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Abstract In depth map generation algorithms, parameters
settings to yield an accurate disparity map estimation are
usually chosen empirically or based on unplanned experi-
ments. Algorithms’ performance is measured based on the
distance of the algorithm results vs. the Ground Truth by
Middlebury’s standards. This work shows a systematic sta-
tistical approach including exploratory data analyses on over
14000 images and designs of experiments using 31 depth
maps to measure the relative influence of the parameters and
to fine-tune them based on the number of bad pixels. The im-
plemented methodology improves the performance of adap-
tive weight based dense depth map algorithms. As a result,
the algorithm improves from 16.78 to 14.48 % bad pixels
using a classical exploratory data analysis of over 14000 ex-
isting images, while using designs of computer experiments
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with 31 runs yielded an even better performance by lowering
bad pixels from 16.78 to 13 %.
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experiments

1 Introduction

Depth map calculation deals with estimation of multiple ob-
ject depths on a scene. It is useful for applications like ve-
hicle navigation, automatic surveillance, aerial cartography,
passive 3D scanning, industrial inspection, or 3D videocon-
ferencing [1]. These maps are constructed by generating, at
each pixel, an estimation of the distance from the camera to
the object surface.

Disparity is commonly used to describe inverse depth in
computer vision, and to measure the perceived spatial shift
of a feature observed from close camera viewpoints. Stereo
correspondence techniques often calculate a disparity func-
tion d(x, y) relating target and reference images, so that the
(x, y) coordinates of the disparity space match the pixel co-
ordinates of the reference image. Stereo methods commonly
use a pair of images taken with a known camera geometry to
generate a dense disparity map with estimates at each pixel.
This dense output is useful for applications requiring depth
values even in difficult regions like occlusions and texture-
less areas. The ambiguity of matching pixels in these zones
requires complex and expensive global image processing or
statistical correlations using color and proximity measures
in local support windows. The steps generally taken to com-
pute the depth maps may include: (i) matching cost compu-
tation, (ii) cost or support aggregation, (iii) disparity com-
putation or optimization, and (iv) disparity refinement.
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In this article, Sect. 2 reviews the state-of-the-art. Sec-
tion 3 describes our algorithm (filters, statistical analyses
and experimental set-up). Section 4 discusses the results.
Section 5 concludes the article.

2 Literature Review

Depth-map generation algorithms and filters use several
user-specified parameters to generate a depth map from an
image pair. The settings of these algorithms are heavily in-
fluenced by the evaluated data sets [3]. Published works usu-
ally report the settings used for their specific case studies
without describing the procedure followed to fine-tune them
[1, 4, 5], and some explicitly state the empirical nature of
these values [6]. The variation of the output as a function of
several settings on selected parameters is briefly discussed
while not taking into account the effect of modifying them
all simultaneously [3, 4, 7]. Reference [2] compares multi-
ple stereo methods whose parameters are based on experi-
ments. Only some parameters are tuned, without explaining
the choices made. In the present article, we improve upon
this work. In [8, 9], Depth Maps are generated from single
images instead of image pairs.

2.1 Literature Review Conclusions

Used approaches in determining the settings of depth map
algorithm parameters show all or some of the following
shortcomings: (i) undocumented procedures for parameter
setting, (ii) lack of planning when testing for the best set-
tings, and (iii) failure to consider interactions of changing
all parameters simultaneously.

As a response to these disadvantages, this article presents
a methodology to fine-tune user-specified parameters on a
depth map algorithm using a set of images from the adaptive
weight implementation in [1]. Multiple settings are used and
evaluated on all parameters to measure the contribution of
each parameter to the output variance. A quantitative eval-
uation uses main effects plots and variance on multi-variate
linear regression models to select the best combination of
settings. Performance improves by setting new estimated
values of user-specified parameters, allowing the algorithm
to give much more accurate results on a rectified image pair.

Since it is not always feasible to have a large set of im-
ages available, a fractional factorial design of computer ex-
periment (DOCE) with only eight runs is used to find out
which parameters have a major influence on the images
tested. To optimize the parameters and to have the lowest
percentage of bad pixels a central composite DOCE with
23 runs is used with the most influential parameters found
in the fractional factorial design. To the best of our knowl-
edge the systematic and efficient application of DOCE in the
field of depth maps generation has not been done yet.

