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Abstract

Like natural systems, man-made systems evolve to become more complex over time.
Some reasons are market pressure, an increase of functionality, and adaptability to an
already complex environment, among others.

Therefore, workers face fast-changing and challenging tasks along with all the product
lifecycle that reach the human cognitive limits. Although nowadays some operations
are automated, many of them still need to be carried out by humans because of their
complexity.

In addition to management strategies and design for X, Industrial Augmented Reality
(IAR) has proven to potentially benefit activities such as maintenance, assembly, man-
ufacturing, and repair, among others. It is also supposed to upgrade the manufacturing
processes by improving it, simplifying decision-making activities, reducing time and user
movements, diminishing errors, and decreasing mental and physical effort.

Nevertheless, IAR has not succeeded in breaking out of the laboratories and establish-
ing itself as a strong solution in the industry, mainly because technical and interaction
components are far from ideal. Its advance is limited by its enabling technologies. One
of its biggest challenges are the methods for understanding the surroundings considering
the different domain variables that affect IAR implementations.

Thus, inspired by some systematical methodologies proposing that, for any problem-
solving activity, it is required to define the characteristics that constrain the problem and
the needs to be satisfied, a general frame of IAR was proposed through the identification
of Domain Variables (DV), that are relevant characteristics of the industrial process in the
previous Augmented Reality (AR) applications. These DV regard the user, parts, environ-
ment, and task that have an impact on the technical implementation and user performance
and perception (Chapter 2).

Subsequently, a detailed analysis of the influence of the DV on technical implemen-
tations related to the processes intended to understand the surroundings was performed.
The results of this analysis suggest that the DV influence the technical process in two
ways. The first one is that they define the boundaries in the characteristics of the technol-
ogy, and the second one is that they cause some issues in the process of understanding the
surroundings (Chapter 3).

Further, an automatic method for creating synthetic datasets using solely the 3D model
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of the parts was proposed. It is hypothesized that the proposed variables are the main
source of visual variations of an object in this context. Thus, the proposed method is
derived from physically recreated light-matter interactions of this relevant variables. This
method is aimed to create fully labeled datasets for training and testing surrounding un-
derstanding algorithms (Chapter 4).

Finally, the proposed method is evaluated in a study case of object classification of two
cases: a particular industrial case, and a general classification problem (using classes of
ImageNet). Results suggest that fine-tuning models with the proposed method reach com-
parable performance (no statistical difference) than models trained with photos. These
results validate the proposed method as a viable alternative for training surrounding un-
derstanding algorithms applied to industrial cases (Chapter 5).
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CHAPTER

Introduction

Products are an important part of our daily life, they help us to survive, improve our life
quality and even satisfy our more complex human needs [119]. These products (Engi-
neered, discrete, physical [221]) like natural systems evolve over time to become more
complex. Some of the reasons are due to market pressure, the increase of functionality,
and adaptability to an already complex environment, among others [15, 145].

Nowadays, some of the trends that drive such increase of complexity in products are
mass customization [28], Internet Of Things (IOT) [225] and multi-functional products
[53]. Companies are required to create innovative products in a highly competitive and
dynamic environment within short periods. Low costs and high degrees of variation in
small productions are also expected [170].

Therefore, workers face fast-changing and challenging tasks along with all the prod-
uct lifecycle that reach the human cognitive limits [18]. And, although nowadays some
operations are automated, many of them still need to be carried out by humans because
of their complexity. Usually, these tasks include many actions in which acquiring the
required dexterity could take a lifetime of experience and practice [242].

In addition to management strategies and design for X [65], a set of promising tech-
nologies covered under the name of Digital Manufacturing, are aimed to address products
complexity, increase products quality and reduce production times and cost. The core
idea of this set of technologies is to close the gap between the products definition and
their actual implementation [41].

Among this set of technologies, we found Industrial Augmented Reality (IAR), that is
related to the use of Augmented Reality (AR) as support of industrial field activities.
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Chapter 1. Introduction

1.1 Augmented Reality

If reality is everything that exist, how is possible to be augmented? that is because is not
the reality that is being augmented, is the perception of reality the one that is augmented
[107].

Further, Augmented Reality (AR) allows the user to perceive the real world, with vir-
tual objects superimposed or mixed with the real world [19,21]. And can be seen as a set
of innovative Human Computer Interaction (HCI) techniques [232] that enriches the way
of experience the real world by inserting and interacting with virtual elements [255].

More formally and also one of the most accepted definitions is the one presented by
Azuma in 1997 where AR meets three requirements [21]:

1. Combines real and virtual
2. Is interactive in real time

3. Is registered in three dimensions, meaning, the virtual elements need to be aligned
to simulate the visual transformation between the camera and the object

In essence, the main goal of AR is to achieve a realistic blend of the virtual elements
to the reality. Although this is an important characteristic for some applications, there are
some other cases, like in the industrial field [74], where depending on the case it is not as
important [186] and should not be over (or forced to) the effectiveness and usability.

It is notable that although the majority applications found in the review are intended
for visual perception, AR is applicable for all the human senses and both adding (virtual
elements) and removing (real elements) are valid by its definition [21,37].

