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Abstract

Since incorrect decisions can have detrimental effects on financial institutions, the possibility
for these to forecast business failures becomes indispensable. In the financial domain, the focus
of research problems rarely revolves around the identification of the clients who desist their
credit offering, but rather on bankruptcy prediction and credit scoring. The general objective
of this paper revolves around the implementation of supervised machine learning algorithms
that will allow CrediOrbe, a credit company, to target customers whose profile assimilates those
who desist their credit offering. Machine learning algorithms have been greatly studied as tools
to aid decisions makers in the realm of finance. Performance measurements are calculated and
analyzed through the use of statistical classification measurements. Suggestions for further
research are provided.

Keywords: Machine learning, credit scoring , financial institutions, statistical classification
measurements.

1 Introduction

According to Thomas et al. (2002) , in the field of banking and finance, credit scoring has been
considered a useful application of operations research modeling. Credit scoring practices have
allowed financial institutions to witness an increase in their capital by mitigating risks associated
with customer credit. These practices are detrimental for these institutions since it allows them
to have the ability to identify what types of credit requests fall under the category of clients that
are likely to repay their debt and those who are not. These evaluation is based on a credit score
associated with each client.

As mentioned in Vojtek and Kocenda (2006), a variety of factors are considered when calculating
the credit score of each applicant: age, income, expenses, credit score, gender, last level of education
completed, among others. The higher the score, the lower the risk associated with the applicant
and vice versa. Therefore, credit scoring is a tool used to mitigate the risk that financial institutions
face when granting a credit to their customer.
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For financial institutions, corporate failure predictions is a tool used to mitigate the risk
of credit loan applications. For example, as examined in Gouvêa and Gonçalves (2007), these
predictions forecast the possibility of a financial loss when a customer does not honor the credit
contract. Hence, corporate failure predictions enable financial entities to implement proper lending
practices by sustaining profitability and preventing adverse effects such as bankruptcy and economic
repercussions. It is important to note that due to their promising prediction accuracy, data mining
approaches are used to develop corporate failure prediction models. As stated in De Veaux (2003),
the goal of data mining is to find underlying relationships between variables from a given data set.
To further expand, a component of machine learning is data mining. As noted in De Veaux (2003),
machine learning allows computer algorithms to automatically improve from experience by using
statistics. Over the past century, many machine learning algorithms have been developed because
of their performance in evaluating predictive modeling problems.

This research practice will report on the use of use supervised machine learning algorithms to
identify clients who desist their credit offering in the motorcycle financing company CrediOrbe.
There are two main motivations for carrying out this research practice. First, a successful
implementation of supervised machine learning algorithms will allow the company to place stronger
retention strategies on customers who are likely to desist the credit offering,as indicated by the
algorithm. Second, by implementing market segmentation practices, especially in the final stage of
the credit application process, large amounts of operational expenses could be saved.

Three main outcomes are presented in this research practice: the description and implementation
of the three supervised machine learning algorithms, an statistical analysis and performance
evaluation of the executed algorithms, and suggestions for future projects and improvements.

This research practice will begin by presenting the research problem in Section 2, where the
problem is described, the main mathematical elements are listed, and some potential applications
are explored. This section will be preceded by Section 3, where there is a description of the
Support Vector Machine (SVM), Random Forest(RF) and Logistic Regression (LR) algorithms. The
remainder of the research practice is divided into three sections. Section 4 refers to the CRISP-DM
methodology, which served as a guideline to the development of this project. Section 5 will focus
specifically on displaying and analyzing the performance results. And finally in Section 6 conclusions
are discussed and suggestions for future work are presented.

2 Problem definition

2.1 Problem Description

In this research practice, machine learning is utilized to solve one of the main problems faced by
the motorcycle financing company CrediOrbe. In short, CrediOrbe is a company with extensive
experience in the motorcycle financing market. Its customers are those whose credit requests are
usually rejected by traditional credit companies due to their credit risk. The purpose of this research
practice is to use supervised machine learning algorithms to identify clients who desist their credit
offering. Hence, the population to be considered is conformed by individuals whose credit score
have exceeded the credit score threshold specified by the company.

2.2 Main Mathematical Elements

The main mathematical elements of the research practice can be listed as follows:
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• Machine Learning was used to implement the SVM, RF, LR algorithms.

• Statistics was used to understand, evaluate and interpret the data and the performance of the
algorithms.

• Probability was used to make classification decisions by the algorithms and to evaluate their
performance.

2.3 Potential Applications

There are two potential applications associated to the previous problem.

• Reduction of operational cost and in turn an increase of company’s revue.

• Employment of marketing strategies.

It is important to note that marketing strategies (such as market segmentation) targeting groups
of individuals who desist the credit offering, will allow the company to prevent monetary losses.
Since, as a whole, the evaluation of a credit application symbolizes a significant source of operational
and labor costs to the company.

3 State of the art

3.1 Supervised Learning Algorithms

The algorithms implemented in this research practice fall under the category of supervised machine
learning algorithms. As defined in Cristianini and Shawe-Taylor (2000), supervised machine
learning is an approach in which a computer is used to understand and classify data by predicting
output variables from input variables . The supervised learning algorithms that are going to be
implemented are SVM, RF and LR. To assess how these perform, measurements such as the number
of instances that are correctly and incorrectly classified, precision, F-Measure, accuracy and recall
were calculated.

3.2 SVM

According to Cristianini and Shawe-Taylor (2000), SVM is a discriminative classifier whose
classification is based on the construction, in a high or infinite dimensional space, of a hyperplane
or a set of hyperplanes. By definition, the hyperplane is used as a decision boundary in which each
input vector from the input space is classified. This algorithm can be used for a variety of purposes:
classification, regression and outlier detection.

