16.34
30 2574 6 * 2597.80 0.00% 0.90% 0.00% 0.90% 17.29
31 2793 2 * 2838.47 0.00% 1.60% 0.00% 1.60% 14.72
32 2852 1 * 2892.53 0.00% 1.40% 0.00% 1.40% 14.40
33 2799 3 2810.33 0.54% 0.94% 0.00% 0.40% 14.76
34 2534 7 * 2544.40 0.00% 0.40% 0.00% 0.40% 14.83
35 2777 2 2792.67 0.90% 1.45% -0.18% 0.38% 15.94

Avg. 4.34 2812.01 0.27% 1.04% -0.07% 0.70% 15.16

evidence to conclude that mathematical model performance is improved due to a initial solution.

CPU time improves 16.96% while gap decreases 0.10% over the 35 instances and 0.44% over the

70 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

eight instances with a variation on gap. Computational time may improve up to 84.21% if an upper

bound is computed for MILP (instance 20). Warm start also helps to find new optimality proofs

(instances 27 and 35) and reduce gaps even if no optimal solution is reported within the maximum

computational times (e.g. instances 6, 7 and 17). Finally, there are cases in which warm start

deteriorates computational times for MILP (e.g. instances 1, 2, 3 and 32) and also gap (instances 21

and 22).

3.5 Concluding remarks

Two mathematical models based on mixed-integer lineal programming for the 1–PDTSP and the

SD1PTSP have been presented. The MILP proposed for the 1–PDTSP can be adapted to tackle

split delivery and temporal storage operations. These models are able to deal with instances up

to 60 locations in decent computational times finding optimal solutions for all the instances up to

40 locations. Results in this chapter are compared with a reported exact approach concluding that

proposed models are competitive outperforming computational times and solution quality.

This chapter also describes a MS-ELS for the 1–PDTSP. A GRASP and an ILS algorithm as

particular cases of MS-ELS are also presented. The obtained results show that MS-ELS outperforms

two of the algorithms reported in the literature to deal with the 1–PDTSP. Moreover, for small

instances, it is possible to evidence the benefits if the evolutionary component is added to GRASP

and ILS algorithms. MS-ELS is able to find better solutions than those reported via GRASP and

MS-ILS for instances with 40 and 50 nodes. MS-ELS finds optimal solutions on instances with up

to 60 nodes and it also delivers better solutions for large instances up to 500 nodes in which optimal

solutions are not reported so far.

From a practical perspective, the 1–PDTSP is a simplifying representation of the static BRP.

Nevertheless, rebalacing decisions can be made for bike-sharing operations as 1–PDTSPs in small

and medimum size BSSs if a single vehicle is able to serve station requeriments.

Conferences and publications

A full-paper based on the metaheuristic procedure developed in this chapter has been published in

Annals of Operations Research:

• Palacio, J.D., Rivera, J.C. A multi-start evolutionary local search for the one-commodity

pickup and delivery traveling salesman problem. Ann Oper Res (2020).

https://doi.org/10.1007/s10479-020-03789-0

3.5. CONCLUDING REMARKS 71

Table 3.18: Computational results for EnCicla instances with warm start on MILP

Instance
MILP (with warm start) MILP ∆ gap ∆ time

UB LB gap Time (s) gap Time (s)
1 2737 2737 0.00% 307.19 0.00% 194.43 0.00% -58.00%
2 2769 2769 0.00% 142.01 0.00% 115.25 0.00% -23.22%
3 2781 2781 0.00% 1859.57 0.00% 1315.59 0.00% -41.35%
4 2722 2722 0.00% 417.00 0.00% 400.55 0.00% -4.11%
5 3074 3074 0.00% 2717.02 0.00% 3556.00 0.00% 23.59%
6 3258 3361 3.06% 3600.00 5.29% 3600.00 2.23% 0.00%
7 3006 3066 1.96% 3600.00 2.15% 3600.00 0.19% 0.00%
8 2746 2746 0.00% 650.15 0.00% 961.45 0.00% 32.38%
9 2803 2803 0.00% 641.21 0.00% 1731.30 0.00% 62.96%

10 2760 2760 0.00% 53.98 0.00% 69.45 0.00% 22.28%
11 2838 2838 0.00% 920.17 0.00% 944.08 0.00% 2.53%
12 2723 2723 0.00% 28.53 0.00% 47.54 0.00% 39.99%
13 2648 2648 0.00% 14.43 0.00% 19.56 0.00% 26.23%
14 2936 2936 0.00% 1498.38 0.00% 2223.79 0.00% 32.62%
15 2621 2621 0.00% 92.69 0.00% 308.82 0.00% 69.99%
16 2793 2793 0.00% 128.85 0.00% 155.91 0.00% 17.36%
17 2796 2818 0.78% 3600.00 1.45% 3600.00 0.67% 0.00%
18 2891 2891 0.00% 1094.39 0.00% 3254.71 0.00% 66.38%
19 2684 2684 0.00% 26.65 0.00% 58.03 0.00% 54.08%
20 2569 2569 0.00% 3.82 0.00% 24.20 0.00% 84.21%
21 2784 2817 1.17% 3600.00 0.92% 3600.00 -0.25% 0.00%
22 2831 2860 1.01% 3600.00 0.00% 3443.89 -1.01% -4.53%
23 2794 2794 0.00% 43.71 0.00% 75.66 0.00% 42.23%
24 2653 2653 0.00% 19.32 0.00% 35.50 0.00% 45.58%
25 2878 2878 0.00% 1010.72 0.00% 865.95 0.00% -16.72%
26 2595 2595 0.00% 36.66 0.00% 178.14 0.00% 79.42%
27 2888 2888 0.00% 2470.97 0.48% 3600.00 0.48% 31.36%
28 2536 2536 0.00% 4.04 0.00% 5.09 0.00% 20.63%
29 2781 2781 0.00% 18.71 0.00% 74.07 0.00% 74.74%
30 2574 2574 0.00% 7.52 0.00% 10.44 0.00% 27.97%
31 2793 2793 0.00% 1917.14 0.00% 2433.94 0.00% 21.23%
32 2852 2852 0.00% 2246.05 0.00% 819.73 0.00% -174.00%
33 2788 2799 0.39% 3600.00 0.54% 3600.00 0.14% 0.00%
34 2534 2534 0.00% 3.30 0.00% 4.22 0.00% 21.80%
35 2777 2777 0.00% 3029.92 1.08% 3600.00 1.08% 15.84%

Avg. 0.24% 1228.69 0.34% 1386.49 0.10% 16.96%

A book chapter based on results and analysis on MILPs for 1–PDTSP and SD1PDTSP have

been published in the Communications in Computer and Information Science book series:

72 CHAPTER 3. 1–PDTSP: MATHEMATICAL MODELS AND METAHEURISTIC APPROACHES

• Palacio J.D., Rivera J.C. (2019) Mixed-Integer Linear Programming Models

for One-Commodity Pickup and Delivery Traveling Salesman Problems. In:

Figueroa-Garcı́a J., Duarte-González M., Jaramillo-Isaza S., Orjuela-Cañon A.,

Dı́az-Gutierrez Y. (eds) Applied Computer Sciences in Engineering. WEA 2019.

Communications in Computer and Information Science, vol 1052. Springer, Cham.

https://doi.org/10.1007/978-3-030-31019-6 62

Results and analysis on MILPs for 1–PDTSP and SD1PDTSP were presented in the Workshop

on Engineering Applications (WEA) 2019:

• Palacio J.D., Rivera J.C. Mixed-Integer Linear Programming Models for One-Commodity

Pickup and Delivery Traveling Salesman Problems. Workshop on Engineering Applications

(WEA). Santa Marta, Colombia. 2019.

Preliminary results on an hybrid GRASP and VND algorithm for the 1–PDTSP were presented

in II Congreso Colombiano de Investigación Operativa (ASOCIO), 2017:

• Palacio J.D., Rivera J.C. Diseño de rutas para la distribución de bicicletas compartidas:

estrategias exactas y heurı́sticas. II Congreso Colombiano de Investigación Operativa

(ASOCIO). Medellı́n, Colombia. 2017

3.5. CONCLUDING REMARKS 73

Chapter 4

Mathematical models and solution
approaches for one-commodity pickup and
delivery vehicle routing problems

4.1 Introduction

This chapter addresses the 1–PDVRP. The 1–PDVRP can be seen as a generalization of the VRP.

It aims to design a set of routes able to pick up or delivery a known amount of a single product

supplied or demanded by two different types of locations (pickup or delivery nodes). To do so, a

capacitated fleet of homogeneous vehicles is available to meet the demand while the total traveling

cost is minimized. However, when several vehicles are available, optimal routes for the problem

are not typically cost-balanced. For practical purposes (i.e., repositioning operation in BSSs), this

situation must be avoided since decisions on workload for vehicles operators would not be fairly

made. Therefore, apart from a 1–PDVRP mathematical formulation, this chapter also describes

an MILP for the 1–PDVRPLC. The proposed strategy to model route length conditions allows to

compare the performance and balance for different length parameters.

This chapter also describes two hybrid procedures for the 1–PDVRPLC based on large

neighborhood search algorithms. These procedures are matheuristic strategies where destroy

and repair methods are replaced by MILPs. Particularly, the first procedure consists on a multi-start

iterative LNS (MS–ILNS). In the MS–ILNS, a single mathematical model partially destroys a

solution and also repair it for a set of iterations under a fixed number of initial solutions. The second

strategy is based on an adaptive LNS where several destroy methods are used and an MILP is able
75

76 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

to repair solutions. Given the adaptive nature of the algorithm, weights for destroy methods are

dynamically computed as well as the weights to decide whether a solution may be improved by

removing one route or by relocating nodes preserving the available number of routes. For this

ALNS-based matheuristic, an enumeration algorithm is also described as an alternative way to

repair solutions. Similar to MILP repair operator, this enumeration algorithm is able to retrieve

optimal solution for repairing process. For this algorithm, dominance rules are described as a way

to speedup its performance.

This chapter is structured as follows. Firstly, Section 4.2 presents the problem definition and an

MILP for 1–PDVRP and 1–PDVRPLC. Next, Section 4.3 describes the LNS based matheuristic

for the 1–PDVRPLC (MS–ILNS) as well as its main components. Thirdly, Section 4.4 is devoted

to describe the adaptive version of the matheuristic algorithm. In Section 4.5, the enumeration

algorithm able to replace MILP as repair method in ALNS matheuristic is outlined. Finally, sections

4.6 and 4.7 show computational experiments and some concluding remarks, respectively.

4.2 Problem definition and mixed integer linear models

This section describes two mathematical models. The first one, an MILP for the 1–PDVRP while the

second one is an adaptation of the 1–PDVRP model for the 1–PDVRPLC. Similarly to the graphical

description given in Section 3.2 for the 1–PDTSP and the SD1PDTSP, this section provides a

comparison between 1–PDVRP and 1–PDVRPLC solution showing the main motivation to study

the second problem.

4.2.1 The 1–PDVRP

Similarly to 1–PDTSP and SD1PDTSP, the 1–PDVRP is modeled on a complete and directed graph

G= (N,A). The set N contains all the nodes and the depot (i.e., node 0). The set A denotes the

arcs (i, j) between each pair of nodes which are labeled with non-negative cost ci j. In order to visit

all nodes, a fleet K of homogeneous capacitated vehicles is available at the depot. The demand on

node i ∈N is denoted by qi. As defined in Section 3.2.1, negative qi values indicate that node i is

a pickup node while delivery locations are labeled with positive qi values. Demand on depot, q0,

may also be positive, negative or zero. This imply that vehicles can leave depot with loads greater

than zero. As the number of available commodity units is assumed as a known constant, the sum of

all node demands is equal to zero. While a vehicle k ∈K visits a subset of nodes, its load cannot

overpass the limited capacity of Q units.

4.2. PROBLEM DEFINITION AND MIXED INTEGER LINEAR MODELS 77

The proposed MILP is based on four types of decision variables. The binary decision variable

wk
i takes the value of one if vehicle k visits node i, and zero otherwise. Similarly, the binary decision

variable yk
i j denotes whether the vehicle k traverses the arc (i, j) or not. Continuous variable lk

i j is

the load of the vehicle k when it goes from node i to node j while zk
i j determines a label for arc (i, j)

avoiding subtours in the solution. The proposed mathematical model for the 1–PDVRP follows.

min f = ∑
(i, j)∈A

ci j · ∑
k∈K

yk
i j (4.1)

subject to, ∑
k∈K

wk
i = 1, ∀ i ∈N \{0} (4.2)

∑
j∈N\{0}

yk
0 j = 1, ∀ k ∈K (4.3)

∑
j∈N
j ̸=i

yk
i j = wk

i , ∀ k ∈K, i ∈N (4.4)

∑
j∈N
j ̸=i

yk
i j = ∑

j∈N
j ̸=i

yk
ji, ∀ k ∈K, i ∈N (4.5)

lk
i j ≤ Q · yk

i j, ∀ k ∈K, (i, j) ∈A (4.6)

∑
j∈N
j ̸=i

lk
ji− ∑

j∈N
j ̸=i

lk
i j = qi ·wk

i , ∀ k ∈K, i ∈N (4.7)

∑
j∈N

zk
ji− ∑

j∈N
zk

i j = wk
i , ∀ k ∈K, i ∈N\{0} (4.8)

zk
i j ≤ |N| · yk

i j, ∀ k ∈K, (i, j) ∈A (4.9)

wk
i ∈ {0,1}, ∀ k ∈K, i ∈N (4.10)

yk
i j ∈ {0,1}, ∀ k ∈K, (i, j) ∈A (4.11)

lk
i j,z

k
i j ≥ 0, ∀ k ∈K, (i, j) ∈A (4.12)

The objective function in (4.1) aims to minimize the total travel cost. Equations in (4.2) ensure

that each node is visited by only one vehicle while those in (4.3) force each vehicle to leave the

depot once. Expressions in (4.4) and (4.5) guarantee that a vehicle gets in and leaves each node

only once. With constraints in (4.6) the load of vehicles does not exceed their capacity Q. The set

of flow constraints in (4.7) forces the model to meet the demand of nodes. Expressions in (4.8)

limit arc coefficients and prevent subtours on the solution. For VRPs, subtours are forbidden using

constraints in (4.7). However, when pickup and delivery operations are performed, those constraints

are not enough since qi may be negative. Finally, (4.10)–(4.12) describe the nature and domain of

78 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

the decision variables. As described in Section 3.2.1, variables lk
i j and zk

i j could be integer, but given

the structure of the formulation, a continuous domain leads to integer values.

4.2.2 The 1–PDVRP with tour length constraints

Equations in (4.3) force the model to design a route for each vehicle. This may end up in an optimal

solution like the one depicted in Figure 4.1 in which three vehicles are available to serve 20 nodes.

The total traveling cost for this solution is 5263 and route costs for vehicle 1, 2 and 3 are 2935, 1264

and 1064, respectively. A simple average cost per route for a balanced solution would be around

5263/3≈ 1754; however, the optimal solution in Figure 4.1 leads to an imbalance I, equal to 1871

(i.e., 2935-1064) computed as follows:

I = max
k∈K

{
∑

(i, j)∈A
ci j · yk

i j

}
−min

k∈K

{
∑

(i, j)∈A
ci j · yk

i j

}
(4.13)

In order to reduce the mentioned imbalance and to model operational constraints like driver

work shift duration, it is possible to fix a maximum route length (cost) T . Therefore, constraints to

ensure this maximum length may be modeled as:

∑
(i, j)∈A

ci j · yk
i j ≤ T, ∀ k ∈K (4.14)

Moreover, it is also possible to fix value for T based on an upper bound of the cost for the single

vehicle case (1–PDTSP). This upper bound can be computed as the total cost if only one vehicle is

available (i.e., the optimal solution for the 1–PDTSP). The proposed maximum route length is:

T =
f ∗PDTSP
|K|

· (1+α) (4.15)

where f ∗PDTSP is the optimal solution of the 1–PDTSP and α is a real number where 0≤ α < |K|−1.

Note that if α = |K|− 1, T allows to find routes with cost up to f ∗PDTSP. Needless to say, since

all the vehicles must visit a subset of nodes, a route with cost equal or greater than f ∗PDTSP is too

inefficient and outperformed by a single vehicle solution. On the other hand, if α = 0 then, T value

forces the model to deliver a perfect balanced set of routes. For tight values of α , if no feasible

solution exists, it is possible to find an unfeasibility measure. To do so, a new decision variable λ

is defined. λ saves the greatest difference between a route cost and T . Moreover, variable λ must

4.2. PROBLEM DEFINITION AND MIXED INTEGER LINEAR MODELS 79

be penalized in the objective function (4.1) and the set of constraints (4.17) for this variable are

included in the mathematical formulation. These new expressions follow:

min f = ∑
(i, j)∈A

ci j · ∑
k∈K

yk
i j +M ·λ (4.16)

subject to, λ ≥ ∑
(i, j)∈A

ci j · yk
i j−T, ∀ k ∈K (4.17)

λ ≥ 0 (4.18)

where M represents a large enough value in order to guarantee that solutions with larger λ values

are dominated.

The new objective function (4.16) minimizes the total cost of the routes while penalizes

unfeasible solutions in case that any route cost overpasses T . Constraints in (4.17) allow to

λ to have the value of the maximum difference between route costs and T . Expression (4.18) avoids

negative values for λ . Constraints (4.17) relax the expressions in (4.14).

If a solution satisfies expressions (4.14), λ becomes zero and the values of objectives (4.1) and

(4.16) are equivalent. When λ > 0 indicates that expression (4.14) is not satisfied.

Figure 4.1: Instance 1 solved as 1–PDVRP without route length constraints
(f ∗ = 5263)

80 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Once objective function (4.1) is replaced by (4.16) and constraints in (4.17) and (4.18) are added

to 1–PDVRP MILP with α = 0.5 and T = 2631, the solution in Figure 4.1 becomes unfeasible and

more balanced routes are obtained. The new optimal solution is depicted in Figure 4.2 in which cost

of routes 1, 2 and 3 are 2 275, 2 130 and 1 264, respectively. Following Equation (4.13), I = 1011

for this new solution. The new total cost increases to 5669 and λ = 0. For this particular instance,

the objective function value increases 7.2% and the imbalance I computed as in Equation (4.13)

decreases 45.69%.

Figure 4.2: Instance 1 solved as 1–PDVRPLC with T = 2631 (f ∗ = 5669)

4.2.3 Symmetry breaking constraints

Since multiple vehicles are used to serve nodes, there exist a natural symmetry in 1–PDVRP and

1–PDVRPLC. With the aim to eliminate alternative symmetric solutions for the 1-PDVRP, one of

the ideas proposed in Sherali and Smith (2001) is adapted to the 1–PDVRPLC MILP. Particularly, an

order to use the vehicles depending on the cost of each route is imposed. To do so, the vehicles are

assigned to routes in a decreasing fashion based on their cost by adding the next set of constraints to

1–PDVRPLC MILP:

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 81

∑
(i, j)∈A

ci j · yk
i j ≥ ∑

(i, j)∈A
ci j · yk+1

i j , ∀ k ∈ {1, .., |K|−1} (4.19)

Finally, as first vehicle is always assigned to the route with largest cost value, the set of

constraints in (4.17) can be replaced by:

λ ≥ ∑
(i, j)∈A

y1
i j−T (4.20)

4.3 Large neighborhood search based matheuristic

This section presents a LNS based algorithm to solve the 1–PDVRPLC. LNS algorithms were firstly

proposed in Shaw (1998) and a broad number of authors has developed LNS based algorithms to

solve vehicle routing problems (Demir et al., 2012; Parragh and Schmid, 2013; Ropke and Pisinger,

2006; Sacramento et al., 2019; Smith and Imeson, 2017). A simple version of LNS algorithms

starts with an initial solution which is gradually improved by iteratively destroying and repairing

the solution. Algorithm 4.1 shows a LNS framework where s0 denotes an initial solution and it is

improved via a LS procedure as in Line 3. Then, part of the solution is destroyed and immediately,

repaired with functions Destroy and Repair, respectively. Again, a local search procedure may

also finds improvements on new solution s (Line 5 to 7). These steps are executed repeatedly until a

stopping criterion (e.g., a maximum computational time) is reached. The algorithm returns the best

found solution (s∗).

Algorithm 4.1: LNS framework
1: input: initial solution (s0)
2: f ∗← ∞,s∗← /0
3: s← LocalSearch(s0)

4: repeat
5: sp←Destroy(s)
6: s′← Repair(sp)

7: s← LocalSearch(s′)
8: if f (s)< f ∗ then
9: s∗← s

10: f ∗← f (s)
11: end if
12: until stopping criterion
13: return s∗

82 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

For the 1–PDVRPLC, the proposed algorithm is based on a large neighborhood search procedure

where a single MILP replaces the destroy and repair operations simultaneously. Moreover, and as a

particular feature, the proposed LNS is also embedded on a multi-start iterated framework and a

set partitioning problem (SPP) model attempts to improve the best solution found via multi-start

iterated LNS (MS–ILNS). Next sections describe the general structure of the solution strategy as

well as its main components.

4.3.1 General structure

As mentioned before, the proposed strategy to solve 1–PDVRPLC is based on a LNS within a

multi-start iterated framework. Furthermore, destroy and repair operators in LNS are replaced by an

MILP. Thus, the solution strategy is a matheuristic algorithm as the one depicted in Algorithm 4.2.

The algorithm requires two parameters: MaxStarts and MaxIterations. These values

denote the number of initial solutions and the number of iterations to perform over each solution,

respectively. The strategy starts defining an incumbent for the best found solution (z∗) and an empty

set of solutions (S). To compute an initial solution, a Hamiltonian tour T is constructed via a greedy

randomized algorithm as described in Section 3.3.2. Then, a VND (VNDT) improves quality of tour

T and a variation of Split algorithm (Prins, 2004) is used to find a multi-vehicle solution (s) (lines

5 and 6, respectively). Routes in s are added to set S. For each solution, an MILP destroys and

repairs part of the solution with the aim to improve objective function value (based on the total

traveling cost) as shown in Line 15. Then, a VND for the solution (VNDs) finds local optima for s.

This process is repeated until no improvement on s is found. As a diversification component, the

iterative LNS concatenates and then, perturbs solution s represented as a Hamiltonian tour T (see

lines 25 and 26). Similar to the procedure described for initial solutions, this tour T is improved

via VNDT and split with Split function (Lines 27 and 28). Finally, as a large number of routes are

stored in S, a SPP model is solved attempting to improve the best solution found with the MS–ILNS

procedure.

In subsequent sections the main components of the MS–ILNS are described. As mentioned

before, to construct the initial solution, the greedy randomized algorithm described in Section 3.3.2

is used. Thus, that particular component is not described again in this chapter. .

4.3.2 Variable neighborhood descent procedures

As mentioned in Section 3.3.3, VND searches improvements for an incumbent solution exploring

increasingly the predefined set of neighborhoods and change from any of them to the first one

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 83

Algorithm 4.2: Multi-start iterative LNS matheuristic
1: function MS-ILNS(MaxStarts, MaxIterations)
2: z∗←− ∞, s∗←− /0, S←− /0
3: for i = 1 to MaxStarts do
4: T ←− GreedyRandomizedAlgorithm(seed)

5: T ←− VNDT(T)
6: s←− Split(T)
7: S←− S

⋃
s

8: if f (s)< z∗ then
9: s∗←− s

10: z∗←− f (s)
11: end if
12: for j = 1 to MaxIterations do
13: repeat
14: z′←− f (s)
15: s←− Destroy & Repair MILP(s)
16: s←− VNDS(s)
17: if f (s)< z′ then
18: S←− S

⋃
s

19: if f (s)< z∗ then
20: s∗←− s
21: z∗←− f (s)
22: end if
23: end if
24: until z′ = f (s)
25: T ←− Concatenate(s)
26: T ←− Perturbation(T)
27: T ←− VNDT(T)
28: s←− Split(T)
29: S←− S

⋃
s

30: if f (s)< z∗ then
31: s∗←− s
32: z∗←− f (s)
33: end if
34: end for
35: end for
36: s∗←−SPP IP(S)

37: return s∗

38: end function

only if a better solution is found. Algorithm 4.3 depicts a general framework for VND to improve

Hamiltonian tours with the aim to find solutions for 1–PDVRPLC. Given the incumbent from an

84 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Algorithm 4.3: Variable neighborhood descent algorithm
1: function: VND (T)
2: T ′←− T
3: v←− 1
4: while v≤ vmax do
5: T ←− LocalSearch(T ′, Nv(T ′))
6: if f (T)< f (T ′) then
7: T ′←− T
8: v←− 1
9: else

10: v←− v+1
11: end if
12: end while
13: return T ′

initial Hamiltonian tour T ′, the set of neighbor solutions reachable from T ′, Nk(T ′), is evaluated

applying local search operator v (i.e., LocalSearch(T ′, Nv(T ′))) where v ≤ vmax. If the total

traveling cost from the obtained solution (T) is better that the incumbent, then the incumbent and

the best found solution T ′ are updated and, the search continues with v = 1. Otherwise the next

neighborhood is explored (v←− v+1). The algorithm stops when v > vmax.

The MS–ILNS for the 1–PDVRPLC described in Algorithm 4.2 calls two functions based on

a VND procedure: VNDT and VNDS, to improve Hamiltonian tours and 1–PDVRPLC solutions,

respectively. A description on these two functions follows:

VND for Hamiltonian tours (VNDT)

The first proposed VND (VNDT) for the 1–PDVRPLC is based on three neighborhoods for

Hamiltonian tours: move vertex, 2−opt and 3−opt. These three operators are embedded on

LocalSearch function for v=1, 2 and 3, respectively. All operators follow the best improvement

criterion. A description of the implementation for these neighborhoods follows.

(i) Move vertex: the first local search operator (v = 1), attempts to improve the total traveling

cost of a tour by moving a node from its original position p to a different one in the path. The

new position p′ may vary from 1 to |N|−1 with p′ ̸= p. It is worth to recall that since tour T ′

is feasible, move vertex aims to improve the solution preserving its feasibility (see condition in

(3.11)).

The complexity of move vertex operator is O(|N|2). Nonetheless, this implementation follows

the ideas described in Lin (1965) and Section 3.3.3 for 2−opt and 3−opt operators. Firstly, a

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 85

list of m nearest locations for each node is stored. Then, the operator only scans a possible

move for node i if it can be located one position before one of its m closest stations. Following

this strategy, the complexity of move vertex operator is reduced to O(|N| ·m).

(ii) 2−opt: similarly to move vertex, 2−opt as second local search operator (v = 2) in VND,

aims to improve total traveling cost for T ′ while preserving its feasibility. This neighborhood

removes two edges and therefore the tour is split in two paths. Then, those paths are connected

again in the other possible way. The computational complexity of 2−opt is O(|N|2) but as in

move vertex, the number of potential edge exchanges to the m closest nodes to location i is

reduced. Thus, 2−opt also runs in O(|N| ·m).

(iii) 3−opt: the third and final neighborhood within VND (v = 3) removes three edges of the

original tour and then, four different solutions may be found. If all possible combinations

when deleting three edges are explored, 3−opt complexity is O(|N|3). In this implementation,

only m possible moves are explored for each one of the m nearest neighbors for each node i.

This strategy leads to a complexity of O(|N| ·m2) instead of O(|N|3).

Finally, adequate values for m within these three VND operators depend on the size of the

problem (i.e., |N|) as mentioned in prior work for the 1–PDTSP (Hernández-Pérez et al., 2009;

Palacio and Rivera, 2022) and in Section 3.3.3.

VND for 1–PDVRPLC solutions (VNDS)

The second VND function called in the MS–ILNS is VNDS, to improve total traveling times over

multi-vehicle solutions (i.e., feasible solutions for 1–PDVRPLC). Similar to VNDT , VNDS works as an

intensification operator within the MS–ILNS algorithm via three neighborhoods exploration: string

exchange, string relocation and string cross. These operators were initially defined in Van Breedam

(1994) as inter-route moves. VNDS explores on these neighborhoods with best improvement criterion.

Moreover, since MS–ILNS algorithm searches only on feasible solution space, VNDS and its operators

requires to check whether a move is feasible. Thus, some of the properties described in Dell’Amico

et al. (2016) for 1–PDVRP feasible movements on local search operators are checked on VNDS

algorithm. Before describing the local search operators for VNDS, the properties presented and

proved in Dell’Amico et al. (2016) are also mentioned. Nevertheless, we also described the amount

of feasibility concept as follows:

Let R be a route. As equation (3.11) states, R is feasible if

86 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

max
i∈N
{lR(i)}−min

i∈N
{lR(i)} ≤ Q (4.21)

Then, the surplus for the vehicle capacity after route R is performed is called the amount of

feasibility and is calculated as follows:

∆R = Q−max
i∈N
{lR(i)}+min

i∈N
{lR(i)} (4.22)

Once ∆R is computed, if i ∈ R and |qi| ≤ ∆R, then node i can be feasibly removed from route R.

Based on the amount of feasibility for any route R, properties for feasible LS movements in

1-PDVRP solutions are:

a. If i /∈ R and |qi| ≤ ∆R, then the node i can be feasibly inserted in any position of route R.

b. If i ∈ R and |qi| ≤ ∆R, then node i can be feasibly moved to any position along route R.

c. If i and j ∈ R, and |qi−q j| ≤ ∆R, then the swap of nodes i and j is feasible.

d. Let R′ be a route and R ̸= R′. If i ∈ R, j ∈ R′, and |qi− q j| ≤ min{∆R,∆R′}, then the swap of

nodes i and j is feasible.

With the described properties for local search moves in 1–PDVRP solutions, the search

procedures used in VNDS may be described as follows:

(i) String exchange: this operation takes two strings (where a string is defined as a chain of at

most k nodes) from two different routes and exchanges them. In string exchange for VNDS, k

always take the value of one. This is, the operator exchanges two nodes taken from different

routes in a solution. Algorithm 4.4 describes the string exchange process. Firstly, for each

route R, values for ∆R are computed as in equation (4.22). Then, for each pair of routes R

and R′ where R ̸= R′ and each pair of nodes i ∈ R and j ∈ R′, the exchange of these nodes is

evaluated (see Line 11) following property (c). If this exchange is feasible, then a variation

on cost for solution s is computed within the function StringExchangeCost. Note that the

variation can be obtained by adding the costs of new arcs in the solution and removing the

costs of deleted arcs if exchange is executed. New traveling cost does not need to be computed

from scratch. Following the best improvement criterion, nodes i and j are stored as well as

cost improvement (Lines 13 to 17). For each pair of routes, if a feasible exchange reduces the

total traveling cost (δ ∗ ≤ 0), routes in solution s are updated (Line 23). Finally, solution s is

updated.

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 87

Algorithm 4.4: String exchange for 1–PDVRPLC
1: function: String exchange(s)
2: R←−ExtractRoutes(s)
3: for R ∈ R do
4: ∆R←− Q−maxi∈N{lR(i)}+mini∈N{lR(i)}
5: end for
6: for R = 1 to |R|−1 do
7: for R′ = R+1 to |R| do
8: δ ∗←− 0
9: for i ∈ R do

10: for j ∈ R′ do
11: if |qi−q j| ≤min{∆R,∆R′} then
12: δ ←−StringExchangeCost(Ri,R′j)
13: if δ ≤ δ ∗ then
14: i∗←− i
15: j∗←− j
16: δ ∗←− δ

17: end if
18: end if
19: end for
20: end for
21: if δ ∗ ≤ 0 then
22: f (s)←− f (s)+δ ∗

23: R←−UpdateExchange(R,R′, i∗, j∗)
24: end if
25: end for
26: end for
27: s←−UpdateSolution(R, f (s))
28: return s

(ii) String relocation: the relocation operator removes a string from a route and finds a new

position to insert it in a different route. Similar to string exchange, this operator for VNDS takes

strings of size 1 (i.e., only one node is removed and inserted). Algorithm 4.5 depicts the string

relocation operator for 1–PDVRPLC. After the amount of feasibility is computed for each

route, the algorithm checks for each node in route R whether it can be feasibly removed (Line

8) as property (a) describes. Then, for each position in a different route (R′), and applying

property (e) in Line 11, the procedure determines if it is feasible to insert the node in R′. Next,

a traveling cost improvement is computed if node i is inserted at position j with function

StringRelocationCost. As described for string exchange, string relocation stores the best

improvement (i.e., i∗, j∗ and δ ∗) and update routes and solution.