This contradicts especially the third item in the Azuma AR definition. Where, the
AR that display information without being registered in the space is called Augmented
Reality without context.The information is displayed similar to an electronic manual but
reacting to context (context aware) avoiding to the user to change his or her attention to
the task [166].

In a global frame, AR, can be described as a Mixed Reality that lies in the middle of a
Virtual Continuum between a totally virtual environment (VR) and the real environment
[156] as it is shown in Figure 1.1.

Mixed
Reality
AL
' | | |
Real Augmented  Augmented Virtual
Environment Reality Virtuality ~ Environment

Figure 1.1: Virtual Continuum of Milgram (1994). Modified from [156].



1.2. Industrial Augmented Reality

Over the time, there has developed a more user-oriented definition, towards the inter-
action and task compelling, by adding a purpose to the definition, such as, simplifying the
user’s life by bringing virtual information [37, 144], assist the user in performing a task
in a physical setting [63, 64, 200, 243], or simply, to facilitate human-computer interac-
tion [89, 148].

Thus, currently, one of the most important issues regarding the implementation of AR
is about the perceived usefulness and the ease of use that are the basis for the acceptance
and adoption of any new technology [51]

This looser definition allows the development to be driven by the usability in terms of
what type of media suits better in different situations. Which is especially convenient in
industrial applications, where has been historically one of the major research fields. In
which performance improvement and long times of use are usually required.

1.2 Industrial Augmented Reality

AR dates from the 90s with the development of a prototype that used a see-through head-
mounted display, and combined with a tracking and registration system, it superimposed
virtual information over the real world. This technology was aimed to support some
wiring activities at Boeing and had shown potential benefits in terms of efficiency and
costs reduction [38].

The application of AR in order to support some industrial processes is named Industrial
Augmented Reality (IAR) [74]. And over the past decades, IAR has proven to potentially
benefit activities such as maintenance, assembly, manufacturing, and repair, among others
[74,101,133,170,200]. Where the main concept is to present in a natural way, real-time
and context-aware information to the user to support the completion of some industrial
task.

It is also supposed to upgrade the manufacturing processes by improving it [200],
simplifying decision-making activities [76], reducing time and user’s movements [98],
diminishing errors [22] and decreasing mental and physical effort [213].

Similarly, even in fully automated production, AR is proposed to meet the need of
a simple reacting interface for robots [122]. Further, AR is thought to be the future of
human-computer interaction.

Nevertheless, IAR has not succeeded in breaking out of the laboratories and establish-
ing itself as a strong solution in the industry, mainly because technical and interaction
components are far from ideal [74]. This means that the use of AR still presents some dis-
advantages such as stress produced by its long-term usage [218], limits its usage to certain
conditions or controlled environments [232], or requires a large development where their
costs, are greater than the perceived benefits [74].

1.3 Challenges of Augmented Reality

Azuma proposed three main categories of obstacles for the spreading of AR [19], that
can be though as a layered system that can describe the global behavior of AR (Figure
1.2). Where the user interaction is the relationship between the human and the technology.

3



Chapter 1. Introduction

(a) Display Resolution

. X (b) Wear-ability
(1) Enabling Technologies (c) Object Recognition

(d) Segmentation

. (a) User understanding
(2) User Interaction J (p) Dependability

(c) Disruptiveness

(a) Ethical
(3) Social Acceptance < (b) Fashion
(c) Laws

Figure 1.2: General challenges of AR technology. Based on mayor AR obstacles from [19].

Hence, there are characteristics of technology and how they affect the perceptions of the
users, altogether framed in a set of social rules.

1.3.1 Social Acceptance

Once AR becomes part of the user’s everyday life, is required to have a better under-
standing of how AR can affect the human values, in a psychological, behavioral point of
view [200].

Further, the likability of the technology plays an important role in the expansion of
a new technology. For instance, Kipper et al. exemplified this situation comparing the
probability of success of new technology in countries such as Japan that have a culture
of new technology adoption compared with others such as the United States or Europe.
Where other factors as privacy and physical safety are required to play a major role in its
future expansion [124].

1.3.2 User Interaction

The user interaction is related to the understanding of the human interfaces with the virtual
elements, in terms of what and how the information should be displayed. Where it is
supposed to achieve natural interactions, but technical limitations sometimes become a
barrier [200]. Even though by its nature, AR presents a low learning curve, some other
challenges emerge regarding the usability and how AR should stand by its efficiency
compared to other solutions [124].

Another issue in the task supporting role of AR, is the overload and the over-reliance,
meaning that the user interface should not overload the user. And at the same time, it
should prevent the user from over-rely in the technology, avoiding important clues in the
environment. For instance in driving assistance applications [223].

Thus the benefits of AR can be achieved when the User Interface (UI) is able to max-
imize the relevance and minimize the confusion of the virtual information regarding the

4



1.4. Understanding the Real World - Object Recognition

real world [170]. Further it requires being situation aware related to the adaptation of the
system to unplanned circumstances [133].