3.2.1 Linear Classification

According to Cristianini and Shawe-Taylor (2000), a binary classification problem involves the use of
a classification decision rule to classify elements into two distinct groups. For notation purposes let
X ∈ Rn, denote the input space and Y = {−1, 1} denote the output domain. Let an example from
the data set be represented as the pair (xi, yi), where xi = (x1, .., xn) represents the input vector and
yi the respective output value. Lastly, let the training data be denoted as S = ((x1, y1)), ..., (xl, yl))
∈ (X,Y )l and let the testing data be denoted as S′ = ((x1, y1), ..., (xk, yk)) ∈ (X,Y )k.
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Given a testing example (xi, yi) ∈ S′, binary classification is performed by using a function
f : X ∈ Rn → R, denoted as

f(xi) =〈wT · xi〉+b, (1)

where (w, b) ∈ Rn ∗ R are parameters that control the decision rule and are learned from a S.
Note that if the value returned after evaluating xi in Eq.(1) is positive, then the testing example is
assigned to the positive class and vice versa for the negative class.

Note that by substituting Eq.(12) into Eq.(1), the decision rule can also be evaluated as the
inner product between a testing point xt and the training points in S, denoted as

f(xi) =
l∑

j=1

αjyj〈xj · xi〉+ b, (2)

where αj ≥ 0 are the Lagrange multipliers. When dealing with linear classification, functional
and geometric margins can be used as a tool to evaluate the performance of the algorithm. The
functional margin of an example (xi, yi) with respect to the hyperplane (w, b) can be calculated as

γ̂i = yi(〈wT · xi〉+b).

Note that if the value γ̂i is greater than zero, the classification of (xi, yi) is correct.It is important
to take into account that given S, we define the geometric margin of (w, b) with respect to S as

γ̂ = min
i=1...l

γ̂i.

The geometric margin, on the other hand, represents the Euclidean distance of an example with
respect to the decision boundary and can be calculated as

γi = yi

((
w

‖w‖

)T
· xi +

(
b

‖w‖

))
.

It is important to take into account that given S, we define the geometric margin of (w, b) with
respect to S as

γ = min
i=1...l

γi.

3.2.2 Kernel-Induced Feature Spaces

In some cases, the linear combination of independent variables cannot effectively classify the response
variable. In this case, the idea of more abstract features of the data is considered. According
to Cristianini and Shawe-Taylor (2000), by using the kernel representation of the data, linear
classification learning machines can better classify data on a high dimensional feature space.

The purpose of kernel representation is to change the way data is represented in order to obtain
an objective function that can fully distinguish different classes. The preprocessing method consist
on changing the representation of all xi ∈ X i = {1, ..., n}:

xi = (x1, ..., xn)→ φ(xi) = (φ1(xi), ..., φd(xi)) d ≤ n. (3)
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The process represented in Eq.(3) is equivalent to mapping the input space X into a feature
space represented by F = {φ(xi)|xi ∈ X} . Let φ : X → F represent a non-linear map from the
input space to a feature space.

A reason why feature mapping occurs is due to the need of machines to classify non-linear
relationships. Feature mapping allows non-linearly separable data to become linearly separable by
rewriting the data into a new representation. According to Cristianini and Shawe-Taylor (2000),
this process consists on using a linear machine to classify the data on the feature space, which was
initially applied a non-linear mapping. Given a testing example (xi, yi) ∈ S′, the linear machine
used to classify the testing example on feature space F is denoted as

f(xi) = 〈wT · φ(xi)〉+ b, (4)

where (w, b) ∈ Rd ∗ R are parameters that control the decision rule in the feature space and are
learned from a S.

Due to the fact that linear learning machines can also be expressed in dual representation, Eq.(4)
can be rewritten as the inner product between the input vector from a testing example (xi, yi) ∈ S′
and the input vector from the training points in S in the feature space F :

f(xi) =

l∑
j=1

αjyj〈φ(xj) · φ(xi)〉+ b. (5)

According to Cristianini and Shawe-Taylor (2000), for all pairs of examples in the input space,
a kernel function, K, can be represented as:

K(x, z) = 〈φ(x) · φ(z)〉. (6)

Hence, by substituting Eq.(6) into Eq.(5), we obtain

f(xi) =

l∑
j=1

αjyjK〈xj ,xi〉. (7)

3.2.3 Support Vector Classification: Maximal Margin Classifier

A frequently used model of Support Vector classification for linearly separable data on the input
space is denoted as the maximal margin classifier. According to Cristianini and Shawe-Taylor
(2000), the main idea associated to the maximal margin classifier is to correctly classify data by
using a maximal margin hyperplane.

Given a linearly separable training sample S, the optimization problem associated to the maximal
margin classifier is

max
γ,w,b

γ

s.t. yi(〈wT · xi〉+b) ≥ γ i = 1, ...l

‖w‖ = 1.

(8)

The objective function of Eq.(8) is to maximize the geometric margin γ. The first constraint
indicates that each training example must have functional margin of at least γ. The second
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constraint, a scale constraint, ensures that the functional margin is equal to the geometric margin.
Since Eq.(8) is a non-convex optimization problem, it can be written as a convex-optimization
problem with a convex quadratic objective and a linear constraint:

min
γ,w,b

1

2
‖w‖2

s.t. yi(〈wT · xi〉+b) ≥ 1 i = 1, ...l.

(9)

Equation (9), denoted as primal optimization problem for the maximal margin classifier, tries
to maximize the distance between the hyperplanes < wT ,xi >+b = 1 and < wT ,xi >+b = −1,
calculated as 2

‖w‖ , and is subject to constraints that ensure the classes are separable.
To convert the primal optimization for the maximal margin classifier into a dual optimization

problem, let Eq.(9) be rewritten as

min
γ,w,b

1

2
‖w‖2

s.t. − yi(〈wT · xi〉+b) + 1 ≤ 0 i = 1, ...l.