88 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Algorithm 4.5: String relocation for 1–PDVRPLC
1: function: String relocation(s)
2: R←−ExtractRoutes(s)
3: for R ∈ R do
4: ∆R←− Q−maxi∈N{lR(i)}+mini∈N{lR(i)}
5: end for
6: for R = 1 to |R| do
7: for i ∈ R do
8: if |qi| ≤ ∆R then
9: for R′ = 1 to |R′|,R ̸= R′ do

10: δ ∗←− 0
11: if |qi| ≤ ∆′R then
12: for j ∈ R′ do
13: δ ←−StringRelocationCost(Ri,R′[j])
14: if δ ≤ δ ∗ then
15: i∗←− i
16: j∗←− [j]
17: δ ∗←− δ

18: end if
19: end for
20: end if
21: end for
22: if δ ∗ ≤ 0 then
23: f (s)←− f (s)+δ ∗

24: R←−UpdateRelocation(R,R′, i∗, j∗)
25: end if
26: end if
27: end for
28: end for
29: s←−UpdateSolution(R, f (s))
30: return s

(iii) String cross: this operator removes one edge from two routes and then, the resulting strings are

linked again in the other possible way. A small example of string cross is depicted in Figure

4.3. Firstly, let routes R and R′ as in Figure 4.3a be two candidates for the local search operator.

If edges (3,4) and (8,9) are removed, then routes are divided in four strings a, b, c and d as

shown in Figure 4.3b. As described in equation (3.15), a feasible path for pickup and delivery

route fulfills that the difference between maximum and minimum loads is less or equal than

vehicle capacity (Q). Moreover, if l−P(i) and l+P(i) denote the minimum and maximum load of

route P after i nodes are visited, thus l+R(4)− l−R(4) ≤ Q and l+R′(5)− l−R′(5) ≤ Q. To determine

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 89

whether a string cross as the one shown in Figure 4.3c is feasible, following conditions must

be met:

max{l+R(4), lR(4)−q9}−min{l−R(4), lR(4)−q9} ≤ Q (4.23)

max{l+R′(5), lR′(5)−q4}−min{l−R′(5), lR′(5)−q4} ≤ Q (4.24)

where q9 and q4 denote the demand at nodes 9 and 4 respectively. Additive inverse of these

two values also represent minimum as well as maximum load for strings b within routes R and

R′. Explicitly, if θ
+
b,R,θ

+
b,R′,θ

−
b,R and θ

−
b,R′ store maximum and minimum loads for strings b in

routes R and R′, then θ
+
b,R =−q4,θ

+
b,R′ =−q9,θ

−
b,R =−q4 and θ

−
b,R′ =−q9. Since string cross

must be evaluated for each pair of edges in R and R′, second possible neighbor is depicted in

Figure 4.3d. Nonetheless, minimum and maximum loads over string b in route R′ (i.e., θ
+
b,R′

for b = [8,9]) must be firstly computed. This can be done recursively if information about

string b = [9] is available (computed while neighbor 1 is evaluated as in Figure 4.3c. Minimum

and maximum loads for string [8,9] in route R′ are computed as:

θ(2)+b,R′ = max{θ(1)+b,R′−q8,−q8} (4.25)

θ(2)−b,R′ = min{θ(1)−b,R′−q8,−q8} (4.26)

Similarly, if a third neighbor as shown in Figure 4.3e is evaluated, minimum and maximum

loads for string b in route R′ are computed as:

θ(3)+b,R′ = max{θ(2)+b,R′−q7,−q7} (4.27)

θ(3)−b,R′ = min{θ(2)−b,R′−q7,−q7} (4.28)

and neighbor in Figure 4.3e is feasible if

max{l+R(4), lR(4)+θ(3)+b,R′}−min{l−R(4), lR(4)+θ(3)−b,R′} ≤ Q (4.29)

max{l+R′(3), lR′(3)−q4}−min{l−R′(3), lR′(3)−q4} ≤ Q (4.30)

Needless to say, length of string b for R′ increases as the maximum tour length is not violated.

In that case, a new neighbor as the one in Figure 4.3f is evaluated computing maximum and

minimum loads similarly to those described in expressions (4.23) and (4.24).

The string cross operator described in Figure 4.3 as an example, can be represented formally in

Algorithm 4.6. This algorithm finds the best improvement on string cross searching within all

90 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

(a) Input for string cross operator (b) String length definition

(c) String cross for i = |R| and j = |R′| (d) String cross for i = |R| and j = |R′|−1

(e) String cross for i = |R| and j = |R′|−2 (f) String cross for i = |R|−1 and j = |R′|

Figure 4.3: String cross example

pairs of routes in solution s (Lines 3 and 5). Values for θ
+
b,R,θ

+
b,R′,θ

−
b,R and θ

−
b,R′ are initialized

in Lines 4 and 6. Similarly to these four values, it is possible to compute θ
+
a,R,θ

+
a,R′,θ

−
a,R and

θ
−
a,R′ (see Lines 8 and 10). Nevertheless, these values are not computed from scratch since they

are inherently stored in each route information (as l+R(p), l
+
R′(p), l

−
R(p) and, l−R′(p), respectively, for

each position p in routes R and R′). Variables γ
+
a,R,b,R′ and γ

−
a,R,b,R′ store values for maximum

and minimum loads if string a in route R is crossed with string b in route R′. In a similar

way, γ
+
a,R′,b,R and γ

−
a,R′,b,R denote values for maximum and minimum loads if string a in route

R′ is crossed with string b in route (Lines 11, 12, 14 and 15). If crossing these string is a

feasible operation, then a cost change is computed with function StringCrossCost. Best

improvement is stored while values for minimum and maximum loads are updated for b strings

on both routes. Lastly, the algorithm updates the routes and returns solution s.

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 91

Algorithm 4.6: String cross for 1–PDVRPLC
1: function: String cross(s)
2: R←−ExtractRoutes(s)
3: for R = 1 to |R|−1 do
4: θ

−
b,R←−−qR

|R| , θ
+
b,R←−−qR

|R|
5: for R′ = R+1 to |R| do
6: θ

−
b,R′ ←−−qR′

|R′|, θ
+
b,R′ ←−−qR′

|R′|
7: for i = |R| to 1, step −1 do
8: θ

−
a,R←− l−R(i) , θ

+
a,R←− l+R(i)

9: for j = |R′| to 1, step −1 do
10: θ

−
a,R′ ←− l−R′(j) , θ

+
a,R′ ←− l+R(j)

11: γ
−
a,R,b,R′ ←−min{θ−a,R, lR(i)+θ

−
b,R′}

12: γ
+
a,R,b,R′ ←−max{θ+

a,R, lR(i)+θ
+
b,R′}

13: if γ
+
a,R,b,R′− γ

−
a,R,b,R′ ≤ Q then

14: γ
−
a,R′,b,R←−min{θ−a,R′, lR′(j)+θ

−
b,R}

15: γ
+
a,R′,b,R←−max{θ+

a,R′, lR′(j)+θ
+
b,R}

16: if γ
+
a,R′,b,R− γ

−
a,R′,b,R ≤ Q then

17: δ ←−StringCrossCost(R(i),R′(j))

18: if δ ≤ δ ∗ then
19: R1←− R, R2←− R′

20: i∗←− i, j∗←− j, δ ∗←− δ

21: end if
22: end if
23: end if
24: θ

−
b,R′ ←−min{θ−b,R′−q j,−q j}

25: θ
+
b,R′ ←−max{θ+

b,R′−q j,−q j}
26: end for
27: θ

−
b,R←−min{θ−b,R−qi,−qi}

28: θ
+
b,R←−max{θ+

b,R−qi,−qi}
29: end for
30: end for
31: end for
32: if δ ∗ ≤ 0 then
33: f (s)←− f (s)+δ ∗

34: R←−UpdateCross(R1,R2, i∗, j∗)
35: end if
36: s←−UpdateSolution(R, f (s))
37: return s

92 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

4.3.3 Split procedure for the 1–PDVRP

This route-first cluster-second heuristic is initially described in Prins (2004) as an strategy to find

a solution for the VRP from an initial Hamiltonian tour. For a classical capacitated VRP, Split is

designed as a two phase method where firstly a TSP solution is found by relaxing vehicle capacity

constraints. Next, this TSP solution (i.e., Hamiltonian tour) is split in feasible routes for the VRP.

The Split algorithm for the CVRP is based on an auxiliary graph with |N| nodes and the set of arcs

is composed by all the pairs of locations (i, j) if a trip visiting nodes i+1 to j is feasible in terms of

load (Prins, 2004). Based on the initial Hamiltonian tour, the shortest path from the depot to the

node in the position |N| on the auxiliary graph, provides the optimal way to split the tour.

In the LNS based strategy to solve the 1–PDVRPLC, Split requires a Hamiltonian tour T to

find a set of routes (a solution) that met vehicles capacity (Q) and the maximum route length (T L).

Without loss of generality, T L can be a fixed value or may be expressed as a function based on

number of available vehicles (as described in equation (4.15)). Since Prins (2004) describes Split

for the CVRP, a variation on this procedure is presented in Algorithm 4.7 to include vehicle capacity

constraints under pickup and delivery operations as well as tour length limitation.

The algorithm starts assigning an initial cost when reaching each node i (Vi) in lines 2 to 4.

Then, starting from position i, Split checks whether is possible to reach node in each position j

in the tour. Constraints based on the maximum route length (T L) (length ≤ T L) are evaluated

as in constraints (4.14). Similarly, computing maximum and minimum vehicle loads (l+ and l−,

respectively), feasible loads for the vehicle (l+− l− ≤ Q) are also imposed (see lines 10 to 22).

After cost is updated if position j can be reached from node in position i, the algorithm checks

for an improvement in the total traveling cost of the partial route (Line 26). Similarly, the strategy

updates the path (P) for the new route (line 28). Lastly, the function extractSolution delivers

the complete path for each route by extracting nodes added to P.

4.3.4 MILP-based destroy and repair operator

As mentioned in Section 4.3.1, in the MS-ILNS the destroy and repair functions are replaced by an

MILP. This section describes the mathematical model able to remove part of the solution (i.e., a

subset of nodes), and insert them in different positions improving total traveling costs. The proposed

MILP requires as parameters the traveling cost ci j from i to j as well as demand at node i (qi) and

the vehicle capacity Q. A binary parameter wi j denotes whether arc (i, j) exists in the solution to

destroy and repair. Binary variable y−i j takes the value of one if arc (i, j) is removed (destroyed)

from the solution and zero otherwise. Similarly, y+i j is also a binary variable and denotes whether

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 93

Algorithm 4.7: Split algorithm for PDVRPs. Adapted from Prins (2004)
1: function: Split (T)
2: for i = 1 to |N| do
3: Vi←+∞

4: end for
5: V0← 0
6: for i = 1 to |N| do
7: l← 0, l+← 0, l−← 0
8: cost← 0, length← 0
9: j← i

10: while j < |N| and l+− l− ≤ Q and length≤ T L do
11: l← qT[j]
12: if l < l− then
13: l−← l
14: else
15: if l > l+ then
16: l+← l
17: end if
18: end if
19: if j = i then
20: cost← 2 · cT [i],T [j]
21: else
22: cost← cost− cT [j−1],T [i]+ cT [j−1],T [j]+ cT [j],T [i]
23: end if
24: length← length+ cost
25: if l+− l− ≤ Q and length≤ T L then
26: if Vi−1 + cost <Vj then
27: Vj←Vi−1 + cost
28: Pj← i−1
29: end if
30: end if
31: j← j+1
32: end while
33: end for
34: s∗← extractSolution(P)
35: return s∗

arc (i, j) is added to the new solution. Varible li j represents the vehicle load when traversing arc

(i, j) while zi j saves the number of arcs traversed before node i is visited. Finally, ψ denotes the

maximum number of arcs to destroy and consequently, to repair in the solution. The proposed

mathematical model able to destroy and repair a 1–PDVRPLC solution follows.

94 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

min f = ∑
(i, j)∈A

ci j · (y+i j − y−i j) (4.31)

subject to,

∑
(i, j)∈A

y+i j ≤ ψ (4.32)

y+i j + y−i j ≤ 1, ∀ (i, j) ∈A (4.33)

∑
j∈N
i̸= j

(wi j + y+i j − y−i j) = 1, ∀ i ∈N (4.34)

∑
i∈N

(wi j + y+i j − y−i j) = ∑
i∈N

(w ji + y+ji− y−ji), ∀ j ∈N (4.35)

y−i j ≤ wi j, ∀ (i, j) ∈A (4.36)

li j ≤ Q · (wi j + y+i j − y−i j), ∀ (i, j) ∈A (4.37)

∑
j∈N

l ji− ∑
j∈N

li j = qi, ∀ i ∈N (4.38)

∑
j∈N

z ji− ∑
j∈N

zi j = 1, ∀ i ∈N\{0} (4.39)

zi j ≤ |N| · (wi j + y+i j − y−i j), ∀ (i, j) ∈A (4.40)

y+i j ,y
−
i j ∈ {0,1}, ∀ (i, j) ∈A (4.41)

zi j, li j ≥ 0, ∀ (i, j) ∈A (4.42)

ψ ≥ 0 (4.43)

Objective function in (4.31) aims to minimize the traveling cost for destroyed and repaired arcs

in a solution. Since traveling cost is computed through variables y+i j and y−i j values, only negative

values for f denotes an improved solution. Constraint in (4.32) imposes that no more than ψ arcs

must be repaired (and destroyed) for the new solution. Expressions in (4.33) force the model to

include an arc (i, j) in the new route only if (i, j) does not exist in the original solution. Constraints

(4.34) and (4.35) ensure that each node i in the route is visited only once even if at least one of its

arcs is removed from the solution. Inequalities in (4.36) guarantee that only existing arcs can be

destroyed. Vehicle capacity constraints are described in (4.37) while expressions in (4.38) force

the model to meet demand at each node. Constraints (4.39) and (4.40) avoid subtours in the final

solution. Finally, constraints in (4.41)–(4.43) describe the nature of decision variables.

4.3. LARGE NEIGHBORHOOD SEARCH BASED MATHEURISTIC 95

4.3.5 Concatenation and perturbation functions

As mentioned in Section 4.3.1, Algorithm 4.2 calls Concatenate and Perturbation functions as

part of diversification component for the MS–ILNS. Firstly, Concatenate function links the set

of routes in a solution s as a Hamiltonian tour. Then, this tour is modified (i.e., a small number of

nodes are moved to a different position) via Perturbation function. Since as a later step, Split

algorithm is applied to perturbed tours, a different 1–PDVRPLC solution is obtained.

Function Concatenate simply shuffles randomly routes in solution s and then required arcs are

linked to find a Hamiltonian tour. Figure 4.4 describes the complete process. A solution s composed

of 13 nodes and three routes is depicted in Figure 4.4a. Figure 4.4b shows a random shuffle of s.

In Figure 4.4c depot is removed from second and third route (and consequently, arcs connecting

depot to nodes 1 and 10). Finally, required arcs as (9,1) and (4,10) are added to conform the

Hamiltonian tour. It is worth to mention that this concatenation function may return an unfeasible

Hamiltonian tour (i.e., vehicle load exceeds its capacity). Nevertheless, after perturbation is applied,

Split algorithm is able to provide a new multi-vehicle solution with feasible loads as described in

Section 4.3.3.

Once the concatenation is completed, function Perturbation slightly modify the Hamiltonian

tour delivered by Concatenate. For the MS-ILNS algorithm, the perturbation function is based

on the one described in Section 3.3.4 for the MS–ELS to solve the 1–PDTSP. For the MS–ILNS

proposed to solve 1–PDVRPLC, the perturbation function allows unfeasible Hamiltonian tours

(i.e., Concatenate may return unfeasible vehicle loads). Thus, this perturbation procedure does

(a) Solution before concatenation (b) Random shuffle for solution

(c) Arcs to remove after shuffle (d) New Hamiltonian tour after concatenation

Figure 4.4: Concatenate operation example

96 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

not check for feasible movements or improvements in total traveling cost. 2−opt operator for

perturbation function only removes randomly selected arcs and links the nodes in the other possible

way but no feasibility check is performed.

4.3.6 Set partitioning based post-optimization procedure

The MS–ILNS described in Section 4.3.1 starts with an empty set S which stores 1–PDVRPLC

solutions after Split and VNDs are called. With the aim to improve the best solution found via

MS–ILNS, a final procedure is added to the solution strategy: a set partitioning model. Let R be the

set of all routes that conform solutions in S. A SPP model can be solved for set R and a solution

with a lower total traveling cost may be found along the routes of different solutions in S. The

parameters for the SPP IP include gr as the traveling cost of route r (r ∈ R). Parameter air takes the

value of one if node i is visited in route r and zero otherwise. Moreover, an upper bound for the

number of vehicles required may also be imposed to the model. In CVRPs, a straightforward way

to compute this upper bound consists on finding any integer greater than the optimal solution of a

bin packing problem in which the weight of items is equal to demands and the bin capacity is the

vehicle capacity. For large values of T L this upper bound is also valid for 1–PDVRPLC.

Finally, decision variable xi takes the value of one if route r is selected in the SPP solution and

zero otherwise. The SPP IP for the 1–PDVRPLC follows:

min f = ∑
r∈R

gr · xr (4.44)

subject to,

∑
r∈R

air · xr = 1, ∀ i ∈N \{0} (4.45)

∑
r∈R

xr ≤ K̄, (4.46)

xr ∈ {0,1}, ∀ r ∈ R (4.47)

Objective function in (4.44) minimizes the total traveling cost. Constraints in (4.45) ensure that

each node is visited once while expression (4.46) allows to select up to K̄ routes. Note that this

mathematical model is suitable to solve fixed fleet size problems by replacing K̄ with the number of

available vehicles. Lastly, expressions in (4.47) describe the domain of variables xi.

4.4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 97

4.4 Adaptive large neighborhood search algorithm

This section describes an extension of LNS algorithm presented in Section 4.3 which is also able to

solve the 1–PDVRPLC. This extension is inspired on adaptive features added to LNS metaheuristic.

Adaptive LNS (ALNS) was firstly proposed in Ropke and Pisinger (2006). Precisely, Ropke and

Pisinger (2006) define ALNS as a LNS that allows several destroy and repair procedures with

adaptive operator selection. These sets of destroy and repair procedures are available to be used

in a single search. For each destroy/repair procedure an initial weight is assigned and then, those

weights are dynamically adjusted during the search. Thus the metaheuristic behavior is adapted to

the particular instance being solved. Algorithm 4.8 depicts a pseudocode for ALNS metaheuristic.

Firstly, destroy and repair weights (values between 0 and 1) are initialized assigning the same

weight for every destroy method and also for each repair method. Then, one destroy method (d) and

one repair method (r) are selected randomly using a roulette wheel principle and weights computed

for each method. Once these methods are selected, solution s is destroyed and then repaired. The

algorithm checks whether best solution found must be updated and weights for destroy and repair

operators are updated. This process is repeated until a stop criterion is met.

ALNS algorithms are widely used to solve vehicle routing problem and its extensions. For

example, Li et al. (2016) and Liu et al. (2019) solve a VRP with time windows via ALNS. ALNSs

are also used to solve VRPs with truck and trailers (Parragh and Cordeau, 2017), multi-depot

VRP (Alinaghian and Shokouhi, 2018; Mancini, 2016), two-echelon VRP (Grangier et al., 2016;

Hemmelmayr et al., 2012; Li et al., 2020), selective VRP (Aksen et al., 2014) and, periodic routing

problems (Koç, 2016). Pickup and delivery problems are also addressed via ALNS: Masson et al.

(2013) introduce transfer points between pickup and delivery nodes; Grimault et al. (2017) include

temporal precedence and synchronization constraints. Lastly, time dependent extensions are also

included in pickup and delivery problems solved via ALNS (Sun et al., 2020).

The ALNS presented in this section slightly differs from the classical algorithm described

in Ropke and Pisinger (2006) and Algorithm 4.8. Firstly, the proposed ALNS aims to improve

1–PDVRPLC solutions through two different operations (goals): remove nodes from routes (and

insert them in different positions) or, remove a complete route (and insert their nodes in other paths).

The proposed ALNS is adaptive in two ways: (i) weights to select a goal are computed dynamically;

(ii) since several destroy operators for removing nodes from routes are available, their weights are

also updated dynamically. After a route is removed from the solution, its nodes are inserted in the

other paths via MILP. Similarly, if some nodes are removed from routes, an MILP finds a new

position for them in the solution.

98 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Several components of the proposed ALNS based matheuristic are already described in previous

sections. Constructive algorithm, VNDs, Split and, concatenate and perturbation for ALNS were

previously presented in Sections 3.3.2, 4.3.2, 4.3.3 and, 4.3.5, respectively. Thus, following sections

describe the general structure of the ALNS based matheuristic and its elements not yet defined.

Algorithm 4.8: ALNS framework
1: input: initial solution (s)
2: f ∗← ∞,s∗← /0
3: InitializeDestroyOperatorWeights()

4: InitializeRepairOperatorWeights()

5: repeat
6: d←SelectDestroyOperator()

7: r←SelectRepairOperator()

8: s′← Destroy(s,d)
9: s← Repair(s′,r)

10: if f (s)< f ∗ then
11: s∗← s
12: f ∗← f (s)
13: end if
14: UpdateDestroyOperatorWeights()

15: UpdateRepairOperatorWeights()

16: until stop criterion
17: return s∗

4.4.1 General structure

The proposed ALNS algorithm for the 1–PDVRPLC is a matheuristic strategy since it combines

(meta)heuristic procedures (Split, VND, greedy algorithm) with mathematical models to repair

solutions. Algorithm 4.9 shows the ALNS matheuristic framework.

The adaptive nature of the algorithm is determined by goals and destroy strategies for routes

that are selected dynamically. Therefore, two functions initialize these two sets of weights:

InitializeDestroyOperatorWeights and InitializeGoalWeights for destroy operators and

goals, respectively. After lines 3 and 4 are executed, vectors π⃗ and λ⃗ contain the same weight for

each method or goal. Similar to the MS-ILNS described in Section 4.3.1, an initial Hamiltonian

tour is constructed and improved via greedy randomized algorithm and VNDT functions. Then, an

initial 1–PDVRPLC solution is obtained and improved via Split algorithm and VNDs (Lines 5 to 8).

The function SelectGoal determines randomly one out of two actions: destroy routes partially

or remove a route completely. If a partial destruction of nr routes is selected (λ = 1), then a

4.4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 99

Algorithm 4.9: Adaptive LNS matheuristic
1: function ALNS(MaxIterations)
2: z∗←− ∞, s∗←− /0
3: π⃗ ←−InitializeDestroyOperatorWeights()
4: λ⃗ ←−InitializeGoalWeights()
5: T ←− GreedyRandomizedAlgorithm(seed)

6: T ←− VNDT(T)
7: s←− Split(T)
8: s←− VNDS(s)
9: if f (s)< z∗ then

10: s∗←− s
11: z∗←− f (s)
12: end if
13: for j = 1 to MaxIterations do
14: repeat
15: λ ←− SelectGoal()

16: if λ = 1 then
17: π ←− SelectDestroyOperator(π⃗)

18: s←− Destroy&RepairRoutes(s,π)
19: π⃗ ←−UpdateDestroyOperatorWeights()
20: else
21: s←− RemoveRoute(s)
22: end if
23: λ⃗ ←−UpdateGoalWeights()
24: if f (s)< z∗ then
25: s∗←− s
26: z∗←− f (s)
27: end if
28: until stop criterion
29: T ←− Concatenate(s)
30: T ←− Perturbation(T)
31: s←− Split(T)
32: if f (s)< z∗ then
33: s∗←− s
34: z∗←− f (s)
35: end if
36: end for
37: return s∗

38: end function

destroy operator must be selected (following roulette wheel principle based on computed weights

for destroy methods); secondly, solution s is indeed destroyed and repaired (line 18). Weights

100 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

for destroy methods are updated as in line 19. On the other hand, if the algorithm attemps to

destroy a whole route (λ = 2), then an MILP in function RemoveRoute is called (line 21). Weights

for goals are updated in line 23. This process repeats until a stopping criterion is met. As

a diversification component of ALNS matheuristic, Concatenate, Perturbation, and Split

provide a new solution s for MaxIterations times. The algorithm returns the best solution found

s∗.

In following sections main components of the ALNS matheuristic are discussed. Weights

updates, methods for partially destroy routes and MILP for repair them. an MILP for completely

remove a path is also described.

4.4.2 Adaptive control of the algorithm

As described in previous sections, the proposed ALNS matheuristic differs from the adaptive

algorithm firstly described in Ropke and Pisinger (2006). Apart from the hybrid nature of this

procedure to solve the 1–PDVRPLC, the adaptive control of the algorithm relies also in a different

set of parameters called goals. This ALNS may improve solutions by relocating nodes through

the original number of routes (first goal) or may also attempt to remove completely a route and

assign its nodes to different paths (second goal). Thus, function InitializeGoalWeights defines

a two position vector λ⃗ , where λ⃗ = [0.5;0.5]. These values allows the algorithm to initially select

with the same probability goals 1 or 2. In Line 15 of Algorithm 4.9, function SelectGoal chooses

randomly via roulette wheel principle one of the goals.

In order to dynamically update values in λ⃗ , a vector Λ⃗ = [Λ1;Λ2] keeps track of the number of

times that the objective function is improved via each one of the goals (i.e., after a goal is selected,

the solution is improved in lines 18 or 21 in Algorithm 4.9). Each time a better solution is found

when routes are destroyed and repaired or a single route is removed, Λ⃗ is updated in function

UpdateGoalWeights. In a similar way, and periodically (i.e., each ρ SelectGoal calls), λ⃗ values

are computed within the same function, as follows:

λg =
Λg

∑
2
j=1 Λ j

, ∀g = 1,2 (4.48)

Similarly to λ⃗ , vector π⃗ is periodically updated redefining the probabilities of choosing a destroy

method if a partial destroy and repair of routes is selected as goal. Vector Π⃗ manages the number

of times a solution is improved after each destroy method is selected. Vector Π⃗ is updated each

4.4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 101

time function UpateDestroyOperatorWeights is called in Line 19 of Algorithm 4.9. Let m be

the number of strategies to partially destroy routes. Thus, values for vector π⃗ are computed as:

πd =
Πd

∑
m
j=1 Π j

, ∀d = 1, ..,m (4.49)

Needless to say, from expressions in equations (4.48) and (4.49) it follows that 0 ≤ λg ≤ 1,

∀g = 1,2 and 0≤ πd ≤ 1, ∀d = 1, ..,m. Similarly, ∑
2
g=1 λg = 1 and ∑

m
d=1 πd = 1.

4.4.3 Destroy operators

As Algorithm 4.9 shows, if selected goal is to partially destroy routes, a method to remove nodes

from solution is called. In line 17 of Algorithm 4.9, the function SelectDestroyOperator

determines a destroy method. The proposed ALNS matheuristic uses six different methods to

partially destroy routes. These methods requires initially an empty set D to store removed nodes

from solution and a fixed number of nodes to remove d. A brief description of destroy methods

follows:

(i) Nodes in the largest arc and their nearest neighbors (LANN): given a solution s, LANN

randomly picks up a route in s and seeks for the arc a (a = (h, t)) with largest traveling cost

within the route. Then, h and t are removed from the route and stored in D. To complete the

number of nodes to destroy, the
⌈d−2

2

⌉
nearest neighbors to h and are also stored in D as well

as the
⌊d−2

2

⌋
nearest neighbors to t.

(ii) Nodes in random arc and their nearest neighbors (RANN): this method works in a similar

way to LANN. However, RANN randomly chooses arc a = (h, t). Then, h, t and their nearest

nodes are removed from the route and stored in D as in LANN.

(iii) Nodes in random arc and their nearest neighbors with large demand (RANNLD): RANNLD

picks up an arc a = (h, t) in a random way. Then, h, t and their nearest nodes are removed

from solution and stored in D as in LANN and RANN. Nonetheless, an additional condition is

imposed to choose a near neighbor: pickup or delivery quantities must be large and similar to

those in nodes h or t. Therefore, the i-th nearest neighbor to t (t ′) is selected if |qt +qt ′|> Q.

The sorted list of nearest nodes to t is explored until
⌊d−2

2

⌋
nodes met the described condition.

In a similar way, the j-th nearest neighbor to h (h′) is selected only if |qh+qh′|> Q and
⌈d−2

2

⌉
nodes are stored in D.

102 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

The intuition behind the idea of RANNLD relies on the fact that demand at nodes stored in

D is large. For large values on demands, local search operators in intensification procedures

for ALNS matheuristic, as string relocation and string exchange barely finds different and

promising positions for these nodes. As described in equation (4.22) and in properties

in Section 4.3.2 nodes selected as candidates for LS operations depend on their demand.

Therefore, with this destroy method, it is expected to find new positions for nodes with large

demand even when local search procedures are not able to provide one.

(iv) Nodes in largest arcs (LA): this method selects a route from solution s at random. From the

selected route, arcs are sorted in non-increasing order of their length. Next, preserving such

order, head and tail nodes from each arc are added to D until |D|= d.

(v) Adjacent nodes to random arc (ANRA): ANRA randomly chooses an arc a = (h, t) from

solution s. Firstly, nodes h and t are added to D. Next, nodes connected to elements in D are

also removed from s until |D|= d. Figure 4.5 depicts the order in which nodes are added to

D. If a = (4,5), then nodes 3 and 6 are removed from s and added to D. Next candidates are

nodes 2 and 6. As example, if d = 5, a node from these two candidates is selected randomly

to fill D.

Figure 4.5: Removing adjacent nodes to a random arc

(vi) Random nodes (RND): the last proposed method selects d nodes at random to remove from s

and added to D.

4.4.4 A MILP as repair operator

After a destroy method is selected and removed nodes from a solution are stored in D, these nodes

must be added again to solution via repair method. As mentioned before, an MILP is used as repair

4.4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 103

method by adding removed nodes to solution minimizing total traveling costs. The mathematical

model is solved for a subset K′ of routes. K′ is the set of routes where at least one node was

previously removed with any of the six available destroy methods. Moreover, Fk is defined as the

set of not removed nodes from route k (k ∈K′). Figure 4.6 depicts an example on sets definitions

for repair MILP. If a three-route solution as the one shown in Figure 4.6a is destroyed via any of

the previously described methods, nodes in dotted lines are stored in D (see Figure 4.6b). Finally,

following Figure 4.6c, sets F1 = {0,3,4} and F2 = {0,5,7} where K′ = {1,2}.

Some parameters (ci j, qi and Q) and decision variables (yi j, li j and zi j) required in MILP as

repair method were defined for 1–PDVRP MILP (equations (4.1) to (4.12)). New parameters for

the proposed formulation include f̄ and T L as the total traveling cost of the original solution to

repair and the maximum route length, respectively. Moreover, additional decision variables (pk
i j)

are required. Variable pk
i j takes the value of one if node i is visited in any position before node j

with vehicle k. With the example in 4.6c, variables p1
0,3, p1

0,4, p2
0,5 and p2

0,7 are equal to one. The

mathematical model to repair partially destroyed routes, follows:

(a) Solution before destroy procedure

(b) Solution with selected nodes to destroy (c) Fk (k = 1,2) after destroy procedure

Figure 4.6: Example on repair MILP sets

104 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

min f = ∑
k∈K′

∑
i∈Fk∪D

∑
j∈Fk∪D

ci j · yk
i j (4.50)

subject to,

∑
k∈K′

∑
i∈Fk∪D

∑
j∈Fk∪D

ci j · yk
i j ≤ f̄ , (4.51)

∑
i∈Fk∪D

∑
j∈Fk∪D

ci j · yk
i j ≤ T L, ∀ k ∈K′ (4.52)

∑
j∈Fk∪D

lk
ji− ∑

j∈Fk∪D
lk
i j = qi ∑

j∈Fk∪D
yk

i j, ∀ k ∈K′, i ∈ Fk∪D\{0} (4.53)

lk
i j ≤ Q · yi j, ∀ k ∈K′, i, j ∈ Fk∪D (4.54)

pk
0 j = 1, ∀ k ∈K′, j ∈ Fk∪D\{0} (4.55)

pk
i j + pk

ji ≤ 1, ∀ k ∈K′, i ∈ Fk, j ∈D (4.56)

yk
i j ≤ pk

i j, ∀ k ∈K′, i, j ∈ Fk∪D (4.57)

pk
i j = 1, ∀ k ∈K′, i, j ∈ Fk : i < j (4.58)

∑
j∈Fk∪D

yk
i j = 1, ∀ k ∈K′, i ∈ Fk (4.59)

∑
k∈K′

∑
j∈Fk∪D

yk
i j = 1, ∀ i ∈D (4.60)

∑
k∈K′

∑
j∈Fk∪D

yk
ji = 1, ∀ i ∈D (4.61)

∑
j∈Fk∪D

yk
i j = ∑

j∈Fk∪D
yk

ji, ∀ k ∈K′, i ∈ Fk (4.62)

yk
i,i+1 + ∑

j∈D
yk

i j = 1, ∀ k ∈K′, i ∈ Fk\{|Fk|} (4.63)

yk
|Fk|,0 + ∑

j∈D
yk
|Fk|, j = 1, ∀ k ∈K′ (4.64)

∑
j∈Fk∪D

zk
ji− ∑

j∈Fk∪D
zk

i j = ∑
j∈Fk∪D

yk
i j, ∀ k ∈K′, i ∈ Fk∪D\{0} (4.65)

zk
i j ≤ (|Fk|+ |D|) · yk

i j, ∀ k ∈K′, i, j ∈ Fk∪D (4.66)

yk
i j, pk

i j ∈ {0,1}, ∀ k ∈K′, i, j ∈ Fk∪D (4.67)

lk
i j, zk

i j ≥ 0, ∀ k ∈K′, i, j ∈ Fk∪D (4.68)

The objective function in (4.50) minimizes the total traveling cost for routes in K′. Constraint

in (4.51) avoids a repaired solution with a large value for total traveling cost. With (4.52), repaired

4.4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 105

routes must not exceed maximum route length. Expression in (4.53) and (4.54) force the model

to met demand at each node and vehicle capacity, respectively. Constraints (4.55) to (4.58) set

precedence relation between nodes within routes in K′. Note that expressions in (4.56) fix a position

for each node in D before or after each node in Fk. In (4.58) all precedence relations between nodes

in Fk are fixed. Therefore, the order in which nodes in Fk are visited does not change in solution

delivered by MILP. Expressions in (4.59) to (4.62) are routing constraints for nodes in Fk and D.

Equations in (4.63) and (4.64) ensure that arcs in the new solution starting in a node from Fk end in

its contiguous node in Fk or in any node from D. With constraints in (4.65) and (4.66) subtours are

forbidden in final solution. Lastly, (4.67) and (4.68) describe the decision variables domain.