3 Methodology

3.1 Image Processing

In adaptive weight algorithms [1, 4], a window is moved
over each pixel on every image row, calculating a measure-
ment based on the geometric proximity and color similarity
of each pixel in the moving window to the pixel on its cen-
ter. Pixels are matched on each row based on their support
measurement with larger weights coming from similar pixel
colors and closer pixels. The horizontal shift, or disparity,
is recorded as the depth value, with higher values reflecting
greater shifts and closer proximity to the camera.

The strength of grouping by color (fs(cp, cq)) for pix-
els p and q is defined as the Euclidean distance between
colors (�cpq) by Eq. (1). Similarly, grouping strength by
distance (fp(gp, gq)) is defined as the Euclidean distance
between pixel image coordinates (�gpq) as per Eq. (2). γc

and γp are adjustable settings used to scale the measured
color delta, represented as aw_col in the study, and window
size represented as aw_win respectively.

fs(cp, cq) = exp

(
−�cpq

γc

)
(1)

fp(gp, gq) = exp

(
−�gpq

γp

)
(2)

The matching cost between pixels shown in Eq. (3) is
measured by aggregating raw matching costs, using the sup-
port weights defined by Eqs. (1) and (2), in support windows
based on both the reference and target images.

E(p, p̄d)

=
∑

q∈Np,q̄d∈Np̄d
w(p,q)w(p̄d , q̄d )

∑
c∈{r,g,b} |Ic(q) − Ic(q̄d )|∑

q∈Np,q̄d∈Np̄d
w(p,q)w(p̄d , q̄d )

(3)

where w(p,q) = fs(cp, cq) · fp(gp, gq), p̄d and q̄d are the
target image pixels at disparity d corresponding to pixels p

and q in the reference image, Ic is the intensity on chan-
nels red (r), green (g), and blue (b), and Np is the window
centered at p and containing all q pixels. The size of this
movable window N is a derived parameter of (aw_win). In-
creasing the window size reduces the chance of bad matches
at the expense of missing relevant scene features.

3.2 Post-Processing Filters

Algorithms based on correlations depend heavily on finding
similar textures at corresponding points in both reference
and target images. Bad matches happen more frequently
in textureless regions, occluded zones, and areas with high
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Table 1 Input and Output
Variables of Depth Maps
Generation Algorithms

Input Variables

Parameter Description Values

Adaptive Weight [3]: Disparity estimation and pixel matching with γaws: similarity factor, and γawg:
proximity factor related to the WAW pixel size of the support window as user-adjustable parameters

aw_win Adaptive Weights Window Size [1 3 5 7]
aw_col Adaptive Weights Color Factor [4 7 10 13 16 19]
Median: Smoothing and incorrect match removal with WM : pixel size of the median window as
user-adjustable parameter

m_win Median Window Size [N/A 3 5]
Cross-check [8]: Validation of measurement per pixel with �d : allowed disparity difference as adjustable
parameter

cc_disp Cross-Check Disparity Delta [N/A 0 1 2]
Bilateral [9]: Intensity and proximity weighted smoothing with edge preservation with γbs : similarity factor,
and γbg : proximity factor related to the WB pixel size of the bilateral window as user-adjustable parameters

cb_win Cross-Bilateral Window Size [N/A 1 3 5 7]
cb_col Cross-Bilateral Color Factor [N/A 4 7 10 13 16 19]
Output Variables

rms_error_all Root Mean Square (RMS) disparity error (all pixels)
rms_error_nonocc RMS disparity error (non-occluded pixels only)

rms_error_occ RMS disparity error (occluded pixels only)

rms_error_textured RMS disparity error (textured pixels only)

rms_error_textureless RMS disparity error (textureless pixels only)

rms_error_discont RMS disparity error (near depth discontinuities)

bad_pixels_all Fraction of bad points (all pixels)

bad_pixels_nonocc Fraction of bad points (non-occluded pixels only)

bad_pixels_occ Fraction of bad points (occluded pixels only)

bad_pixels_textured Fraction of bad points (textured pixels only)

bad_pixels_textureless Fraction of bad points (textureless pixels only)

bad_pixels_discont Fraction of bad points (near depth discontinuities)

variation in disparity, such as discontinuities. The winner-
takes-it-all approach enforces uniqueness of matches only
for the reference image so that points on the target image are
matched more than once, creating the need to check the dis-
parity estimates and to fill any gaps with information from
neighboring pixels using post-processing filters like the ones
discussed next (Table 1).