(10)

Constructing the Lagrangian of Eq.(10) we obtain

L(w, b, α) =
1

2
‖w‖2 −

l∑
l=1

αi[yi(〈wT · xi〉+b)− 1]. (11)

The Karush-Kush-Tucker conditions associated with Eq.(10) are:

∂L(w, b, α)

∂w
= w −

l∑
i=1

αiyixi = 0 =⇒ w =
l∑
l=1

αiyixi, (12)

∂L(w, b, α)

∂b
=

l∑
l=1

αiyi = 0, (13)

αi[−yi(〈wT · xi〉+b) + 1] = 0 i = 1, ...l, (14)

αi ≥ 0, i = 1, ...l.

Note that the training examples for which the value of αi 6= 0 are denoted as support vectors.
According to Tax and Duin (1999), support vectors are training examples which have the smallest
geometrical margin to the hyperplane and greatly affect the direction of the hyperplane.

By substituting Eq.(12) into Eq.(11) and considering the result obtained from Eq.(13) the
objective function for the dual function can be obtained:

L(w, b, α) =
l∑

i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj〈xTi · xj〉. (15)

Taking into account Eq.(15) and the previous constraints, the following dual optimization
problem for the maximal margin classifier is proposed:
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max
α

l∑
i=1

αi −
1

2

l∑
i,j=1

yiyjαiαj〈xTi · xj〉

s.t. αi ≥ 0, i = 1, ...l

l∑
i=1

αiyi = 0.

3.2.4 Support Vector Classification: Soft Margin Optimization

When the data cannot be linearly separated in the input space, Support Vector classification
methods, such as soft margin optimization, are used. As mentioned in Cristianini and Shawe-Taylor
(2000), unlike the maximal margin classifier, soft margin optimization can tolerate the presence of
outliers and noise in the data

Taking into consideration Eq.(9) and allowing margin constraints to be violated by adding a
slack variable we obtain

min
γ,w,b

1

2
‖w‖2 + C

l∑
l=1

ξi

s.t. yi(〈wT · xi〉+b) ≥ 1− ξi i = 1, ...l

ξi ≥ 0 i = 1, ...l,

(16)

where C hyperparameter and the slack variable, ξ, measures the distance of an incorrectly
classified training point from its corresponding class’s margin. Note that if the value of C is small,
maximizing the margin is given more importance than the classification error, and vice versa, if the
value of C is large. It is important to note that the objective function of the optimization problems
Eq.(9) and Eq.(17) differentiate in the second term.

Similar to the process shown for the maximal margin classifier, the dual optimization problem
for soft margin optimization can be written as

max
α

l∑
l=1

αi −
1

2

l∑
i,j=1

yiyjαiαj〈xTi · xj〉

s.t. 0 ≤ αi ≤ C, i = 1, ...l

l∑
i=1

αiyi = 0.

3.3 RF

As defined in Ali et al. (2012), RF is a collection of decision tree classifiers. When testing S’, each
decision tree casts a unit vote for a class in which the testing example is classified based on its own
criteria. Hence, the testing example will be classified to the class that has the greatest number of
unit votes. It is important to note that each decision tree varies in structure and variable selection:
the data and the features from which the decision trees are trained is made by randomly selected
training data from the input space and randomly selected variables.

The main problem with the decision trees classifier is that they tend to produce overfitted
models. According to Ali et al. (2012), overfitted models perform poorly when being tested since
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the classification of such models correspond very closely to the data from which they were trained.
Therefore, a benefit of RF is that the classification of a testing example is based on the classification
obtained from multiple decision trees. Therefore, the use of RF has a trade-off: a reduction of the
variance at the expense of an increase in bias and a decrease of interpretability.

3.3.1 Decision Trees

As defined in Louppe (2014), a Decision Tree is a tree-structured model: ϕ : X → Y , where X is
the input space and Y = {0, 1} the output domain. A Decision Trees is represented as a binary
tree composed by branches (segments that connect nodes), nodes (the position where the branches
divide), leaf nodes (the node from which the tree ends) and a root node (the node from which the
tree starts). Branches are represented as segments that connect nodes while nodes are represented
as circles. In a Decision Tree, each node represents a subspace Xt and has a feature test s(t). To
further expand, in the Decision Tree, the outcome of a set of feature questions Q determine the split
st for every internal node t. Precisely, the split st for every internal node t divides the space Xt

into disjoint subspaces. Each leaf node, or terminal nodes, are labeled with a guess value yt ∈ Y .
Lastly, the main objective of the Decision Tree is to find a tree-structured classifier that is able to
distinguish between classes.

In a Decision Tree, each node has an impurity measure, denoted as i(t). According to Louppe
(2014), an impurity measure evaluates the goodness of the classification at a node. One of the most
frequently used ways to calculate impurity at a node is by using the Gini impurity calculated as

iG(t) =
C∑
i=1

p(ci|t)(1− p(ci|t)),

where C is the number of classes in the output domain and p(ck|t) is a conditional probability
representing the fractions of the examples labeled with class i at node t. It is important to note
that the smaller the impurity measure on a given node, the purer the node.

The creation of a Decision Tree begins from a root node (representing the input space) that
iteratively grows by dividing nodes into purer ones. Hence, if all Xt at a given node t belong to the
same class, the pure node t will become a leaf node. On the other hand, if the Xt at a given node t
contain examples that belong to more than one class, the node is divided into a binary split using
a feature test. After a binary split, the node t is divided into a left node tL and a right node tR. In
such cases, the impurity decrease at node t is calculated as:

4i(s, t) = i(t)− pLi(tL)− pRi(tR),

where pR = NtR
Nt

and pL = NtL
Nt

are the fraction of training examples from Xt, with size Nt, that
go to tR and tL, respectively. The previous statement indicates that the termination criteria for
the Decision Tree is achieved once each leaf node is pure. As indicated in Ali et al. (2012), this
termination criteria is what precisely makes the Decision Trees prone to overfitting: comprehensive
changes in the structure of the decision tree can be caused by small changes in the data. It is
important to note that when dealing with Decision Trees not all features are going to be utilized,
only those that best divide the training examples into their respective classes are used.