1.3.3 Enabling Technologies

These are the set of technologies required to develop an AR environment and are related
with software and hardware [19]. A typically AR architecture, is composed by 6 modules
[232]:

1. Video capture: live video stream
. Image analysis and processing: computer vision algorithms for image processing

. Tracking process: relative position of objects regarding the camera

2

3

4. Interaction Handling: human-computer interactions

5. Information management: retrieving information from different sources
6

. Rendering kernel: visual representation of the data

Regarding the main definition of AR, the goal of blending the virtual and real elements
in a non-distinguishable way has been achieved. But still, some technical issues such as
dealing with occlusion, delays reduction in rendering process [200], and "bulky" hardware
with low resolution do not provide a comfortable use, which compromises a possible
industrial implementation [101].

Also, sensor accuracy in mobile systems such as optical sensors, accelerometers, GPS,
gyroscopes, RFID among others, that are used to acquire the context information, is crit-
ical in applications where high level of accuracy is required, such as medical and some
manufacturing processes [124, 164].

Additionally, one of the biggest challenges are the techniques that allow the system to
understand the real world in unprepared environments. And, they are the key technical
limitation that holds AR from becoming a new form of media [20].

Further, Object Recognition (OR) and the estimation of real objects state can be con-
sidered the core of AR because they are the processes that allow to link the real world
elements with their virtual counterpart and define the actual conditions of the objects in
real life.

1.4 Understanding the Real World - Object Recognition

Many different processes are required to achieve an understanding of the real world. Some
of the basis processes for performing this task are related with: segmentation [252], track-
ing [16], registration [57] and Object Recognition (OR) (Section 3).

Therefore, one of the basic functions that need to be performed by an AR system is to
recognize the interest objects. In this research we will focus on the Object Recognition
(OR) as the process related to examining one or more images to evaluate which objects are
present by using (usually) some knowledge about the appearance of the object (previously
created model) [217].
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At the beginning of this technology, pure hardware implementation was used (such as
gyroscopes, accelerometers and ultrasonic) to try to solve OR and registration problem for
AR. But, this can result very difficult to achieve since there is no feedback about how close
or far the augmentation is from the real world [21]. However visual-based techniques will
allow having a "closed-loop" in the tracking system in order to correct some registration
problems and enforce the virtual and real world matching [21].

As consequence two main approaches have been developed over the time: visual and
non-visual based (Figure 1.3). An example of non-visual-based is proposed by Laput et
al. [134] where the Electromagnetic (EM) field noise, emitted by electrical and electrome-
chanical objects during its operation, is used. This noise is transmitted to the user when
he or she touches the object thanks to the human body conductivity. Then, it is possible
by using a smartwatch to read and process this signal.

Object Recognition

v v

Visual Not Visual
Marker Markerless

Feature Feature

Learning Engineering

Figure 1.3: General map of Object Recognition for Augmented Reality

Some of the benefits of this kind of approach are that is not obstructive, it does not
require instrumentation of the environment and it is somehow robust on-touch object de-
tection. Nevertheless, many problems arrive with this kind of approach such as it is placed
dependent, and is limited to objects that generate EM signals. Additionally, it is not pos-
sible to perform a registered augmentation [134].

In order to ease this difficult task, some applications proposed the use of fiducials or
fiducials markers (Marker based on Figure 1.3). They are objects placed in the field of
view of an optical system to be used as a reference. For example, they can be LEDs or
other special elements such as flat pattern that is called marker. These markers were one of
the most popular used systems, in order to ease the object recognition and the registration.

Nowadays, the existence of some frameworks (Metaio®, Vuforia® of Artoolkit®) al-
lows the user to focus on developing the application content and logic but the capability
of the systems to recognize objects in the real world is limited when there is not possible
to use fiducial markers [133].

Where the general process can be described as it is proposed by Andreopolus (Figure

6
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1.4) [13], the recognition is based on the difference between the features of the query
image (input) and the features stored in a database.

Input | -z=--mnoommmsmemssssemsmesmsoeees e --% | Objects
——»| Extract  Group Hypothesize Verify |——»
Image | Features Features Objects  Objects

} Objects Database

Figure 1.4: Components of the recognition process. Adapted from [13]

As consequence, the recognition system relays on the natural features which are de-
rived from intrinsic characteristics of the object such as color distribution (texture), edges,
shape, corners. And they should allow to differentiate among the target objects and also
from the environment [133].

This representation set of features needs to be careful defined (Feature Engineering
on Figure 1.3) and a training phase, where these features are extracted and learned, is re-
quired [133]. The values of the features of each object need to form clusters in the feature
space under any possible transformation that the objects may be subject to recognition
time. This means the object representation (features that describe an object) needs to be
invariant to some real-life transformations.

Some common desired invariances are related to [217]:

— Illumination: non homogeneous intensity changes, depend of light direction, strength
and color

— Scale: distance of the object to the camera

— Rotation: rotation around the normal of the projection plane of the camera
— Background clutter: external elements in the background

— Occlusions: interposition of other objects

— Viewpoint: Relative position of the camera in the 3D space.