Median Filter (m) is widely used in digital image pro-
cessing to smooth signals and to remove incorrect matches
and holes by assigning neighboring disparities at the ex-
pense of edge preservation. The median filter provides
a mechanism for reducing image noise, while preserving
edges more effectively than a linear smoothing filter. It sorts
the intensities of all q pixels on a window of size M and
selects the median value as the new intensity of the p cen-
tral pixel. The size M of the window is another of the user-
specified parameters. Cross-check Filter (cc) performs twice
the correlation by reversing the roles of the two images (ref-
erence and target) and considering valid only those matches

having similar depth measures at corresponding points in
both steps. The validity test is prone to fail in occluded ar-
eas where disparity estimates will be rejected. The allowed
difference in disparities between reference and target images
is one more adjustable parameter. Bilateral Filter (cb) is a
non-iterative method of smoothing images while retaining
edge detail. The intensity value at each pixel in an image
is replaced by a weighted average of intensity values from
nearby pixels. The weighting for each pixel q is determined
by the spatial distance from the center pixel p, as well as its
relative difference in intensity, defined by Eq. (4).

Op =
∑

q∈W fs(q − p)gi(Iq − Ip)Iq∑
q∈W fs(q − p)gi(Iq − Ip)

(4)

Op is the output image, I the input image, W the weighting
window, fs the spatial weighting function, and gi the inten-
sity weighting function. The size of the window W is yet
another parameter specified by the user.
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Fig. 1 Depth Map Comparison. Top: best initial, bottom: new settings. (a) Cones, (b) Teddy, (c) Tsukuba, and (d) Venus data set

3.3 Experimental Set-up

Our depth maps are calculated with an implementation de-
veloped for real time videoconferencing [1]. We use well-
known rectified image sets: Cones from [2], Teddy and
Venus from [10], and Tsukuba head and lamp from the Uni-
versity of Tsukuba. Our dataset consists of 14688 depth
maps, 3672 for each data set, like the ones shown in Fig. 1.

Many recent stereo correspondence performance stud-
ies use the Middlebury Stereomatcher for their quantitative
comparisons [3, 7, 11]. The evaluator code, sample scripts,
and image data sets are available from the Middlebury stereo
vision site, providing a flexible and standard platform for
easy evaluation.

The online Middlebury Stereo Evaluation Table gives a
visual indication of how well the methods perform with the
proportion of bad pixels metric (bad_pixels) defined as
the average of the proportion of bad pixels in the whole im-
age (bad_pixels_all), the proportion of bad pixels in
non-occluded regions (bad_pixels_nonocc), and the
proportion of bad pixels in areas near depth discontinuities
(bad_pixels_discont) in all data sets. A bad pixel
represents a pixel where the estimated disparity is wrong
with respect to a ground thruth disparity value.

3.4 Statistical Analyses

The user-specified input parameters and output accuracy
data are statistically analyzed to correlate them (see Ta-
ble 1). Box plots give insights on the influence of settings
on a given response variable. Equation (5) relates ŷ (pre-
dicted response) with xi (input factors). β0 and βi are the

coefficients fit by multi-variable linear regression. Constant
Variance and Null Mean of Residuals help to validate the as-
sumptions of the regression model. When those assumptions
are not fulfilled, the model is modified [12]. The parameters
are normalized to fit the range (−1,1) at their values shown
in Table 1.