4.4.5 Removing a route: MILP approach

Following Algorithm 4.9, if selected goal aims to improve solution removing a complete route

then function RemoveRoute is called. This function searches for the route with the lowest cost

(r′) and attempts to eliminate it from the solution by assigning its nodes to the others paths in the

solution. To do so, an MILP is solved to check whether the goal can be met. The intuition behind

this MILP is similar to the one presented in Section 4.4.4; however, set D is composed by all nodes

in r′. To determine if it is feasible to remove a route, set K′ contains now routes in K except for

r′ (K′ =K−{r′}). Therefore, the objective of MILP is to determine whether adding new nodes

in routes K′ do not exceed vehicle capacity. To do so, variables sk describe the amount of load

that exceed vehicle capacity for route k. Variables l−k and l+k denote the minimum and maximum

load of vehicle k (k ∈K′). Since the proposed MILP to destroy a route completely requires most

of the constraints described in Section 4.4.4, let Ω be set of constraints (4.51) to (4.68) except for

expression in (4.54) which are slightly modified in order to check feasibility once r′ is removed.

The proposed MILP can be described as:

min f = ∑
k∈K′

sk (4.69)

subject to,

l−k ≤ lk
i j ≤ l+k, ∀ k ∈K′, i, j ∈ Fk∪D (4.70)

l+k− l−k ≤ Q+ sk, ∀ k ∈K′ (4.71)

Ω, (4.72)

l−k, l+k,sk ≥ 0, ∀ k ∈K′ (4.73)

106 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Expression (4.69) minimizes vehicle capacity violation. If f = 0, then it is feasible to remove

route r′ from solution. Otherwise, r′ must be preserved to keep feasibility of solution. Constraints

in (4.70) compute values for minimum and maximum loads. In (4.71) vehicle capacity is checked

for set K′. Lastly, expressions (4.73) denote the decision variables domain.

4.5 An enumeration algorithm for solution repairing

The matheuristic algorithm presented in Section 4.4 is based on two MILPs for repairing solutions.

One of these MILPs aims to relocate nodes through a subset of routes (K′) while the second one

attempts to reduce the total traveling costs by removing a route completely. This section describes

an enumeration algorithm able to replace MILPs as repairing operations. The algorithm is based on

a recursive function that checks for each position in the incumbent solution, feasible insertions of

nodes in D preserving precedence relations between nodes in Fk (k ∈K). A general structure of the

algorithm as well as a description of some of the key components as lower bounds computation

follows.

4.5.1 General structure

The repairing process can be summarized as in Algorithm 4.10. This algorithm requires three inputs:

solution s, a set of nodes to insert D (i.e., removed nodes from s) and, set of fixed (i.e., not removed)

nodes from each route k, Fk. In line 2, a list of nodes T is defined as an empty list. T stores the list

of nodes to visit in current best order after the repair solution recursive algorithm is executed. The

recursive function also requires a list of candidates C. This list is updated at each iteration p and

stores nodes in D not yet relocated in T as well as the candidate node in Fk. It is worth to recall

that similarly to MILPs for repairing, this algorithm ensures that all arcs starting in a node from Fk

end up in its contiguous node in Fk or in any node from D. In Line 3, a list of nodes F is retrieved

Algorithm 4.10: Enumeration algorithm for solution repairing
1: Enumeration algorithm (s,D,F1, ..,F|K|)
2: T ← /0,C← /0
3: F ←Concatenate(F1, ..,F|K|)
4: T ∗←Concatenate(s)
5: T ←RepairSolution(0,T,F,C)
6: s←getSolution(T)
7: return s

4.5. AN ENUMERATION ALGORITHM FOR SOLUTION REPAIRING 107

from a function Concatenate where new arcs are created from the node in the last position of Fk

to the first node in Fk+1 for all k = 1, .., |K|−1. Similarly, in line 4, function Concatenate creates

new arcs from last node in each route in s to the first one (depot) in the next path in s and stores the

ordered list of nodes in T ∗. To add nodes to T , RepairSolution function is called in line 5. This

function requires a position p where a new node is added and the lists T ∗, T , F and, C. Initially,

p = 0 to set the first node in the solution. Finally, once the solution is repaired (i.e., all nodes were

added to T), getSolution turns list T in a 1–PDVRPLC solution.

The repair solution algorithm (RepairSolution function) is depicted in Algorithm 4.11. In

lines 2 to 4, node 0 (depot) is assigned to the new solution. Since the solution only contains depot,

traveling cost (cost) is zero and demand at depot is assigned as vehicle load and as the minimum

and maximum partial load for the route. From the depot it is possible to create an arc to any of

the nodes in D or to node in first position of F (F[1]). The algorithm counts the number of nodes

in F already added to T with variable j. Once information for first position is updated, function

RepairSolution is called in a recursive way.

For second position onward (p ≥ 1), the algorithm evaluates each one of the candidates for

that position within the loop for starting in line 7. The algorithm computes the cost of traveling

from node in position p− 1 to the candidate node (lines 8 and 9) and, in line 10, the algorithm

determines whether the partial solution T ∪C[i] dominates the best solution found (T ∗). To do so, a

dominance rule is proposed and it is described in next section. If partial solution may end up with

and improvement on best solution found, the algorithm updates loads, checks for load feasibility

and assigns a new node to partial solution T as follows: if the candidate to add to T is not the depot,

then vehicle load takes into account C[i] demand as in line 12. Similarly, minimum and maximum

loads for partial solution are updated in lines 13 and 14, respectively. If load does not exceed the

vehicle capacity, then the candidate node is added to partial solution (line 16) and it is also removed

from the list of candidates. When selected node is not in D but in F , then the number of fixed

nodes already added to T increases by one and a new candidate is added to C (i.e., next node in

F) (see lines 18 to 21). The RepairSolution function is called while the candidate list stores at

least one node. If no candidate is available, thus a complete solution has been constructed. Given

the dominance rule in the algorithm, each time a complete solution is found, an improvement on

best solution found is also made. For any evaluated position, if selected candidate is the depot (line

27), that means that a new route is created, therefore, depot is assigned to T , and values for load,

minimum and maximum loads are computed using demand at depot (see lines 28 and 2). Finally,

once all candidates for each position are evaluated, the algorithm returns T ∗.

108 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Algorithm 4.11: Repair solution algorithm
1: function REPAIRSOLUTION(p,T ∗,T,F,C)
2: if p = 0 then
3: C←D∪F[1],T[p]← 0,cost[p]← 0,
4: l[p]←−q0, l+[p]←−q0, l−[p]←−q0, j← 1
5: RepairSolution(1,T ∗,T,F,C)
6: else
7: for i = 1 to |C| do
8: m← T[p−1],n← C[i]
9: cost[p]← cost[p−1]+ cm,n

10: if T ∪C[i] ⪰ T ∗ then
11: if C[i] ̸= 0 then
12: l[p]← L[p−1]−qC[i]
13: l+

[p]←max{l+
[p−1], l[p−1]+qC[i]}

14: l−
[p]←min{l−

[p−1], l[p−1]+qC[i]}
15: if l+

[p]− l−
[p] ≤ Q then

16: T[p]← C[i]
17: C← C\{C[i]}
18: if C[i] = F[j] then
19: j← j+1
20: C← C∪F[j]
21: end if
22: if |C|> 0 then
23: RepairSolution(p+1,T ∗,T,F,C)
24: else
25: T ∗← T
26: end if
27: else
28: T[p]← 0
29: l[p]←−q0, l+[p]←−q0, l−[p]←−q0

30: RepairSolution(p+1,T ∗,T,F,C)
31: end if
32: end if
33: end if
34: end for
35: end if
36: return T ∗

37: end function

4.5. AN ENUMERATION ALGORITHM FOR SOLUTION REPAIRING 109

4.5.2 Dominance rules for partial solutions

Line 10 in Algorithm 4.11 evaluates whether the partial solution T ∪C[i] dominates the best found

solution (T ∗). For the enumeration algorithm, dominance is based on two criteria: maximum route

length feasibility and total traveling cost. Thus, instructions in lines 11 to 32 are executed only if

adding candidate node in C[i] to T (i.e., T ∪C[i]), the allowed maximum route length can be achieved

and also, objective function value does not increase.

To estimate whether route length constraints may be violated or total traveling cost for a partial

solution may end up in a greater value than objective function for T ∗, information in lists F and T

is used. Firstly, a lower bound for length of route k is computed over nodes in Fk and not yet added

to T as follows:

RLBp =
|Fk|−1

∑
i=p+1

c[Fi],[Fi+1], ∀ p = 1, .., |T ∗| (4.74)

RLBp denotes the fixed cost not yet added to traveling cost for route k in a partial solution

constructed up to position p. Note that this cost is computed over nodes not previously removed (i.e.,

destroyed arcs) from original solution s. Therefore, if cost[p]+RLBp > T L then partial solution

violates maximum duration constraints.

Secondly, and in a similar way to equation in (4.74), a lower bound is computed for total

traveling cost. SLBp denotes the fixed traveling cost not yet added to partial solution constructed up

to position p. Values for SLBp are obtained as the sum of traveling costs for all arcs in F and not

yet added to T as follows:

SLBp =
|F |−1

∑
i=p+1

c[Fi],[Fi+1], ∀ p = 1, .., |T ∗| (4.75)

Since SLBp denotes the total traveling cost for fixed arcs (i.e., not destroyed arcs) in a complete

solution, if cost[p]+SLBp ≥ f (T ∗) then, partial solution does not improve best found solution T ∗.

It is worth to mention that for any position p there may be also some nodes in D not yet added

to solution T (i.e., D∩C). Therefore, total traveling cost for a partial solution will increase at least

∑i∈D∩Cmin j∈N{ci j} units and SLBp can be computed in a more accurate way as:

SLBp =
|F |−1

∑
i=p+1

c[Fi],[Fi+1]+ ∑
i∈D∩C

min
j∈N
{ci j}, ∀p = 1, .., |T ∗| (4.76)

110 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Following equations (4.74) and (4.76), partial solution T ∪C[i] in line 10 of Algorithm 4.11

dominates best found solution T ∗ if and only if cost[p]+RLBp ≤ T L and cost[p]+SLBp < f (T ∗).

4.6 Computational experiments

This section presents the main results on the proposed MILP and matheuristic algorithms for the

1–PDVRPLC. Firstly, experiments based on MILP provide some insights about how the number of

nodes, number of vehicles and vehicle capacity are key factors to determine whether it is possible to

reduce imbalance throughout the route costs. Next, experiments with matheuristic strategies are

described and results for small and large 1–PDVRPLC instances are outlined. Moreover, results

on matheuristic algorithms are compared with those reported in Shi et al. (2009). Before general

results on MILP and matheuristic algorithms are presented, a brief description on experiments and

instances used to test both approaches, follows.

4.6.1 Instances and experiments configuration

To test the performance of the mathematical model described in Section 4.2.2 for the 1–PDVRPLC,

some of the benchmark instances described in 3.4.1 are solved. MILP experiments for the

1–PDVRPLC include instances with |K|={2,3} and |N|={20,30,40}. Additionally, three different

values for the vehicle capacity are defined: Q = {10,20,40} and three values for α: 0.5, 0.8 and

|K|−1. For each size of the problem, number of vehicles and each value of Q and α , 10 instances

were solved (i.e, a complete set of 540 instances). To code the objective function described in (4.16),

M is fixed to cmax · |N| · |K| where cmax = max(i, j)∈A{ci j}. Recall that T requires an upper bound

for the cost of a single route. As mentioned in Section 4.2.2, this can be computed as the optimal

solution of the corresponding 1–PDTSP (f ∗PDTSP). The optimal solution for 1–PDTSP instances

with up to 60 nodes are currently reported in Hernández-Pérez et al. (2009) and Palacio and Rivera

(2022). To conduct the computational experiments on MILP, Gurobi optimizer 8.1.1 runs in an

Intel Core i7 with 64 gigabytes of RAM running under debian 8 (x86-64). For each running of the

models, a maximum computational time of one hour (3600 s) is set.

For experiments based on matheuristic algorithms, and due to the large number of runs, only

a small subset of instances described in Section 3.4.1 are solved. Following the ideas of Shi et al.

(2009), only one instance for each size of the problem is solved. Nonetheless, four different values

are tested for route length on these instances. Indeed, one of these values allows to compare results

on matheuristic algorithms with those reported in Shi et al. (2009). Computational experiments on

4.6. COMPUTATIONAL EXPERIMENTS 111

matheuristic algorithms were conducted on a on an Intel Core i7 at 1.80GHz with 16.00 gigabytes

of RAM. To solve MILPs, Gurobi 9.1 was used. Mathematical models and algorithms were coded

in C++ within Visual studio 2019 interface. Each running of the hybrid algorithms, a maximum

computational time of one hour (3600 s) is set. After several tests, values for parameters MaxStarts

and MaxIterations were set to 5 and 20, respectively. In a similar way, for ALNS algorithms the

number of nodes to remove in destroy methods (d) was set to 5.

4.6.2 Results on mixed integer lineal model

Table 4.1 presents the results on 1–PDVRPLC instances. For each subset of instances based on

different values for |K|, |N|, and Q, the table summarizes the MILP performance in three different

categories. Columns Opt. presents, for each set of corresponding instances, the percentage of

instances in which optimal solution is found within the predefined computational time. For these

subset of instances decision variable λ is equal to zero, which means that objective function in

(4.16) is not penalized (i.e. it is feasible). In columns Best known, we report the percentage of

instances without an optimality certificate and the average gap when the time limit condition is

met. Finally, for instances in columns Best unfeas., MILP is able to find an optimal solution but it

does not satisfy maximum tour length for the given α . In these cases, decision variable λ takes a

value greater than zero and consequently, the objective function in (4.16) is penalized. It is worth

to mention that final lower bounds reported for instances in columns Best known do not include

penalization values. Thus, it is possible to conclude that all instances in which variable λ would

take a value greater than zero are grouped in columns Best unfeas. Precisely, from the whole set of

540 instances, only five of them are not feasible when tour length constraints are imposed. Those

instances come from the subset of problems with three vehicles, 20 nodes and vehicle capacity equal

to 20 and 40. For example, if vehicle capacity is 20, there exists one instance in which the optimal

solution found violates the tour length constraint by exceeding its limit by 11 units if α = 0.5.

As expected, in columns Opt. the overall number of optimal solutions decreases as the number

of nodes increases. In a similar way, the overall gap for instances in columns Best known, increases

as the number of vehicles also increases. For instances with 30 and 40 nodes, vehicle capacity

impacts on the average gap and the number of optimal solutions found. For each size of the problem,

the average gap for best known solutions decreases and the number of optimal solution become

larger as the vehicle capacity increases. Particularly, for all the instances with 40 nodes and the

tightest vehicle capacity, it was not possible to find the optimal solution within the maximum

computational time. Nevertheless, number of optimal solutions begins to increase as the vehicle

112 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Table 4.1: Results on 1–PDVRPLC instances

α = 0.5 α = 0.8 α = |K|−1
|K| |N| Q

Opt.
Best

known
Best

unfeas.
Opt.

Best
known

Best
unfeas.

Opt.
Best

known
Best

unfeas.
10 100% 0% (0.00%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

20 20 100% 0% (0.00%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%
40 100% 0% (0.00%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

10 90% 10% (0.30%) 0% 80% 20% (0.83%) 0% 90% 10% (0.24%) 0%
2 30 20 90% 10% (0.37%) 0% 90% 10% (0.82%) 0% 90% 10% (0.36%) 0%

40 100% 0% (0.00%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

10 0% 100% (5.50%) 0% 0% 100% (6.30%) 0% 0% 100% (5.02%) 0%
40 20 80% 20% (0.55%) 0% 80% 20% (0.82%) 0% 90% 10% (0.41%) 0%

40 100% 0% (0.00%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

10 100% 0% (0.00%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%
20 20 80% 10% (0.81%) 10%a 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

40 60% 0% (0.00%) 40%b 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

10 30% 70% (4.03%) 0% 50% 50% (2.38%) 0% 60% 40% (1.45%) 0%
3 30 20 50% 50% (3.30%) 0% 90% 10% (0.82%) 0% 90% 10% (1.02%) 0%

40 50% 50% (4.57%) 0% 90% 10% (0.08%) 0% 100% 0% (0.00%) 0%

10 0% 100% (13.51%) 0% 0% 100% (11.60%) 0% 0% 100% (9.47%) 0%
40 20 0% 100% (9.62%) 0% 50% 50% (1.89%) 0% 50% 50% (2.27%) 0%

40 0% 100% (8.51%) 0% 100% 0% (0.00%) 0% 100% 0% (0.00%) 0%

aOne instance with λ = 11
bFour instances with λ = 65,73,41 and 22

capacity is larger. Values for α determine whether tour length constraints can be met. As mentioned

before, the tightest tested value for α causes unfeasible solutions if three vehicles perform the

pickup and delivery operations. As values for α increase, less computational effort is required to

solve instances and average optimality gaps become to decrease.

Table 4.2 presents the average cost deterioration when α value is less than |K| − 1. Since

α = |K|−1 allows the model to find solution with no maximum tour length constraints, a variation

on cost (∆ fα) when those constraints are imposed (i.e. for α = {0.5,0.8}) is computed as follows.

∆ fα =
fα − f|K|−1

fα

In general, the average cost variation increases for each size of the problem as long as the vehicle

capacity also increases. However, in a worst-case scenario, for instances with 40 nodes and the

largest vehicle capacity, the total cost does not increase more than 9.16% on average.

Finally, average computational time required to solve the 1–PDVRPLC are reported in Table

4.6. COMPUTATIONAL EXPERIMENTS 113

Table 4.2: Average cost increase based on α = |K|−1

|K|= 2 |K|= 3
α α

|N| Q 0.5 0.8 0.5 0.8

20
10 0.37% 0.21% 1.83% 0.68%
20 1.75% 1.59% 7.63% 2.75%
40 3.40% 2.32% 9.60% 3.94%

30
10 0.24% 0.25% 2.22% 0.44%
20 0.96% 1.33% 5.07% 0.89%
30 1.79% 1.76% 8.96% 1.69%

40
10 0.32% 1.00% 4.11% 2.11%
20 0.37% 0.27% 6.33% 0.00%
40 1.71% 0.96% 9.16% 1.84%

4.3. Needless to say, instances with 40 nodes and three vehicles are the hardest subset of problems

to solve. In this subset, for those instances with the tightest vehicle capacity or α = 0.5 no optimal

solution was found. Not only number of nodes but vehicle capacity are key factors on computational

time behavior; the tightest vehicle capacity, the highest computational effort.

Table 4.3: Average CPU time (s) for the 1-PDVRPRL MILP

|K|= 2 |K|= 3
α α

|N| Q 0.5 0.8 |K|−1 0.5 0.8 |K|−1

20
10 69.56 48.74 33.48 519.45 347.42 203.04
20 20.83 17.61 9.54 1001.21 430.05 94.63
40 7.98 7.65 4.43 691.07 259.26 35.88

30
10 1255.80 1279.41 1099.82 3226.23 2785.46 2281.30
20 432.55 458.64 476.38 2631.94 1094.63 710.54
30 40.72 46.52 31.42 2450.60 651.64 269.74

40
10 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
20 958.32 966.69 913.44 3600.00 2633.21 2343.10
40 152.79 103.64 73.16 3600.00 1830.58 493.72

4.6.3 Matheuristic algorithms: comparative results

This section summarizes results on proposed matheuristic algorithms for the 1–PDVRPLC. Firstly,

for small instances with up to 40 nodes, the algorithms performance is compared with MILP

proposed in Section 4.2.2. For larger instances, metaheuristic algorithms are compared to each other

114 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

when several values for route length are tested. Finally, this section also compares the proposed

algorithms with a genetic algorithm for the 1–PDVRPLC proposed in Shi et al. (2009).

Tables 4.4, 4.5 and, 4.6 summarize the main results for the three LNS-based algorithms when

instances with 20, 30 and 40 are solved, respectively. For each size of the problem, results on MILP,

MS–ILNS and ALNS algorithms are reported. For the sake of clarity, hereafter adaptive strategies

based on MILPs and enumeration algorithm as repairing methods are called IALNS-Math and

IALNS-EA, respectively. For each one of these algorithms, rows Best, # Best and Avg., reports

best solution found, number of times each algorithm is able to find solution in column Best, and

the average value for objective function also over ten runs, respectively. In a similar way, each

algorithm is compared with solution obtained solving MILP via commercial solver. Therefore, four

gaps are computed as follows:

Min. gapUB(%) =
Best−UB

Best
·100 (4.77)

Avg. gapUB(%) =
Avg.−UB

Avg.
·100 (4.78)

Min. gapLB(%) =
Best−LB

Best
·100 (4.79)

Avg. gapLB(%) =
Avg.−LB

Avg.
·100 (4.80)

For instances with 20 nodes, Table 4.4 shows that it is possible to find the optimal solution via

any of the three proposed algorithms. For each fleet size (i.e., |K|= {2,3}) the number of times that

the optimal solution is found via any of three algorithms, increases as α value also increases. Despite

the three algorithms find the optimal solution in at least 60% of runs, IALNS-EA is able to retrieve

optimal solutions more frequently than MS-ILNS and IALNS-Math, on average. Table 4.5 shows

that for instances with three vehicles, MILP is not able to retrieve optimal solutions. Therefore,

the optimizer reports gaps up to 4.76%. MS–ILNS algorithm finds up to five times the solution

reported by MILP and lower bound average gaps (Avg.gapLB) vary up to 5.71%. Nonetheless, For

those instances, IALNS-Math and IALNS-EA are able to improve up to six times out of ten runs,

the solution delivered via commercial solver. Improvements up to 2.00%, 0.32% and 1.00% are

reported solving instances via IALNS-Math with α = 0.5,0.8 and 1, respectively. Similar results

are obtained when α = 0.5 for instances with two and three vehicles and 40 nodes (see Table 4.6).

All algorithms provides at least once, the solution reported by MILP as the best solution found.

Once again, for instances with α = 0.5, IALNS-Math and IALNS-EA retrieve improved UB when

they are compared with those reported vian MILP. Thus improvements on UBs (Min.gapUB up to

1.99% are reported with both adaptive LNS strategies.

4.6. COMPUTATIONAL EXPERIMENTS 115

Table 4.4: Comparative results on LNS-based algorithms for instances with |N|= 20

Solution
strategy

|K| 2 3
α 0.5 0.8 1 0.5 0.8 1

MILP
UB 4866 4866 4866 4988 4966 4883
LB 4866 4866 4866 4988 4966 4883
gap 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

MS–ILNS

Best 4866 4866 4866 4988 4966 4883
Best 7 8 10 6 7 7
Avg. 4903.82 4900.12 4866.00 5101.45 5111.14 5087.16

Min.gapUB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapUB 0.77% 0.70% 0.00% 2.22% 2.84% 4.01%
Min.gapLB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapLB 0.77% 0.70% 0.00% 2.22% 2.84% 4.01%

IALNS-Math

Best 4866 4866 4866 4988 4966 4883
Best 8 8 9 6 6 8
Avg. 4952.80 4901.75 4896.52 5013.13 5008.43 5051.22

Min.gapUB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapUB 1.75% 0.73% 0.62% 0.50% 0.85% 3.33%
Min.gapLB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapLB 1.75% 0.73% 0.62% 0.50% 0.85% 3.33%

IALNS-EA

Best 4866 4866 4866 4988 4966 4883
Best 7 9 10 6 8 8
Avg. 4914.71 4898.36 4866 5023.47 5019.98 5046.72

Min.gapUB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapUB 0.99% 0.66% 0.00% 0.71% 1.08% 3.24%
Min.gapLB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapLB 0.99% 0.66% 0.00% 0.71% 1.08% 3.24%

Table 4.7 depicts results for larger instances (i.e., |N| ≥ 50). Since these instances were not

solved via commercial solver, results are based on LNS algorithms comparisons. For each problem

size, Table 4.7 reports defined route lengths computed following equation (4.15) with |K| vehicles

and an α as route length factor. For all the LNS algorithms, best solution found after ten runs is

reported in columns Best. The number of vehicles required to reach total traveling cost in Best is

also depicted in columns |K|∗. Since results for small instances in Tables 4.4, 4.5 and, 4.6 show

that ALNS-EA outperforms solution quality for MS–ILNS and ALNS-Math, an improvement

percentage for the other two algorithms is computed as:

116 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Table 4.5: Comparative results on LNS-based algorithms for instances with |N|= 30

Solution
strategy

|K| 2 3
α 0.5 0.8 1 0.5 0.8 1

MILP
UB 6452 6447 6503 6633 6576 6568
LB 6452 6447 6503 6317 6424 6465
gap 0.00% 0.00% 0.00% 4.76% 2.31% 1.57%

MS-ILNS

Best 6452 6447 6503 6633 6576 6568
Best 3 3 5 2 3 4
Avg. 6551.00 6599.42 6574.63 6699.83 6712.33 6590.67

Min.gapUB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapUB 1.51% 2.31% 1.09% 1.00% 2.03% 0.34%
Min.gapLB 0.00% 0.00% 0.00% 4.76% 2.31% 1.57%
Avg.gapLB 1.51% 2.31% 1.09% 5.71% 4.30% 1.91%

IALNS-Math

Best 6466 6447 6503 6503 6555 6503
Best 5 2 4 5 6 5
Avg. 6542.70 6600.47 6654.10 6657.37 6631.69 6578.93

Min.gapUB 0.22% 0.00% 0.00% -2.00% -0.32% -1.00%
Avg.gapUB 1.39% 2.33% 2.27% 0.37% -0.31% 0.17%
Min.gapLB 0.22% 0.00% 0.00% 2.86% 2.00% 0.58%
Avg.gapLB 1.39% 2.33% 2.27% 5.11% 2.01% 1.73%

IALNS-EA

Best 6452 6447 6503 6503 6555 6511
Best 1 3 3 4 3 4
Avg. 6601.12 6584.92 6679.19 6690.01 6708.33 6704.49

Min.gapUB 0.00% 0.00% 0.00% -2.00% -0.32% -0.88%
Avg.gapUB 2.26% 2.09% 2.64% 0.85% 1.97% 2.04%
Min.gapLB 0.00% 0.00% 0.00% 2.86% 2.00% 0.71%
Avg.gapLB 2.26% 2.09% 2.64% 5.58% 4.24% 3.57%

ALNS−EAImp.MS−ILNS(%) =
BestMS−ILNS−BestALNS−EA

BestALNS−EA
·100 (4.81)

ALNS−EAImp.ALNS−Math(%) =
BestALNS−Math−BestALNS−EA

BestALNS−EA
·100 (4.82)

Average values for best solution found over each size of the problem are also computed. These

averages show that, except for |N|=300, ALNS-EA outperforms MS–ILNS and ALNS-Math. This

result keeps consistency with algorithms performance for small instances with up to 40 nodes. For

some instances (e.g., instance with 50 nodes and T L = 1498), more vehicles than those set in |K| are

required to meet total traveling cost reported in Best. It is worth to recall that |K| is not a constraint

4.6. COMPUTATIONAL EXPERIMENTS 117

Table 4.6: Comparative results on LNS-based algorithms for instances with |N|= 40

Solution
strategy

|K| 2 3
α 0.5 0.8 1 0.5 0.8 1

MILP
UB 7325 7246 7246 7541 7489 7539
LB 7030 7006 7006 7113 7115 7117
gap 4.03% 3.31% 3.31% 5.68% 4.99% 5.60%

MS-ILNS

Best 7325 7246 7246 7541 7489 7539
Best 1 3 2 1 1 2
Avg. 7397.00 7420.47 7382.44 7667.78 7612.25 7623.81

Min.gapUB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Avg.gapUB 0.97% 2.35% 1.85% 1.65% 1.62% 0.00%
Min.gapLB 4.03% 3.31% 3.31% 5.68% 4.99% 5.60%
Avg.gapLB 4.96% 5.59% 5.10% 7.24% 6.53% 5.60%

IALNS-Math

Best 7285 7314 7470 7394 7489 7539
Best 2 2 3 1 1 2
Avg. 7488.20 7553.84 7616.74 7667.20 7596.27 7648.03

Min.gapUB -0.55% 0.93% 3.00% -1.99% 0.00% 0.00%
Avg.gapUB 2.18% 4.08% 4.87% 1.65% 1.41% 1.43%
Min.gapLB 3.50% 4.21% 6.21% 3.80% 4.99% 5.60%
Avg.gapLB 6.12% 7.25% 8.02% 7.23% 6.34% 6.94%

IALNS-EA

Best 7285 7301 7246 7394 7489 7539
Best 2 1 2 1 3 3
Avg. 7573.15 7548.84 7597.48 7614.20 7624.29 7671.56

Min.gapUB -0.55% 0.75% 0.00% -1.99% 0.00% 0.00%
Avg.gapUB 3.28% 4.01% 4.63% 0.96% 1.77% 1.73%
Min.gapLB 3.50% 4.04% 3.31% 3.80% 4.99% 5.60%
Avg.gapLB 7.17% 7.19% 7.79% 6.58% 6.68% 7.23%

on this problem. This value only works as a parameter to determine T L and Split algorithm, VNDs

procedures and mathematical models to destroy and repair solution do not use |K| as a limitation to

create or improve solutions.

On the other hand, for each size of the instances, six different values for T L were tested.

However, for 200 nodes instances and greater some of the results are not reported in Table 4.7. For

those instances, non-reported values for T L turn infeasible the problem (i.e., traveling cost from

depot to at least one node is greater than T L).

In 2009, Shi et al. (2009) designed a genetic algorithm (GA) for the 1–PDVRPLC. Shi et al.

(2009) tested instances with up 500 nodes and T L = 3000. Since experiments summarized in Tables

118 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Table 4.7: Comparative results on LNS-based algorithms for instances with |N| ≥ 50

|N| α T L |K| MS–ILNS ALNS-Math ALNS-EA ALNS-EA Imp. (%)
Best |K|∗ Best |K|∗ Best |K|∗ MS-ILNS ALNS-Math

50

0.5 1498 7 9889 8 9930 8 9826 8 0.64% 1.1%
2096 5 8245 5 7769 4 7769 4 6.13% 0.0%

0.8 1797 7 8706 6 8601 5 8588 4 1.37% 0.2%
2515 5 7700 4 7488 3 7488 3 2.83% 0.0%

1 1997 7 8245 5 8106 5 8201 5 0.54% -1.2%
2795 5 7783 4 7319 3 7272 3 7.03% 0.6%

Average 8428.00 5.33 8202.17 4.67 8190.67 4.50 2.90% 0.1%

60

0.5 1613 8 11636 8 11833 9 11912 8 -2.32% -0.7%
2150 6 9703 6 9756 5 9756 5 -0.54% 0.0%

0.8 1936 8 10424 7 10061 6 10061 6 3.61% 0.0%
2580 6 9754 5 9299 4 9299 4 4.89% 0.0%

1 2151 8 9774 6 10003 6 9774 6 0.00% 2.3%
2867 6 9494 5 9290 4 9290 4 2.20% 0.0%

Average 10130.83 6.17 10040.33 5.67 10015.33 5.50 1.15% 0.2%

100

0.5 1765 10 16558 11 16991 11 16695 11 -0.82% 1.8%
1960 9 15748 10 15482 9 15296 8 2.96% 1.2%

0.8 2117 10 15247 10 14973 8 14973 8 1.83% 0.0%
2351 9 14660 8 14726 7 14726 7 -0.45% 0.0%

1 2353 10 14341 7 14017 7 14017 7 2.31% 0.0%
2613 9 13950 8 13771 6 13771 6 1.30% 0.0%

Average 15084.00 9.00 14993.33 8.00 14913.00 7.83 1.15% 0.5%

200

0.5 1556 17 31559 25 31096 21 31096 21 1.49% 0.0%
0.8 1588 20 31086 24 32047 22 31086 24 0.00% 3.1%

1867 17 27348 18 28262 18 27915 18 -2.03% 1.2%
1 1765 20 28467 19 29223 18 28601 19 -0.47% 2.2%

2075 17 25074 14 26058 14 26058 14 -3.78% 0.0%
Average 28706.80 20.00 29337.20 18.60 28951.20 19.20 -0.84% 1.3%

300
0.8 1653 25 40165 31 39096 25 39886 26 0.70% -2.0%
1 1531 30 41925 35 41795 29 41553 29 0.90% 0.6%

1837 25 35102 22 35926 21 35926 21 -2.29% 0.0%
Average 39064.00 29.33 38939.00 25.00 39121.67 25.33 -0.15% -0.5%

400
0.8 1615 34 53099 38 53135 35 53135 35 -0.07% 0.0%
1 1527 40 56359 44 59543 42 55429 41 1.68% 7.4%

1795 34 46607 29 49499 30 45434 28 2.58% 8.9%
Average 52021.67 37.00 54059.00 35.67 51332.67 34.67 1.34% 5.3%

4.6. COMPUTATIONAL EXPERIMENTS 119

4.4 to 4.7 do not include that value for route length, Table 4.8 shows results obtained when T L is set

to 3000. For each size of instances, average total traveling cost reported in Shi et al. (2009) is shown

(see column Average above GA group) as well as the average number of vehicles required. Shi et al.

(2009) do not report best found solutions; therefore, Table 4.8 also show the average traveling cost

over ten runs for each one of the proposed LNS-based algorithms. For each size of the problem, at

least one the proposed strategies outperforms solutions in Shi et al. (2009), on average (except for

|N|= {40,400}). Lastly, improvement percentages are computed as in Table 4.7 for ALNS-EA

over GA, MS–ILNS and ALNS-Math algorithms. Despite results obtained with different values for

T L as in Table 4.7, when T L = 300 and |N| ≥ 60, MS–ILNS outperforms ALNS-EA.

Regarding computational times for LNS-based algorithms, Table 4.9 summarizes the

performance of proposed strategies. As expected, required CPU time increases as the size of

instances also increases. Since maximum computation time for algorithm was set to one hour,

MS-ILNS and ALNS-EA reach that limit for instances with more than 200 nodes. For instances up to

100 nodes MS-ILNS requires less computation time than ALNS-Math and ALNS-EA. Differences

between MS-ILNS and ALNS algorithms for CPU times rely mainly on MILPs as destroy and/or

repair methods. Differences between ALNS-Math and ALNS-EA, are based on the definition of

set K′ for ALNS-Math. Recall that ALNS-Math attempts to repair a solution adding nodes over

the subset of partially destroyed routes while ALNS-EA adds removed nodes over the whole set of

routes K.