— Material properties: such as glossy or transparent, that variate depending of the
environment and viewpoint

— Surface appearance variation: due to grime or oxide
— Geometrical variations: deformation or intraclass variations

Therefore, this entails the development of a high amount of algorithms over the time,
each one with different constraints and requirements [217].

On the other hand Feature Learning techniques (Figure 1.3) allow the machine to be
fed with raw data and automatically define the features required for discrimination that are
invariant to the transformation present in the training set. Further, they have remarkably
improved the state of art of OR [136].
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This type of techniques, such as Convolutional Neural Network (CNN), is composed
by a sequential set of layers. Each one transforms the image representation with non-
linearities, starting with the raw input and in deeper layers, a higher level of abstraction
of the image representation can be found. In this way complex functions can be learned
[136].

Thus, the major efforts in applying this kind of technique are not only in the architec-
ture (configuration of the layers) but also in obtaining the training data. Where a large
number of representative labeled data is required for feeding this type of OR technique.

In order to overcome this limitation, different techniques have been proposed to reduce
the effort of getting large amounts of manually labeled data: Domain Adaptation (DA)
where training phase is supported with labeled data from a related domain for learning
a classifier from an unlabeled one [45]. Data augmentation that increases the amount
training data with artificially generated samples [59]. And the use of synthetic datasets
based on artificial mass produced labeled samples [214].

1.5 Motivation

This research has been motivated by two main issues:

— In most of the cases of OR for AR, the implementation relies on the use of fiducial
markers or a very specific setup or highly constrained situation.

Marker-based implementations are already well-studied [68], and they suit some
applications. But in most cases, it is not possible to use this technique [133]. Ad-
ditionally, the use of markers will only tell a small information (object position and
rotation) about what is happening in the real context.

Likewise, most markerless recognition systems impose constrains regarding the type
of elements that are able to recognize. Some, of the more commonly found, use inter-
est points (SIFT [147], ORB [189]) which are available only in textured objects that
are not commonly found in industrial elements [90]. Some others are constrained to
objects with some characteristics, like the type of surfaces [12, 117], convexity [87]
or the presence of some geometry invariants [167].

Other OR techniques, such as feature learning, are able to learn the features of the
objects and have shown to work almost with any type of object in any condition
[94,212]. But, one main concern is that they require a lot of labeled training data
which in many situations is infeasible to get [45].

Further, current methods for creating synthetic datasets [114,160,177,183,214,234]
do not consider realistic shading or control the variations that are present in real life.
And both data augmentation and Domain Adaptation (DA) require to have a labeled
or unlabeled dataset of the target objects.

— It is known that there is not an ideal system or configuration, each system depends
on the different domain conditions [175].

Since the first comprehensive review of AR proposed by Azuma 1997 [21], much
other research has followed the same steps, gathering different implementations and
showing the technological and human-interaction issues. Nevertheless, they show

8



1.6. Thesis Overview

specific implementations, that is, they present different cases of use about some
specific implementation that worked under some conditions.

However, no relationship among the implementations and neither generalizing the
ideas in a global frame is presented, where the knowledge is not linked to other
researches. As result, this makes difficult to reuse the knowledge and understand the
influence of the different factors in the final implementation.

Thus, nonexistence of a general framework made difficult to classify this information
and to re-used it in future implementations.

1.6 Thesis Overview

1.6.1 Organization of the thesis

The structure of this thesis is as follows: A systematic review of the state of the art
and a general framework for IAR is developed in Chapter 2, where four main factors
that influence technical implementation are analyzed. Chapter 4 present a method for
the generation on synthetic datasets based on the variations present in the domain with
a realistic shading approach. In Chapter 5 is presented a series of experiments using
the proposed method for the creation of synthetic datasets for training and evaluating
surrounding understanding methods. Finally, conclusions, limitations and future work
are presented in Chapter 6.

1.6.2 Contributions

The contribution of this work can be grouped in three main sources:

1. General framework of IAR applications based on the identification of elements of
the industry (Domain Variables (DV)) that could affect a technical implementation.
In total, 4 Domain factors with 66 variables that influenced 5 implementation factors
were identified (Chapter 2).

This study has been oriented to reach a general understanding of all the variables that
could affect an AR implementation and to present some solutions already developed.
Also, to propose to developers and researchers a global framework that could help
to analyze future implementations by taking into account each one of the variables.

2. DV effect on surrounding understanding algorithms, in this chapter is presented the
influence of the DV on technical implementations related to the processes intended
to understand the surroundings.This analysis was made by first clustering the process
that each one of the DV influences, and also defining what issues cause each one of
them. Finally, similar issues caused by the DV (Chapter 3).