ŷ = β0 +
n∑

i=1

βixi + ε (5)

Having a large data set (in this case 14688 images) to per-
form statistical analyses is not always feasible. DOCE is ap-
plied here to obtain an equivalently good model for the depth
map, by having a much smaller number of runs. A 26−3 frac-
tional factorial DOCE with just eight runs allows to estab-
lish which ones of the parameters aw_win, aw_colo, m_win,
cc_disp, cb_win, and cb_col are the most influential on the
bad_pixels output by using a Daniel plot [13]. The pa-
rameters whose distribution cannot be considered as normal
standard are statistically relevant in the fractional DOCE.
Therefore, they are used to optimize the depth map genera-
tion algorithm.

A surface response central composite DOCE with 23 runs
was performed afterward with aw_win, aw_colo, m_win,
and cb_win as studied factors while keeping constant the
remaining parameters (i.e., cc_disp = 2 y cb_col = 13) to
yield a mathematical model of the form:

ŷ = β0 +
k∑
i

βixi +
k∑
ii

βiix
2
i +

∑
i<j

βij xixj (6)

where, as in Eq. (5), ŷ is the predicted variable, xi are the
parameters, and β0, βi , βii and βij are constants adjusted by
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minimum least squares regression. Data from DOCE was
analysed with the software for statistical computing R with
Bayes Screening and Model Discrimination -BsMD- and
Response Surface Method -rsm- add-on packages [14].

4 Results and Discussion

4.1 Selection of Input Variables for Mathematical Model

Response variables for depth map generation algorithms
are shown with their meaning in Table 1. Pearson mul-
tiple correlation coefficients for the response variables
shown in Table 2 evidences that bad_pixels_all is
strongly correlated to the remaining response variables. This
means that all response variables follow a similar trend
as bad_pixels_all and that modeling bad_pixels_
all is sufficient to reach statistically sound results for depth
map generation algorithms optimization.

On the other hand, low Pearson coefficients for the input
variables indicate that those variables are independent, that
there is no co-linearity among them and that each indepen-
dent variable must be included in the exploratory analysis.

Fig. 2 Box Plots for Input Variable Analysis

4.2 Exploratory Data Analysis

Box plots analyses of bad_pixels presented in Fig. 2
shows lower output values from using filters, relaxed cross-
check disparity delta values, large adaptive weight window
sizes, and large adaptive weight color factor values. The me-
dian window size, bilateral window size, and bilateral win-
dow color values do not show a significant influence on the
output at the studied levels.

The influence of the parameters is also shown by the
value of the slopes of the main effects plots in Fig. 3
and confirms the behavior found with the analysis of vari-
ance (ANOVA) of the multi-variate linear regression model.
The optimal settings from this analysis (i.e., aw_win = 9,
aw_col = 22, m_win = 5, cc_disp = 1, cb_win = 3 and
cb_col = 4) to minimize bad_pixels yields a result of
14.48 %.

4.3 Multi-variate Linear Regression Model

The analysis of variance on a multi-variate linear regres-
sion (MVLR) over all data sets using the most parsimonious
model quantifies the parameters with the most influence as
shown in Table 3. The most significant input variable is
cc_disp, since it accounts for a [33–50 %] of the variance
in every case.

Interactions and higher order terms are included on the
multi-variate linear regression models to improve the good-
ness of fit. Reducing the number of input images per dataset
from 3456 to 1526 by excluding the worst performing cases
(cc_disp = 0, aw_col = 4 and aw_col = 7), using a cubic
model with interactions yields a very good multiple correla-
tion coefficient of R2 = 99.05 %. However, for the model

Table 2 Pearson correlation coefficient for the evaluator outputs over all data sets

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

(1) bad_pixels 1.00 0.81 0.82 0.59 0.83 0.77 0.84 1.00 1.00 0.86 1.00 0.95 0.99

(2) rms_error_all 0.81 1.00 1.00 0.69 1.00 0.98 0.99 0.82 0.82 0.64 0.85 0.70 0.79

(3) rms_error_nonocc 0.82 1.00 1.00 0.71 1.00 0.98 0.99 0.83 0.82 0.67 0.85 0.71 0.80

(4) rms_error_occ 0.59 0.69 0.71 1.00 0.70 0.77 0.74 0.62 0.61 0.68 0.61 0.63 0.53