4.6.4 Comments on multi-start iterative LNS matheuristic performance

As described in Algorithm 4.2, the proposed strategy firstly finds a 1–PDVRPLC solution within a

multi-start iterative LNS. Then, a SPP IP is solved after a large pool of routes is created. For the

sake of clarity, Table 4.10 reports main results after the LNS procedure is applied and also, how

obtained solution is improved once the SPP IP is solved. For each size of instances, Table 4.10

shows the average traveling cost and CPU times required (D&R MILP time and Avg.CPU time) for

MS-ILNS before SPP is solved. In a similar way, the average value for objective function, time

required to solve SPP (Avg. IP CPU time) are also reported. Firstly, a vast percentage of CPU

time required for the solution strategy is devoted to LNS procedure (before SPP is applied). For

most of the cases, no more than 10 seconds are required to solve the SPP model. On the other hand

and regarding times for LNS procedure, more than 60% of computation effort is devoted to solve

destroy and repair MILP. Finally, LNS component is able to find good quality solutions since SPP

IP improves best found solution within LNS procedure only up to 4.16%.

120 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Table 4.8: Comparative results on LNS-based algorithms for instances with T L = 3000

|N
|

G
A

a
M

S–
IL

N
S

A
L

N
S-

M
at

h
A

L
N

S-
E

A
A

L
N

S-
E

A
Im

pr
ov

em
en

t
A

ve
ra

ge
¯ |K
|

B
es

t
A

ve
ra

ge
¯ |K
|

B
es

t
A

ve
ra

ge
¯ |K
|

B
es

t
A

ve
ra

ge
¯ |K
|

G
A

a
M

S-
IL

N
S

A
L

N
S-

M
20

55
15

.4
0

2.
30

50
01

50
58

.0
7

2.
25

50
01

50
44

.5
0

2.
00

50
01

50
37

.6
0

2.
00

9.
48

%
0.

41
%

0.
14

%
30

69
06

.0
0

3.
10

65
87

68
08

.1
4

3.
53

65
03

66
22

.6
2

3.
00

65
03

66
03

.1
5

3.
00

4.
59

%
3.

10
%

0.
29

%
40

74
76

.4
0

3.
00

76
52

78
49

.7
2

3.
97

74
07

77
09

.1
1

3.
11

74
07

76
59

.1
4

3.
08

-2
.3

9%
2.

49
%

0.
65

%
50

92
63

.5
0

3.
80

72
88

78
28

.6
3

3.
83

72
83

77
63

.3
0

3.
30

72
83

77
95

.6
7

3.
39

18
.8

3%
0.

42
%

-0
.4

2%
60

99
31

.6
0

4.
10

90
07

95
74

.1
7

4.
50

92
12

98
77

.0
0

4.
11

89
88

98
02

.6
3

4.
23

1.
32

%
-2

.3
3%

0.
76

%
10

0
14

37
9.

30
5.

60
13

21
4

13
75

8.
39

6.
25

13
52

3
14

49
8.

17
5.

67
13

68
7

14
06

5.
17

5.
96

2.
23

%
-2

.1
8%

3.
08

%
20

0
23

33
1.

70
9.

60
20

91
8

21
98

2.
14

9.
45

22
67

1
24

11
1.

50
10

.0
0

21
71

2
23

52
6.

70
9.

80
-0

.8
3%

-6
.5

7%
2.

49
%

30
0

29
80

5.
30

12
.2

0
28

18
4

28
37

4.
20

12
.2

0
29

02
5

30
15

9.
00

12
.0

0
28

76
0

29
11

7.
22

12
.0

0
2.

36
%

-2
.5

5%
3.

58
%

40
0

34
57

4.
40

14
.5

0
37

39
5

38
01

1.
75

15
.9

2
38

88
9

39
85

8.
33

15
.8

3
37

91
9

38
55

3.
08

15
.6

9
-1

0.
32

%
-1

.4
0%

3.
39

%
50

0
39

87
2.

50
16

.5
0

34
69

1
35

06
3.

33
14

.3
3

36
03

2
36

91
3.

89
15

.0
0

34
82

3
35

41
1.

11
14

.1
3

12
.6

0%
-0

.9
8%

4.
24

%

aResults taken from Shi et al. (2009)

4.6. COMPUTATIONAL EXPERIMENTS 121

Table 4.9: Comparative results on CPU times (s) for LNS-based algorithms

|N| MS–ILNS ALNS-Math ALNS-EA
20 49.97 93.06 78.88
30 133.20 226.08 197.13
40 377.23 378.34 352.98
50 153.57 307.91 408.11
60 241.10 384.09 569.77

100 764.72 890.73 1274.34
200 3417.23 1055.87 3600.00
300 3600.00 1714.77 3600.00
400 3600.00 2335.59 3600.00
500 3600.00 3164.29 3600.00

Table 4.10: Results on LNS procedure and SPP IP for the MS-ILNS

|N| MS-ILNS SPP IP

Avg. f
D&R MILP

time (s)
Avg. CPU

time (s) Avg. f
Avg. IP CPU

time (s) Imp. SPP

20 5090.53 32.39 49.97 5027.74 0.04 1.25%
30 6784.26 107.30 133.20 6719.54 0.04 0.96%
40 7730.72 332.38 377.23 7661.99 0.05 0.90%
50 8557.68 101.85 153.57 8215.53 0.07 4.16%
60 10319.46 177.68 241.10 9998.31 0.10 3.21%

100 14831.79 609.22 764.72 14593.10 0.46 1.64%
200 26547.87 2687.11 3417.23 26089.21 9.04 1.76%
300 37115.75 2894.56 3600.00 36450.80 52.47 1.82%
400 44249.90 3019.18 3600.00 43748.90 120.49 1.15%
500 35251.23 3245.40 3600.00 35063.33 0.44 0.54%

4.6.5 Comments on adaptive features for LNS-based algorithms

As described in Section 4.4.1 for ALNS algorithm, two sets of parameters are dynamically adjusted

through optimization process: destroy methods for solutions and a goal which attempts to reduce

fleet or improve traveling costs with the available number of vehicles. Figure 4.7 depicts the

evolution of weights for set of destroy methods described in Section 4.4.3 for three different sizes

of the problem. At the beginning of the optimization process, each destroy method can be selected

with the same probability (i.e., 1/6) and weights are updated each 20 calls. As shown in Figure

4.7a, for small instances (|N|= 20) destroy methods RANN and RANNLD conducted to a solution

improvement with higher probability. For larger instances with 60 and 100 nodes as depicted in

Figures 4.7b and 4.7c, respectively, method LANN leads to solution improvements more often than

122 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

(a) |N|=20 (b) |N|=60

(c) |N|=100

Figure 4.7: Destroy methods weight for different sizes of 1–PDVRPLC

other destroy methods. For large instances (|N|= 100), ANRA seems to have a poor performance

within the search process. Finally, the second set of parameters under adaptive control is related to

goals. As expected, to partially destroy routes helps with a higher probability to improve solutions

as depicted in Figure 4.8 for different instance size.

4.6.6 Comments on enumeration algorithm for ALNS-based strategies

This section briefly summarizes main differences on proposed ALNS algorithms performance.

Recall that in ALNS-EA, repair operations are made via enumeration algorithm described in Section

4.5 while ALNS-Math repairs solutions vian MILPs (Sections 4.4.4 and 4.4.5). Moreover, to repair

a solution after a subset of routes is partially destroyed, MILP in ALNS-Math repairs on K′ (i.e.,

subset of partially destroyed routes), while EA in ALNS-EA searches for an improved solution

adding removed nodes in the whole set of routes, K.

To compare ALNS-Math and ALNS-EA, three simple experiments were conducted. For the

three experiments, seven initial solutions for instance with 200 nodes and T L = 3000 were chosen,

4.6. COMPUTATIONAL EXPERIMENTS 123

(a) |N|=20 (b) |N|=60

(c) |N|=100

Figure 4.8: Goals weight for different sizes of 1–PDVRPLC

saving seed values in order to compare fairly all the results. First experiment consists on applying

repair MILP and EA to initial solution and setting |K′| as search space for EA, as in MILP. Table

4.11 shows results on this small experiment. For each destroyed solution, Repair MILP and EA

retrieve the same value for traveling cost, as expected (see columns f). Columns time report

computational time required to solve MILP and EA if dominance rules (Section 4.5.2) are not

applied. Only for one case (seed = 2994), EA outperforms MILP time. Next, if dominance rules are

applied to EA, computational times decrease for all cases (see column +DRs) and also, all times are

less than those reported for MILP.

Similarly to Table 4.11, Table 4.12 reports results on seven initial solution after repair MILP

and EA are applied as repair method. For this second experiment, EA runs on K. Therefore,

computational times increase significantly even if dominance rules are applied. However, total

traveling costs (f) are improved for all cases.

In a third experiment, repair MILP and EA (running on K) are compared setting an order for

routes in K for EA. Nodes visited with vehicles in K′ are added first to list T . Once all nodes in K′

124 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

Table 4.11: Repair MILP in ALNS-Math vs. EA on K′

Seed Initial f
Repair MILP EA on K′

f time (s) f time (s) +DRs
837 62479 61893 1.08 61893 4.80 0.66

1001 62378 62105 0.71 62105 52.25 0.35
2 62913 62320 0.55 62320 0.55 0.08

2994 61631 61525 1.51 61525 1.25 0.05
399349 60304 59089 1.05 59089 10.52 0.48

2200 59180 58243 1.17 58243 104.55 0.13
156 60635 59845 1.13 59845 5.64 0.44

are in T , nodes in remaining routes (K\K′) are added to T . The idea behind this order for routes in

EA, relies on the fact that non-partially destroyed routes provide strong lower bounds (see equations

(4.74) and (4.76)) to check dominance rules. Table 4.13 presents comparative results when routes

in EA are sorted as described before. In spite of larger CPU times when compared with repair

MILP, EA with dominance rules and sorted routes provides lower values for traveling costs and

computational times decrease significantly after routes are sorted if they are compared with those

reported in Table 4.12.

Table 4.12: Repair MILP in ALNS-Math vs. EA on K

Seed Initial f
Repair MILP EA on K

f time (s) f +DRs
837 62479 61893 1.08 60878 54.69

1001 62378 62105 0.71 62074 4.85
2 62913 62320 0.55 61577 7.28

2994 61631 61525 1.51 61395 0.94
399349 60304 59089 1.05 58947 54.24

2200 59180 58243 1.17 58106 17.20
156 60635 59845 1.13 59156 9.61

4.7 Concluding remarks

A mathematical model based on mixed-integer linear programming is proposed to solve the

1–PDVRPLC. Due to imbalance on routes length for multi-vehicle problems if maximum duration

are not imposed, a target based on the number of available vehicles and a upper bound for the

1–PDVRPLC is also proposed. Experiments performed solving MILP via commercial solver provide

4.7. CONCLUDING REMARKS 125

Table 4.13: Repair MILP in ALNS-Math vs. EA on K and sorted routes

Seed Initial f
Repair MILP EA on K

f time (s) f +DRs
837 62479 61893 1.08 60878 2.04

1001 62378 62105 0.71 62074 1.12
2 62913 62320 0.55 61577 0.46

2994 61631 61525 1.51 61395 0.79
399349 60304 59089 1.05 58947 0.79

2200 59180 58243 1.17 58106 1.68
156 60635 59845 1.13 59156 6.73

insights about solution quality and computation effort when vehicle capacity and maximum route

length vary.

Due to the NP–Hardness of 1–PDVRPLC, instances up to 40 nodes were solved via commercial

solver. Nevertheless, three matheuristic algorithms are proposed to solve medium and large size

instances. These matheuristic strategies are based on LNS algorithms and its adaptive version.

A multi-start iterative LNS (MS–ILNS) able to destroy and repair solutions vian MILP is the

first proposed solution strategy. Next, as second solution strategy, an adaptive LNS able to repair

solutions vian MILP after a destroy method is selected dynamically is also presented (ALNS-Math).

Lastly, in ALNS-Math, MILP is replaced with a enumeration algorithm within a recursive structure

(ALNS-EA). These three strategies are able to solve instances with up to 500 nodes within a

maximum computation time of one hour. In spite of the required computational time, ALNS-EA

outperforms MS-ILNS and ALNS-Math, on average. Lastly, ALNS-EA is also able to find better

solutions than those reported in Shi et al. (2009), on average.

Conferences and publications

Results and analysis on MILP for 1–PDVRPLC was presented in the International Conference on

Computational Logistics (ICCL) 2019:

• Palacio J.D., Rivera J.C. The One-Commodity Pickup and Delivery Vehicle Routing

Problem: A mixed-Integer Linear Programming Approach. 10th International Conference on

Computational Logistics (ICCL). Barranquilla, Colombia. 2019.

Results and analysis on MILP for 1–PDVRP was presented in III Congreso Colombiano de

Investigación Operativa (ASOCIO), 2019:

126 CHAPTER 4. MATHEMATICAL MODELS AND SOLUTION APPROACHES FOR 1–PDVRP

• Palacio J.D., Rivera J.C. Modelos de programación lineal entera mixta para el problema de

reposicionamiento de bicicletas. III Congreso Colombiano de Investigación de Operaciones

(ASOCIO). Bucaramanga, Colombia. 2019.

4.7. CONCLUDING REMARKS 127

Chapter 5

The two-echelon bicycle repositioning
problem with split delivery

5.1 Introduction and motivation

This chapter describes a new static BRP that, apart from the pickup and delivery structure of the

problem, combines two key features on VRPs: two-echelon configuration and split delivery. This

problem, hereafter is called the two-echelon bicycle repositioning problem with split delivery

(2E–BRPSD).

In the literature, several authors have proposed variants for the BRP in order to provide efficient

alternatives to repositioning operations in different BSSs around the world. Lee et al. (2020)

describe a selective-based vehicle routing optimization problem for repositioning process for a

BSS in Gangnam-district in Seoul, South Korea. Duan and Wu (2022) propose a BRP with worker

recruitment decisions in which BSS users are rewarded if they ride bikes from a station with bike

excess to a station with a shortage indicated by the system operator in New York, USA. Wang

and Szeto (2021b) define the green bike repositioning problem with broken bikes; in this problem

broken bikes are collected by the vehicles and the classical distance-based objective function is

replaced by the minimization of CO2 emissions during the repositioning operation (based on a linear

function for fuel consumption as described in Xiao et al. (2012)). In this case, authors test their

solution strategy with instances based on CityBike BSS in Vienna, Austria.

In Latin America there also exist many BSSs in which decisions for rebalancing operations

must be made. One of them is EnCicla, the public BSS in Medellı́n, Colombia. Medellı́n is the

second largest city in Colombia and the capital of Antioquia Department. The city is located in the
129

130 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Aburrá Valley with a population of around 2.533.424 people. For administrative purposes, Medellı́n

is divided into six zones. Each one of these zone is also subdivided into communes. Consequently,

the city is made up of 16 communes as shown in Figure 5.1a. The city BSS, EnCicla, is currently

operating with 101 stations throughout the six zones and one operation center (i.e., depot) located in

commune 10 (downtown). Inspired on the administrative division of the city and future expansion

plans of EnCicla, one suitable way to perform repositioning process may consist on designing a

central route able to support (but not to complete) the operation, starting from the operation center

and visiting at least one station in each zone (henceforth satellite depots) as depicted in Figure

5.1b. Additionally, the remaining vehicles in the fleet may complete the repositioning operation at

non-visited stations in each zone (secondary routes) not only using bikes available in the visited

communes but with bicycles provided by the vehicle serving the central route. Since satellite depots

are visited twice (within the central route and one secondary route), a lack of bikes in each zone

may be covered via split demand process at satellite depots (see Figure 5.1c). If the total traveling

cost of central and secondary routes is minimized, the two-echelon bicycle repositioning problem

with split deliveries (2E–BRPSD) arises. In the proposed two-echelon configuration for the BRP,

satellite depots are not previously defined as in classical two-echelon vehicle routing problems.

The 2E–BRPSD differs from the multi-vehicle BRP because not all vehicles must leave (and

return) to the operation center and also, demand at some stations (i.e., satellite depots) is split.

Indeed, split demand in pickup and delivery problems as the BRP may ends up in a traveling cost

reduction as locations (i.e., stations) can be used to storage an amount of units that are picked

up later or locations can be used to lend an amount of units that are replaced later (Palacio and

(a) Administrative division
in Medellı́n (Colombia).

(b) Example of central
route for the 2E–BRPSD.

(c) Example of solution for
the 2E–BRPSD.

Figure 5.1: An example of a 2E–BRPSD solution for Encicla in Medellı́n (Colombia).

5.2. A BRIEF REVIEW ON TWO-ECHELON ROUTING PROBLEMS 131

Rivera, 2019). Moreover, if a location is served by more than one vehicle, there exists an inherent

synchronized operation. Particularly, synchronization is not explicitly included as a set constraints

within a temporal aspect for our proposed 2E–BRPSD, but a load synchronization (Drexl, 2012) is

imposed to satellite depots in the problem.

This chapter initially proposes a mixed-integer linear programming model (MILP) for the

2E–BRPSD. Nonetheless, since the original BRP is an NP-hard problem (Ho and Szeto, 2014),

the 2E–BRPSD is also NP-hard. Thus, this chapter also presents a metaheuristic algorithm and

three hybrid solution strategies based on MILP and metaheuristic algorithms (i.e., matheuristic)

to solve medium and large-size problem instances. The first strategy heuristically finds secondary

routes via greedy randomized procedure (GRP) and split algorithm. For each set of secondary

routes, a greedy procedure is also used to construct a central route. In a second solution strategy

a pool of central routes as well as a pool of secondary routes are created and then, an enhanced

partitioning problem (SPP) formulation determines the best combination for central and secondary

routes. A third solution strategy firstly generates heuristically a large set secondary routes. Then,

in an iterative way, a SPP IP selects the best secondary routes and next, a generalized traveling

salesman problem (GTSP) MILP retrieves a central route for the 2E–BRPSD. Finally, as fourth

solution strategy a variation on third matheuristic is proposed by modifying criterion to select

secondary routes at each iteration of the algorithm.

The remainder of this chapter presents a brief review on two-echelon routing problems. Next,

a mathematical formulation for the 2E–BRPSD is described as well as four solution strategies to

solve the problem. Lastly, computational results on solution strategies are summarized.

5.2 A brief review on two-echelon routing problems

This section presents a brief literature review on two-echelon VRPs in different applications and

contexts. The purpose of this review is not to provide a complete state of the art for two-echelon

routing problems but to show that there is no evidence of prior work on this configuration for static

BRPs.

In order to briefly summarize only the latest literature for two-echelon routing problems, this

short review starts with the survey presented in Cuda et al. (2015). In that paper, the authors

provide a classification for two-echelon routing problems by reviewing three classes of problems:

the two-echelon location routing problem (2E–LRP), the two-echelon vehicle routing problem

(2E–VRP) and the truck and trailer routing problem (TTRP). In the 2E–LRP, strategic and tactical

decisions are made since location for intermediate facilities (or satellite depots) must be defined as

132 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

well as vehicle routes. The 2E–LRP aims to minimize the total traveling cost and the opening costs

for each satellite depot. On the other hand, the 2E–VRP only minimize routing costs since location

for satellite depots is previously defined. Finally, in the TTRP some customers are served with a

truck pulling a trailer or just with a truck. The TTRP also aims to minimize the routing cost since

satellites are given. Nevertheless, in this problem an additional constraint is imposed: a complete

vehicle must visit all customers from the first level route while customers within a second level are

served via the truck alone. Cuda et al. (2015) report a wide number of solution strategies for 2E-LRP,

2E-VRP and TTRP based on exact approaches and heuristic algorithms. Matheuristics strategies

are also developed for two-echelon problems. (e.g., Caramia and Guerriero (2010); Perboli et al.

(2011); Villegas et al. (2013))

After the review in Cuda et al. (2015), several authors deal with two-echelon routing problems.

Vidović et al. (2016) address the 2E–LRP for designing a non-hazardous recyclables collection

network. The authors propose an MILP and a heuristic procedure to determine the location of

collection and transfer points. The heuristic decomposes the problem in two steps: firstly, the

number and location of collection points is determined. Then, in a second phase, the optimal route

for each collection vehicle and the transfer points is computed.

Breunig et al. (2016) propose a hybrid metaheuristic based on D&R algorithm and local search

procedures to solve the 2E–VRP and the 2E–LRP. The authors test the algorithm solving six

different sets of instances with up to 200 customers. This hybrid strategy is able to improve

best known solutions for 18 out of 49 2E–VRP instances. Grangier et al. (2016) also develop a

LNS algorithm to solve a variant of the 2E–VRP: the two-echelon multiple-trip vehicle routing

problem with satellite synchronization (2E-MTVRP-SS). Apart from the classical configuration

of the 2E–VRP, the 2E-MTVRP-SS also includes time windows, multiple trips for second level

vehicles, and synchronization constraints for the operation at satellite depots. To test the algorithm,

instances up to 200 customers and ten satellite depots were solved.

Similar to Grangier et al. (2016), Wang et al. (2017) describe a new 2E–VRP variant in

which capacitated vehicles perform first and second level routes minimizing drivers wage, fuel

cost and handling cost at satellite depots. This problem is called the capacitated 2E–VRP with

environmental considerations (2E–CVRP–E) and it is solved via matheuristic algorithm. This

strategy is based on a VNS and an IP model as a post-optimization technique. To validate the

performance of this matheuristic approach, the authors solve a set of 2E–VRP instances finding

new best known solutions for 13 out of 234 instances. In the literature, 2E–VRPs with pick up

and delivery operations are also reported as in Belgin et al. (2018). The authors propose an MILP

and a hybrid metaheuristic algorithm based on VND and LS. Despite the linear relaxation is

5.3. MATHEMATICAL MODEL FOR THE 2E–BRPSD 133

strengthened with three valid inequalities, the hybrid VND and local search strategy outperforms

the mathematical model performance not only on computational times but in solutions quality for

well-known 2E–VRP instances with up to 50 customers in second level routes. Belgin et al. (2018)

also report results on VND and LS algorithm for a supermarket distribution problem in Turkey.

The authors prove that a two-echelon configuration improves total cost when it is compared with a

single-echelon distribution operation.

Two echelon configurations are also reported for vehicle routing problems with an electric fleet

as in Breunig et al. (2019) and Jie et al. (2019). Firstly, Breunig et al. (2019) introduce the electric

two-echelon vehicle routing problem (E2E–VRP) in the context of city logistics. The authors solve

the problem via an exact mathematical programming algorithm that uses decomposition techniques

and develop a LNS based metaheuristic. These algorithms are tested on new instances that simulate

characteristics of urban areas by including different density factors for charging stations. The

instances are designed with up to 200 customers and ten satellite depots. Then, Jie et al. (2019)

tackle a problem similar to the E2E–VRP in which vehicles must visit battery swapping stations in

order to change the almost depleted battery by a completely charged one. This problem is called

the two-echelon electric vehicle routing problem with battery swapping stations (2E–EVRP–BSS).

As solution strategies for the 2E–EVRP–BSS, a hybrid column generation and adaptive LNS

(CG-ALNS) are developed. This algorithm is tested on instances with up to 200 customers, ten

satellite depots and 20 battery swapping stations. The authors also present an economic analysis

and managerial implications of battery driving ranges and efficiency of vehicle emission reduction.

Recently, Fallahtafti et al. (2021) describe a multi-objective perspective for the 2E–LRP within

a cash logistics context. In this case, several vehicles must leave the central bank (depot), then some

intermediate facilities (satellite depots) are visited. In the second level routes, ATMs (customers)

are attended. This 2E–LRP supports decision making process on opening and closing intermediate

facilities while objective functions minimize the risk of robbery and the total traveling cost. To tackle

this bi-objective problem, ε–constraint and five different metaheuristic algorithms are implemented.

For large instances, authors prove that archived multi-objective simulated annealing (AMOSA)

outperforms the other four strategies including non-dominated sorting genetic algorithms (NSGA–II

and NSGA–III).

5.3 Mathematical model for the 2E–BRPSD

In this section, a mathematical formulation for the 2E–BRPSD is presented. This formulation is an

MILP that describes the conditions of the problem where the total cost (i.e., routes total distance) is

134 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

minimized.

Similar to the 1–PDTSP and the 1–PDVRP described in sections 3.2 and 4.2.1, the 2E–BRPSD

is defined on a complete and directed graph G= (N,A). For the 2E–BRPSD, N is the set of BSS

stations (N = {0,1,2, ..,n}) and A is the set of arcs connecting each pair of stations. Without loss

of generality, station 0 refers to the operation center (i.e., depot) for the BSS. In the 2E–BRPSD a

set of capacitated vehicles K is available to serve the demand at stations. Following the notation

presented in sections 3.2 and 4.2.1, parameter ci j denotes the cost of traveling from station i to

station j. Q describes the vehicles capacity. If qi > 0, then qi bikes must be delivered at station i.

On the other hand, if qi < 0, then qi bikes must be picked up at station i. For the MILP, the binary

decision variable yk
i j, takes the value of one only if vehicle k crosses arc (i, j). Variable wk

i also can

take the value of one if vehicle k visits station i and zero otherwise. dk
i is equal to one only if station

i is selected as a satellite depot for vehicle k. dk
i takes the value of zero in any other case. Variable

lk
i j denotes the number of bikes in vehicle k when traversing arc (i, j). Finally, zk

i j denotes a label

to avoid arc (i, j) to be part of subtours in final solution. The proposed MILP for the 2E–BRPSD

follows:

min f = ∑
(i, j)∈A

ci j · ∑
k∈K

yk
i j (5.1)

subject to,

∑
i∈N

dk
i = 1, ∀ k ∈K (5.2)

∑
k∈K

dk
i ≤ 1, ∀ i ∈N (5.3)

d0
0 = 1 (5.4)

dk
i ≤ wk

i , ∀ i ∈N, k ∈K (5.5)

dk
i ≤ w0

i , ∀ i ∈N \{0}, k ∈K\{0} (5.6)

∑
i∈N

w0
i = |K|, (5.7)

w0
0 = 1 (5.8)

∑
i∈N

wk
i ≤ α · |N|, ∀ k ∈K\{0} (5.9)

∑
j∈N

yk
i j = wk

i , ∀ i ∈N, k ∈K (5.10)

5.3. MATHEMATICAL MODEL FOR THE 2E–BRPSD 135

∑
j∈N
j ̸=i

∑
k∈K

yk
i j ≥ 1, ∀ i ∈N \{0} (5.11)

∑
j∈N
j ̸=0

y0
0 j = 1, (5.12)

∑
j∈N
j ̸=i

yk
i j = ∑

j∈N
j ̸=i

yk
ji, ∀ k ∈K, i ∈N (5.13)

lk
i j ≤ Q · yk

i j, ∀ k ∈K, (i, j) ∈A (5.14)

∑
j∈N
j ̸=i

∑
k∈K

lk
ji− ∑

j∈N
j ̸=i

∑
k∈K

lk
i j = qi, ∀ i ∈N (5.15)

∑
j∈N

zk
ji− ∑

j∈N
zk

i j ≥
∑ j∈N yk

i j

|N|
−M ·dk

i , ∀ k ∈K, i ∈N (5.16)

∑
j∈N

zk
ji− ∑

j∈N
zk

i j ≤ 1+M ·dk
i , ∀ k ∈K, i ∈N (5.17)

zk
i j ≤ 2 · |N| · yk

i j, ∀ k ∈K, (i, j) ∈A (5.18)

dk
i ,w

k
i ∈ {0,1}, ∀ k ∈K, i ∈N (5.19)

yk
i j ∈ {0,1}, ∀ k ∈K, (i, j) ∈A (5.20)

lk
i j,z

k
i j ≥ 0, ∀ k ∈K, (i, j) ∈A (5.21)

The objective function in (5.1) aims to minimize the total traveling cost for the repositioning

operation. Equations in (5.2) state that only one station i is assigned as depot for each vehicle k.

Constraints (5.3) assign a station i as a depot for at most one vehicle k. In equation (5.4), station 0

is fixed as the depot for the central route. Inequalities in (5.5) force the model to assign a station i

as depot for vehicle k only if i is visited by the vehicle while (5.6) ensure that all depots are visited

in the central route. The size of the central route is defined by the number of available vehicles

(i.e., one vehicle for the central route and one vehicle for each secondary route) as described in

(5.7). Equation (5.8) forces the model to assign the operation center (i = 0) to the central route. The

length of each secondary route does not exceed a percentage of the BSS size as described in (5.9).

Equations in (5.10) describe a relation between variables y and w by including an arc (i, j) for route

k only if the vehicle visits station i. Constraints in (5.11) and (5.12) state that each station i (i > 0)

is visited in a secondary route while an arc starting in the operation center (i = 0) is added to the

central route. In (5.13) if a vehicle goes into a station i, then the vehicle must leave the station. With

constraints (5.14), the load of the vehicle does not exceed its capacity while equations in (5.15)

assure that demand in each station is satisfied. As described in MILPs for 1–PDTSP and 1–PDVRP

136 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

in sections 3.2 and 4.2.1, constraints proposed in Miller et al. (1960) are adapted to fix a coefficient

for each arc with expressions (5.16) and (5.17). Inequalities in (5.18) limit arc coefficients. Values

for variables zk
i j may vary from zero to 2 · |N|. Since several stations (i.e., satellite depots) are visited

twice, 2 · |N| denotes an upper bound for zk
i j. Finally, expressions (5.19) to (5.21) describe the nature

of decision variables. For BSS contexts, load of vehicles (lk
i j) must be integer, nevertheless, if qi ∈ Z

in equations (5.15), a continuous domain for lk
i j leads to integer values for these variables.

Figure 5.2 depicts the optimal solution for a 2E–BRPSD instance with 20 stations, three

secondary routes, and Q = 10 for each vehicle. Numbers above each node are station demands

(positive and negative numbers represent delivery and pick up operations, respectively). In the

optimal solution, stations 19, 16 and 5 are selected as depots for secondary routes, thus, these

stations are included in the central route for the instance which also includes node 0 as origin (see

dotted arcs). Demand at stations in central route (except for station 0) is fulfilled using not only

the central route vehicle but vehicles serving secondary routes. In point of fact, bikes picked up or

delivered at satellite depots allow to meet demand in other stations visited in secondary routes. For

instance, the route 5→ 17→ 3→11→ ... → 5 is not feasible to be served with a single vehicle

with capacity Q = 10 (i.e., 14 bikes must be delivered in stations 5, 17 and 11). However, if the

Figure 5.2: Optimal solution for a 2E–BRPSD instance with 20 stations and four vehicles

5.4. HYBRID CONSTRUCTIVE ALGORITHM FOR THE 2E–BRPSD 137

vehicle assigned to central route delivers eight bikes in station 5, these bikes can be delivered at

stations 17 and 11 fulfilling their demands. Similarly, a single vehicle is not able to serve route

16→ 2→ 7→ ... → 16 since 11 bikes are picked up (with no delivery operations in between).

Nevertheless, if station 16 is used as a temporal storage point, the vehicle serving secondary route

can traverse the arc (16,5) with two bikes (not three as demand in station 16 indicates) and complete

the route with feasible loads. Request at station 16 is completely satisfied after secondary route

is completed. Table 5.1 summarizes the load of vehicles serving central and secondary routes

before and after visiting each depot (stations in central route). As modeled in equations (5.15), the

difference between outgoing and ongoing flows for each station ensure demand requirements.

Table 5.1: Values for vehicles load when visiting central route stations

Station 0 19 16 5
In Out In Out In Out In Out

Central (5,0) 2 (0,19) 9 (0,19) 9 (19,16) 3 (19,16) 3 (16,5) 10 (16,5) 10 (5,0) 2
Secondary (15,19) 7 (19,10) 9 (13,16) 6 (16,2) 2 (1,5) 6 (5,17) 8
Flow 2 9 16 12 9 12 16 10
Demand -7 4 -3 6

5.4 Hybrid constructive algorithm for the 2E–BRPSD

This section presents a first solution strategy for the 2E–BRPSD. The strategy can be described

in three phases. Firstly, a greedy algorithm generates a set of partial solutions (i.e. secondary

routes). To do so, the algorithm finds a Hamiltonian tour which is improved and then split in several

secondary routes. In second phase, a naive constructive algorithm finds a central route checking

whether is feasible to visit a station in each secondary route. Finally, a set of linear constraints

determines the global feasibility of the 2E–BRPSD solution in terms of vehicle loads. These three

steps are executed repeatedly until a stopping criterion is met. The algorithm returns the best

solution found.

Algorithm 5.1 describes a hybrid constructive algorithm as a first procedure to solve the

2E–BRPSD. This algorithm requires a parameter maxIterations (i.e. maximum number of solutions

to generate). The parameter maxIterations also determines a stop criterion for the algorithm. Since

a secondary route is not necessarily balanced (i.e., the sum over station demands in the route may

be different from zero), parameter β denotes the maximum percentage of unbalanced Hamiltonian

tours. The function generateHamiltonianTour in line 5 finds an (un)feasible tour via greedy

randomized algorithm and then, functions VND and split are called to improve the tour and to split

138 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

it in |K|−1 routes, respectively (see lines 6 and 7). Each secondary route is improved by checking

if moving a station to any other position in the route is feasible and reduce the total traveling cost (i.e.

local search procedure in line 8). In line 9, the function feasibleSatelliteDepots returns the

subset of candidates stations for satellite depot (i.e., starting and ending a secondary route in a given

station may end up in an unfeasible load for the vehicle. The function buildCentralRoute finds a

suitable subset of stations over depots conforming a central route (i.e., at least one candidate for

satellite depot in each secondary route is visited). If the total traveling cost for central and secondary

routes is less than the best cost found and also, if the new solution is globally feasible, then the best

solution is updated (lines 12 to 14). Subsequent sections describe in detail each function within the

hybrid constructive algorithm.