The generalization error is used to calculate the accuracy of a Decision Tree. Given a testing
data S′, the generalization error of the model ϕL is calculated as:
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Err(ϕL) = P (Y 6= ϕL(X)), (17)

where P denotes the theoretical probability. However, since the theoretical probability is
unknown, Eq.(17) is rewritten as:

Êrr(ϕL) =
1

N

∑
(x,y)∈S′

1(y 6= ϕ((x)), (18)

where the N denotes the number of examples in S′ and 1 denotes the unit condition:

1 =

{
1 if condition is true

0 if condition is false.

Equation (18) measures the probability of misclassification of ϕL, the Decision Tree. Note that
the purpose of the Decision Tree is not to make the most accurate prediction on the training set,
but on the testing set because it will prove that the model is reliable.

For the generalization error of the model ϕL to be the smallest, the generalization error at each
leaf node t has to be minimized as:

yt = arg max
c∈Y

P (Y = c|X ∈ Xt). (19)

However, since the theoretical probability is unknown, (19) is rewritten as:

ŷt = arg max
c∈Y

p(c|t).

3.3.2 RF Algorithm

One of the benefits associated with a ensemble of Decision Trees is that, generally speaking, the
expected generalization error of a set of Decision Trees is less than the generalization error of each
individual Decision Tree. According to Louppe (2014), the RF algorithm uses an ensemble method
based on randomization. The idea behind this method is to generate different models from the
training data by introducing random perturbations in order to make a prediction based on the set
of predictions.

Let M denote a set of randomized models {ϕS,θm |m = 1, ..,M} that were built from different
random seeds θm and where learned from different random samples of training data S. When
evaluating the RF algorithm with S’, the result obtained is computed by:

ΨS,θ1,...,θn = arg max
y∈c

C∑
l=1

1(ϕS,θm(xi) = c). (20)

As shown in Eq.(20), the label prediction for each (xi, yi) ∈ S′ is obtained by considering the
classification from the ensemble of Decision Trees. Given that each Decision Tree provides a unit
vote for a label prediction, the testing example will be classified on the label prediction that has
the majority of votes.
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3.4 LR

As mentioned in Barasa and Muchwanju (2015), models such as LR have been regarded as a primal
tool to describe the relationship between a dependent variable and a collection of independent
variables. The dependent variable, the output domain, is represented as Y = {0, 1}. The advantages
associated with the LR model are many: flexible, practical, and the estimates of effects of the model
parameters can be evidenced.

3.4.1 Simple LR Model

The purpose of the simple LR model is to describe the relationship between a dependent variable
and a single independent variable. According to Hosmer Jr et al. (2013), a measurement that
is of great importance when working with the LR model is the conditional mean, denoted as
E(Y |x) = P (Y = 1|x). The classification of a testing example is determined by the value of the
conditional mean, and the estimate of the conditional mean must satisfy 0 ≤ E(Y |x) ≤ 1.

Let the conditional mean be represented as π(x) = E(Y |x) and let the simple LR model be
denoted as:

π(x) =
eβ0+β1x

1 + eβ0+β1x
, (21)

where β0 and β1 are the parameters of the model. When evaluating (xi, yi) ∈ S′, given S’ is of

the form S′ = ((x1, y1), ..., (xk, yk)) ∈ (X,Y )k, if the value returned by Eq.(21) is greater than or
equal to 0.5, the data point will be classified to the outcome class Y=1. Alternatively, if the value
is less than 0.5, then data point will be classified to the outcome class Y=0.

Another representation of the simple LR model is called the logit transformation:

g(x) = ln

[
π(x)

1 + π(x)

]
= β0 + β1x1.

The logit transformation model and the simple linear regression model have some common
properties: −∞ ≤ g(x) ≤ ∞ and continuity.

In order to test the accuracy of S’ in the simple LR model, the model parameters β0 and β1
from Eq.(21) have to be estimated. To estimate the previous parameters, the maximum likelihood
method is used. As noted in Hosmer Jr et al. (2013), the maximum likelihood estimators of the
parameters, obtained from the maximum likelihood method, are those that classify the training
set more accurately. However, in order to apply the maximum likelihood method, the likelihood
function has to be constructed.

To obtain the likelihood function, let us consider the following considerations. Due to the fact
that Y = {0, 1}, the conditional probability P (Y = 1|x) is the quantity π(x) and the conditional
probability P (Y = 0|x) is the quantity 1− π(x). Therefore, when considering a (xi, yi) ∈ S, the
contribution to the likelihood function of the pair when yi = 1 and when yi = 0 is π(xi) and
1− π(xi), respectively. Hence, the contribution of the pair to the likelihood function can be
expressed as:

π(xi)
yi [1− π(xi)]

1−yi .

Since each pair in S is independent, the likelihood function for the training set S is denoted as
the product:
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l(β) =
l∏

i=1

π(xi)
yi [1− π(xi)]

1−yi . (22)

By applying the log to Eq.(22), the log-likelihood for the training set S can be defined as:

L(β) = ln [l(β)] =

l∑
i=1

(yiln [π(xi)] + (1− yi)ln [1− π(xi)]) . (23)

In order to obtain the maximum likelihood estimators of the parameters (β̂), Eq.(23) has to be
differentiated with respect to β0 and β1 and the resulting expressions have to be equated to zero to
obtain the likelihood equations:

l∑
i=1

[yi − π(xi)] = 0

and

l∑
i=1

xi [yi − π(xi)] = 0.