(5) rms_error_textured 0.83 1.00 1.00 0.70 1.00 0.98 0.99 0.83 0.83 0.67 0.86 0.72 0.81

(6) rms_error_textureless 0.77 0.98 0.98 0.77 0.98 1.00 0.98 0.78 0.78 0.64 0.80 0.68 0.73

(7) rms_error_discont 0.84 0.99 0.99 0.74 0.99 0.98 1.00 0.85 0.84 0.67 0.87 0.73 0.82

(8) bad_pixels_all 1.00 0.82 0.83 0.62 0.83 0.78 0.85 1.00 1.00 0.85 1.00 0.96 0.98

(9) bad_pixels_nonocc 1.00 0.82 0.82 0.61 0.83 0.78 0.84 1.00 1.00 0.85 1.00 0.96 0.98

(10) bad_pixels_occ 0.86 0.64 0.67 0.68 0.67 0.64 0.67 0.85 0.85 1.00 0.83 0.87 0.86

(11) bad_pixels_textured 1.00 0.85 0.85 0.61 0.86 0.80 0.87 1.00 1.00 0.83 1.00 0.93 0.99

(12) bad_pixels_textureless 0.95 0.70 0.71 0.63 0.72 0.68 0.73 0.96 0.96 0.87 0.93 1.00 0.93

(13) bad_pixels_discont 0.99 0.79 0.80 0.53 0.81 0.73 0.82 0.98 0.98 0.86 0.99 0.93 1.00
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Fig. 3 Main Effects Plots of each factor level for all data sets. Steeper slopes relate to bigger influence on the variance of the bad_pixels
output measurement

selected the residuals distribution is not normal even af-
ter transforming the response variable and removing large
residuals values. Another constraint for the statistical analy-
ses is that any outliers from the data set can not be excluded.
Nonetheless, improved algorithm performance settings are
found using the model to obtain lower bad_pixels val-
ues comparable to the ones obtained through the exploratory
data analysis (14.66 % vs. 14.48 %).

In summary, the most noticeable influence on the out-
put variable comes from having a relaxed cross-check filter,
accounting for nearly half the response variance in all the
study data sets. Window size is the next most influential fac-
tor, followed by color factor, and finally window size on the
bilateral filter. Increasing the window size on the main al-
gorithm yields better overall results at the expense of longer

Table 3 Linear model ANOVA with the contribution to the sum of
squared errors (SSE) of bad_pixels

Data set cc_disp aw_win aw_col cb_win

Cones 34.35 % 14.46 % 17.47 % –

Teddy 41.25 % 13.75 % 8.10 % –

Tsukuba 50.25 % – – 7.16 %

Venus 47.35 % 9.42 % – 5.62 %

All 47.01 % 8.11 % – –

running times and some foreground loss of sharpness, while
the support weights on each pixel have the chance of be-
coming more distinct and potentially reduce disparity mis-
matches. Increasing the color factor on the main algorithm
allows better results by reducing the color differences, and
slightly compensating minor variations in intensity from dif-
ferent viewpoints.

A small median smoothing filter window size is faster
than a larger one, while still having a similar accuracy. Low
settings on both the window size and the color factor on the
bilateral filter seem to work best for a good trade-off be-
tween performance and accuracy.

The optimal settings in the original data set are presented
in Table 4 along with the proposed settings. Low settings
comprise the depth maps with all their parameter settings
at each of their minimum tested values yielding 67.62 %
bad_pixels. High settings relates to depth maps with all
their parameter settings at each of their maximum tested val-
ues yielding 19.84 % bad_pixels. Best initial are the
most accurate depth maps from the study data set yield-
ing 16.78 % bad_pixels. Exploratory analysis corre-
sponds to the settings determined using the exploratory data
analysis based on box plots and main effects plots yield-
ing 14.48 % bad_pixels. MVLR optimization is the opti-
mization of the classical data analysis based on multi-variate

Table 4 Model comparison.
Average bad_pixels values
over all data sets and their
parameter settings

Run Type bad_pixels aw_win aw_col m_win cc_disp cb_win cb_col

Low Settings 67.62 % 1 4 3 0 1 4

High Settings 19.84 % 7 19 5 2 7 19

Best Initial 16.78 % 7 19 5 1 3 4

Exploratory analysis 14.48 % 9 22 5 1 3 4

MVLR optimization 14.66 % 11 22 5 3 3 18

Best Treatment for Fractional
Factorial DOCE

14.72 % 10 25 3 3 1 3

Best Treatment for CCD DOCE 13.05 % 7 14 3 4 1 13
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linear regression model, nested models, and ANOVA yield-
ing 14.66 % bad_pixels.