Algorithm 5.1: Hybrid constructive algorithm for the 2E–BRPSD

1: function: hybridConstructive (maxIterations, β , |K|)
2: f ∗←+∞,s∗← /0
3: for iteration= 1 to maxIterations do
4: s← /0
5: T ← generateHamiltonianTour(iteration,β)
6: T ← VND(T)
7: s← split(T, |K|)
8: s← localSearch(s)
9: depots← feasibleSatelliteDepots(s)

10: r← buildCentralRoute(s,depots)
11: s← s

⋃
r

12: if f (s)< f ∗ and isFeasible(s) then
13: f ∗← f (s)
14: s∗← s
15: end if
16: end for
17: return s∗

5.4.1 Greedy randomized construction

Algorithm 5.2 shows the framework for an iterative tour construction. This process requires a greedy

function which is based on nearest neighbor algorithm. For β percent of iterations, the function

generateHamiltonianTour allows to return an unfeasible Hamiltonian tour. A tour for the BRP

is feasible if the maximum load of the vehicle is less or equal than the capacity Q. Without loss of

generality, feasibility for a Hamiltonian tour within the BRP context may be proven if

5.4. HYBRID CONSTRUCTIVE ALGORITHM FOR THE 2E–BRPSD 139

max
i∈{1,..,|N|}

{li}− min
i∈{1,..,|N|}

{li} ≤ Q (5.22)

where li is the vehicle load after visiting the i-th station in the tour. Thus, li may be computed as:

li = li−1−qT [i]. Similarly, an unfeasible tour met that

max
i∈{1,..,|N|}

{li}− min
i∈{1,..,|N|}

{li}= Q+δ (5.23)

where δ can be defined as a feasibility violation degree (e.g., number of loaded bikes that exceed

the vehicle capacity. Without loss of generality, a non-positive feasibility violation degree (i.e.,

δ ≤ 0), represents a feasible Hamiltonian tour. In lines 3 and 5 of Algorithm 5.2, the function

greedyRandomizedAlgorithm finds an unfeasible and feasible tour, respectively.

Algorithm 5.2: Hamiltonian tour construction

1: function: generateHamiltonianTour (iteration, β)
2: if iteration ≤ β ·maxIterations then
3: T ← greedyRandomizedAlgorithm(False, seed)
4: else
5: T ← greedyRandomizedAlgorithm(True, seed)
6: end if
7: return T

To find feasible Hamiltonian tours, Palacio and Rivera (2022) present a nearest neighbor

algorithm for the 1–PDTSP (described in Section 3.3.2). Based on the ideas in Palacio and

Rivera (2022), the greedyRandomizedAlgorithm function to generate (un)feasible tours for the

2E–BRPSD may be described as follows:

(i) Select a station i as the first visited location at random. Let the number of visited stations be

equal to one (p←− 1) and T [p]←− i.

(ii) Let C be the set of closest and feasible (i.e. the vehicle capacity is not violated) non-visited

stations after the station i is served. The size of C (i.e., |C|) is the minimum value between a

restricted candidate list size (ϕ) and the number of feasible non-visited stations. Note that if

C= /0, the constructed solution so far leads to an unfeasible path. If the tour is required to be

feasible, then go to step (i). Otherwise, C is completed including the closest but unfeasible

non-visited stations.

140 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

This step requires to check whether is feasible to add a station j to a partial tour with size p−1.

To do so, it is possible to adapt condition in (5.22) as in Hernández-Pérez and Salazar-González

(2004b):

max
i=1,..,p−1

{li, lp−1−q j}− min
i=1,..,p−1

{li, lp−1−q j} ≤ Q (5.24)

(iii) Choose a station j from C at random.

(iv) Let p←− p+1 and T [p]←− j. If p < |N| then define i←− j and go to step (ii), else stop.

5.4.2 Variable neighborhood descent

The proposed VND to solve the 2E–BRPSD is based on three local search operators: move vertex,

2−opt, and 3−opt. A brief description of these operators follows:

(i) Move vertex: the first local search operator (v = 1), attempts to improve the total traveling

cost of a tour by moving a station from its original position p to a different one in the path.

The new position p′ may vary from 1 to |N|−1 and p′ ̸= p. It is worth to recall that a tour

passed to this LS operator may be unfeasible. Thus, move vertex implementation ensures that

if tour T ′ is unfeasible, then feasibility violation degree (i.e., δ in equation (5.23)) does not

increase its value. Similarly, if tour T ′ is feasible, move vertex aims to improve the solution

preserving its feasibility (see condition in (5.22)).

The complexity of move vertex operator is O(|N|2). Nonetheless, this implementation follows

the ideas described in Lin (1965) for 2−opt and 3−opt operators. Firstly, a list of m nearest

locations for each station is stored. Then, the operator only scans a possible move for station i

if it can be located one position before one of its m closest stations. Following this strategy,

the complexity of move vertex operator is reduced to O(|N| ·m).

(ii) 2−opt: similarly to move vertex, 2−opt as second local search operator (v = 2) in VND

aims to improve total traveling cost for T ′ without increasing δ value in equation (5.23). This

neighborhood deletes two edges and therefore the tour is divided in two paths. Then, those

paths are connected again in the other possible way. The computational complexity of 2−opt

is O(|N|2) but as in move vertex, the number of potential edge exchanges to the m closest

stations to location i is reduced. Thus, 2−opt also runs in O(|N| ·m).

5.4. HYBRID CONSTRUCTIVE ALGORITHM FOR THE 2E–BRPSD 141

(iii) 3−opt: the third and final neighborhood within VND (v = 3) deletes three edges of the

original tour and then, four different solutions may be found. If all possible combinations

when deleting three edges are explored, 3−opt complexity is O(|N|3). In this implementation,

only m possible improvements are explored for each one of the m nearest neighbors for each

station i. This strategy leads to a complexity of O(|N| ·m2) instead of O(|N|3).

5.4.3 Split

In the hybrid constructive algorithm as solution strategy for the 2E–BRPSD, Split finds a set of

secondary routes. Thus, all the stations (except the operation center or depot) conform the solution

after tour T is split. To find the set of secondary routes, the Split algorithm that consider limited

number of vehicles (Prins, 2004) is adapted. Moreover, this version of Split algorithm allows

pickups and deliveries as required in BRPs (see Section 4.3.3). Details of the implementation are

depicted in Algorithm 5.3.

The algorithm starts assigning an initial cost when reaching each station i with vehicle k (Vki)

in lines 1 to 6. Then, starting from the second position (i) in the Hamiltonian tour (i.e, operations

center is not added to any secondary route), Split checks whether is possible to reach station in

each position j in the tour. Constraints based on the maximum number of stations added to the

route (length≤ α · |N|) are evaluated as in constraints (5.9). Similarly, computing maximum and

minimum vehicle loads (l+ and l−, respectively), feasible loads for the vehicle (l+− l− ≤ Q) are

also imposed (see lines 9 to 20). After cost is updated if position j can be reached from station in

position i, the algorithm checks for improves in the total traveling cost of the partial route. Similarly,

the strategy updates the path (P) for the evaluated vehicle (lines 28 to 32). Lastly, the function

extractSolution delivers the complete path for each route by extracting stations added to P.

5.4.4 Local search

After Split algorithm delivers a set of secondary routes, each one of these paths are improved via

local search. Particularly, possible improvements on partial solution s are explored by applying

move vertex operator described in Section 5.4.2. The main motivation to explore secondary routes

via local search after a VND and Split are applied relies precisely on a different set of feasible

neighbors that may be found over each separate route in s and not on a single Hamiltonian tour

(T). Moreover, since each one of the secondary routes is feasible in terms of load after Split finds

s, function localSearch always deals with a δ value equal to zero. Thus, this neighborhood at

142 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Algorithm 5.3: Split algorithm for PDVRPs. Adapted from Prins (2004)
1: function: Split (T)
2: for k = 1 to |K| do
3: for i = 1 to |N|−1 do
4: Vk,i←+∞

5: end for
6: end for
7: V1,0← 0
8: for k = 1 to |K| do
9: for i = 2 to |N| do

10: l← 0, l+← 0, l−← 0
11: cost← 0, length← 0
12: j← i
13: while j < |N| and l+− l− ≤ Q and length≤ α · |N| do
14: l← qT[j]
15: if l < l− then
16: l−← l
17: else
18: if l > l+ then
19: l+← l
20: end if
21: end if
22: if j = i then
23: cost← 2 · cT [i],T [j]
24: else
25: cost← cost− cT [j−1],T [i]+ cT [j−1],T [j]+ cT [j],T [i]
26: end if
27: length← length+1
28: if l+− l− ≤ Q and length≤ α · |N| then
29: if Vk,i−1 + cost <Vk+1, j then
30: Vk+1, j←Vk,i−1 + cost
31: Pk+1, j← i−1
32: end if
33: end if
34: j← j+1
35: end while
36: end for
37: end for
38: s∗← extractSolution(P)
39: return s∗

this step of the solution strategy does not aim to reduce feasibility violations but to improve total

traveling cost.

5.4. HYBRID CONSTRUCTIVE ALGORITHM FOR THE 2E–BRPSD 143

5.4.5 Finding feasible satellite depots

With the aim to find a central route able to connect and support the rebalancing operation through

stations in secondary routes, the solution strategy must check for feasible satellite depots (i.e.,

stations belonging to central route and to one secondary route). To show the proposed procedure, a

small example is described. In Figure 5.2, one of the secondary routes within the optimal solution is

16→2→7→4→13→16, where 16 is the satellite depot. Table 5.2 shows vehicle load l, maximum

load l+, minimum load l−, and the feasibility violation degree δ for this secondary route. With an

initial load equal to zero, vehicle traverses each arc and values for l+, l− are updated at each step as

described in equation (5.24). Values for δ are also computed after each station is visited. The path

followed in this route is feasible since final δ value is zero. If station 7 is selected as satellite depot,

Table 5.3 shows that the path leads to an unfeasible route because values for l+ and l− end up with

a feasibility violation degree, δ = 2. Without loss of generality, initial vehicle load may be different

from zero and values for δ do not vary. It is worth to recall that such initial load depends on the

number of picked (or delivered) bikes with any of the two vehicles visiting the satellite depot and

the split demand operation at that location.

16 2 7 4 13 16
q -3 -3 -5 10 -6 -3
l 0 3 8 -2 4
l+ 3 8 8 8
l− 3 3 -2 -2
δ 0 0 0 0

Table 5.2: Feasible path for a secondary route

7 4 13 16 2 7
q -5 10 -6 -3 -3 -5
l 0 -10 -4 -1 2
l+ -10 -4 -1 2
l− -10 -10 -10 -10
δ 0 0 0 2

Table 5.3: Unfeasible path for a secondary route

Algorithm 5.4 describes in detail the procedure to determine the subset of stations able to

conform the satellite depots. For each route r in solution s, it is assumed that all stations may be

satellite depots as shown in lines 5 and 7. Then, the algorithm copy the path of stations for each

route and add the locations at the end of the route preserving the order in which each station is

visited (line 8). At this point, a route r in solution s′ has a length of 2 ·n stations where n is the real

number of locations to visit. Particularly, for the route presented in the example in Table 5.2, s′r
is 16→ 2→ 7→ 4→ 13→ 16→ 2→ 7→ 4→ 13. Starting from the station in the first position

of route r, up to n values for l, l+ and l− are computed in order to check whether vehicle loads do

not exceed the maximum capacity (see lines 10 to 24). If l+− l− > Q for any station b as satellite

depot, then array depots reports b as an unfeasible location for intermediate depot.

144 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Algorithm 5.4: Checking feasibility for satellite depots
1: function: feasibleSatelliteDepots(s)
2: for r = 1 to |K|−1 do
3: s′r← sr
4: n←length(sr)−1
5: depots[s′r,[1]]←True
6: for p = 2 to n do
7: depots[s′r,[p]]←True
8: s′r,[n+p−1]← sr,[p]
9: end for

10: for i = 1 to n do
11: l← qs′r,[i+1]

12: l+← l, l−← l
13: for j = 2 to n do
14: l← l +qs′r,[i+ j]

15: if l < l− then
16: l−← l
17: else
18: if l > l+ then
19: l+← l
20: end if
21: end if
22: if l+− l− > Q then
23: b← s′r,[i]
24: depots[b]←False
25: break
26: end if
27: end for
28: end for
29: end for
30: return depots

5.4.6 Central route construction

The function buildCentralRoute in Algorithm 5.1 attempts to build a central route to integrate

secondary routes in s by visiting at least one of the candidates (i.e., array depots) per route. To do

so, the central route construction follows some of the ideas in the greedy randomized construction

algorithm presented in Section 5.4.1. Nonetheless, the strategy to find a central route is not based

on a greedy selection of stations. At this step, we skip the use of restricted candidate lists, then a

randomized construction arises. A brief description for a central route construction follows.

5.4. HYBRID CONSTRUCTIVE ALGORITHM FOR THE 2E–BRPSD 145

(i) Select the operation center or depot (i.e., location 0) as the first visited location. Let the

number of visited stations be equal to one (p←− 1). Let r be the path for central route. Thus,

r[p]←− 0 and let also i← 0

(ii) Let C be the set of all feasible stations to visit in non-visited secondary routes after station

i is served within the central route. Note that to add a station j as the pth location in central

route, constraint (5.24) must be met and also j must be a candidate for satellite depot (i.e.,

depots[j] =True).

(iii) Choose station j from C at random. Check j as visited as well as the secondary route containing

j. Let i← j

(iv) Let p←− p+1 and r[p]←− j. If p < |K| then define i←− j and go to step (ii), else stop

and return r as central route.

5.4.7 Global feasibility verification

Procedures described in Sections 5.4.3 and 5.4.6 ensure vehicle capacity feasibility for each

secondary route and central route, respectively. Nonetheless, pickups and deliveries quantities

at satellite depots are not fixed yet. Thus, connections between central and secondary routes via

satellite depots may end up in demand requirement violations for a global solution. As mentioned

before, at satellite depots split demand operations are allowed: some extra bikes can be temporally

delivered at satellite depots using the central route vehicle, and then, the vehicle devoted to secondary

route must pickup those extra bikes in order to ensure demand, as in equation (5.15). Therefore,

once central and secondary routes are connected, a straightforward method to check whether a

solution s is feasible for demand requirements is to find values for variables l in (5.15) for all known

arcs (A′) within s. To do so, a set of linear constraints are stated as follows:

∑
j:(j,i)∈A′

l ji− ∑
j:(i, j)∈A′

li j = qi, ∀ i ∈N (5.25)

0≤ li j ≤ Q, ∀ (i, j) ∈A′ (5.26)

Equations in (5.25) aim to meet stations requirement assigning loads for each used arc (i, j) in s.

Expressions in (5.26) check for feasible loads in all routes. For the hybrid constructive solution

strategy, if conditions in (5.25) and (5.26) are not met, then the solution is discarded and function

isFeasible for solution s in Line 12 of Algorithm 5.1 returns a False value.

146 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

5.5 A set partitioning problem based matheuristic

This section proposes a second solution strategy for the 2E–BRPSD based on a two-phase

matheuristic algorithm. The first phase creates a large number of central and secondary routes.

Secondly, an enhanced SPP is solved to find a solution for the 2E–BRPSD. Algorithm 5.5 describes

the procedure. Phase I is outlined in lines 1 to 15 and uses some of the procedures described

in Section 5.4. The SPP mathematical model is solved in line 17 as Phase II. Details on this

matheuristic follow.

5.5.1 Sets of central and secondary routes for the 2E–BRPSD

Phase I starts defining sets C and S to store central and secondary routes, respectively. For a number

of predefined iterations (maxIterations), the algorithm builds (un)feasible central and secondary

routes. Firstly, for secondary routes, the greedy randomized procedure described in Section 5.4.1

finds feasible and unfeasible Hamiltonian tours (see lines 4 and 7, respectively). Each one of these

tours is improved via VND (Section 5.4.2) and then, several secondary routes (s) are obtained with

split algorithm (Section 5.4.3). These routes obtained from T are added to set S as in Line 13.

Moreover, with the aim to have a larger number of routes in S, the algorithm copies each path and

remove the last visited station in each route within the function removeLastNode. This strategy

Algorithm 5.5: SPP based algorithm for the 2E–BRPSD
1: C,S← /0
2: for i = 1 to maxIterations do
3: if i <maxIterations·β then
4: T ← greedyRandomizedAlgorithm(True, seed)
5: c← buildCentralRoute(True, |K|, seed)
6: else
7: T ← greedyRandomizedAlgorithm(False, seed)
8: c← buildCentralRoute(False, |K|, seed)
9: end if

10: C← C
⋃

c
11: T ← VND(T)
12: s← split(T)
13: S← S

⋃
s

14: s← removeLastNode(s)
15: S← S

⋃
s

16: end for
17: s∗← SPP2E−BRP(C,S)
18: return s∗

5.5. A SET PARTITIONING PROBLEM BASED MATHEURISTIC 147

may end up in a higher probability of finding better solutions. Needless to say, removing the last

visited station from a route does not increase its feasibility violation degree (δ).

Secondly, as shown in Algorithm 5.5, central routes are created before secondary routes are split.

Thus, in this solution strategy, the pure randomized procedure described in Section 5.4.6 cannot

be considered. Since the general purpose of Phase I is to generate a large set of central routes (C),

it is possible to adapt the function greedyRandomizedAlgorithm initially described in Section

5.4.1 for secondary routes generation. For the central routes case, the length for array T is |K| and

the first visited location is the operation center. Then, T [1]← 0 in step (i) from Section 5.4.1. The

greedy construction remains as described in steps (ii) and (iii) and the algorithm stops if p = |K|
(see step (iv) in Section 5.4.1). Each central route generated in lines 5 and 8 in Algorithm 5.5 is

added to set C.

5.5.2 SPP mathematical formulation for the 2E–BRPSD

Once sets C and S are completed in Phase I, one central route and |K|−1 secondary routes, must

be selected. To do so, a SPP based model able to provide a solution for the 2E–BRPSD is proposed.

This model is an MILP in which apart from sets N, S and C, a set As is defined as the used arcs

in secondary route s (s ∈ S). Similarly, Ac is the set of arcs used in the central route c (c ∈ C).

Parameters hc and gs denote the cost of central route c and secondary route s, respectively. aic is a

binary parameter that takes the value of one if station i belongs to central route c and zero otherwise.

Similarly, parameter bis is equal to one if i is included in secondary route s. Decision variable yc

takes the value of one if central route c is selected in the solution, and zero otherwise. In a similar

way, binary decision variable xs works for secondary route s. dis is also a binary variable that is

equal to one if station i is selected as a satellite depot for s and takes the value of zero in other case.

Finally, variables lc
i j and l

′s
i j determine the number of bikes in the vehicle when traversing the arc

(i, j) in the central route c and secondary route s, respectively. The proposed MILP (SPP2E−BRP in

Algorithm 5.5) for the SPP based matheuristic follows.

min f = ∑
c∈C

hc · yc + ∑
s∈S

gs · xs (5.27)

subject to,

∑
s∈S

bisxs = 1, ∀ i ∈N \{0} (5.28)

∑
s∈S

xs = |K|−1, (5.29)

148 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

∑
c∈C

yc = 1, (5.30)

∑
s∈S

(
∑

j:(j,i)∈As

l
′s
ji− ∑

j:(i, j)∈As

l
′s
i j

)

+ ∑
c∈C

(
∑

j:(j,i)∈Ac

lc
ji− ∑

j:(i, j)∈Ac

lc
i j

)
= qi, ∀ i ∈N (5.31)

l
′s
i j ≤ Q · xs, ∀ s ∈ S, (i, j) ∈As (5.32)

lc
i j ≤ Q · yc, ∀ c ∈ C, (i, j) ∈Ac (5.33)

∑
i∈N

bis ·dis = xs ∀ s ∈ S (5.34)

∑
s∈S

dis = ∑
c∈C

aic · yc, ∀ i ∈N \{0} (5.35)

dis ∈ {0,1}, ∀ s ∈ S, i ∈N (5.36)

yc ∈ {0,1}, ∀ c ∈ C (5.37)

xs ∈ {0,1}, ∀ s ∈ S (5.38)

l
′s
i j,≥ 0, ∀ s ∈ S, (i, j) ∈As (5.39)

lc
i j ≥ 0, ∀ c ∈ C, (i, j) ∈Ac (5.40)

This enhanced SPP formulation aims to minimize the total traveling cost with the objective

function in (5.27). Expressions in (5.28) force the model to include each station in one of the

secondary routes. The number of these secondary routes is limited to the available vehicles as

shown in constraint (5.29). Equation in (5.30) guarantees that a single central route is selected from

set C. Equations in (5.31) model the demand fulfilment at each station. Since a station demand can

be meet using up to two vehicles (i.e, stations selected as satellite depots),it is necessary to consider

loads from vehicles in central and secondary routes. Inequalities in (5.32) and (5.33) forbid vehicle

loads that exceed the capacity Q in secondary and central routes, respectively. Equations in (5.34)

force the model to select a station i as satellite depot for each secondary route s only if i belongs

to s. Expressions in (5.35) forbid to select a station i as satellite depot for any secondary route s if i

does not belong to a selected central route c. Lastly, expressions (5.36) to (5.40) model the domain

of decision variables in the mathematical model.

Finally, as shown in Algorithm 5.5 (line 17), SPP2E−BRP MILP returns a 2E–BRPSD solution

(s∗). This solution s∗ is also reported as the overall solution found via SPP based matheuristic

strategy. Despite the large number of central and secondary routes heuristically generated and

stored in C and S, solving SPP2E−BRP MILP may end up with no feasible solution. Since central

5.6. GENERALIZED TRAVELING SALESMAN PROBLEM BASED MATHEURISTIC FOR THE
2E–BRPSD 149

and secondary routes are generated independently, it is possible that none of the routes in C is able

to complete demand requirements for any subset of secondary routes from S.

5.6 Generalized traveling salesman problem based matheuristic

for the 2E–BRPSD

A third solution strategy for the 2E–BRPSD is presented in this section. This strategy can be also

described in two phases. The first phase aims to find a large set of candidates for secondary routes.

Next, in the second phase, a classical SPP IP model finds the best combination of these routes

for the 2E–BRPSD. This combination is then used to determine a central route via a GTSP MILP.

These two mathematical models are solved repeatedly until a stop criterion is met.

Algorithm 5.6: GTSP-based algorithm for the 2E–BRPSD
1: S← /0, f ∗←+∞, λ ← 0
2: for i = 1 to maxIterations do
3: if i <maxIterations·β then
4: T ← greedyRandomizedAlgorithm(True, seed)
5: else
6: T ← greedyRandomizedAlgorithm(False, seed)
7: end if
8: T ← VND(T)
9: s← split(T)

10: S← S
⋃

s
11: s← removeLastNode(s)
12: S← S

⋃
s

13: end for
14: while true do
15: P← SPP(S,λ)
16: s′← GTSP2E−BRP(P)

⋃
P

17: if f (s′)< f ∗ then
18: f ∗← f (s′)
19: s∗← s′

20: end if
21: λ ← f (P)+∆

22: if λ > f ∗ then
23: break
24: end if
25: end while
26: return s∗

150 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Algorithm 5.6 depicts the complete strategy. Starting with an empty set of secondary routes (S)

and an incumbent for the best known solution (f ∗), the algorithm generates maxIterations

Hamiltonian tours as described in Section 5.4.1. Similar to Phase I procedure described in

Section 5.5.1 for secondary routes, each tour T is improved and split in order to add obtained

paths to S (lines 2 to 13 in Algorithm 5.6). Then, Phase II starts and it is shown in lines 14 to

25 in Algorithm 5.6. In Phase II, |K|−1 secondary routes (P) are obtained solving a SPP IP in

which a minimum value λ for total traveling cost over the secondary routes is imposed. Value

for λ changes iteratively with the aim to find different configurations for secondary routes. The

motivation to solve the SPP IP in an iterative way (and so, the GTSP MILP in line 16 of Algorithm

5.6) relies on the fact that the subset of secondary routes with minimum traveling cost does not

ensure a minimum total cost for the complete problem (once a central route is added to the solution).

After secondary routes are stored in P, GTSP MILP finds a central route to provide a complete

2E–BRPSD solution, s′. If s′ improves the incumbent, then the best solution found is updated (lines

17 to 20). Finally, the algorithm solves again SPP IP and GTSP MILP until a value for λ (total

traveling cost over secondary routes) exceeds the best solution found for the 2E–BRPSD. New

values for λ are computed as a small increase on traveling cost for secondary routes. Details on the

mathematical formulations for this second phase follow.

5.6.1 Set partitioning problem for secondary routes

In line 15 of Algorithm 5.6, |K|− 1 secondary routes in P are stored. To find these routes, the

algorithm calls a classical SPP IP forcing the model to find an objective function value greater or

equal than λ . Using the aforementioned notation from Section 5.5.2, the SPP IP for secondary

routes selection is described as follows:

min f = ∑
s∈S

gs · xs (5.41)

subject to,

∑
s∈S

bis · xs = 1, ∀ i ∈N \{0} (5.42)

∑
s∈S

xs = |K|−1, (5.43)

∑
s∈S

gs · xs ≥ λ , (5.44)

xs ∈ {0,1}, ∀ s ∈ S (5.45)

5.6. GENERALIZED TRAVELING SALESMAN PROBLEM BASED MATHEURISTIC FOR THE
2E–BRPSD 151

The objective function in (5.41) minimizes the total traveling cost for secondary routes.

Equations in (5.42) force the model to include each station in a secondary route while (5.43)

guarantees |K|−1 secondary routes in the solution. Constraint in (5.44) imposes a lower bound for

the total traveling cost. Finally, expressions (5.45) describe the domain of decision variables. Based

on obtained values for variables x, set P is updated and then, used as an input for the GTSP MILP.

5.6.2 An enhanced GTSP mathematical formulation

The GTSP is a well-known extension of the TSP in which a classification of each element in the set

of nodes (e.g., cities, BSS stations) into groups is given. The GTSP aims to find a minimum length

tour by visiting exactly one location for each group (Noon, 1988). Inspired in this problem, a GTSP

formulation is developed. This formulation aims to find central routes using secondary paths in P

as the groups required to solve the model.

Similarly to model described in equations (5.1) – (5.21) for the 2E–BRPSD, N and A denote

the set of stations and arcs, respectively. Additionally, Np and Ap denote the set of stations and arcs

predefined for secondary route p where p ∈ P. The binary parameter φi denotes whether station i

can be a feasible satellite depot for secondary route as explained in Section 5.4.5. Again, Q and qi

denote the vehicle capacity and the demand at each station, respectively. Since the adapted GTSP

aims to determine a unique central route for the 2E–BRPSD, decision variables do not depend on

set K. Then, yi j takes the value of one if arc (i, j) is traversed within the central route. Decision

variables li j and l′i j represent the number of bikes to transport from i to j in the central and secondary

routes, respectively. It is worth to mention that each station i is included in just one of the routes in

P. Finally, and as described in model (5.1) – (5.21), variables zi j keep track of the order in which

arc (i, j) is used in the solution. The proposed MILP to determine central routes for the 2E–BRPSD

is as follows:

min f = ∑
(i, j)∈A

ci j · yi j (5.46)

subject to,

∑
j∈N

y0 j = 1, (5.47)

∑
j∈N

y j0 = 1, (5.48)

152 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

∑
j∈N
j ̸=i

yi j = ∑
j∈N
j ̸=i

y ji, ∀ i ∈N (5.49)

∑
i∈Np

∑
j/∈Np

yi j = 1, ∀ p ∈ P (5.50)

∑
j∈N

yi j ≤ φi, ∀ i ∈N \{0} (5.51)

∑
j∈N

l ji + ∑
j∈N

l′ji− ∑
j∈N

li j− ∑
j∈N

l′i j = qi, ∀ i ∈N (5.52)

∑
j∈N

l j0− ∑
j∈N

l0 j = q0, (5.53)

li j ≤ Q · yi j, ∀ (i, j) ∈A (5.54)

∑
j∈N

li j + ∑
j∈N

l′i j ≤ Q, ∀ i ∈N (5.55)

l′i j ≤ Q, ∀ (i, j) ∈Ap, p ∈ P (5.56)

l′i j = 0, ∀ (i, j) /∈Ap, p ∈ P (5.57)

∑
j∈N

z ji− ∑
j∈N

zi j = ∑
j∈N

yi j, ∀ i ∈N (5.58)

zi j ≤ |K| · yi j, ∀ (i, j) ∈A (5.59)

yi j ∈ {0,1}, ∀ (i, j) ∈A (5.60)

li j, l′i j,zi j ≥ 0, ∀ (i, j) ∈A (5.61)

The objective function in (5.46) seeks to minimize the traveling cost for central route. Equations

(5.47) and (5.48) ensure that the vehicle leaves and returns to the BSS operations center (station 0).

Expressions in (5.49) force the vehicle to leave a station if it is visited. With equations in (5.50),

each group (i.e., each secondary route) is connected to central route visiting one station in the group.

Constraints in (5.51) guarantee that the vehicle can go into a station only if the station is a feasible

depot for its associated secondary route. Expressions in (5.52) and (5.53) fix suitable values for

vehicle loads in order to meet the demand at each station and the operations center, respectively.

Constraints (5.54) to (5.57) force the model to satisfy the maximum capacity of vehicles for central

and secondary routes. Constraints (5.58) and (5.59), as a modified version of the ideas in Miller

et al. (1960), avoid subtours in feasible solutions for the 2E–BRPSD. Finally, (5.60) and (5.61)

describe the nature of decision variables.

5.6. GENERALIZED TRAVELING SALESMAN PROBLEM BASED MATHEURISTIC FOR THE
2E–BRPSD 153

5.6.3 An alternative procedure for secondary route selection

As shown in Algorithm 5.6, Phase II of the solution strategy aims to find sets of secondary routes

by increasing λ value in SPP formulation (equations (5.41) – (5.45)). This procedure allows to

improve objective function value by varying the selected secondary routes, and consequently the

obtained central route via GTSP MILP. As an alternative way to generate different sets of secondary

routes, it is possible to design a procedure based on the nodes in a route and their position within

the path. As an example, Figure 5.3 shows two routes; the number above each node represents the

position of the node through the route path. An identifier I as a way to differentiate one route from

another, can be computed as:

I = ∑
i∈N

i ·ρi (5.62)

where i is the node number and ρi denotes the position of node i within the path. Thus, identifier I

for routes 1 and 2 in Figure 5.3 is:

I1 = (1 ·5)+(2 ·6)+(3 ·7)+(4 ·8)+(5 ·9) = 115 (5.63)

I2 = (10 ·1)+(11 ·2)+(12 ·3) = 68 (5.64)

Since Phase II for the GTSP-based solution strategy is solved in an iterative way, for each

iteration t, an identifier for the set of selected secondary routes is calculated as:

Iv(t) = ∑
p∈P

Ip · xp (5.65)

Figure 5.3: Example for route index computation

154 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

If different sets of secondary routes are expected at each iteration t of Phase II of solution

strategy, then Iv(t) ̸= Iv(t ′) for t ̸= t ′ must be met. Nonetheless a linear version of this relation is

required to replace equation in (5.44). A linear approach to reach different identifiers through t

iterations can be stated as:

∑
p∈P

Ip · xp ≤ Iv(t ′)−1+M · (1− yt), ∀ t ′ < t (5.66)

∑
p∈P

Ip · xp ≥ Iv(t ′)+1−M · yt , ∀ t ′ < t (5.67)

where yt is a binary variable that takes the value of one if the secondary routes identifier (i.e.,

∑p∈P Ip · xp) is less than the identifier of secondary routes at iteration t ′. Note that the size of SPP

model adding equations (5.66) and (5.67) increases significantly as the number of iterations also

increases. However, given the definition of variable yt and the structure of equations (5.66) and

(5.67), it is possible to add valid inequalities for each pair of iterations. Therefore for a pair of

iterations t ′ and t, if Ivt < Iv′t then

yt ≤ y′t (5.68)

and also, in a similar way if Ivt > Iv′t then,

yt ≥ y′t (5.69)

Regarding computational performance it is worth to mention that constraints in (5.66) to (5.69)

are added at each iteration but SPP mathematical model is defined once at first iteration. Thus,

solver does not build the mathematical formulation from scratch each time the SPP is called.

5.7 Computational experiments

This section presents and discusses the main results on MILP outlined in Section 5.3 and on solution

strategies for the 2E–BRPSD described in Sections 5.4, 5.5 and 5.6. Firstly, a description on

instances to test the solution strategies is presented. Then, this section summarizes results on MILP

for the 2E–BRPSD solving the model via commercial solver and setting a maximum computation

time of 3600 seconds. Thirdly, results on hybrid strategies are discussed. All mathematical models

were solved using Gurobi 9.1. The algorithms were coded in Visual C++ for Windows 10 running

5.7. COMPUTATIONAL EXPERIMENTS 155

on an Intel Core i7 at 1.80GHz with 16.00 gigabytes of RAM. For each run on hybrid strategies,

maximum computation time is set to 3600 seconds. After several tests, values for parameter

MaxIterations were set to 250 for all solution strategies. Similarly, for GTSP-based algorithm, λ

was set to 0.02.

5.7.1 Data sets

Mathematical model and solution strategies were tested on two different sets of instances. The

first one is the set of well-known instances previously used to solve the 1–PDTSP in Chapter 3

(Hernández-Pérez and Salazar-González, 2004a). The 2E–BRPSD is also solved with a set of

instances adapted from the operation of EnCicla in Medellı́n, Colombia (Palacio and Rivera, 2022).