3. A method for recreating relevant Domain Variables (DV) using a Physically Based
Shading (PBS) approach is proposed, in order to create datasets for training and
testing surrounding understanding algorithms. This method is framed under the in-
dustrial field, where the parts are very similar, present glossy effects and are subject
to processes that change their visual appearance. The method allows generating
fully labeled synthetic datasets specifying the distribution of the relevant variables
that affect surrounding understanding algorithms (Chapter 4).
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4. Ablation study related to the use of the proposed method for the creation of syn-
thetic datasets. The performed study included two types of experiments, one with
unknown statistics about the target domain and other with known statistics meaning
that some of the characteristics of their parts were known. Further, were found that
fine tuning models with proposed method reach comparable (No statistical differ-
ence) with models trained with photos. This results validate the proposed method
as a viable alternative for training surrounding understanding algorithms applied to
industrial cases (Chapter 5).
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CHAPTER

Industrial Augmented Reality General Framework

2.1 Introduction

For any problem-solving activity it is necessary to define which are the constraints to
be satisfied, for instance for either Technical System [173, 185,221] and software devel-
opment [204, 215] have been proposed methodologies that include in their process the
definition of such constraints, where they are called requirements or, design specifica-
tions.

Taking the definition proposed by Ian Sommerville and Pete Sawyer [109] the require-
ments are "Descriptions of how the system should behave, or of a system property or
attribute. They may be a constraint on the development process of the system".

Hence, in similar problems most of the variables that need to be analyzed to iden-
tify the requirements are similar, as an example, Stuart Pugh suggested a set of elements
("primary triggers") which are the constituent elements of the Product Design Specifica-
tion applicable to all products irrespective of the technology [185].

Similarly, there is a set of variables that need to be considered in an IAR problem where
there are some variables that remain constant that need to be defined. Therefore, in this
section, we propose a set of variables that are required to analyze during the development
of an AR implementation.

These Domain Variables (DV) correspond to the characteristics of the industrial task
and are not related to the technology but affect the development of an AR application.
Further, they map the characteristics and status of the process into fixed parameters that
are required to define the technological implementation in a specific situation.

Nevertheless, a fewer research effort until the date has been found in terms of methods
that allow a systematical evaluation of the requirements for an implementation of AR in
industrial applications. Leading to isolated developments that just show the benefits of
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the use of AR in specific cases.

Currently, state of art studies related with IAR shown the different cases of application
of AR in specific tasks of the industry but fail to show the relation among them and to
generalize the different solutions, which make difficult to reuse the knowledge in future
applications.

Thus, inspired by some systematical methodologies used both in Technical Systems
(TS) and in Software engineer standing that for any solving problem activity is required to
define the characteristics that constrain the problem and needs to be satisfied. Therefore,
here it is presented an analysis of the state of art focused on to identify which character-
istics were constraining their current implementation, what they influenced and how they
were solved.

This research is aimed to present a detailed review and a general frame of IAR through
the identification of some relevant characteristics of the industrial process (DV) in the
previous AR applications. These DV are regarding the user, parts, environment, and task
that have an impact on the technical implementation and user performance and perception.

The aim of this research is to give developers or any researcher with interest in the
field key elements for implementing AR systems. Also to provide a list of elements of
the domain that are required to take into account and how they may interact with this
technology.

In the next section, a review of the relevant surveys and another attempts to cluster AR
applications are presented (Section 2.2). Later, the method used to analyze the state of
art AR applications. In the next Section 2.4 the variables of the domain that have some
influence in the implementations. In Section 2.5 the process and properties influenced by
the DV. And finally, the conclusions and future work is presented in Section 2.6.

2.2 State of the Art

In 1997 Ronald T. Azuma presented one of the most relevant AR surveys that not only will
establish one of the most accepted definitions of the technology but showed to community
potential applications and issues of AR in six different areas: medical, manufacturing
and repair, annotation and visualization, robot path planning, entertainment and military
aircraft. And, since then, many other authors have followed the same path of reviewing
industrial applications of AR [21].

X. Wang et al. in 2016 reviewed AR-based assembly systems focused on the charac-
teristics and an overview of the technical features of publications between 1990 and 2015
in where a typical AR architecture is composed by six modules: a) video capture b) image
analysis ¢) processing d) tracking process e) interaction handling f) assembly information
management g) rendering kernel [232].

Further, the AR assembly systems could be classified in three categories: design and
planning, operation guidance and training. And the current issues are related to tracking
and registration for industrial scenarios (poorly textured objects, bad lighting, smooth
surfaces among others) and collaborative interfaces [232].

In 2014 Fabrizio Lamberti et al. presented the challenges and opportunities of AR
for maintenance in which two main issues were identified: recognition, tracking, and
registration when it is not possible to use markers and dynamic system reconfigurability
for instance when unexpected situations occur [133].
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Similarly, A.Y.C. Nee et al. in 2012 reviewed AR applications in manufacturing and
design based on hardware and software used; activities in the industry of application such
as robot path planning, CNN simulation among others; challenges of the technology and
human factor and interaction. They conclude that compared with other areas of applica-
tion, IAR is still relative new due to the higher level of some requirements as the accuracy
in registration and tracking and other issues such as ergonomic and human factors [164].

Mauricio Hincapié et al. in 2011 presented examples of AR in maintenance showing
their main advantages and flaws. The main advantages are the flexibility of application
of AR being suitable for different tasks where it can reduce errors and lower operational
costs. However the main disadvantages presented regarding hardware and software such
as low-resolution displays, weight, and high computational costs jeopardize their imple-
mentation in industry [101].