For the simple LR model, hypothesis testing is used to determine which βi ∈ β for i = {0, 1}
are statistically significant:

H0 = βi = 0

H1 = βi 6= 0,

where H0 indicates the null hypothesis and H1 indicates the alternative hypothesis. To
determine which parameters are statistically significant, the respective p-value of the maximum
likelihood estimators of the parameters have to be considered. If the p-value associated to an β̂i ∈ β̂
is greater than a level of significance α, the null hypothesis is accepted. The previous statement
suggests that the independent variable is not statistically significant. Conversely, if the p-value
associated is less than α, the null hypothesis is rejected. The previous statement suggests that the
independent variable is statistically significant.

3.4.2 Multiple LR Model

The purpose of the multiple LR model is to describe the relationship between a dependent variable
and a series of p independent variables, denoted as x = (x1, x2, . . . , xp). As with the simple LR
model, a measurement that is of great importance when working with the multiple LR model is the
conditional mean, denoted as E(Y |x) = P (Y = 1|x).

For simplification purposes, let the conditional mean be represented as π(x) = E(Y |x) and let
the multiple LR model be denoted as:

π(x) =
eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp
, (24)

where β = {β0, β1, ..., βp} are the model parameters. An alternate representation of Eq.(24) is
called the logit transformation:
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g(x) = ln

[
π(x)

1 + π(x)

]
= β0 + β1x1 + β2x2 + · · ·+ βpxp.

Note that when evaluating (xi, yi) ∈ S′, if the value returned by Eq.(24) is greater than or equal
to 0.5, the data point will be classified to the outcome class Y=1. Alternatively, if the value is less
than 0.5, then data point will be classified to the outcome class Y=0.

In order to obtain the maximum likelihood estimators for the multiple LR model, similar to the
procedure done for the simple LR model, the model parameters from Eq.(24) have to be estimated
with the maximum likelihood method. Consequently, the likelihood equations are constructed:

l∑
i=1

[yi − π(xi)] = 0

and

l∑
i=1

xij [yi − π(xi)] = 0 j = 1, . . . , p.

For the multiple LR model, hypothesis testing is used to determine which βi ∈ β for i =
{0, 1, . . . , p} are statistically significant using the same criteria as the simple LR model.

4 Solution method / Methodology

The project was conducted using a data mining methodology called CRISP-DM (Cross Industry
Standard Process for Data Mining). As described in Niaksu (2015), this methodology presents
an organized and iterative process model to tackle a data mining projects by generic-to-specific
approach. The CRISP-DM methodology consists of six phases, with cyclic iteration between
them: business understanding, data understanding, data preparation, modeling, evaluation, and
deployment.

4.1 Business Understanding

The step of business understanding consists on clarifying the objectives of the project and conducting
activities such as expert meetings and specific field learning. In regard to the project, various
meetings were held with members of the CrediOrbe team: credit analysts, marketing operations
group and call center employees. In these meetings, insights such as credit scoring practices and
application evaluation processes were discussed.

A credit request can arrive to CrediOrbe in three different manners: through a customer request
in a motorcycle dealer company, by filling an online questionnaire on the company’s website, and by
contacting the company’s call center. It is also important to note that once a credit request arrives
to CrediOrbe, for its approval, it has to pass through a series of stages. After the credit request
arrives to the company, the request is analyzed by a credit analyst and the documentation provided
by the customer is verified. Once the customer’s request passes this stage, the credit request is
automatically approved and, if the customer accepts the credit offer, the disbursement stage will
begin. Note that in each of the stages previously described, besides the customers whose credit
request is approved, there are customers whose credit request is denied and customers who decide
to desist the credit application process.

12



Note that the customer group in the last stage of the credit application process is conformed
by customers who decide to accept their credit offering, and those who desist their credit offering.
Specifically, this project focuses on this population since it it that which brings the greatest source
of monetary income and loss to the company. Therefore, the objective of the project was clearly
established: identify and anticipate the customers who will desist their credit offering by using
supervised machine learning algorithms.

4.2 Data Understanding

The second step is data understanding and its objective is to describe and explore the data. This
process involves the identification of the dependent variable and the independent variables, data
description, bi-variate analysis as well as aggregated data exploration.

4.2.1 Dependent and Independent Variable Identification

Table 1 shows the identification of the continuous independent variables, categorical independent
variables and dependent variable, which were considered when evaluating the supervised machine
learning algorithms.

Dependent Variable Continuous Independent
Variable

Categorical Independent
Variable

Accept/Desist Credit Offering Number of People in Charge Gender
Age Martial Status
Income Housing Stratum
Expenses Job Formality
Monthly Quota Value Level of Education
Months on Current Job
Credit Score

Table 1: Variable identification

Let Table 2 describe the variable representation for the conduction of the statistical analysis.

Representation Variable

x1 Months on Current Job
x2 Number of People in Charge
x3 Age
x4 Monthly Quota Value
x5 Income
x6 Expenses
x7 Credit Score

Table 2: Variable description
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4.2.2 Univariate Analysis

Table 3, which was modified due to confidentiality agreements, describes the univariate analysis for
the variables described in Table 2.