1–PDTSP benchmark instances

The first set of instances are available at http://hhperez.webs.ull.es/PDsite/. These

instances were previously used to solve the 1–PDTSP as in Hernández-Pérez et al. (2009);

Hernández-Pérez and Salazar-González (2004a); Palacio and Rivera (2019). For these instances,

|N| ∈ {20,30,40,50,60,100,200,300} and demand on stations (q) may vary from -10 to 10. In

2E–BRPSD experiments, vehicle capacity is ten (Q = 10). As in Chapters 3 and 4, this value for Q

allows to set up the hardest configuration for the instances since it coincides with the largest demand

on a station (Hernández-Pérez et al., 2009). Since the number of stations in these instances vary

significantly, fleet size is computed as function of the number of stations as follows:

|K|=
⌈
|N|
γ

⌉
+1 (5.70)

where γ is the number of expected stations to visit in a secondary route. Two different scenarios

for route length are explored setting γ = {8,10}. Thus, fleet size for experiments may take two

different values as shown in Table 5.4. Finally, for each value for |N|, ten instances named from

A to J are available. Details about the instances generation may be found in Hernández-Pérez and

Salazar-González (2004a) and Hernández-Pérez and Salazar-González (2004b).

EnCicla BSS instances

The second set of instances to solve is based on EnCicla operation, the public BSS program in

Medellı́n, Colombia. This set includes those instances described in Section 3.4.1. Since Medellı́n is

http://hhperez.webs.ull.es/PDsite/

156 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.4: Number of vehicles for 2E–BRPSD instances

γ
|K|

20 30 40 50 60 100 200 300
8 4 5 6 8 9 14 26 31

10 3 4 5 6 7 11 21 26

divided into six zones, all EnCicla instances for the 2E–BRPSD consider six vehicles. (i.e., one

vehicle per zone). Recall that vehicles capacity is set to 45 (Q = 45).

5.7.2 Results on 2E–BRPSD MILP

Table 5.5 shows results for total traveling costs when solving benchmark instances with up to 50

stations. Firstly, for instances with 20 stations and three vehicles, it is possible to find the optimal

solution (bold numbers) within the maximum computation time. If four vehicles are used only

four out of ten instances are solved optimally. Then, for instances with 30 and 40 stations, the

solver reports at least one feasible solution in all cases. However, for most of the larger instances

(50 stations), no feasible solution is reported by the optimizer within one hour. Only for five

of the 20 instances with 50 stations, a feasible solution is retrieved. In a similar way, Table 5.6

reports gaps retrieved by the solver once it stops after 3600 seconds. These gaps are computed as:

gap(%) = UB−LB
UB ·100 where UB and LB are the best solution found and the lower bound reported

by the solver, respectively. For instances with 20 stations, gaps do not exceed 11.97%. On the other

hand, for instances with 30 and 40 stations, gaps increase up to 32.30% and 41.62%, respectively.

Average gaps over the 20 runs for 30-station instances is 19.24% and it increases up to 33.66% for

instances with 40 stations. Since gaps for instances with 50 stations vary from 38.81% to 49.73%,

larger instances are not solved via the commercial solver. Finally, CPU time is also reported in

parenthesis for instances with 20 stations solved optimally.

5.7.3 Results on matheuristic algorithms

This section summarizes results on matheuristic algorithms for benchmark instances. Since MILP

is able to solve instances with up to 40 stations, matheuristic algorithms performance is compared

with commercial solver results. Then, for larger instances, only solutions found via matheuristic

algorithms are presented since solutions obtained via commercial optimizer are not available.

Tables 5.7, 5.8 and, 5.9 show results for benchmark instances with 20, 30 and 40 stations,

respectively. In each table, results for the ten instances are reported varying the fleet size as described

5.7. COMPUTATIONAL EXPERIMENTS 157

in Table 5.4. Firstly, the optimal solution or upper bound retrieved by the commercial solver is

reported in column MILP. Then, results on four algorithms are presented. Groups of columns

Constructive, SPP-Math, GTSP-Cost and, GTSP-Id describe results for the hybrid constructive

algorithm, the SPP-based matheuristic, the GTSP-based algorithm when traveling cost target

increases iteratively and, GTSP- based algorithm with route identifier, respectively. Columns Min.

and Avg. show minimum and average total traveling costs retrieved by each solution strategy over

ten runs. Lastly, in group of columns Improvement (%) MILP, improvements for each strategy over

MILP solution are reported. These improvements are computed as follows:

Improvement Construct.MILP(%) =
MILP−Min.constructive

MILP
·100 (5.71)

Improvement SPP−MathMILP(%) =
MILP−Min.SPP−Math

MILP
·100 (5.72)

Improvement GT SP−CostMILP(%) =
MILP−Min.GT SP−Cost

MILP
·100 (5.73)

Improvement GT SP− IdMILP(%) =
MILP−Min.GT SP−Id

MILP
·100 (5.74)

For 20, 30 and 40 stations, GTSP-Cost strategy outperforms constructive, SPP-Math and

GTSP-Id algorithms, on average. Particularly, for all instances with 20 stations, GTSP-Cost finds

the solution reported by commercial solver (optimal traveling costs if |K|= 3). For a subset of 20

station instances, constructive, SPP-Math and GTSP-Id, are not able to find those best solution and

the three matheuristic algorithms reports an increased average traveling cost if three and four vehicles

Table 5.5: MILP results for total traveling cost on 2E–BRPSD instances

Instance
|N| |K| A B C D E F G H I J

20
3 5287 5459 6456 6366 6842 5100 6002 6070 5189 4733
4 5261 5713 6952 6613 6764 5382 6129 6563 5502 5104

30
4 7134 7585 7779 7503 6936 6787 10509 8016 6352 8624
5 7616 8255 7533 8125 6866 7044 10922 7701 6818 7562

40
5 9612 8784 9191 10031 10025 9830 10969 9143 9597 9194
6 10003 9772 10321 10328 9100 10180 10137 9667 9461 9959

50
6 - - 13919 13817 - - - - 12111 -
8 - - - 14889 - - - - 13335 -

158 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.6: MILP gaps and CPU times (s) for 2E–BRPSD instances

Instance
|N| |K| A B C D E F G H I J

20
3

0.00%
(715.36)

0.00%
(118.20)

0.00%
(394.83)

0.00%
(181.52)

0.00%
(3133.57)

0.00%
(398.53)

0.00%
(1242.53)

0.00%
(187.93)

0.00%
(201.28)

0.00%
(101.77)

4
0.00%

(1549.29)
0.00%

(2859.20)
11.97% 2.82% 4.06%

0.00%
(2689.48)

9.33% 6.15% 4.00%
0.00%

(2474.17)

30
4 14.09% 13.97% 20.87% 15.74% 11.76% 16.83% 16.79% 23.62% 12.90% 32.30%
5 20.48% 22.01% 19.66% 22.92% 11.33% 21.15% 21.99% 21.94% 20.36% 24.11%

40
5 30.29% 32.81% 21.56% 25.96% 38.90% 36.82% 37.62% 32.13% 30.56% 34.19%
6 35.85% 41.62% 34.62% 30.32% 34.38% 33.59% 33.02% 37.57% 32.91% 38.47%

50
6 - - 44.49% 38.81% - - - - 43.02% -
8 - - - 42.28% - - - - 49.73% -

are available. For 30 station instances, GTSP-Cost also outperforms the other proposed solution

strategies. For this size of instances, GTSP-Cost improvements are positive, on average. Thus, some

solutions retrieved by the matheuristic improve the total traveling cost reported by the optimizer

solving MILP. Strategy GTSP-Id also finds better solutions than MILP for particular instances (H if

|K| = 4, B, G, H and J if |K| = 5). Lastly, for 40 stations instances, SPP-Math, GTSP-Cost and

GTSP-Id improve MILP solutions, on average. Furthermore, if average improvements are compared

for both fleet size, GTSP-Cost keeps finding larger improvements than SPP-Math and GTSP-Id, on

average.

Since MILP solutions are not available for |N| ≥ 40 and GTSP-Cost shows the best performance

for instances with up to 40 stations, results for instances with 50 and 60 stations are compared

over GTSP-Cost. Tables 5.10 and 5.11 summarize results for instances with 50 and 60 stations,

respectively. For each instance and solution strategy a value p is reported. p denotes the probability

of finding a solution over ten runs. GTSP-based matheuristic algorithms are able to find at least one

solution each time the instance is solved. However, hybrid constructive algorithm and SPP-Math

may not find a solution in each one of the ten runs. As a particular case, hybrid constructive

algorithm did not found a feasible solution for instance D after ten runs of the algorithm, when

fleet size is eight. Similar to smaller instances, when 50 stations are available, GTSP-Cost keeps

outperforming other proposed algorithms. Therefore, improvement percentages for GTSP-Cost are

computed over constructive algorithm, SPP-Math and GTSP-Id strategies. These improvements are

computed as:

5.7. COMPUTATIONAL EXPERIMENTS 159

Improvement Construct.GT SP−Cost(%) =
Min.Constructive−Min.GT SP−Cost

Min.Constructive
·100 (5.75)

Improvement SPP−MathGT SP−Cost(%) =
Min.SPP−Math−Min.GT SP−Cost

Min.SPP−Math
·100 (5.76)

Improvement GT SP− IdGT SP−Cost(%) =
Min.GT SP−Id−Min.GT SP−Cost

Min.GT SP−Id
·100 (5.77)

160 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.7: Comparative results on matheuristic algorithms for instances with 20 stations
M

IL
P

C
on

st
ru

ct
iv

e
SP

P-
M

at
h

G
T

SP
-C

os
t

G
T

SP
-I

d
Im

pr
ov

em
en

t(
%

)M
IL

P
M

in
.

A
vg

.
M

in
.

A
vg

.
M

in
.

A
vg

.
M

in
.

A
vg

.
C

on
st

ru
ct

.S
PP

-M
at

h
G

T
SP

-C
os

tG
T

SP
-I

d
|K
|=

3
A

52
87

52
87

60
47

.1
0

54
93

57
02

.9
0

52
87

54
96

.7
9

54
51

57
28

.5
3

0.
00

%
-3

.9
0%

0.
00

%
-3

.1
0%

B
54

59
54

59
60

42
.2

2
54

59
56

74
.1

2
54

59
57

89
.1

2
58

97
60

93
.7

5
0.

00
%

0.
00

%
0.

00
%

-8
.0

2%
C

64
56

69
83

74
40

.4
3

68
86

69
57

.7
1

64
56

70
29

.4
4

71
55

74
17

.2
6

-8
.1

6%
-6

.6
6%

0.
00

%
-1

0.
83

%
D

63
66

63
66

77
78

.6
5

63
66

68
07

.3
4

63
66

67
62

.1
6

68
50

75
78

.5
3

0.
00

%
0.

00
%

0.
00

%
-7

.6
0%

E
68

42
75

15
77

80
.3

3
68

52
68

55
.5

9
68

42
72

18
.4

6
72

20
73

15
.5

9
-9

.8
4%

-0
.1

5%
0.

00
%

-5
.5

2%
F

51
00

51
00

59
08

.3
6

51
00

53
90

.9
0

51
00

52
93

.9
1

55
01

56
53

.2
5

0.
00

%
0.

00
%

0.
00

%
-7

.8
6%

G
60

02
60

02
65

65
.6

8
61

80
62

29
.9

3
60

02
62

45
.7

8
62

95
64

18
.5

1
0.

00
%

-2
.9

7%
0.

00
%

-4
.8

8%
H

60
70

63
73

68
69

.1
0

60
70

64
00

.8
1

60
70

63
54

.2
0

64
55

68
37

.5
8

-4
.9

9%
0.

00
%

0.
00

%
-6

.3
4%

I
51

89
51

89
66

44
.1

1
56

01
57

58
.1

7
51

89
57

25
.2

3
57

85
59

32
.4

8
0.

00
%

-7
.9

4%
0.

00
%

-1
1.

49
%

J
47

33
47

33
57

69
.4

9
47

54
52

24
.9

2
47

33
49

98
.1

7
52

03
53

70
.5

3
0.

00
%

-0
.4

4%
0.

00
%

-9
.9

3%
A

ve
ra

ge
-2

.3
0%

-2
.2

1%
0.

00
%

-7
.5

6%

|K
|=

4
A

52
61

57
24

61
52

.2
3

53
38

56
69

.1
3

52
61

54
28

.3
7

56
22

57
58

.0
0

-8
.8

0%
-1

.4
6%

0.
00

%
-6

.8
6%

B
57

13
65

49
67

65
.1

9
59

17
59

56
.8

2
57

13
58

49
.4

1
61

87
64

09
.7

4
-1

4.
63

%
-3

.5
7%

0.
00

%
-8

.3
0%

C
69

52
79

64
83

89
.0

9
69

52
72

36
.8

1
69

52
71

37
.9

1
72

99
76

06
.2

7
-1

4.
56

%
0.

00
%

0.
00

%
-4

.9
9%

D
66

13
71

00
84

35
.4

6
66

13
69

51
.1

7
66

13
73

11
.3

0
75

61
81

53
.8

5
-7

.3
6%

0.
00

%
0.

00
%

-1
4.

34
%

E
67

64
73

36
83

63
.5

8
73

18
74

92
.5

6
67

64
75

30
.3

8
75

80
77

04
.5

7
-8

.4
6%

-8
.1

9%
0.

00
%

-1
2.

06
%

F
53

82
64

30
67

85
.5

3
53

88
57

66
.8

9
53

82
56

27
.2

0
59

81
61

74
.5

1
-1

9.
47

%
-0

.1
1%

0.
00

%
-1

1.
13

%
G

61
29

68
21

71
11

.1
0

61
43

64
25

.3
7

61
29

63
85

.7
7

64
22

67
94

.5
5

-1
1.

29
%

-0
.2

3%
0.

00
%

-4
.7

8%
H

65
63

69
18

72
59

.8
7

68
62

70
23

.3
2

65
63

68
46

.3
2

72
68

73
42

.5
3

-5
.4

1%
-4

.5
6%

0.
00

%
-1

0.
74

%
I

55
02

57
84

69
47

.9
3

55
02

59
50

.1
4

55
02

59
79

.1
9

57
59

60
55

.7
5

-5
.1

3%
0.

00
%

0.
00

%
-4

.6
7%

J
51

04
58

80
62

42
.4

3
52

13
55

94
.0

7
51

04
55

65
.1

1
58

05
59

72
.2

6
-1

5.
20

%
-2

.1
4%

0.
00

%
-1

3.
73

%
A

ve
ra

ge
-1

1.
03

%
-2

.0
3%

0.
00

%
-9

.1
6%

5.7. COMPUTATIONAL EXPERIMENTS 161

Table 5.8: Comparative results on matheuristic algorithms for instances with 30 stations
M

IL
P

C
on

st
ru

ct
iv

e
SP

P-
M

at
h

G
T

SP
-C

os
t

G
T

SP
-I

d
Im

pr
ov

em
en

t(
%

)M
IL

P
M

in
.

A
vg

.
M

in
.

A
vg

.
M

in
.

A
vg

.
M

in
.

A
vg

.
C

on
st

ru
ct

.S
PP

-M
at

h
G

T
SP

-C
os

tG
T

SP
-I

d
|K
|=

4
A

71
34

82
82

86
65

.8
8

74
37

77
70

.9
0

71
03

73
53

.6
1

75
57

79
98

.2
5

-1
6.

09
%

-4
.2

5%
0.

43
%

-5
.9

3%
B

75
85

87
68

90
09

.9
0

78
66

79
89

.1
3

76
59

78
26

.6
1

80
68

83
37

.5
0

-1
5.

60
%

-3
.7

0%
-0

.9
8%

-6
.3

7%
C

77
79

81
31

86
73

.0
9

79
20

82
19

.3
8

75
34

76
96

.8
3

78
12

81
81

.7
5

-4
.5

3%
-1

.8
1%

3.
15

%
-0

.4
2%

D
75

03
88

82
93

92
.1

2
89

06
91

47
.5

6
75

03
82

56
.3

3
80

99
84

86
.7

5
-1

8.
38

%
-1

8.
70

%
0.

00
%

-7
.9

4%
E

69
36

80
51

86
74

.2
2

72
85

73
03

.0
4

69
87

73
42

.1
3

70
85

75
00

.6
4

-1
6.

08
%

-5
.0

3%
-0

.7
4%

-2
.1

5%
F

67
87

83
60

87
77

.3
9

74
93

75
65

4.
10

68
11

72
28

.8
0

76
31

78
19

.2
0

-2
3.

18
%

-1
0.

40
%

-0
.3

5%
-1

2.
44

%
G

10
50

9
10

84
0

11
17

3.
11

10
42

4
10

78
8.

60
10

33
8

10
48

1.
70

10
57

5
10

78
3.

00
-3

.1
5%

0.
81

%
1.

63
%

-0
.6

3%
H

80
16

82
44

90
83

.7
5

75
42

76
22

.1
3

75
59

78
96

.6
6

78
00

80
80

.7
4

-2
.8

4%
5.

91
%

5.
70

%
2.

69
%

I
63

52
74

62
84

58
.6

8
64

46
64

46
.7

9
63

52
70

54
.5

4
72

96
74

88
.5

5
-1

7.
47

%
-1

.4
8%

0.
00

%
-1

4.
86

%
J

86
24

86
69

91
08

.9
7

81
23

82
49

.4
0

75
63

79
19

.9
7

81
47

81
93

.7
5

-0
.5

2%
5.

81
%

12
.3

0%
5.

53
%

A
ve

ra
ge

-1
1.

78
%

-3
.2

8%
2.

12
%

-4
.2

5%

|K
|=

5
A

76
16

87
29

98
81

.8
9

79
80

83
16

.9
9

73
45

75
76

.0
2

78
83

81
43

.5
3

-1
4.

61
%

-4
.7

8%
3.

56
%

-3
.5

1%
B

82
55

89
84

94
28

.9
0

83
17

85
49

.2
3

78
79

80
35

.6
1

78
55

81
68

.2
5

-8
.8

3%
-0

.7
5%

4.
55

%
4.

85
%

C
75

33
81

32
89

12
.1

4
78

75
81

28
.6

2
74

78
75

29
.1

0
75

91
78

43
.0

6
-7

.9
5%

-4
.5

4%
0.

73
%

-0
.7

7%
D

81
25

85
89

97
09

.8
0

86
69

92
02

.3
7

78
08

81
10

.3
4

81
34

82
85

.2
7

-5
.7

1%
-6

.7
0%

3.
90

%
-0

.1
1%

E
68

66
84

91
88

51
.3

4
71

11
79

22
.4

0
70

37
73

41
.5

3
76

68
77

13
.7

5
-2

3.
67

%
-3

.5
7%

-2
.4

9%
-1

1.
68

%
F

70
44

79
60

83
96

.3
8

74
89

77
53

.3
6

70
13

71
57

.6
7

70
81

75
30

.5
8

-1
3.

00
%

-6
.3

2%
0.

44
%

-0
.5

3%
G

10
92

2
11

24
3

11
81

7.
17

10
47

1
10

79
8.

50
10

04
9

10
26

7.
21

10
32

0
10

73
3.

25
-2

.9
4%

4.
13

%
7.

99
%

5.
51

%
H

77
01

85
55

92
34

.3
9

82
32

87
06

.1
4

73
76

77
97

.9
0

76
32

79
72

.3
0

-1
1.

09
%

-6
.9

0%
4.

22
%

0.
90

%
I

68
18

78
65

88
24

.9
0

75
31

77
60

.7
1

68
18

72
40

.8
3

69
73

74
00

.4
3

-1
5.

36
%

-1
0.

46
%

0.
00

%
-2

.2
7%

J
75

62
83

97
93

09
.8

7
77

67
81

54
.2

0
75

41
76

59
.6

2
75

45
78

52
.7

7
-1

1.
04

%
-2

.7
1%

0.
28

%
0.

22
%

A
ve

ra
ge

-1
1.

42
%

-4
.2

6%
2.

32
%

-0
.7

4%

162 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.9: Comparative results on matheuristic algorithms for instances with 40 stations
M

IL
P

C
on

st
ru

ct
iv

e
SP

P-
M

at
h

G
T

SP
-C

os
t

G
T

SP
-I

d
Im

pr
ov

em
en

t(
%

)M
IL

P
M

in
.

A
vg

.
M

in
.

A
vg

.
M

in
.

A
vg

.
M

in
.

A
vg

.
C

on
st

ru
ct

.S
PP

-M
at

h
G

T
SP

-C
os

tG
T

SP
-I

d
|K
|=

5
A

96
12

95
35

10
23

6.
30

90
83

91
38

.9
2

80
58

83
31

.4
6

83
25

87
17

.8
0

0.
80

%
5.

50
%

16
.1

7%
13

.3
9%

B
87

84
99

88
10

57
7.

01
86

18
91

91
.7

6
81

48
84

71
.7

9
83

06
90

64
.3

3
-1

3.
71

%
1.

89
%

7.
24

%
5.

44
%

C
91

91
10

21
5

10
44

5.
30

88
33

97
03

.9
8

81
86

85
33

.7
4

89
45

90
94

.5
6

-1
1.

14
%

3.
90

%
10

.9
3%

2.
68

%
D

10
03

1
10

96
6

11
93

1.
25

10
17

8
11

01
3.

79
93

79
99

34
.7

7
10

10
2

10
44

0.
77

-9
.3

2%
-1

.4
7%

6.
50

%
-0

.7
1%

E
10

02
5

10
25

3
11

12
4.

20
98

73
10

61
5.

30
79

32
84

15
.0

2
87

32
96

82
.8

3
-2

.2
7%

1.
52

%
20

.8
8%

12
.9

0%
F

98
30

10
79

2
11

66
0.

75
95

53
97

61
.0

0
85

20
91

38
.4

6
95

73
98

34
.5

3
-9

.7
9%

2.
82

%
13

.3
3%

2.
61

%
G

10
96

9
10

91
0

11
68

4.
63

10
18

4
10

33
8.

29
88

31
93

41
.5

3
96

60
10

23
9.

79
0.

54
%

7.
16

%
19

.4
9%

11
.9

3%
H

91
43

97
06

10
47

2.
38

95
70

97
40

.3
8

86
56

90
31

.0
4

84
65

91
78

.7
7

-6
.1

6%
-4

.6
7%

5.
33

%
7.

42
%

I
95

97
10

14
3

10
80

1.
55

94
88

10
07

4.
48

86
07

89
33

.9
0

88
05

94
14

.0
3

-5
.6

9%
1.

14
%

10
.3

2%
8.

25
%

J
91

94
85

72
10

19
6.

50
87

51
88

85
.1

2
75

59
79

49
.2

8
84

96
87

26
.0

5
6.

77
%

4.
82

%
17

.7
8%

7.
59

%
A

ve
ra

ge
-5

.0
0%

2.
26

%
12

.8
0%

7.
15

%

|K
|=

6
A

10
00

3
95

58
10

84
7.

40
92

37
97

31
.2

1
82

31
86

64
.2

1
91

12
92

92
.3

4
4.

45
%

7.
66

%
17

.7
1%

8.
91

%
B

97
72

94
91

11
10

5.
56

89
88

99
69

.6
2

78
87

81
57

.1
1

89
02

92
10

.6
9

2.
88

%
8.

02
%

19
.2

9%
8.

90
%

C
10

32
1

98
68

10
56

0.
88

95
89

98
36

.2
3

84
83

88
52

.3
8

90
91

92
43

.8
4

4.
39

%
7.

09
%

17
.8

1%
11

.9
2%

D
10

32
8

11
20

6
11

68
9.

50
11

20
9

11
76

3.
88

97
46

99
93

.3
6

11
01

4
11

24
6.

00
-8

.5
0%

-8
.5

3%
5.

64
%

-6
.6

4%
E

91
00

10
94

9
12

19
8.

57
96

48
10

40
7.

87
84

43
88

58
.5

2
93

32
96

84
.0

1
-2

0.
32

%
-6

.0
2%

7.
22

%
-2

.5
5%

F
10

18
0

11
25

9
12

10
5.

75
10

14
0

10
54

6.
03

87
82

90
59

.5
8

89
16

97
36

.0
3

-1
0.

60
%

0.
39

%
13

.7
3%

12
.4

2%
G

10
13

7
10

98
9

12
10

1.
86

10
03

2
10

87
4.

51
90

37
94

70
.7

7
11

64
7

11
92

7.
08

-8
.4

0%
1.

04
%

10
.8

5%
-1

4.
90

%
H

96
67

95
56

11
28

0.
20

94
22

98
70

.4
3

82
94

85
73

.4
8

98
80

98
80

.0
5

1.
15

%
2.

53
%

14
.2

0%
-2

.2
0%

I
94

61
10

83
8

11
52

1.
92

98
77

10
19

8.
56

87
81

93
23

.9
4

10
64

1
10

64
1.

07
-1

4.
55

%
-4

.4
0%

7.
19

%
-1

2.
47

%
J

99
59

99
15

10
81

7.
11

90
58

96
50

.0
8

81
28

84
15

.6
6

89
79

92
82

.0
9

0.
44

%
9.

05
%

18
.3

9%
9.

84
%

A
ve

ra
ge

-4
.9

1%
1.

68
%

13
.2

0%
1.

32
%

5.7. COMPUTATIONAL EXPERIMENTS 163

Table 5.10: Comparative results on matheuristic algorithms for instances with 50 stations
C

on
st

ru
ct

iv
e

SP
P-

M
at

h
G

T
SP

-C
os

t
G

T
SP

-I
d

Im
pr

ov
em

en
t(

%
)G

T
SP

-C
os

t
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
C

on
st

ru
ct

.S
PP

-M
at

h
G

T
SP

-I
d

|K
|=

6
A

10
50

7
11

43
2.

27
1.

00
99

10
10

32
2.

25
1.

00
88

28
92

62
.0

4
1.

00
93

44
94

51
.8

0
1.

00
15

.9
8%

10
.9

2%
5.

52
%

B
13

68
6

13
68

6.
09

0.
20

11
55

0
12

24
4.

60
1.

00
10

95
3

11
49

9.
21

1.
00

11
62

1
12

39
7.

04
1.

00
19

.9
7%

5.
17

%
5.

75
%

C
12

69
4

13
39

7.
76

0.
30

11
90

9
13

11
2.

41
1.

00
10

17
5

10
98

8.
73

1.
00

11
27

1
12

77
6.

10
1.

00
19

.8
4%

14
.5

6%
9.

72
%

D
14

83
6

15
71

0.
43

0.
60

14
53

7
15

14
3.

02
1.

00
12

02
7

12
58

8.
74

1.
00

12
80

5
13

09
4.

56
1.

00
18

.9
3%

17
.2

7%
6.

08
%

E
14

32
5

15
52

7.
88

0.
50

12
53

6
12

78
9.

34
1.

00
10

86
9

11
15

4.
55

1.
00

11
35

9
12

63
7.

01
1.

00
24

.1
3%

13
.3

0%
4.

31
%

F
13

06
8

13
60

0.
06

0.
30

11
20

7
11

90
0.

06
1.

00
99

61
10

79
0.

64
1.

00
10

80
7

11
27

7.
79

1.
00

23
.7

8%
11

.1
2%

7.
83

%
G

12
18

9
12

31
9.

07
0.

30
11

19
7

11
91

1.
14

1.
00

92
17

95
83

.7
0

1.
00

94
10

10
16

1.
41

1.
00

24
.3

8%
17

.6
8%

2.
05

%
H

12
65

4
13

46
1.

08
0.

60
12

00
6

13
00

9.
30

1.
00

10
93

5
11

34
4.

55
1.

00
11

60
3

13
20

3.
09

1.
00

13
.5

8%
8.

92
%

5.
76

%
I

12
57

5
13

22
9.

01
0.

60
12

14
3

12
38

6.
30

1.
00

98
18

10
52

3.
62

1.
00

10
44

2
10

70
0.

00
1.

00
21

.9
2%

19
.1

5%
5.

98
%

J
13

31
9

14
50

1.
46

0.
50

12
99

2
13

93
2.

36
1.

00
10

71
4

11
24

2.
31

1.
00

11
94

6
14

60
0.

54
1.

00
19

.5
6%

17
.5

3%
10

.3
1%

A
ve

ra
ge

20
.2

1%
13

.5
6%

6.
33

%

|K
|=

8
A

10
87

5
12

55
9.

30
0.

90
10

51
9

10
87

7.
74

0.
90

83
35

87
50

.6
4

1.
00

88
36

92
33

.5
5

1.
00

23
.3

6%
20

.7
6%

5.
67

%
B

13
26

9
13

26
9.

00
0.

10
12

85
1

12
85

1.
00

0.
10

10
86

0
11

16
4.

67
1.

00
11

60
0

11
79

7.
53

1.
00

18
.1

6%
15

.4
9%

6.
38

%
C

13
70

2
14

26
5.

57
0.

20
12

25
9

12
30

9.
34

0.
30

10
36

7
10

56
7.

02
1.

00
10

92
4

11
26

3.
79

1.
00

24
.3

4%
15

.4
3%

5.
10

%
D

-
-

0.
00

14
98

9
14

98
9.

00
0.

10
12

15
0

12
36

1.
84

1.
00

12
52

9
12

96
0.

56
1.

00
-

18
.9

4%
3.

02
%

E
13

98
5

14
45

7.
50

0.
50

13
82

6
14

58
2.

04
0.

70
11

33
6

11
57

8.
24

1.
00

11
79

3
12

29
1.

50
1.

00
18

.9
4%

18
.0

1%
3.

88
%

F
12

61
9

14
34

4.
82

0.
50

12
37

7
13

05
2.

51
0.

60
90

13
94

53
.5

4
1.

00
95

04
97

07
.0

9
1.

00
28

.5
8%

27
.1

8%
5.

17
%

G
14

31
3

17
05

9.
09

0.
20

94
67

10
62

4.
94

0.
90

89
47

90
81

.4
5

1.
00

10
79

3
11

42
2.

09
1.

00
37

.4
9%

5.
49

%
17

.1
0%

H
13

10
5

14
64

0.
01

0.
40

11
72

5
13

21
5.

01
0.

40
10

47
0

10
79

1.
38

1.
00

10
69

9
11

07
5.

29
1.

00
20

.1
1%

10
.7

0%
2.

14
%

I
12

11
7

13
99

8.
01

0.
20

12
16

8
12

41
4.

02
0.

30
99

84
10

17
6.

71
1.

00
10

38
1

10
78

6.
03

1.
00

17
.6

0%
17

.9
5%

3.
82

%
J

13
58

6
14

03
3.

00
0.

20
13

50
7

15
71

1.
82

0.
50

10
39

5
10

66
1.

59
1.

00
10

37
6

10
61

5.
07

1.
00

23
.4

9%
23

.0
4%

-0
.1

8%
A

ve
ra

ge
23

.5
6%

17
.3

0%
5.

21
%

164 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.11: Comparative results on matheuristic algorithms for instances with 60 stations
C

on
st

ru
ct

iv
e

SP
P-

M
at

h
G

T
SP

-C
os

t
G

T
SP

-I
d

Im
pr

ov
em

en
t(

%
)G

T
SP

-C
os

t
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
C

on
st

ru
ct

.S
PP

-M
at

h
G

T
SP

-I
d

|K
|=

7
A

14
94

0
15

34
9.

38
0.

30
12

87
5

13
78

2.
03

0.
90

10
31

7
11

04
6.

88
1.

00
11

06
9

11
77

9.
43

1.
00

30
.9

4%
19

.8
7%

6.
79

%
B

15
49

4
15

54
2.

51
0.

20
12

71
7

13
05

3.
14

1.
00

10
49

8
11

15
1.

41
1.

00
11

32
5

11
61

9.
09

1.
00

32
.2

4%
17

.4
5%

7.
30

%
C

14
10

6
14

10
6.

00
0.

10
14

93
6

16
97

8.
86

1.
00

11
50

5
11

96
9.

98
1.

00
12

59
9

13
23

8.
53

1.
00

18
.4

4%
22

.9
7%

8.
68

%
D

15
86

5
15

88
2.

51
0.

20
17

38
6

22
68

2.
46

0.
70

13
76

2
14

13
6.

38
1.

00
13

99
8

14
69

4.
34

1.
00

13
.2

6%
20

.8
4%

1.
69

%
E

13
77

1
14

80
4.

38
0.

60
15

52
5

21
82

9.
61

1.
00

11
54

0
12

33
7.

69
1.

00
13

04
8

13
60

5.
69

1.
00

16
.2

0%
25

.6
7%

11
.5

6%
F

-
-

0.
00

13
88

5
18

52
4.

39
0.

33
11

69
4

12
11

8.
93

1.
00

12
24

4
12

54
7.

03
1.

00
-

15
.7

8%
4.

49
%

G
-

-
0.

00
13

34
1

19
47

8.
44

1.
00

11
17

4
11

97
3.

69
1.

00
12

00
8

12
14

8.
08

1.
00

-
16

.2
4%

6.
95

%
H

13
96

6
14

82
4.

76
0.

30
12

24
0

13
43

1.
83

1.
00

10
82

2
11

28
4.

28
1.

00
11

20
1

11
56

8.
02

1.
00

22
.5

1%
11

.5
8%

3.
38

%
I

13
89

9
14

45
2.

55
0.

20
14

45
5

16
37

4.
59

0.
70

11
57

1
12

23
3.

57
1.

00
12

13
1

13
25

6.
74

1.
00

16
.7

5%
19

.9
5%

4.
62

%
J

14
25

8
15

09
4.

71
0.

30
13

11
9

15
03

7.
28

1.
00

11
23

3
11

73
8.

31
1.

00
11

74
7

13
03

7.
34

1.
00

21
.2

2%
14

.3
8%

4.
38

%
A

ve
ra

ge
21

.4
5%

18
.4

7%
5.

98
%

|K
|=

9
A

12
76

5
13

20
7.

08
0.

20
12

89
2

12
98

6.
67

0.
50

10
51

2
10

75
4.