The exploratory analysis estimation and the MVLR op-
timization tend to converge at similar lower bad_pixels
values using the same image data set. The best initial and
improved depth map outputs are shown in Fig. 1. The best
runs for fractional factorial and central composite DOCEs
lower the value of the bad_pixels variable to 14.72 %
and 13.05 %, respectively. Notice that to achieve these re-
sults only 31 depth maps are needed (DOCE) as opposed to
analyzing over 14000 depth maps (Exploratory Analysis).

4.4 Depth-Map Optimization by Design of Computer
Experiments (DOCE)

26−3 Fractional Factorial Design of Experiment The goal
of this type of design of experiment is to screen the statisti-
cally most significant parameters. Details on how to set up
the runs are discussed in [12]. The design matrix describ-
ing all experimental runs can be set so that the high and low
levels for each parameter are chosen by assigning them the
maximum and minimum values allowed by the algorithm
respectively. This was done for all of the parameters but
for m_win (i.e., it was set at the levels 3 and 5), to avoid
bias from the results and conclusions obtained from the ex-
ploratory and multivariate regression analysis. The results
for this DOCE range from 14.72 and 72.17 % bad pixels for
all images which is quite promising because already with
only eight runs a set of parameters values that is very close
to the optimum obtained by exploratory analysis of 14.48 %
bad pixels and the multivariate linear regression analysis of
14.66 % on the 14688 data points is delivered. The alias for
the parameters and Daniel plot showing the most relevant
ones are shown in Fig. 4.

Daniel’s plot indicate that the most influential parame-
ters are cc_disp, aw_win and cb_win which deviate the most

Fig. 4 Daniel Plot for determining the significance of input variables

from the normal distribution curve. These parameters and
m_win at levels 0, 3 and 5 are used for the surface response
methodology central composite design of experiment that
follows.

Central Composite Design of Experiment To further op-
timize the depth maps generation algorithm a central com-
posite design of experiment is used. As with the fractional
factorial design of experiment, the best run with 13.05 %
bad pixels is obtained amongst the 23 treatments which sur-
passes the results obtained thus far. The outputs from R us-
ing the rsm package at the levels tested for each parameter
are shown in Table 5.

As it can be seen the second order model depicted be-
fore in Eq. (6) fits very well the data as indicated by the
multiple correlation coefficient 0.9695. The most signif-
icant variables include aw_win, aw_col, m_win, cb_win,
aw_win2, aw_col2, and m_win2. Nonetheless, the complete
model with all coefficients is used to draw the contour plots
shown later. The rsm package also allows to detect station-
ary points. In this case the stationary point detected is a sad-
dle point because one of the eigen-values is negative while
the remaining ones are positive

Graphically the iso-lines for bad_pixels_all are
seen in slices by looking at two parameters simultaneously
for the analysis while keeping the remaining ones constant
as shown in Fig. 5. The graphs allow to see that the station-
ary point does indicate a local minimum when analyzing for
aw_win and aw_col. With m_win though, the graph indi-
cates that a saddle is detected and that it is better to use val-
ues not in the 1.5 < m_win < 3.5 interval (which is physi-
cally imposible). For cb_win the stationary point apparently
corresponds to a minimum. The settings for the stationary
point closer to what rsm’s package detects are aw_size = 7,
aw_col = 14, m_size = 3, cc_disp = 2, cb_size = 21 and
cb_col = 13 and this yields 26 % bad_pixels_all lead-
ing to conclude that the best treatment for the rsm yielding
13.05 % of bad_pixels_all is the local minimum opti-
mum at the settings shown on Table 4.