Variable Mean Median Mode

x1 30 18 6

x2 5 3 4

x3 39 55 40

x4 712.3894 301.0570 999.7180

x5 5.717x106 7.2160x106 4.2000x106

x6 566 460 700

x7 190 130 140

Table 3: Univariate analysis

4.2.3 Correlation Matrix

Table 4 describe the correlation matrix for the variables described in Table 2.

x1 x2 x3 x4 x5 x6 x7

x1 1 0.1385 0.4425 0.0497 0.2138 0.1756 0.2023

x2 0.1384 1 0.2749 -0.0693 0.0790 0.0930 0.0455

x3 0.4424 0.2749 1 -0.0105 0.1993 0.1621 0.3318

x4 0.0497 -0.0693 -0.0105 1 0.2639 0.1757 0.0667

x5 0.2137 0.0790 0.1994 0.2639 1 0.9337 0.0862

x6 0.1756 0.0930 0.1621 0.1757 0.9337 1 0.0121

x7 0.2022 0.0455 0.3318 0.0667 0.0862 0.0120 1

Table 4: Correlation matrix

4.2.4 Bi-Variate Analysis

In order to conduct the bi-variate analysis, simple linear regression was implemented to establish a
relationship between two variables: an independent and dependent variable. The underlying goal
of simple linear regression is to establish a relationship of the form

ŷ = β̂0 + β̂1x. (25)

To evaluate how close the data fits the relationship established in (25), measurements such
as the R-Squared were considered. Note that the closer the value of the coefficient of
determination(R-Squared) is to one, the better the data fits the model.

Table 5 shows examples of simple linear regression models along with their corresponding
R-Squared and the p-values of the model parameters are in parentheses.
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y x β0 β1 R-Squared

x5 x6 8.4230x106(0.000) 1.1452(0.000) 0.8880

x5 x4 4.1970x105(0.000) 6.1081x104(0.000) 0.070

x7 x5 - 1.689e-05(0.000) 0.551

Table 5: Simple Linear Regression

4.2.5 Aggregated Data Exploration

In order to conduct aggregated data exploration, multiple linear regression was implemented to
establish a relationship between a dependent and multiple independent variables. The underlying
goal of multiple linear regression is to be able to establish a relationship between the variables of
the form

ŷ = β̂0 + β̂1x1 + · · ·+ β̂kxk.

Table 6 shows examples of multiple linear regression models along with their corresponding
R-Squared and the p-values of the model parameters are in parentheses.

y x1 x2 β0 β1 β2 R-Squared

x7 x5 x6 - 4.111x10−5(0.000) -4.035x10−5(0.000) 0.706

x4 x5 x6 - 0.0002(0.000) -0.0002(0.000) 0.718

x5 x1 x6 7.745x105(0.000) 2503.5225(0.000) 1.1321(0.000) 0.874

Table 6: Multiple Linear Regression

4.3 Data Preparation

In this step, the data set is cleaned by using techniques such as NA processing and outlier detection.
In addition, principal component analysis (PCA) for dimensionality reduction is also considered

4.3.1 Data Cleaning

As previously stated, the data cleaning process involved a series of steps: dropping missing entries,
selecting the problem population as well as outlier detection using Mahalanobis distance. Table 7,
shows how the number of data points gradually diminishes in the data cleaning process.

Stage 1 Number of Data Points

Initial data set 171.118

Dropping missing entries 107.797

Selecting the problem population 27.786

Outlier detection 25.835

Table 7: Stage 1
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Table 10 shows the division of the data set into a training and testing set. Note that seventy
percent of the data is used for testing and thirty percent is used for training.

Stage 2 Number of Data Points

Training data 18.084

Testing data 7.751

Table 8: Stage 2

4.3.2 Principal Component Analysis

The principal component analysis (PCA) was also conducted in order to reduce the dataset’s
dimension. The goal of this technique is to avoid information loss and improve interpretability.
Table 9 shows the eigenvalues of the feature space and Table 10 shows the eigenvectors associated
to the principal components.

Eigenvalue

1.6383x105

4.3597x104

1.8577x104

4.3950x103

2.2750x103

210.7790

796.4190

Table 9: Eigenvalues

1st 2nd 3rd 4th 5th 6th 7th

0.0782 0.019 -0.9756 0.089 -0.1829 -0.0015 0.0020

0.0030 0.0075 -0.0152 0.0048 0.0764 0.9957 -0.0496

0.0262 0.0212 -0.1836 -0.1020 0.9411 -0.0871 -0.2478

0.1753 -0.9807 -0.0027 0.0818 0.0244 0.0043 -0.0055

0.8198 0.0982 0.0333 -0.55427 -0.0896 0.0047 -0.0431

0.5387 0.1658 0.1015 0.8098 0.1060 -0.0099 0.0691

0.0058 -0.0073 -0.0517 -0.1086 0.2347 0.0298 0.9640

Table 10: Eigenvectors

Table 11 shows the percentage of variability explained by each component of the PCA and Table
12 shows respective the accumulated variability.
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Explained Variability

0.7011

0.1866

0.0790

0.0188

0.0097

0.0009

0.0003

Table 11: Explained variability

Accumulated Variability

0.7011

0.8876

0.9671

0.9860

0.9956

0.9965

1

Table 12: Accumulated variability

From Table 12, it can be concluded that the three principal components with the highest
variability can explain around 96.71% of the total variability.

4.4 Modeling

As stated in Wirth and Hipp 2000, the modeling phase includes the selection of the modeling
techniques (SVM, LR and RF) and the building and description of the models.

4.5 Evaluation

The evaluation and discussion of the algorithm’s performance are discussed in Section 5.

4.6 Deployment

The deployment strategies are discussed in Section 6.

5 Results

In this section, the performance and evaluation of the LR, SVM and RF algorithm are shown.
Two alternatives were proposed. The first alternative, Alternative 1, considered the categorical and
continuous independent variables from Table 1. On the other hand, Alternative 2 was proposed by
considering Table 10. The formulation of this alternative was based on the principal component
analysis, were the variables with the largest weights from the first two principal components were
taken into consideration. Therefore, variables Z1 and Z2 were proposed:

Z1 = 0.18x4 + 0.82x5 + 0.54x6,

and

Z2 = 0.17x6 − 0.98x4.