11
1.

00
11

39
9

11
42

8.
03

1.
00

17
.6

5%
18

.4
6%

7.
78

%
B

15
07

5
15

07
5.

00
0.

10
12

99
5

13
46

2.
70

0.
50

10
82

6
10

95
4.

96
1.

00
11

29
9

11
34

0.
53

1.
00

28
.1

9%
16

.6
9%

4.
19

%
C

14
74

5
15

27
3.

59
0.

20
-

-
0.

00
10

99
7

11
35

4.
23

1.
00

11
87

3
12

13
0.

04
1.

00
25

.4
2%

-
7.

38
%

D
-

-
0.

00
-

-
0.

00
13

25
4

13
56

9.
20

1.
00

13
44

7
14

39
1.

38
1.

00
-

-
1.

44
%

E
-

-
0.

00
13

26
5

13
26

5.
00

0.
10

11
58

0
11

97
3.

20
1.

00
12

28
3

12
57

8.
73

1.
00

-
12

.7
0%

5.
72

%
F

13
31

1
13

31
1.

00
0.

10
-

-
0.

00
10

68
3

11
26

3.
07

1.
00

11
19

2
11

47
0.

39
1.

00
19

.7
4%

-
4.

55
%

G
-

-
0.

00
13

79
6

13
79

6.
00

0.
10

10
83

9
11

22
0.

00
1.

00
11

27
8

11
87

3.
68

1.
00

-
21

.4
3%

3.
89

%
H

-
-

0.
00

12
93

5
13

63
5.

32
0.

80
10

86
3

11
16

0.
21

1.
00

11
07

8
11

39
3.

74
1.

00
-

16
.0

2%
1.

94
%

I
16

26
5

16
26

5.
00

0.
10

14
47

2
14

47
2.

00
0.

10
11

42
3

11
72

7.
49

1.
00

11
85

9
12

11
1.

42
1.

00
29

.7
7%

21
.0

7%
3.

68
%

J
14

01
7

14
24

3.
58

0.
20

14
97

6
15

26
2.

56
0.

20
10

51
6

11
08

9.
58

1.
00

11
72

1
11

92
1.

43
1.

00
24

.9
8%

29
.7

8%
10

.2
8%

A
ve

ra
ge

24
.2

9%
19

.4
5%

5.
08

%

5.7. COMPUTATIONAL EXPERIMENTS 165

As shown in Table 5.10, GTSP-Cost outperforms on average, up to 23.56% and 17.30% results

on hybrid constructive algorithm and SPP-Math, respectively. For instances with 60 stations reported

in 5.11, solution strategies performance does not change significantly. Improvement percentage

for GTSP-Cost over the other three strategies are computed as in equations (5.75)–(5.77). On

average, GTSP-Math reports lower values for traveling costs when compared with constructive

algorithm, SPP-Math and GTSP-Id. GTSP-Cost outperforms up to 24.29% and 19.45% on average,

constructive algorithm and SPP-Math, respectively. For six instances, the hybrid constructive

algorithm is not able to find any feasible solution after ten runs. In a similar way, a solution is not

reported for three instances via SPP-Math. GTSP-based algorithms are able to find at least one

solution within each run of the algorithm.

For constructive algorithm and SPP-Math, the number of runs where a solution may be found,

decreases as the number of stations and vehicles increase. Thus, for large instances with 100,

200 and 300 stations, Table 5.12 summarizes results only for GTSP-Cost algorithm. Despite it

is possible to find at least one solution each time a 100 stations instance is solved, for instances

with 200 and 300 stations, p starts to decrease. An experiment for instances with 400 station were

conducted but none of the proposed algorithms was able to retrieve a feasible solution.

Table 5.13 summarizes average computation times for each size of instances and each solution

strategy. As expected, hybrid constructive algorithm requires the least computational effort since no

exact optimization procedure is performed within the strategy. Nonetheless, as mentioned before,

the constructive approach is not able to retrieve solutions for instances where |N| ≥ 100. For

instances with 20 and 30 stations, GTSP-Cost requires the largest computation times among the

proposed strategies. However, for instances with 40, 50 and 60 stations SPP-Math requires more

computational effort. On the other hand and despite GTSP-Cost ends its search on 200 and 300

stations instances in one hour (maximum computation time), recall that this strategy outperforms in

terms of solution quality, the other three algorithms when |N| ≤ 60.

Tables 5.14, 5.15 and 5.16 depict the computational effort distribution per algorithm component

for hybrid constructive, SPP-Math and GTSP-based strategies, respectively. The computational

effort in hybrid constructive algorithm relies on VNDs procedures. Despite the checking feasibility

for satellite depot procedure is based on a linear constraint satisfaction problem. This step does

not requires more than 15.45% of total computation time. Since functions within SPP-Math and

GTSP-based algorithms solve MILPs, computational effort distribution vary when comparing with

hybrid constructive algorithm. As expected, mathematical models requires a greater computation

time than heuristic functions as Split, local search and even VND. MILP solved in SPP-Math

requires at least 54.00% of the total computation time. For GTSP-based algorithms (GTSP-Cost

166 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.12: Results on matheuristic algorithms for instances with |N| ≥ 100

|N
|=

10
0

|N
|=

20
0

|N
|=

30
0

|K
|=

11
|K
|=

14
|K
|=

21
|K
|=

26
|K
|=

26
|K
|=

31
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
M

in
.

A
vg

.
p

M
in

.
A

vg
.

p
15

78
3

16
81

4.
00

1.
00

14
63

9
15

10
5.

86
1.

00
26

14
1

26
25

5.
81

0.
60

22
98

8
24

32
9.

73
0.

80
25

64
3

27
24

5.
88

0.
20

36
86

3
36

86
3.

00
0.

10
18

19
5

18
97

8.
72

1.
00

16
98

3
17

04
8.

21
1.

00
22

56
1

25
53

7.
02

0.
80

23
20

8
24

25
2.

59
0.

60
30

92
3

32
75

4.
66

0.
30

34
80

2
36

05
1.

10
0.

20
19

35
9

20
14

9.
57

1.
00

17
27

6
18

66
9.

40
1.

00
24

48
2

24
61

2.
82

0.
90

39
40

0
40

41
3.

34
0.

40
24

15
7

24
15

7.
00

0.
10

27
04

8
27

04
8.

00
0.

10
19

00
3

20
04

5.
09

1.
00

18
59

5
18

73
5.

76
1.

00
30

15
0

30
78

1.
05

0.
50

30
70

4
31

28
4.

10
0.

40
32

84
0

32
84

0.
00

0.
10

30
94

1
32

12
5.

67
0.

20
17

20
9

17
89

9.
14

1.
00

15
54

5
15

88
6.

75
1.

00
27

47
2

28
01

2.
10

0.
80

24
24

9
39

74
7.

25
0.

60
36

03
3

36
88

4.
34

0.
30

31
38

4
32

49
0.

54
0.

20
15

84
7

16
48

6.
18

1.
00

16
08

4
16

69
1.

19
1.

00
32

07
6

32
98

5.
66

0.
50

28
53

2
28

53
2.

00
0.

10
25

95
5

25
95

5.
00

0.
20

29
68

7
31

13
2.

75
0.

30
16

74
1

17
41

2.
80

1.
00

15
46

3
15

95
5.

84
1.

00
21

79
4

22
41

2.
09

0.
70

27
55

3
27

55
3.

00
0.

10
31

84
2

31
84

2.
00

0.
10

29
16

8
29

16
8.

00
0.

10
16

92
1

17
62

3.
65

1.
00

16
21

3
16

55
2.

50
1.

00
29

41
8

30
11

5.
54

0.
60

24
93

5
26

03
5.

65
0.

50
29

08
5

29
08

5.
00

0.
10

26
75

3
26

75
3.

00
0.

10
19

05
7

20
11

5.
26

1.
00

18
32

7
18

56
0.

71
1.

00
26

76
7

27
12

3.
43

0.
50

22
35

7
23

15
7.

39
0.

60
33

09
3

34
51

1.
89

0.
20

34
65

8
34

65
8.

00
0.

10
18

09
7

18
79

2.
69

1.
00

16
89

7
18

12
7.

22
1.

00
27

66
8

27
97

9.
52

0.
80

-
-

0.
00

25
38

5
26

65
0.

02
0.

30
34

89
7

36
26

5.
08

0.
20

5.7. COMPUTATIONAL EXPERIMENTS 167

Table 5.13: CPU times for 2E–BRPSD matheuristic strategies (s)

|N| Constructive SPP-Math GTSP-Cost GTSP-Id
20 7.40 15.44 27.55 9.839
30 18.80 74.27 90.97 27.761
40 80.51 215.30 159.50 53.233
50 108.12 1936.40 685.32 478.181
60 98.45 1974.61 892.67 559.816

100 - - 3149.20 -
200 - - 3600.00 -
300 - - 3600.00 -

Table 5.14: CPU time distribution for hybrid constructive algorithm components

|N| Constructive
phase VND Split

Local
search

Checking
feasibilty

20 0.04% 83.60% 5.00% 4.45% 6.90%
30 0.06% 86.91% 2.23% 2.18% 8.51%
40 0.04% 84.36% 1.30% 1.22% 12.95%
50 0.06% 81.19% 1.15% 1.94% 15.45%
60 0.12% 85.27% 0.67% 0.70% 12.13%

Table 5.15: CPU time distribution for SPP-based algorithm components

|N| Constructive
phase VND Split

Local
search

SPP
MILP

20 0.02% 44.43% 0.83% 0.72% 54.00%
30 0.06% 37.61% 0.39% 0.33% 61.60%
40 0.01% 23.20% 0.17% 0.13% 76.50%
50 0.00% 8.81% 0.06% 0.05% 91.08%
60 0.07% 10.50% 0.07% 0.03% 89.33%

and GTSP-Id), SPP and GTSP MILPs take at least 52.25% of the total computation time (instances

with 200 stations).

Comments on GTSP-based matheuristic implementation

As described in Section 5.6, GTSP-based algorithms (GTSP-Cost and GTSP-Id) call SPP and GTSP

MILPs in an iterative way. With the aim to improve performance when solving MILPs within the

GTSP-based strategies, some solver parameters and functions were previously set to get results

and performance presented before. A brief description on these parameters and functions setting

follows:

168 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.16: CPU time distribution for GTSP-based algorithm components

N
Constructive

phase VND Split
Local
search

SPP
MILP

GTSP
MILP

20 5.49% 33.54% 0.62% 0.53% 39.06% 20.76%
30 4.05% 30.09% 0.31% 0.26% 36.84% 28.46%
40 2.45% 30.21% 0.23% 0.20% 45.58% 21.34%
50 2.01% 22.43% 0.13% 0.12% 49.90% 25.41%
60 2.85% 19.52% 0.10% 0.09% 53.22% 24.22%

100 4.03% 16.47% 0.05% 0.05% 54.38% 25.02%
200 15.10% 31.93% 0.08% 0.13% 36.62% 16.13%
300 19.40% 34.09% 0.07% 0.15% 33.13% 13.16%

• Maximum computation times for GTSP MILP: computation times for GTSP MILP may

increase significantly if the number of stations and vehicles for secondary routes also increases.

After several experiments, a suitable value for the GTSP maximum computation time in a

particular iteration, is set as a function of times required in previous iterations. For ten first

iterations, the maximum computation time was set to 1800 seconds. However, once ten

iterations are completed, a new maximum CPU time is computed as the 90th percentile

on those previous times. This new value is set for the next ten iterations. This updated is

performed until the solution strategies finish the search.

• GTSP callback: As described in Section 5.6 GTSP-based algorithms stop when traveling cost

over secondary routes (λ) plus GTSP objective function value exceeds the best solution found

for the 2E–BRP. This stop criterion may be checked once GTSP MILP is solved. However, to

anticipate whether the stop criterion could be met, lower bound for GTSP MILP is useful. To

do so, a callback procedure was coded within the GTSP MILP. This callback works on branch

and bound procedure and checks for lower bound updates. Thus, if GTSP lower bound plus

traveling cost for secondary routes is greater or equal than 2E–BRPSD best solution found so

far, GTSP optimization process stops.

• Solver parameter tuning: Gurobi provides a powerful tool able to search for an accurate

value for several optimization parameters (e.g., cut strategies, feasibility heuristics, branch

direction). This tool called parameter tuning automatically tries a number of different

parameter settings. Once this settings are tested, the solver retrieves the best ones that it finds.

This parameter tuning process was applied to SPP and GTSP MILPs within GTSP-based

algorithms.

5.7. COMPUTATIONAL EXPERIMENTS 169

5.7.4 Results on EnCicla instances

After proposed MILP for the 2E–BRPSD and solution strategies were tested on benchmark problems,

EnCicla instances were also solved. Table 5.17 shows the results on MILP in equations (5.1)– (5.21)

for EnCicla instances. After one hour of computation time, the solver did not retrieve a certified

optimal solution for any of the instances. On average, the optimizer reports a gap of 49.34%

providing at least one feasible solution for 29 out of 35 instances.

Since solution quality for GTSP-Cost outperforms results retrieved from other proposed

strategies when benchmark data sets are solved, only GTSP-Cost is used to solve EnCicla instances.

Table 5.18 summarizes results on EnCicla instances solved via GTSP-Cost algorithm. Columns

Min. f and Avg. f show the minimum and average value retrieved for total traveling cost after

ten runs of the algorithm. It is worth to mention that for all instances, GTSP-Cost finds at least

one solution after each run, thus the probability of finding a solution over ten runs is one for all

instances.

In columns Improvement Min. UB and Improvement Avg. UB, obtained minimum and average

improvements over MILP upper bound are computed, respectively. These improvements can be

evaluated as:

Improvement Min. UB(%) =
UB−Min. f

UB
·100 (5.78)

Improvement Avg. UB(%) =
UB−Avg. f

UB
·100 (5.79)

Despite MILP finds better solutions than those reported via GTSP-Cost for nine of the instances,

the matheuristic algorithm improves minimum values for total traveling cost, on average (i.e., the

average for Improvement Min. UB is 6.96%). For the six instances with no feasible after one hour

of MILP computation, GTSP-Cost is able to retrieve at least one solution in each one of the ten runs

(i.e., instances 6, 15, 19, 29, 31 and 32).

Columns gap Min. LB and gap Avg. LB show minimum and average gaps over MILP lower

bound. These values are computed as:

gap Min. LB(%) =
Min. f −LB

Min. f
·100 (5.80)

gap Avg. LB(%) =
Avg. f −LB

Avg. f
·100 (5.81)

Since average values for columns gap Min. LB and gap Avg. LB are lower than average gap

computed in Table 5.17, values on gap Min. LB and gap Avg. prove that GTSP-Cost finds better

solutions than MILP, on average. Finally, it is worth to mention that computation times required for

170 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

Table 5.17: MILP results on EnCicla instances

Instance UB LB gap
1 4173 2552.05 38.82%
2 4332 2568.18 40.70%
3 4400 2556.58 41.89%
4 3643 2522.68 30.74%
5 4116 2647.20 35.67%
6 - 2864.28 100.00%
7 4739 2669.96 43.66%
8 3540 2532.21 28.45%
9 3878 2536.61 34.58%

10 4627 2582.75 44.18%
11 3965 2590.11 34.65%
12 4218 2590.23 38.57%
13 4067 2540.98 37.52%
14 5285 2639.31 50.05%
15 - 2481.00 100.00%
16 4622 2575.06 44.27%
17 4592 2559.56 44.25%
18 4926 2628.49 46.63%
19 - 2539.21 100.00%
20 4203 2417.50 42.47%
21 4284 2558.47 40.27%
22 4465 2621.28 41.28%
23 3921 2610.72 33.41%
24 3610 2539.37 29.64%
25 4381 2659.37 39.28%
26 4220 2494.00 40.90%
27 3684 2570.74 30.21%
28 4719 2409.99 48.93%
29 - 2526.62 100.00%
30 3875 2452.49 36.70%
31 - 2520.14 100.00%
32 - 2496.24 100.00%
33 3757 2561.54 31.81%
34 3831 2474.14 35.40%
35 4365 2531.14 41.99%

Average 49.34%

GTSP-Cost to find reported solutions are significantly less than those used by the solver. While

solving each instance vian MILP takes 3600 seconds, GTSP-Cost requires 505.42 seconds, on

average.

5.7. COMPUTATIONAL EXPERIMENTS 171

Table 5.18: GTSP-based matheuristic results on EnCicla instances

Instance Min. f Avg. f
Improvement

Min. UB
Improvement

Avg. UB
gap

Min. LB
gap

Avg. LB Time (s)

1 3860 3860.00 7.50% 7.50% 33.88% 33.88% 121.63
2 4262 4298.90 1.62% 0.76% 39.74% 40.26% 374.94
3 4184 4360.90 4.91% 0.89% 38.90% 41.37% 450.36
4 3867 3967.80 -6.15% -8.92% 34.76% 36.42% 398.61
5 4156 4324.30 -0.97% -5.06% 36.30% 38.78% 721.98
6 5109 5109.00 - - 43.94% 43.94% 197.62
7 4241 4568.50 10.51% 3.60% 37.04% 41.56% 256.98
8 3972 4017.00 -12.20% -13.47% 36.25% 36.96% 520.35
9 3716 3827.20 4.18% 1.31% 31.74% 33.72% 354.27

10 3955 4174.50 14.52% 9.78% 34.70% 38.13% 668.94
11 3912 4094.50 1.34% -3.27% 33.79% 36.74% 495.60
12 3765 3873.80 10.74% 8.16% 31.20% 33.13% 252.87
13 3708 3774.50 8.83% 7.19% 31.47% 32.68% 593.79
14 4181 4452.80 20.89% 15.75% 36.87% 40.73% 391.73
15 3472 3553.70 - - 28.54% 30.19% 828.49
16 3669 4103.90 20.62% 11.21% 29.82% 37.25% 496.70
17 4230 4520.60 7.88% 1.55% 39.49% 43.38% 435.80
18 3625 3750.30 26.41% 23.87% 27.49% 29.91% 234.38
19 4169 4307.30 - - 39.09% 41.05% 507.09
20 3346 3537.00 20.39% 15.85% 27.75% 31.65% 884.74
21 3902 4058.70 8.92% 5.26% 34.43% 36.96% 479.29
22 4034 4298.90 9.65% 3.72% 35.02% 39.02% 415.15
23 4328 4328.00 -10.38% -10.38% 39.68% 39.68% 761.09
24 3705 3850.00 -2.63% -6.65% 31.46% 34.04% 643.90
25 4346 4387.50 0.80% -0.15% 38.81% 39.39% 737.17
26 3585 3911.50 15.05% 7.31% 30.43% 36.24% 689.68
27 3801 4160.10 -3.18% -12.92% 32.37% 38.20% 267.50
29 4027 4027.70 - - 37.26% 37.27% 364.81
30 3453 3571.80 10.89% 7.82% 28.98% 31.34% 501.76
31 3934 4179.90 - - 35.94% 39.71% 570.06
32 4303 4535.00 - - 41.99% 44.96% 380.26
33 3862 3995.40 -2.79% -6.35% 33.67% 35.89% 530.76
34 3385 3508.30 11.64% 8.42% 26.91% 29.48% 775.74
35 3669 4329.20 15.95% 0.82% 31.01% 41.53% 880.39

Average 6.96% 2.63% 34.43% 37.22% 505.42

172 CHAPTER 5. THE TWO-ECHELON BRP WITH SPLIT DELIVERY

5.8 Concluding remarks

In this chapter a new bicycle repositioning problem is defined: the two-echelon bicycle repositioning

problem with split demand (2E–BRPSD). In the 2E–BRPSD the repositioning operation is

performed through a set of vehicles, each one devoted to serve a subset of BSS stations (secondary

routes). Moreover one vehicle visits one of the stations within each secondary route (i.e., satellite

depots) supporting rebalancing operation for each secondary route. In those connection points or

depots, split demand operations are allowed.

This chapter proposed an MILP for the 2E–BRP as well as four solution strategies. Three of

them are matheuristic algorithms where metaheuristic procedures and mathematical optimization

models are combined. While solving MILP allows to hardly finds optimal solutions for instances

with 20 stations, all metaheuristic algorithms are able to find solutions for instances with up to 60

stations and one of them solves instances up to 300 stations.

A set of real-world instances with 52 stations is also tested in MILP and the outperforming

matheuristic algorithm. These instances are based on EnCicla operation, the BSS in Medellı́n,

Colombia. Results show that matheuristic algorithm is able to find better solutions than those

retrieved when solving 2E–BRP MILP via commercial solver.

Conferences and publications

Results on matheuristic algorithms for the 2E–BRPSD will be presented in the XXI Latin

Ibero-American Conference on Operations Research (CLAIO) 2022:

• Palacio J.D., Rivera J.C. The two-echelon bicycle repositioning problem with split demand

(2E–BRPSD). 21st Latin Ibero-American Conference on Operations Research (CLAIO).

Buenos Aires, Argentina. 2022.

Chapter 6

General conclusions and future research
directions

Vehicle routing problems have been widely studied in operational research field. Their computational

complexity and their practical relevance in many logistic contexts to support decision making

processes make VRPs an interesting research problem. Optimization techniques allow to study the

vehicle routing problem and a very large number of variants that arise as long as private and public

entities require for goods and services distribution.

Due to population growth and mobility issues in urban zones in many countries, bike sharing

systems (BSSs) arise as a way to promote sustainable transportation. Moreover, to design and

manage an efficient BSS become relevant to improve mobility, welfare and health for citizens.

In this thesis three families of vehicle routing problems arising in BSSs context have been

studied. These problems are: the one-commodity pickup and delivery traveling salesman problem

(1–PDTSP), the one-commodity pickup and delivery vehicle routing problem with route length

constraints (1–PDVRPLC) and also, a new problem is defined: the two-echelon bicycle repositioning

problem with split demand (2E–BRPSD). In these problems, one or several capacitated vehicles

must visit the BSS stations and pickup or deliver bicycles to better fit expected demand at stations.

Therefore, pickup and delivery is a key feature in problems studied in this thesis.

The 1–PDTSP models the case in which a single vehicle visits all the locations picking up

and delivering commodity units. The motivation to study this problem was mainly based not only

on its computational complexity but on the fact that 1–PDTSP can be seen as a sub problem for

more complex applications like 1–PDVRPLC and 2E–BRPSD. Moreover, in BSSs contexts, the

1–PDTSP can be applied in small and medium size systems since repositioning for large BSSs tends
173

174 CHAPTER 6. GENERAL CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

to be intractable if a single vehicle is available.

For the 1–PDTSP a mixed-integer linear programming model (MILP) and a metaheuristic

solution strategy have been developed. The metaheuristic algorithm is based on a multi-start

evolutionary local search (MS-ELS) framework in which seven local search operators are embedded

in a variable neighborhood descent (VND) algorithm. The MS-ELS framework allows to adapt the

solution strategy to a multi-start iterative local search (MS-ILS) and a greedy randomized adaptive

search procedure (GRASP) by simply setting different values for MS-ELS algorithm parameters.

To test the performance of 1–PDTSP MILP and the metaheuristic approach, two different set

of instances were solved. Firstly, a set of 1–PDTSP well-known benchmark instances with up to

500 nodes and a fixed value for vehicle capacity that leads to the hardest configuration to solve.

Secondly, a set of instances based on the repositioning operation of 52 stations of EnCicla, the

BSS in Medellı́n (Colombia) is also solved. Regarding benchmark instances, 1–PDTSP MILP is

able to optimally solve instances with up to 40 nodes. For larger instances up to 60 nodes, upper

bounds are provided. On the other hand, MS–ELS was tested with instances with up to 500 nodes

and the obtained solutions outperform two solution strategies based on GRASP/VND and genetic

algorithm previously reported in the literature. For instances with 50 and 60 nodes it was also

possible to prove the optimality of solutions reported by MS-ELS since lower bounds obtained via

commercial solver are available after solving MILP. For EnCicla based instances, similar results

are obtained since MS-ELS solutions and lower bound values allow to certify optimality for 28 out

of 35 instances. The metaheuristic algorithm solves instances in a competitive time (less than 20

seconds on average) which is a suitable computation time since static rebalancing decisions are

made up once per day (mostly at night when system is not available for users).

A variant of the 1–PDTSP, the 1–PDTSP with split demand (SD1PDTSP) have been also studied

in this thesis. For the SD1PDTSP, a MILP able to solve to optimality instances up to 40 locations

is proposed. The results obtained when solving the mathematical model via commercial solver

outperforms those reported in the literature obtained via a branch-and-cut. In a similar way, MILP

requires less computational time to retrieve solutions when it is compared with the B&C algorithm.

For the SD1PDTSP, experiments with different values for the vehicle capacity are presented as well

as benefits of split delivery and storage when such capacity is tight.

From a practical perspective and large systems, mathematical models and solution strategies

for the 1–PDTSP as the MS-ELS, can be easily integrated to clustering strategies in order to find

several routes (one per cluster) if multiple vehicles are required. Additionally, considering relevant

information from BSS (e.g. service times at stations) is straightforward in 1–PDTSP formulations

and solution strategies.

175

The 1–PDVRP extends the 1–PDTSP when multiple vehicles are available to pickup and deliver

commodity units. This thesis has studied the 1–PDVRP if route length constraints are imposed.

For rebalancing operations in BSS and other practical contexts, route length constraints allow to

reduce workload unbalances among vehicle operators and fairly assign tasks and operation times

for commodity distribution.

For the 1–PDVRPLC, a MILP have been proposed as well as a set of matheuristic algorithms

based on large neighborhood search procedures. For route length constraints, a maximum route

duration in terms of the number of available vehicles and an upper bound based on 1–PDTSP

solution is proposed. The mathematical model is solved via commercial solver and instances with

up to 40 nodes and different target values for balancing routes were tested. The experiments allowed

to provide some insights about how the number of nodes, number of vehicles and vehicle capacity

affect imbalance throughout routes total traveling costs.

The proposed matheuristic algorithms are mainly LNS procedures in which destroy and/or repair

methods are replaced by mathematical optimization models. The first algorithm is a LNS embedded

on a multi-start iterative framework. For this algorithm, a single MILP takes destroy and repair

decisions simultaneously. A second solution strategy is a matheuristic with an adaptive control

to decide how to partially destroy routes and also, for whether is better to reduce the number of

routes in the solution. Similar to the multi-start matheuristic, the adaptive algorithm calls a MILP

to repair solutions. For the adaptive procedure, a variant based on an enumeration algorithm have

been proposed. The enumeration algorithm replaces repair MILP and it is also able to search for

better solution on repair process when it is compared to MILP since enumeration algorithm explores

a larger region of solutions space. This difference on explored spaces is due to dominance rules

designed to efficiently discard solutions with a promising larger value for total traveling costs while

potential promising moves are limited on MILP.

Following the proposed strategy to compute maximum route lengths, several values for this

parameter were considered to solve instances with up to 500 nodes. Results on solution strategies

show that the enumeration algorithm embedded on adaptive LNS procedure outperforms the

multi-start strategy as well as the adaptive algorithm with MILP as repair method. In a similar

way, the proposed strategies were compared with a genetic algorithm reported in the literature for

1–PDVRPLC. Enumeration algorithm within the adaptive LNS framework outperforms solution

quality of genetic algorithm for 90% of all tested instances.

In this thesis, a new generalization of bicycle repositioning problem, the 2E–BRPSD is also

studied. The 2E–BRPSD involves pickup and delivery operations in a two-echelon configuration

where also split demand is allowed. This problem have been studied as a first way to consider

176 CHAPTER 6. GENERAL CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

cooperative operations in bike repositioning problems. Despite the 2E–BRPSD does not consider

localization decisions explicitly, a set of satellite depots must be selected from the pool of available

stations. Indeed, a collaborative environment for 2E–BRPSD takes place in satellite depots where

one vehicle can support and/or complete other vehicle requirements.

Chapter 5 provides three main contributions based on 2E–BRPSD. Firstly, the problem is

defined since there is not evidence of prior work on 2E–BRPSD in the literature. Secondly, a

first mathematical linear model is proposed to describe the 2E–BRPSD. Lastly, four solution

strategies are proposed. Three of the proposed strategies are mainly hybrid algorithms that combine

metaheuristic algorithms with mixed-integer programming models.

From the pool of proposed solution strategies for 2E–BRPSD, a matheuristic algorithm

outperforms the other three proposed strategies. The best performance algorithm heuristically

creates a pool of routes for the second echelon and then, iteratively searches feasible combinations of

first and second level routes via generalized traveling salesman problem (GTSP) and set partitioning

problem (SPP) models, respectively.

While the other proposed strategies hardly find feasible solutions for medium size instances, the

outperforming matheuristic retrieve solutions with up to 300 stations within a maximum computation

time of 3600 seconds. Inspired on administrative division in Medellı́n (Colombia), 2E–BRPSD was

also solved for EnCicla instances. For this set of instances, matheuristic algorithm outperforms

results retrieved when solving 2E–BRPSD MILP via commercial solver.

In spite of the good results achieved on the 1–PDTSP, 1–PDVRPLC and 2E–BRPSD, there are

several improvement opportunities for some of the solution strategies presented in this thesis. For

the 1–PDVRPLC, different metaheuristic and matheuristic algorithms could be explored. Despite

the theoretical relevance on designing mathematical optimization models to support search process

within heuristic algorithms, computation effort could be improved. Inspired on the enumeration

algorithm developed, exact techniques as dynamic programming could be explored.

In a similar way, since mathematical models within proposed solution strategies for the

2E–BRPSD require a high computation effort, more involved metaheuristic algorithms could

be designed.

Future research directions are also based on the study of additional features for static bike

repositioning problems and one-commodity vehicle routing problems. The objective behind these

research paths is to close gaps between theoretical developments and required facets in real-world

BSS scenarios.

Green-based objective functions for bike repositioning problems would be an interesting study

path. CO2 emissions is still a relevant component for vehicle routing problems and has been

177

emerged as a key metric for decision makers in public and private transportation systems. In line

with this motivation on green vehicle routing problems, it could be interesting to explore mixed

fleet of internal combustion engine vehicles and battery electric vehicles.

Finally, it could be interesting to explore research paths on integrated approaches for static and

dynamic repositioning problems. Decisions for static repositioning affects dynamic routing during

BBSs operation. Therefore, to design methods that integrates tactical and operational decisions

within rebalancing contexts are worth to be explored. Indeed, a collaborative operation as the one

modeled in 2E–BRPSD could mark an initial point to explore how static rebalancing support daily

dynamic operation on several zones. Similarly, a validation on the 2E–BRPSD scheme as a strategy

to deal with the dynamic version of the reposition problem could be performed; since it is possible

to use several vehicles to perform short repositioning routes (with limited length), this strategy

remain useful in an intra day operation.

Bibliography

Aksen, D., Kaya, O., Salman, F. S., and Tüncel, Ö. (2014). An adaptive large neighborhood

search algorithm for a selective and periodic inventory routing problem. European Journal of

Operational Research, 239(2):413–426.

Alhindi, A., Alsaidi, A., Alasmary, W., and Alsabaan, M. (2020). Vehicle routing optimization for

surplus food in nonprofit organizations. International Journal of Advanced Computer Science

and Applications, 11(3):680–685.

Alinaghian, M. and Shokouhi, N. (2018). Multi-depot multi-compartment vehicle routing problem,

solved by a hybrid adaptive large neighborhood search. Omega, 76:85–99.

Altay, N. and Green III, W. G. (2006). OR/MS research in disaster operations management.

European Journal of Operational Research, 175(1):475–493.

Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermudez, J. D., Muñoz, F., Vercher, E., and

Verdejo, F. (2016). Optimizing the level of service quality of a bike-sharing system. Omega,

62:163–175.

Archetti, C., Bianchessi, N., and Speranza, M. G. (2014). Branch-and-cut algorithms for the split

delivery vehicle routing problem. European Journal of Operational Research, 238(3):685–698.

Archetti, C. and Speranza, M. G. (2012). Vehicle routing problems with split deliveries. International

Transactions in Operational Research, 19(1-2):3–22.

Babin, G., Deneault, S., and Laporte, G. (2007). Improvements to the or-opt heuristic for

the symmetric travelling salesman problem. Journal of the Operational Research Society,

58(3):402–407.
179

180 BIBLIOGRAPHY

Balcik, B., Iravani, S. M., and Smilowitz, K. (2010). A review of equity in nonprofit and

public sector: a vehicle routing perspective. Wiley Encyclopedia of Operations Research and

Management Science.

Bartholdi III, J. J., Platzman, L. K., Collins, R. L., and Warden III, W. H. (1983). A minimal

technology routing system for meals on wheels. Interfaces, 13(3):1–8.

Belenguer, J.-M., Benavent, E., Labadi, N., Prins, C., and Reghioui, M. (2010). Split-delivery

capacitated arc-routing problem: Lower bound and metaheuristic. Transportation Science,

44(2):206–220.

Belgin, O., Karaoglan, I., and Altiparmak, F. (2018). Two-echelon vehicle routing problem with

simultaneous pickup and delivery: Mathematical model and heuristic approach. Computers &

Industrial Engineering, 115:1–16.

Braekers, K. and Kovacs, A. A. (2016). A multi-period dial-a-ride problem with driver consistency.

Transportation Research Part B: Methodological, 94:355–377.

Breunig, U., Baldacci, R., Hartl, R. F., and Vidal, T. (2019). The electric two-echelon vehicle

routing problem. Computers & Operations Research, 103:198–210.

Breunig, U., Schmid, V., Hartl, R. F., and Vidal, T. (2016). A large neighbourhood based heuristic

for two-echelon routing problems. Computers & Operations Research, 76:208–225.

Bulhões, T., Subramanian, A., Erdoğan, G., and Laporte, G. (2018). The static bike relocation

problem with multiple vehicles and visits. European Journal of Operational Research,

264(2):508–523.