Additionally, S. K. Ong et al. presented a comprehensive survey of AR development
in manufacturing in 2008 intended to show insights for developers and researchers. In
which major research in manufacturing, assembly, training, and maintenance was re-
viewed showing that for an AR application be successful in manufacturing is required
to have the next characteristics: a) convenient to the user (accurate, smaller, lighter,
cheaper, among others) b) efficient Uls (User Interfaces) c) fast and stable collaborative
systems [170].

Moreover, George Papagiannakis et al. categorized the different mobile and wireless
technology and their impact in AR to facilitate the understanding of the state of art. They
focused on review enabling technologies (hardware, software, registration, and tracking)
focused on mobile technologies. They concluded that there is not a unique ideal system
approach rather than specific characteristics driven by the domain [175].

In order to compare the proposed AR applications in industry and have a clear taxon-
omy, Fite Georgel Pierre in 2011 organized the different applications in their life-cycle.
Additionally, they proposed a rubric to evaluate the applications that consider: a) work-
flow integration b) scalability c) cost-benefit d) out of the lab status e) user tested f) out of
developers hands g) involvement with industry [74].

Their results showed that only a small majority of the projects involve some industrial
partner and that of all the studied applications only two have broken out of the laboratory.
Additionally that as an emerging technology it is required to be cost beneficial, scalable
and involves the companies in their development [74].

In 2015 Huma Shoaib et al. presented a survey of the complete AR area arguing that
since 1997 when the first survey was presented [21] there was just incomplete attempts.
Additionally, they presented an application-centric review, where the tools used were:
Vuforia SDK, MetalO, ARToolkit, OpenCV, and Kinect. The areas surveyed: healthcare,
industry and manufacturing, navigation, mobile AR, education, museums and entertain-
ment [200].

In general, the main goal of AR proposed by Azuma [21] that the virtual objects merge
with the real ones somehow is achieved. However, the main limiting issues are still re-
garding technological limitations, user interfaces, and social acceptance [200].

Similarly, D.W.F. van Krevelen and R. Poelman survey the state of art in both tech-
nology and human factors. The current limitations of AR can be grouped into portability,
tracking, depth perception overload and over-reliance and social acceptance. And, inde-
pendently of the technical challenges for AR become part of a user’s everyday life, it has
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to solve issues regarding intuitive interfaces, costs, weight, power usage, ergonomics and
appearance [223].

Valerio Elia et al. proposed in 2016 a model based on Analytic Hierarchy Process
(AHP) for support a quantitative assessment of AR devices based on features of the man-
ufacturing process and technical knowledge. At the evaluation time, it allows to move
from process criteria such as reliability and agility to technical criteria of the characteris-
tics of the AR devices [66].

In 2016 Azuma presented a short paper regarding the most important challenges of AR
for being suitable as a natural interface in new technology trends such as [oT (Internet of
Things), where the key limitation is the semantic understanding of the surrounding world
where two main approaches can be used: object and scene recognition and model the real
world beforehand [20].

Summarizing, since the first comprehensive review of AR proposed by Azuma 1997
[21] much other research has followed the same steps, gathering different implementa-
tions and showing the technological and human-interaction issues. Nevertheless, they
show specific implementations but no relation among them and neither generalizing the
ideas in a global frame. As result, this makes difficult to reuse the knowledge and under-
standing the influence of the different factors in the final implementation.

Additionally, there is not an ideal system or configuration. Each system depends on the
different domain conditions [175]. As result, here is proposed a review of AR applications
in the industry with the aim of identifying the different domain factors and how these
factors have influenced the implementations.

2.3 Method

An initial set of domain characteristics based on the authors knowledge were used as
starting point. Next step was gathering articles of IAR in scientific databases and previous
augmented reality reviews that gather most of the IAR world development.

Mainly, works from 2006 where considered and 70 reviewed papers present an indus-
trial implementation of AR, of which 4 of them were previous surveys. The distribution
of articles per year can be seen in Figure 2.1.

Following a study of each article, characteristics of the industrial task were collected,
considering if they affect or were taken into account in the development of the AR system.
The characteristics that were collected included: controlled conditions and characteristics
that the AR system can handle.

Then,the issues caused by each one of the DV were identified. Finally, a clustering
process was made in order to find common elements based on a pairing between each
domain variable and the influenced factor.

2.4 Domain Variables

The general map of the DV and the influenced factors can be seen in Figure 2.2. The
main DV belong to four main groups regarding the characteristics of the user, the parts, the
environment, and the task. And they influence the techniques or technological process and
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Figure 2.1: Number of articles reviewed per year. Total of 70 articles of AR.

properties used for understanding the environment and the user, the system characteristics,
user related issues and interfaces.
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Figure 2.2: General map of DV and influenced factors.

In this section the DV related to the four categories (user, environment, parts, and
task) are discussed. Additionally, all the variables can be found in tables (2.1 - 2.4)
where the variables and the possible values or characteristics mentioned by the authors
are summarized.

2.4.1 User Variables

The main variables related with the user found in literature are shown in Table 2.1. In the
next paragraphs will be described the DV and their characteristics.

The variables related to the displacement describe the user movement that is generally
performed to accomplish the task. The systems should maximize the range of motion,
facilitate the natural and free movements and to be robust to fast and complex movements
[26,49].