5 Conclusions and Future Work

Previously published material in [15] showed how Ex-
ploratory Analysis, applied on over 14000 images, allowed
the sub-optimal tuning of the parameters for Disparity Es-
timation algorithms, lowering the percentage of bad pixels
from 16.78 % (manual tuning) to 14.48 %. The present work
shows how to use DOCE to optimize the tuning, by running
a dramatically smaller sample (31 experiments). The result
of applying DOCE allowed to reach 13.05 % of bad pixels,
without the need of Exploratory Analysis. Using DOCE re-
duces the number of depth maps needed to carry out the
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Table 5 Summary of RSM
Central Composite DOCE Parameters Levels

aw_win 1 4 7 10 13

aw_colo 3 8.5 14 19.5 25

m_win 0 3 5

cb_win 1 4 7 10 13

cb_colo 13

cc_disp 2

Call: rsm(formula = bad_pixels_all ∼ SO(aw_win, aw_colo, m_win, cb_win))

Coefficients Estimate Std. Error t-value p > |t | Signif.

(Intercept) 1.634 2.49 × 10−1 6.561 0.00018 ∗∗∗

aw_win −5.25 × 10−1 8.03 × 10−2 −6.538 0.00018 ∗∗∗

aw_colo −1.9 × 10−1 4.78 × 10−2 −3.971 0.00411 ∗∗

m_win 1.606 4.22 × 10−1 3.802 0.00522 ∗∗

cb_win −3.96 × 10−2 8.03 × 10−2 −0.493 0.63495

aw_win: aw_colo 4.15 × 10−5 1.59 × 10−4 0.26 0.80128

aw_win: m_win −6.13 × 10−5 7.01 × 10−4 −0.087 0.93243

aw_win: cb_win 1.73 × 10−4 2.92 × 10−4 0.592 0.56990

aw_colo: m_win 3.01 × 10−4 3.82 × 10−4 0.788 0.45339

aw_colo: cb_win 5.33 × 10−4 1.59 × 10−4 3.347 0.01013 ∗

m_win: cb_win 5.56 × 10−4 7.01 × 10−4 0.793 0.45083

aw_winˆ2 3.73 × 10−2 5.73 × 10−3 6.508 0.00019 ∗∗∗

aw_coloˆ2 6.44 × 10−3 1.70 × 10−3 3.78 0.00539 ∗∗

m_winˆ2 −3.25 × 10−1 8.45 × 10−2 −3.846 0.00490 ∗∗

cb_winˆ2 7.19 × 10−4 5.73 × 10−3 0.126 0.90314

Signifificance codes: 0∗∗∗, 0.001∗∗, 0.01∗, 0.05, 0.1, 1

Residual standard error: 0.04208 on 8 degrees of freedom

Multiple R-squared: 0.9695, Adjusted R-squared: 0.916

F-statistic: 18.13 on 14 and 8 DF, p-value: 0.0001577

Stationary point at response surface Eigen-values

aw_win 6.987 λ1 0.0373

aw_colo 13.788 λ2 0.0064

m_win 2.495 λ3 0.0007

cb_win 20.615 λ4 −0.3249

study when a large image database is not available. The
DOCE methodology itself is independent of the particular
algorithms used to generate the disparity maps and it can be
used whenever a systematic tunning of process parameters
is required.

An improvement from 16.78 % (manual tuning) to
13.05 % in the bad_pixels_all variable might seem
negligible at first glance. However, such figures imply a
jump of the optimized algorithm of almost 10 positions in

the Middlebury Stereo Evaluation ranking. It must be no-
ticed that many algorithms competing in such a rank could
benefit from the systematic tunning presented here.

A Surface Reconstruction application with DOCE uses
the optimal tuning of disparity maps between two stereo-
scopic images scanning a scene. The disparity between the
images, in turn, allows the triangulation of the 3D points on
the surface of objects in the scene. This point cloud is an
input to surface reconstruction algorithms. This process is
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Fig. 5 Contour Plots for
Central Composite DOCE

discussed in detail in [1]. DOCE applications in other do-
mains are indeed possible.
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