5.1 Alternative 1 : SVM

Radial based function Kernel(RBF)

Table 13 shows the confusion matrix, Table 14 shows the statistical measurements and Table 15
shows the accuracy for the SVM algorithm with a RBF kernel.
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Predicted
Desist

Predicted
Accept

Actual
Desist

4 2366

Actual
Accept

4 5377

Table 13: Confusion matrix

Precision Recall F1-Score

Desist 0.50 0.00 0.00

Accept 0.69 1.00 0.82

Table 14: Statistical measurements

Accuracy

Training set 0.99

Testing set 0.69

Table 15: Accuracy

Figure 1 shows ROC Curve and Figure 2 shows the heat map obtained from the evaluation of
this algorithm.

Figure 1: ROC curve Figure 2: Heat map

From the previous measurement results, it can be concluded that, because the accuracy of the
model on the testing data set is very low, the SVM algorithm with RBF kernel cannot distinguish
these two classes. It can be concluded from Table 14 and Table 15 that the algorithm classifies the
vast majority of data points on the accept class. This problem makes the performance results for
the desist class to be greatly deficient, as shown in Table 14.

Polynomial Kernel

Table 16 shows the confusion matrix, Table 17 shows the statistical measurements and Table 18
shows the accuracy for the SVM algorithm with the polynomial kernel.
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Predicted
Desist

Predicted
Accept

Actual
Desist

1453 971

Actual
Accept

3203 2124

Table 16: Confusion matrix

Precision Recall F1-Score

Desist 0.31 0.60 0.41

Accept 0.69 0.40 0.51

Table 17: Statistical measurements

Accuracy

Training set 0.96

Testing set 0.47

Table 18: Accuracy

Figure 3 shows ROC Curve and Figure 4 shows the heat map obtained from the evaluation of
this algorithm.

Figure 3: ROC curve Figure 4: Heat map

It can be concluded from the from Table 16, Table 17 and, Table 18, that the SVM algorithm
with polynomial kernel cannot distinguish between the two classes. If the results obtained are
compared to the SVM algorithm with a RBF kernel, it can be said that this algorithm classifies a
greater number of data points in the desist class. However, the algorithm is not successful when
classifying the classes.

5.2 Alternative 1 : LR

Table 19 shows the confusion matrix, Table 20 shows the statistical measurements and Table 21
shows the accuracy for the LR algorithm.
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Predicted
Desist

Predicted
Accept

Actual
Desist

1174 1093

Actual
Accept

2212 3272

Table 19: Confusion matrix

Precision Recall F1-Score

Desist 0.35 0.52 0.42

Accept 0.75 0.60 0.66

Table 20: Statistical measurements

Accuracy

Training set 0.70

Testing set 0.57

Table 21: Accuracy

Table 22 shows the variables that are statistically significant along with the coefficient of the
variables and their respective p-value in parenthesis.

Variable Model Parameter Coefficient

Intercept 0.0124(0.0000)
Age 0.0392(0.0066)
Credit Score 0.1008(0.0000)
Gender -0.0993(0.0000)
Job Formality 0.1604(0.0000)

Table 22: Model parameters

Figure 5 shows ROC Curve and Figure 6 shows the heat map obtained from the evaluation of
this algorithm.

Figure 5: ROC curve Figure 6: Heat map

It can be concluded from the previous measurement results that the LR algorithm cannot
completely distinguish the two classes due to the low accuracy of the model on the testing data set,
as shown in Table 21. Further, from Table 19 and Table 20, it can be concluded that the group
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that accepts credit offering has better performance measurements than the group that desists credit
offering.

5.3 Alternative 1 : RF

Table 23 shows the confusion matrix, Table 24 shows the statistical measurements and Table 25
shows the accuracy for the RF algorithm.

Predicted
Desist

Predicted
Accept

Actual
Desist

1617 688

Actual
Accept

1132 4314

Table 23: Confusion matrix

Precision Recall F1-Score

Desist 0.59 0.70 0.64

Accept 0.86 0.79 0.83

Table 24: Statistical measurements

Accuracy

Training set 0.99

Testing set 0.77

Table 25: Accuracy

Figure 7 shows ROC Curve and Figure 8 shows the heat map obtained from the evaluation of
this algorithm.

Figure 7: ROC curve Figure 8: Heat map

It can be concluded from the previous measurement results that due to the accuracy of the
model on the testing data set, the RF algorithm can adequately distinguish the two classes. In
addition, from Table 24, it can be stated that the group that accepts the credit offering is better
classified than the group that desists the credit offering. However, compared to the other algorithms
presented, the RF algorithm is that which overall better classifies the individuals who desist the
credit offering.

21



5.4 Alternative 2 : SVM

RBF kernal

Table 26 shows the confusion matrix, Table 27 shows the statistical measurements and Table 28
shows the accuracy for the SVM algorithm with a RBF kernel.

Predicted
Desist

Predicted
Accept

Actual
Desist

135 2139

Actual
Accept

331 5146

Table 26: Confusion matrix

Precision Recall F1-Score

Desist 0.29 0.06 0.10

Accept 0.71 0.94 0.81

Table 27: Statistical measurements

Accuracy

Training set 0.92

Testing set 0.69

Table 28: Accuracy

Figure 9 shows ROC Curve and Figure 10 shows the heat map obtained from the evaluation of
this algorithm.

Figure 9: ROC curve Figure 10: Heat map

It can be concluded from previous measurements that the SVM algorithm with a RBF kernel
cannot distinguish between the two categories due to the low accuracy of the model on the testing
data set. It can be concluded from Table 26 and Table 27 that the algorithm classifies the vast
majority of data points of the accept class.