Similarly, the hands are defined by what is the preferred and more dexterous hand
for performing tasks (dominant) and the aim is to ease the use of it [26]. Also, another
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Table 2.1: User related DV and values found in literature, both solved or mentioned in the applications

Authors Variable Values
User [24,26,42,69-73,83,99,103, Movement Fixed | Mobile
displacement 105,125,129, 143,180,228]
[12,42,99,228] Velocity Rapid | Slow
[26,96,98,250] Dominance Left | Right
Erratic
[129,139,250] Movement Fast
Hands Motion | Static
[40,42,49,61,69-71,73,83, General Shocks
96-100,128,139,161,167,167, Self occlusion
169, 226,227,236,237,250] . . 1
Dimensions Range
Skin [96,167] Color Variations on pigmentation!
Voice [97,167] Language Languages!
Hearing [71,167,227]
Peripheral vision Range!
Vision [40,61,71,96-98,218,227] Eye dominance Left | Right
Medical conditions Medical conditions'
Cognitive Spatial ability High | Low
capacity & [40,71,102,105,186] Skills (Un) Skilled
Skills Motor skills Range'
Gender Male | Female
[102,103,194]
Gender & Age Age Range!
Touch sense [70,96,108,161,167,238]
No experience
With task
User Experience [61,70,100,103,105,139, 162, Little experience
P 195,218, 241] Novice
No experience
With AR Little experience

Novice

Ergonomic

[26,70,99, 161,167,226, 227]

User Movements
Individual measurement

Ergonomic assessments!
Variations among users!

Social factors

Social factors

Psychological [99,128] Resistance to change Range!

S Time using AR Range!
Familiarization [126,218] Resemblance with past tools  Range!
Safety & Awareness of obstacles Range!
danger [24,61,96,99,227] Standards Standards'
awareness Guidelines Guidelines!
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variable is about how are the movements of the hands while performing the task or using
the hand-held device. Usually, due to the type of tasks performed in industry, allowing
the hands to be free and bare hands interaction is preferred or required in some cases
[83,97,169,237,250].

Additionally, the use of haptics in AR is aimed to stimulate the user’s touch sense, al-
lowing to touch both real and virtual elements as well as augment real objects with tactile
information [115]. In the current research, no variables regarding the user touch sense
were mentioned. However other studies in haptic perception show different variables
such as part of the body, skin temperature, area of contact, time of exposition, among
others [138].

The skin color variations among the users are required to be considered together with
lighting changes even in controlled environments. Additionally, other skin color alter-
ations, such as tattoos, could influence the performance of some systems functions.

User voice and hearing were commonly used as a complement communication channel
with the system that allows hands free interaction [97]. However, not mayor research or
variables were highlighted and, similarly to the skin variations, the environment noise is
related to the performance of these two channels.

Furthermore, most of the reviewed articles were primary for augmenting the visual
human system. The variables regarding the visual system influence in the general percep-
tion and more important of hazard, obstacles, and dangers. Elements such as peripheral
vision, that is defined by the angle between the line sight and the location of the stimulus
in the visual field, play an important role in the overall user performance [8].

Additionally, vision problems could be reflected in the use of contact lenses or glasses
by the user, or require other type of image correction considerations [98]. Other issues
such as color blindness could have an impact on how the world is perceived [61].

Moreover, the eye dominance is the preference for the visual input from one eye over
the other and it has an important role in stereo vision as the primary source of precise
information [121].

The user cognitive capacity is also related to the ability of a person to mentally move
into some environment and the visual-spatial imagery manipulation [102]. Further, the
spatial ability is among all of the components of intelligence that has been studied most
frequently in connection with software use [206].

The cognitive ability is related to the capacity of a user to interpret interfaces and its
functions [190], and, together with the user’s skills, influences their performance [71].

Regarding the user gender and age, a small research was found in IAR. And their
results show that no difference in performance benefits of using AR was found [103,194].

On the other hand, other studies related to the user age and technology adoption in
the workplace of a new software system showed that age plays an important factor in
technology adoption, where younger workers presented a more salient attitude towards
using the new technology [159].

Similarly, social and cultural factors have an influence on technology acceptance. For
instance, the resistance to change deals with the individual inclination to resist changes
and could be derived from individual personalities, such as cognitive rigidity, reluctance to
lose control, lack of psychological resilience, preference for low levels of novelty, among
others [171].

Likewise, the familiarization with the technology is affected by the resemble with
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previous tools and time exposed to the technology according to the authors. Further, it is
likely that the more familiar the user is with an object the more he or she like it. Simple
exposure time could affect the people to have more affinity [60].

Besides, previous experience with the task, tools or with AR supposes different levels
among the users. Moreover, experience in a job is a crucial factor that influences perfor-
mance among different age groups. In general, the more work experience the better the
performance independently of the age [78].

The mentioned ergonomic issues influence how the system fits the human body. These
factors influence directly in the comfort of the users and in their long-term experience.

Finally, none of the elements that compose the AR applications should restrict the user
awareness of danger or instruct the user into the performance of some risk action [96,99].