Caggiani, L. and Ottomanelli, M. (2013). A dynamic simulation based model for optimal fleet

repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences, 87:203–210.

Caramia, M. and Guerriero, F. (2010). A milk collection problem with incompatibility constraints.

Interfaces, 40(2):130–143.

Castañeda, C. and Villegas, J. G. (2017). Analyzing the response to traffic accidents in Medellı́n,

Colombia, with facility location models. IATSS Research, 41(1):47–56.

Chemla, D., Meunier, F., and Wolfler Calvo, R. (2013). Bike sharing systems: Solving the static

rebalancing problem. Discrete Optimization, 10(2):120–146.

BIBLIOGRAPHY 181

Chen, H.-K., Chou, H.-W., Hsueh, C.-F., and Yu, Y.-J. (2015). The paired many-to-many pickup

and delivery problem: an application. Top, 23(1):220–243.

Cheng, Y., Wang, J., and Wang, Y. (2021). A user-based bike rebalancing strategy for free-floating

bike sharing systems: A bidding model. Transportation Research Part E: Logistics and

Transportation Review, 154:102438.

Chung, H., Freund, D., and Shmoys, D. B. (2018). Bike angels: An analysis of citi bike’s incentive

program. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable

Societies, pages 1–9.

Contardo, C., Morency, C., and Rousseau, L.-M. (2012). Balancing a dynamic public bike-sharing

system, volume 4. Cirrelt Montreal, Canada.

Cordeau, J.-F. and Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride

problem. Transportation Research Part B: Methodological, 37(6):579–594.

Cruz, F., Subramanian, A., Bruck, B. P., and Iori, M. (2017). A heuristic algorithm for a single

vehicle static bike sharing rebalancing problem. Computers & Operations Research, 79:19–33.

Cuda, R., Guastaroba, G., and Speranza, M. G. (2015). A survey on two-echelon routing problems.

Computers & Operations Research, 55:185–199.

Datner, S., Raviv, T., Tzur, M., and Chemla, D. (2019). Setting inventory levels in a bike sharing

network. Transportation Science, 53(1):62–76.

De la Torre, L. E., Dolinskaya, I. S., and Smilowitz, K. R. (2012). Disaster relief routing: Integrating

research and practice. Socio-Economic Planning Sciences, 46(1):88–97.

Dell’Amico, M., Hadjicostantinou, E., Iori, M., and Novellani, S. (2014). The bike sharing

rebalancing problem: Mathematical formulations and benchmark instances. Omega, 45:7–19.

Dell’Amico, M., Iori, M., Novellani, S., and Stützle, T. (2016). A destroy and repair algorithm for

the bike sharing rebalancing problem. Computers & Operations Research, 71:149 – 162.

Demir, E., Bektaş, T., and Laporte, G. (2012). An adaptive large neighborhood search heuristic for

the pollution-routing problem. European Journal of Operational Research, 223(2):346–359.

Detti, P., Papalini, F., and de Lara, G. Z. M. (2017). A multi-depot dial-a-ride problem with

heterogeneous vehicles and compatibility constraints in healthcare. Omega, 70:1–14.

182 BIBLIOGRAPHY

Doerner, K. F. and Salazar-González, J.-J. (2014). Chapter 7: Pickup-and-delivery problems for

people transportation. In Vehicle Routing: Problems, Methods, and Applications, Second Edition,

pages 193–212. SIAM.

Drexl, M. (2012). Synchronization in vehicle routing—a survey of VRPs with multiple

synchronization constraints. Transportation Science, 46(3):297–316.

Du, M., Cheng, L., Li, X., and Tang, F. (2020). Static rebalancing optimization with considering the

collection of malfunctioning bikes in free-floating bike sharing system. Transportation Research

Part E: Logistics and Transportation Review, 141:102012.

Duan, Y. and Wu, J. (2022). Spatial-temporal inventory rebalancing for bike sharing systems with

worker recruitment. IEEE Transactions on Mobile Computing, 21(3):1081 – 1095.

Duhamel, C., Lacomme, P., Quilliot, A., and Toussaint, H. (2011). A multi-start evolutionary

local search for the two-dimensional loading capacitated vehicle routing problem. Computers &

Operations Research, 38(3):617–640.

Eisenhandler, O. and Tzur, M. (2019). The humanitarian pickup and distribution problem.

Operations Research, 67(1):10–32.

Erdoğan, G., Battarra, M., and Calvo, R. W. (2015). An exact algorithm for the static rebalancing

problem arising in bicycle sharing systems. European Journal of Operational Research,

245(3):667–679.

Espegren, H. M., Kristianslund, J., Andersson, H., and Fagerholt, K. (2016). The static bicycle

repositioning problem-literature survey and new formulation. In International Conference on

Computational Logistics, pages 337–351. Springer.

Fallahtafti, A., Ardjmand, E., Young Ii, W. A., and Weckman, G. R. (2021). A multi-objective

two-echelon location-routing problem for cash logistics: A metaheuristic approach. Applied Soft

Computing, 111:107685.

Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., and Mirjalili, S. (2020). A set of efficient heuristics

for a home healthcare problem. Neural Computing and Applications, 32(10):6185–6205.

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6(2):109–133.

BIBLIOGRAPHY 183

Fikar, C. and Hirsch, P. (2015). A matheuristic for routing real-world home service transport

systems facilitating walking. Journal of Cleaner Production, 105:300–310.

Forma, I. A., Raviv, T., and Tzur, M. (2015). A 3-step math heuristic for the static repositioning

problem in bike-sharing systems. Transportation Research Part B: Methodological, 71:230–247.

Frade, I. and Ribeiro, A. (2015). Bike-sharing stations: A maximal covering location approach.

Transportation Research Part A: Policy and Practice, 82:216–227.

Fricker, C. and Gast, N. (2016). Incentives and redistribution in homogeneous bike-sharing systems

with stations of finite capacity. Euro Journal on Transportation and Logistics, 5(3):261–291.

Fu, C., Zhu, N., Ma, S., and Liu, R. (2022). A two-stage robust approach to integrated station

location and rebalancing vehicle service design in bike-sharing systems. European Journal of

Operational Research, 298(3):915–938.

Garcia-Gutierrez, J., Romero-Torres, J., and Gaytan-Iniestra, J. (2014). Dimensioning of a bike

sharing system (BSS): a study case in Nezahualcoyotl, Mexico. Procedia-Social and Behavioral

Sciences, 162:253–262.

Garcı́a-Palomares, J. C., Gutiérrez, J., and Latorre, M. (2012). Optimizing the location of stations

in bike-sharing programs: A gis approach. Applied Geography, 35(1-2):235–246.

Grangier, P., Gendreau, M., Lehuédé, F., and Rousseau, L.-M. (2016). An adaptive large

neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite

synchronization. European Journal of Operational Research, 254(1):80–91.

Grimault, A., Bostel, N., and Lehuédé, F. (2017). An adaptive large neighborhood search for the full

truckload pickup and delivery problem with resource synchronization. Computers & Operations

Research, 88:1–14.

Gutiérrez, E. V. and Vidal, C. J. (2013). Home health care logistics management: Framework

and research perspectives. International Journal of Industrial Engineering and Management,

4(3):173–182.

Ham, A. (2021). Dial-a-ride problem: mixed integer programming revisited and constraint

programming proposed. Engineering Optimization, pages 1–14.

184 BIBLIOGRAPHY

Han, L., Luong, B. T., and Ukkusuri, S. (2016). An algorithm for the one commodity pickup and

delivery traveling salesman problem with restricted depot. Networks and Spatial Economics,

16(3):743–768.

Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles and applications.

European Journal of Operational Research, 130(3):449–467.

Hansen, P., Mladenović, N., Todosijević, R., and Hanafi, S. (2017). Variable neighborhood search:

basics and variants. EURO Journal on Computational Optimization, 5(3):423–454.

Hemmelmayr, V. C., Cordeau, J.-F., and Crainic, T. G. (2012). An adaptive large neighborhood

search heuristic for two-echelon vehicle routing problems arising in city logistics. Computers &

Operations Research, 39(12):3215–3228.

Hernández-Pérez, H., Landete, M., and Rodriguez-Martin, I. (2021). The single-vehicle two-echelon

one-commodity pickup and delivery problem. Computers & Operations Research, 127:105152.

Hernández-Pérez, H., Rodrı́guez-Martı́n, I., and Salazar-González, J. J. (2009). A hybrid

GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling salesman problem.

Computers & Operations Research, 36(5):1639–1645.

Hernández-Pérez, H., Rodrı́guez-Martı́n, I., and Salazar-González, J.-J. (2016). A hybrid heuristic

approach for the multi-commodity pickup-and-delivery traveling salesman problem. European

Journal of Operational Research, 251(1):44–52.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004a). A branch-and-cut algorithm for a traveling

salesman problem with pickup and delivery. Discrete Applied Mathematics, 145(1):126–139.

Hernández-Pérez, H. and Salazar-González, J.-J. (2004b). Heuristics for the one-commodity

pickup-and-delivery traveling salesman problem. Transportation Science, 38(2):245–255.

Hernández-Pérez, H. and Salazar-González, J.-J. (2007). The one-commodity pickup-and-delivery

traveling salesman problem: Inequalities and algorithms. Networks: An International Journal,

50(4):258–272.

Hernández-Pérez, H. and Salazar-González, J.-J. (2009). The multi-commodity one-to-one

pickup-and-delivery traveling salesman problem. European Journal of Operational Research,

196(3):987–995.

BIBLIOGRAPHY 185

Hernández-Pérez, H. and Salazar-González, J.-J. (2014). The multi-commodity pickup-and-delivery

traveling salesman problem. Networks, 63(1):46–59.

Hernández-Pérez, H. and Salazar-González, J.-J. (2022). A branch-and-cut algorithm for the

split-demand one-commodity pickup-and-delivery travelling salesman problem. European

Journal of Operational Research, 297(2):467–483.

Hernández-Pérez, H., Salazar-González, J. J., and Santos-Hernández, B. (2018). Heuristic

algorithm for the split-demand one-commodity pickup-and-delivery travelling salesman problem.

Computers & Operations Research, 97:1–17.

Ho, S. C. and Szeto, W. (2014). Solving a static repositioning problem in bike-sharing systems

using iterated tabu search. Transportation Research Part E: Logistics and Transportation Review,

69:180–198.

Ho, S. C. and Szeto, W. Y. (2017). A hybrid large neighborhood search for the static multi-vehicle

bike-repositioning problem. Transportation Research Part B: Methodological, 95:340–363.

Ho, S. C., Szeto, W. Y., Kuo, Y.-H., Leung, J. M., Petering, M., and Tou, T. W. (2018). A survey of

dial-a-ride problems: Literature review and recent developments. Transportation Research Part

B: Methodological, 111:395–421.

IFORS (2022). International Federation of Operational Research Societies. https://www.https:

//www.ifors.org/what-is-or/. Accessed: 2022-07-06.

Jia, Y., Zeng, W., Xing, Y., Yang, D., and Li, J. (2021). The bike-sharing rebalancing problem

considering multi-energy mixed fleets and traffic restrictions. Sustainability, 13(1):270.

Jie, W., Yang, J., Zhang, M., and Huang, Y. (2019). The two-echelon capacitated electric

vehicle routing problem with battery swapping stations: Formulation and efficient methodology.

European Journal of Operational Research, 272(3):879–904.

Jotshi, A., Gong, Q., and Batta, R. (2009). Dispatching and routing of emergency vehicles in

disaster mitigation using data fusion. Socio-Economic Planning Sciences, 43(1):1–24.

Kadri, A. A., Kacem, I., and Labadi, K. (2016). A branch-and-bound algorithm for solving the

static rebalancing problem in bicycle-sharing systems. Computers and Industrial Engineering,

95:41–52.

https://www.https://www.ifors.org/what-is-or/
https://www.https://www.ifors.org/what-is-or/

186 BIBLIOGRAPHY

Kloimüllner, C., Papazek, P., Hu, B., and Raidl, G. R. (2014). Balancing bicycle sharing systems:

an approach for the dynamic case. In European Conference on Evolutionary Computation in

Combinatorial Optimization, pages 73–84. Springer.

Koç, Ç. (2016). A unified-adaptive large neighborhood search metaheuristic for periodic

location-routing problems. Transportation Research Part C: Emerging Technologies, 68:265–284.

Kovacs, A. A., Golden, B. L., Hartl, R. F., and Parragh, S. N. (2014). Vehicle routing problems in

which consistency considerations are important: A survey. Networks, 64(3):192–213.

Kumar, A. A., Kang, J. E., Kwon, C., and Nikolaev, A. (2016). Inferring origin-destination pairs and

utility-based travel preferences of shared mobility system users in a multi-modal environment.

Transportation Research Part B: Methodological, 91:270–291.

Laporte, G., Meunier, F., and Calvo, R. W. (2015). Shared mobility systems. 4OR, 13(4):341–360.

Larsen, J., Patterson, Z., and El-Geneidy, A. (2013). Build it. but where? the use of geographic

information systems in identifying locations for new cycling infrastructure. International Journal

of Sustainable Transportation, 7(4):299–317.

Lee, E., Son, B., and Han, Y. (2020). Optimal relocation strategy for public bike system with

selective pick-up and delivery. Transportation Research Record, 2674(4):325–336.

Legros, B. (2019). Dynamic repositioning strategy in a bike-sharing system; how to prioritize and

how to rebalance a bike station. European Journal of Operational Research, 272(2):740–753.

Li, H., Wang, H., Chen, J., and Bai, M. (2020). Two-echelon vehicle routing problem with time

windows and mobile satellites. Transportation Research Part B: Methodological, 138:179–201.

Li, Y., Chen, H., and Prins, C. (2016). Adaptive large neighborhood search for the pickup and

delivery problem with time windows, profits, and reserved requests. European Journal of

Operational Research, 252(1):27–38.

Lim, A., Zhang, Z., and Qin, H. (2016). Pickup and delivery service with manpower planning in

hong kong public hospitals. Transportation Science, 51(2):688–705.

Lin, J.-J. and Yu, C.-J. (2013). A bikeway network design model for urban areas. Transportation,

40(1):45–68.

BIBLIOGRAPHY 187

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System Technical

Journal, 44(10):2245–2269.

Liu, M., Luo, Z., and Lim, A. (2015). A branch-and-cut algorithm for a realistic dial-a-ride problem.

Transportation Research Part B: Methodological, 81:267–288.

Liu, R., Tao, Y., and Xie, X. (2019). An adaptive large neighborhood search heuristic for the vehicle

routing problem with time windows and synchronized visits. Computers & Operations Research,

101:250–262.

Liu, R., Xie, X., Augusto, V., and Rodriguez, C. (2013). Heuristic algorithms for a vehicle routing

problem with simultaneous delivery and pickup and time windows in home health care. European

Journal of Operational Research, 230(3):475–486.

Liu, Y., Szeto, W., and Ho, S. C. (2018). A static free-floating bike repositioning problem with

multiple heterogeneous vehicles, multiple depots, and multiple visits. Transportation Research

Part C: Emerging Technologies, 92:208–242.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. In Handbook of

metaheuristics, pages 320–353. Springer.

Louveaux, F. and Salazar-González, J.-J. (2009). On the one-commodity pickup-and-delivery

traveling salesman problem with stochastic demands. Mathematical Programming,

119(1):169–194.

Lu, Y., Benlic, U., and Wu, Q. (2019). A population algorithm based on randomized

tabu thresholding for the multi-commodity pickup-and-delivery traveling salesman problem.

Computers & Operations Research, 101:285–297.

Lu, Y., Benlic, U., and Wu, Q. (2020). An effective memetic algorithm for the generalized

bike-sharing rebalancing problem. Engineering Applications of Artificial Intelligence, 95:103890.

Mahmoodian, V., Zhang, Y., and Charkhgard, H. (2022). Hybrid rebalancing with dynamic hubbing

for free-floating bike sharing systems. International Journal of Transportation Science and

Technology, 11(3):636–652.

Mancini, S. (2016). A real-life multi depot multi period vehicle routing problem with a

heterogeneous fleet: Formulation and adaptive large neighborhood search based matheuristic.

Transportation Research Part C: Emerging Technologies, 70:100–112.

188 BIBLIOGRAPHY

Marsh, M. T. and Schilling, D. A. (1994). Equity measurement in facility location analysis: A

review and framework. European Journal of Operational Research, 74(1):1–17.

Masmoudi, M. A., Braekers, K., Masmoudi, M., and Dammak, A. (2017). A hybrid genetic

algorithm for the heterogeneous dial-a-ride problem. Computers & Operations Research, 81:1–13.

Masmoudi, M. A., Hosny, M., Demir, E., and Pesch, E. (2020). Hybrid adaptive large neighborhood

search algorithm for the mixed fleet heterogeneous dial-a-ride problem. Journal of Heuristics,

26(1):83–118.

Masson, R., Lehuédé, F., and Péton, O. (2013). An adaptive large neighborhood search for the

pickup and delivery problem with transfers. Transportation Science, 47(3):344–355.

Melachrinoudis, E., Ilhan, A. B., and Min, H. (2007). A dial-a-ride problem for client transportation

in a health-care organization. Computers & Operations Research, 34(3):742–759.

Mesbah, M., Thompson, R., and Moridpour, S. (2012). Bilevel optimization approach to design of

network of bike lanes. Transportation Research Record, 2284(1):21–28.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation of

traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329.

Mladenović, N., Urošević, D., Ilić, A., et al. (2012). A general variable neighborhood search

for the one-commodity pickup-and-delivery travelling salesman problem. European Journal of

Operational Research, 220(1):270–285.

Muelas, S., LaTorre, A., and Peña, J.-M. (2013). A variable neighborhood search algorithm for

the optimization of a dial-a-ride problem in a large city. Expert Systems with Applications,

40(14):5516–5531.

Nair, D., Grzybowska, H., Fu, Y., and Dixit, V. (2018). Scheduling and routing models for food

rescue and delivery operations. Socio-Economic Planning Sciences, 63:18–32.

Ni, W., Shu, J., and Song, M. (2018). Location and emergency inventory pre-positioning for disaster

response operations: Min-max robust model and a case study of yushu earthquake. Production

and Operations Management, 27(1):160–183.

Noon, C. E. (1988). The generalized traveling salesman problem. PhD thesis, University of

Michigan.

BIBLIOGRAPHY 189

Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the logistics of

regional blood banking. Ph. D. Thesis, Department of Industrial Engineering and Management

Science, Northwestern University.

Osaba, E., Yang, X.-S., Fister Jr, I., Del Ser, J., Lopez-Garcia, P., and Vazquez-Pardavila, A. J.

(2019). A discrete and improved bat algorithm for solving a medical goods distribution problem

with pharmacological waste collection. Swarm and Evolutionary Computation, 44:273–286.

Ozbaygin, G., Karasan, O., and Yaman, H. (2018). New exact solution approaches for the split

delivery vehicle routing problem. EURO Journal on Computational Optimization, 6(1):85–115.

Pacheco, J. and Laguna, M. (2020). Vehicle routing for the urgent delivery of face shields during

the covid-19 pandemic. Journal of Heuristics, 26(5):619–635.

Pal, A. and Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static

rebalancing problems. Transportation Research Part C: Emerging Technologies, 80:92–116.

Palacio, J. D. and Rivera, J. C. (2019). Mixed-integer linear programming models for one-commodity

pickup and delivery traveling salesman problems. In Workshop on Engineering Applications,

pages 735–751. Springer.

Palacio, J. D. and Rivera, J. C. (2022). A multi-start evolutionary local search for the one-commodity

pickup and delivery traveling salesman problem. Annals of Operations Research, 319:979–1011.

Pan, L., Liu, X., Xia, Y., and Xing, L.-N. (2020). Tabu search algorithm for the bike sharing

rebalancing problem. IEEE Access, 8:144543–144556.

Parragh, S. N. and Cordeau, J.-F. (2017). Branch-and-price and adaptive large neighborhood search

for the truck and trailer routing problem with time windows. Computers & Operations Research,

83:28–44.

Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2010). Variable neighborhood search for the

dial-a-ride problem. Computers & Operations Research, 37(6):1129–1138.

Parragh, S. N. and Schmid, V. (2013). Hybrid column generation and large neighborhood search for

the dial-a-ride problem. Computers & Operations Research, 40(1):490–497.

Perboli, G., Tadei, R., and Vigo, D. (2011). The two-echelon capacitated vehicle routing problem:

Models and math-based heuristics. Transportation Science, 45(3):364–380.

190 BIBLIOGRAPHY

Pfeiffer, C. and Schulz, A. (2021). An ALNS algorithm for the static dial-a-ride problem with ride

and waiting time minimization. OR Spectrum, pages 1–33.

Pollock, S. M. and Maltz, M. D. (1994). Operations research in the public sector: An introduction

and a brief history. Handbooks in Operations Research and Management Science, 6:1–22.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem.

Computers & Operations Research, 31(12):1985–2002.

Prins, C. (2009). A GRASP × evolutionary local search hybrid for the vehicle routing problem. In

Bio-inspired algorithms for the vehicle routing problem, pages 35–53. Springer.

Rainer-Harbach, M., Papazek, P., Raidl, G. R., Hu, B., and Kloimüllner, C. (2015). Pilot, grasp,

and vns approaches for the static balancing of bicycle sharing systems. Journal of Global

Optimization, 63(3):597–629.

Rais, A. and Vianaa, A. (2011). Operations research in healthcare: A survey. International

Transactions in Operational Research, 18(1):1–31.

Raviv, T., Tzur, M., and Forma, I. a. (2013). Static repositioning in a bike-sharing system: models

and solution approaches. EURO Journal on Transportation and Logistics, 2(3):187–229.

Regue, R. and Recker, W. (2014). Proactive vehicle routing with inferred demand to solve the

bikesharing rebalancing problem. Transportation Research Part E: Logistics and Transportation

Review, 72:192–209.

Reiss, S. and Bogenberger, K. (2017). A relocation strategy for munich’s bike sharing system:

Combining an operator-based and a user-based scheme. Transportation Research Procedia,

22:105–114.

Resende, M. G. and Ribeiro, C. C. (2016). Optimization by GRASP: Greedy Randomized Adaptive

Search Procedures. Springer-Verlag New York, 1 edition.

Rey, D., Almi’ani, K., and Nair, D. J. (2018). Exact and heuristic algorithms for finding envy-free

allocations in food rescue pickup and delivery logistics. Transportation Research Part E: Logistics

and Transportation Review, 112:19–46.

Rist, Y. and Forbes, M. A. (2021). A new formulation for the dial-a-ride problem. Transportation

Science, 55(5):1113–1135.

BIBLIOGRAPHY 191

Rivera, J. C., Afsar, H. M., and Prins, C. (2013). Multistart evolutionary local search for a disaster

relief problem. In International Conference on Artificial Evolution (Evolution Artificielle), pages

129–141. Springer.

Rodrı́guez-Martı́n, I. and Salazar-González, J. J. (2012). A hybrid heuristic approach for the

multi-commodity one-to-one pickup-and-delivery traveling salesman problem. Journal of

Heuristics, 18(6):849–867.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation Science, 40(4):455–472.

Rottkemper, B., Fischer, K., Blecken, A., and Danne, C. (2011). Inventory relocation for overlapping

disaster settings in humanitarian operations. OR Spectrum, 33(3):721–749.

Sabouhi, F., Bozorgi-Amiri, A., Moshref-Javadi, M., and Heydari, M. (2019). An integrated routing

and scheduling model for evacuation and commodity distribution in large-scale disaster relief

operations: a case study. Annals of Operations Research, 283(1):643–677.

Sacramento, D., Pisinger, D., and Ropke, S. (2019). An adaptive large neighborhood search

metaheuristic for the vehicle routing problem with drones. Transportation Research Part C:

Emerging Technologies, 102:289–315.

Sakiani, R., Seifi, A., and Khorshiddoust, R. R. (2020). Inventory routing and dynamic redistribution

of relief goods in post-disaster operations. Computers & Industrial Engineering, 140:106219.

Salazar-González, J.-J. and Santos-Hernández, B. (2015). The split-demand one-commodity

pickup-and-delivery travelling salesman problem. Transportation Research Part B:

Methodological, 75:58–73.

Schuijbroek, J., Hampshire, R. C., and Van Hoeve, W.-J. (2017). Inventory rebalancing and vehicle

routing in bike sharing systems. European Journal of Operational Research, 257(3):992–1004.

Shaheen, S. A., Martin, E. W., and Cohen, A. P. (2013). Public bikesharing and modal shift behavior:

A comparative study of early bikesharing systems in north america. International Journal of

Transportation, 1(1).

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing

problems. In International conference on principles and practice of constraint programming,

pages 417–431. Springer.

192 BIBLIOGRAPHY

Sherali, H. D. and Smith, J. C. (2001). Improving discrete model representations via symmetry

considerations. Management Science, 47(10):1396–1407.

Shi, X., Zhao, F., and Gong, Y. (2009). Genetic algorithm for the one-commodity

pickup-and-delivery vehicle routing problem. In 2009 IEEE International Conference on

Intelligent Computing and Intelligent Systems, volume 1, pages 175–179. IEEE.

Shi, Y., Boudouh, T., Grunder, O., and Wang, D. (2018). Modeling and solving simultaneous

delivery and pick-up problem with stochastic travel and service times in home health care. Expert

Systems with Applications, 102:218–233.

Shu, J., Chou, M. C., Liu, Q., Teo, C.-P., and Wang, I.-L. (2013). Models for effective deployment

and redistribution of bicycles within public bicycle-sharing systems. Operations Research,

61(6):1346–1359.

Shui, C. and Szeto, W. (2018). Dynamic green bike repositioning problem–a hybrid rolling

horizon artificial bee colony algorithm approach. Transportation Research Part D: Transport and

Environment, 60:119–136.

Shui, C. and Szeto, W. (2020). A review of bicycle-sharing service planning problems.

Transportation Research Part C: Emerging Technologies, 117:102648.

Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., and Krause, A. (2015). Incentivizing

users for balancing bike sharing systems. In Twenty-Ninth AAAI conference on artificial

intelligence.

Smith, S. L. and Imeson, F. (2017). GLNS: An effective large neighborhood search heuristic for the

generalized traveling salesman problem. Computers & Operations Research, 87:1–19.

Sohn, K. (2011). Multi-objective optimization of a road diet network design. Transportation

Research Part A: Policy and Practice, 45(6):499–511.

Sun, P., Veelenturf, L. P., Hewitt, M., and Van Woensel, T. (2020). Adaptive large neighborhood

search for the time-dependent profitable pickup and delivery problem with time windows.

Transportation Research Part E: Logistics and Transportation Review, 138:101942.

Tüű-Szabó, B., Földesi, P., and Kóczy, L. T. (2020). The discrete bacterial memetic evolutionary

algorithm for solving the one-commodity pickup-and-delivery traveling salesman problem. In

BIBLIOGRAPHY 193

Computational Intelligence and Mathematics for Tackling Complex Problems, pages 15–22.

Springer.

Usama, M., Shen, Y., and Zahoor, O. (2019). A free-floating bike repositioning problem with faulty

bikes. Procedia Computer Science, 151:155–162.

Van Breedam, A. (1994). An Analysis of the Behavior of Heuristics for the Vehicle Routing Problem

for a Selectrion of Problems with Vehicle-related, Customer-related, and Time-related Constraints.

Ph.D. thesis, University of Antwerp.

Vidović, M., Ratković, B., Bjelić, N., and Popović, D. (2016). A two-echelon location-routing

model for designing recycling logistics networks with profit: MILP and heuristic approach.

Expert Systems with Applications, 51:34–48.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., and Velasco, N. (2010). GRASP/VND and

multi-start evolutionary local search for the single truck and trailer routing problem with satellite

depots. Engineering Applications of Artificial Intelligence, 23(5):780–794.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., and Velasco, N. (2013). A matheuristic

for the truck and trailer routing problem. European Journal of Operational Research,

230(2):231–244.

Wang, J., Tsai, C.-H., and Lin, P.-C. (2016). Applying spatial-temporal analysis and retail location

theory to public bikes site selection in taipei. Transportation Research Part A: Policy and Practice,

94:45–61.

Wang, K., Shao, Y., and Zhou, W. (2017). Matheuristic for a two-echelon capacitated vehicle

routing problem with environmental considerations in city logistics service. Transportation

Research Part D: Transport and Environment, 57:262–276.

Wang, Y. and Szeto, W. (2018). Static green repositioning in bike sharing systems with broken

bikes. Transportation Research Part D: Transport and Environment, 65:438–457.

Wang, Y. and Szeto, W. (2021a). The dynamic bike repositioning problem with battery electric

vehicles and multiple charging technologies. Transportation Research Part C: Emerging

Technologies, 131:103327.

Wang, Y. and Szeto, W. (2021b). An enhanced artificial bee colony algorithm for the green

bike repositioning problem with broken bikes. Transportation Research Part C: Emerging

Technologies, 125:102895.

194 BIBLIOGRAPHY

Wohlgemuth, S., Oloruntoba, R., and Clausen, U. (2012). Dynamic vehicle routing with anticipation

in disaster relief. Socio-Economic Planning Sciences, 46(4):261–271.

Wolf, S. and Merz, P. (2007). Evolutionary local search for the super-peer selection problem and

the p-hub median problem. In International Workshop on Hybrid Metaheuristics, pages 1–15.

Springer.

Xiao, Y., Zhao, Q., Kaku, I., and Xu, Y. (2012). Development of a fuel consumption optimization

model for the capacitated vehicle routing problem. Computers & Operations Research,

39(7):1419–1431.

Yi, W. and Kumar, A. (2007). Ant colony optimization for disaster relief operations. Transportation

Research Part E: Logistics and Transportation Review, 43(6):660–672.

Zhang, B., Li, X., and Saldanha-da Gama, F. (2022). Free-floating bike-sharing systems:

New repositioning rules, optimization models and solution algorithms. Information Sciences,

600:239–262.

Zhang, D., Yu, C., Desai, J., Lau, H., and Srivathsan, S. (2017). A time-space network flow

approach to dynamic repositioning in bicycle sharing systems. Transportation Research Part B:

Methodological, 103:188–207.

Zhang, J., Meng, M., Wong, Y. D., Ieromonachou, P., and Wang, D. Z. (2021). A data-driven

dynamic repositioning model in bicycle-sharing systems. International Journal of Production

Economics, 231:107909.

Zhang, Z., Liu, M., and Lim, A. (2015). A memetic algorithm for the patient transportation problem.

Omega, 54:60–71.

Zhao, F., Li, S., Sun, J., and Mei, D. (2009). Genetic algorithm for the one-commodity

pickup-and-delivery traveling salesman problem. Computers & Industrial Engineering,

56(4):1642–1648.

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	Nonprofit and public operations: definition and context
	Vehicle routing and transportation in public and nonprofit contexts
	Bicycle sharing systems: service planning problems and OR perspective
	Purpose of the thesis
	Contributions
	Structure of the manuscript

	State of the Art
	Vehicle routing problems with pickup and delivery features
	One-commodity and multi-commodity pickup and delivery VRPs
	Dial-a-ride problems

	Vehicle routing optimization in non-commercial contexts
	Home and health care logistics
	Disaster relief logistics
	Other applications

	Vehicle routing optimization models in bicycle sharing systems
	Static bicycle repositioning problems
	Dynamic bicycle repositioning problems

	Concluding remarks

	1–PDTSP: mathematical models and metaheuristic approaches
	Introduction
	Problem definition and mixed integer linear models
	The 1–PDTSP
	The SD1PDTSP

	A multi-start evolutionary local search algorithm for the 1–PDTSP
	General framework
	Greedy randomized construction
	Variable neighborhood descent
	Perturbation
	Multi-start iterated local search and greedy randomized adaptive search procedure

	Computational experiments
	Data sets
	Results on mixed integer lineal models
	Analysis on split delivery, temporal storage and vehicle capacity
	MILPs benchmark
	Results on MS-ELS

	Concluding remarks

	Mathematical models and solution approaches for 1–PDVRP
	Introduction
	Problem definition and mixed integer linear models
	The 1–PDVRP
	The 1–PDVRP with tour length constraints
	Symmetry breaking constraints

	Large neighborhood search based matheuristic
	General structure
	Variable neighborhood descent procedures
	Split procedure for the 1–PDVRP
	MILP-based destroy and repair operator
	Concatenation and perturbation functions
	Set partitioning based post-optimization procedure

	Adaptive large neighborhood search algorithm
	General structure
	Adaptive control of the algorithm
	Destroy operators
	A MILP as repair operator
	Removing a route: MILP approach

	An enumeration algorithm for solution repairing
	General structure
	Dominance rules for partial solutions

	Computational experiments
	Instances and experiments configuration
	Results on mixed integer lineal model
	Matheuristic algorithms: comparative results
	Comments on multi-start iterative LNS matheuristic performance
	Comments on adaptive features for LNS-based algorithms
	Comments on enumeration algorithm for ALNS-based strategies

	Concluding remarks

	The two-echelon BRP with split delivery
	Introduction and motivation
	A brief review on two-echelon routing problems
	Mathematical model for the 2E–BRPSD
	Hybrid constructive algorithm for the 2E–BRPSD
	Greedy randomized construction
	Variable neighborhood descent
	Split
	Local search
	Finding feasible satellite depots
	Central route construction
	Global feasibility verification

	A set partitioning problem based matheuristic
	Sets of central and secondary routes for the 2E–BRPSD
	SPP mathematical formulation for the 2E–BRPSD

	Generalized traveling salesman problem based matheuristic for the 2E–BRPSD
	Set partitioning problem for secondary routes
	An enhanced GTSP mathematical formulation
	An alternative procedure for secondary route selection

	Computational experiments
	Data sets
	Results on 2E–BRPSD MILP
	Results on matheuristic algorithms
	Results on EnCicla instances

	Concluding remarks

	General conclusions and future research directions
	Bibliography