Polynomial Kernel

Table 29 shows the confusion matrix, Table 30 shows the statistical measurements and Table 31
shows the accuracy for the SVM algorithm with a polynomial kernel.
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Predicted
Desist

Predicted
Accept

Actual
Desist

2409 15

Actual
Accept

5302 25

Table 29: Confusion matrix

Precision Recall F1-Score

Desist 0.63 0.00 0.01

Accept 0.32 0.99 0.48

Table 30: Statistical measurements

Accuracy

Training set 0.72

Testing set 0.31

Table 31: Accuracy

Figure 11 shows ROC Curve and Figure 12 shows the heat map obtained from the evaluation
of this algorithm.

Figure 11: ROC curve Figure 12: Heat map

It can be concluded from previous measurements that the SVM algorithm with a polynomial
kernel cannot distinguish between the two categories due to the low accuracy of the model on the
testing data set. Additionally, from Table 29 and Table 30 it can be concluded that the algorithm
classifies the vast majority of data points of the desist class. As compared to the results obtained
from Alternative 1 with a polynomial kernel, Alternative 2 classifies a significantly lower number in
the accept class, which causes a decrease in the testing accuracy (Table 31).

5.5 Alternative 2: LR

Table 32 shows the confusion matrix, Table 33 shows the statistical measurements and Table 34
shows the accuracy for the LR algorithm.
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Predicted
Desist

Predicted
Accept

Actual
Desist

893 1459

Actual
Accept

2098 3301

Table 32: Confusion matrix

Precision Recall F1-Score

Desist 0.30 0.38 0.33

Accept 0.69 0.61 0.65

Table 33: Statistical measurements

Accuracy

Training set 0.68

Testing set 0.54

Table 34: Accuracy

Table 35 shows the variables that are statistically significant along with the coefficient of the
variables and their respective p-value in parenthesis.

Variable Model Parameter Coefficient

Intercept 0.0002(0.0000)
Z1 -0.0224(0.0078)
Z2 0.0162(0.0000)

Table 35: Model parameters

Figure 13 shows ROC Curve and Figure 14 shows the heat map obtained from the evaluation
of this algorithm.

Figure 13: ROC curve Figure 14: Heat map

By comparing the model’s accuracy, obtained when evaluating the LR algorithm for the
Alternative 2 (Table 34) to that of the Alternative 1 (Table 21), a slight variation in the testing set
accuracy can be seen. To further expand, it can be evidenced that the testing accuracy decreased by
three percent. This change is due to the fact that, by considering the principal components for the
algorithm evaluation, a loss of variability occurs. Hence, in this scenario, a reduction in dimension
results in a loss in model’s accuracy.
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5.6 Alternative 2: RF

Table 36 shows the confusion matrix, Table 37 shows the statistical measurements and Table 38
shows the accuracy for the RF algorithm.

Predicted
Desist

Predicted
Accept

Actual
Desist

1587 731

Actual
Accept

1223 4210

Table 36: Confusion matrix

Precision Recall F1-Score

Desist 0.56 0.68 0.62

Accept 0.85 0.77 0.81

Table 37: Statistical measurements

Accuracy

Training set 0.99

Testing set 0.74

Table 38: Accuracy

Figure 15 shows ROC Curve and Figure 16 shows the heat map obtained from the evaluation
of this algorithm.

Figure 15: ROC curve Figure 16: Heat map

By comparing the model’s accuracy, obtained when evaluating the RF algorithm for the
Alternative 2 (Table 38) to that of the Alternative 1 (Table 25), a slight variation in the testing set
accuracy can be seen. To further expand, it can be evidenced that the testing accuracy decreased
by three percent. Analogous to the explanation offered for the LR algorithm, this change is due
to the fact that, by considering the principal components for the algorithm evaluation, a loss of
variability results in a loss in model’s accuracy. However, compared to the other algorithms from
Alternative 2, the RF algorithm is also that which best classified overall both classes.
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6 Conclusions and future research

From the performance measurements, it can be concluded that the RF algorithm performs
significantly better than the SVM and LR algorithm. Not only is the accuracy of this algorithm
the highest, but also the overall precision, recall and F1-Score for the desist and accept class. In
terms of applicability, the deployment strategy consists on implementing this algorithm once the
client’s credit request is accepted. Implementing this algorithm at this stage of the credit application
process will allow the application of strategies such as marketing segmentation practices. According
to Tsai and Chiu (2004), due to the fact that the market consists of a diverse group of customers,
mass market approaches have been proven to be ineffective. Furthermore, market segmentation
has proven to be potent strategy when tackling problems of this nature. In practice, the market
is divided into customer clusters where members of the same customer cluster share similar needs
and underlying characteristics, making these more likely to exhibit a homogeneous response when
presented to marketing programs.

As stated in Tsai and Chiu (2004), when a financial entity decides to select a specific customer
cluster, by implementing suitable market segmentation practices, it will have the ability to establish
a close relationship with the individuals from this group by implementing and offering a targeted
services. In the terms of this project, implementing market segmentation on the groups of individuals
who desist the credit offering, after surpassing CrediOrbe’s minimum credit scoring threshold, will
allow the company to build a relationship with the clients so that these become less prone to desist
their credit offering. Implementing this marketing practice, specifically at the last stages of the
credit application, could potentially save the company large sums of money. Note that when the
credit is granted to a client, the client would have already passed through a series of stages in
which the application is evaluated. As a whole, the evaluation of a credit application symbolize a
significant source of cost to the company since it involves operational and labor costs. Once the
company has the ability to identify the clients who will desist at the last stages, a mitigation of
cost could be witnessed. Ultimately, as denoted in Tsai and Chiu (2004), during the past decades,
market segmentation practices have allowed companies to establish a closer relationship with their
customers.
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