Figure 2.3 presents the number of found references related with each user factor.
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Figure 2.3: Number of references related to the user factors founded in literature. Displacement (21),
Hands & Touch sense (28), Skin (2), Voice (2), Hearing (3), Vision (8), User cognitive capacity & Skills
(5), Gender & Age (3), User Experience (10), Ergonomic (7), Psychological (2), Familiarization (2),
Safety & danger awareness (5).

2.4.2 Parts Variables

Most of the variables in this section are regarding properties that affect the visual appear-
ance and the tactile perception of the parts required for the industrial task. The complete
list variables related to the parts can be found in Table 2.2.

Despite that the appearance of the objects depends of complex interactions between
light, geometry and material properties [184]; the large number of optical properties in
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Table 2.2: Parts related DV and values found in literature, both solved or mentioned in the applications

Authors Variable Values
[90,97,98,100,143,195,250]  Reflection Specular
Diffuse
Minimal
Material Ié‘ljw szraSt
[12,12,49,90,117,117,129, Texture D.Ut”.‘fo o ranges
143,195,228] istribution ra gesl
Frequency ranges
Unique
Textureless
Planar
Surfaces Cylindrical
Conical
Convexity (Non) Convex
Concavities
Shape [12,42,87,90,103,105,117, e Collinear
143,167,169,228, 240] nvariants Tangency
Parallelism
Boundaries (Non) Homogeneous surface
Self-occluded
General Complex geometry
Number of features !
[162] Relevance (to user) Relevant | Irrelevant
[12,40,42,49,61,69,71,86,87, Frequent
90,98-100,103,117,125,139, Occlusion Permanent
General 143,167,180, 186,228,240, 250] Partial
Appearance Scal
[24,49, 86,86,87,87,117,143, . . cale
Affine transformations  Rotation
180, 186] X
Translation
[12,24,49,49,87,87,100,143, General dimensions Large | Small
167] (Non) Planar
Unique
[167] Equal parts Similar
Equal
Set [86—88,99,100,117] Number of parts Range !
Random
[126,167] Arrangement Overlap
Stack
[103,105] Dimensions Disparity | Homogeneous
[24,61,90,90,105,162,167] Color Disparity | Homogeneous
[100] Movable part Range !
Appearance [143,180,250] Deformations g;ni%” | Large
change 9
Partial
[228,250] Incomplete Out of view

Missing parts
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solid state materials can be classified into small number of general phenomena that are:
reflection, propagation and transmission [75].

Further, the light reflection can be decomposed into two: specular reflection, that
occurs when the incident parallel light rays meet a smooth surface and (the light rays)
are reflected similarly parallel. And, on the contrary, when light meets an uneven surface
light, rays are reflected in many directions and it is known as diffuse reflection [25].

Another variable related to the material that affects the object’s appearance is the tex-
ture. The object texture refers to the intensity variations along the object geometry without
taking into account the effects of lighting. In which the different values of this variable
indicate the characteristics of the texture, for instance, blurred or with low contrast.

The characteristics of the shape (geometry) refer to a specific configuration of the
external boundary of the objects that have special properties. Most of these properties are
regarding the invariance of the projection to a plane from different Point Of View (POV)
(projective transformations) such as collinearity, tangency or parallelism [87].

Other shape characteristics allow defining assembly relation among parts such as pla-
nar, conical or cylindrical surfaces [169]. Further, the number of these characteristics is
relevant to make some inferences.

As a whole, the general appearance perception could be affected by the affine transfor-
mation between the observer (sensor) and the part, different levels of occlusion and parts
general dimensions that could be large or small enough to fit into the sensing or viewing
range. Also, this general appearance perception could be important for the user.

Additionally, when one of the general dimension of the part is significantly smaller
than the other two, it can be represented as a 2D or planar object [87, 143, 167].

Furthers there are some properties of the parts that could change the general appear-
ance from a POV. For instance, parts with movable components that can freely translate or
rotate, deformable materials or structures such as springs or foams and incomplete parts
due to external factors.

On the other hand, the relation among the parts that compose the task is grouped into
the set factors. The similitude in different characteristics such as color or dimensions
plays an important role. Also, the arrangement about how the parts are located regarding
each other and number of parts that compose a specific task.

Figure 2.4 presents the number of found references related with each parts variables.

2.4.3 Environment Variables

The environment variables are issues regarding the element and conditions of the sur-
rounding. All the variables are listed in the Table 2.3.

The working area variables are related to the ambient conditions. Temperature and
noise are expected to have different ranges that could be controlled and/or present a ho-
mogeneous behavior.

Similarly, the environmental conditions describe what it is expected in a typical man-
ufacturing environment such as electrical noise, dirty, dust, among others [69, 96]. Like-
wise, different lighting conditions are expected, from monotonous homogeneous to out-
side (natural) lighting conditions. This type of characteristics made up a hazardous envi-
ronment which imposes critical device requirements [96].

The background is usually related to other elements that are not of main interest to the
task, and their characteristics are fundamental for separating it from the interest objects.
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cations

Table 2.3: Environment related DV and values found in literature, both solved or mentioned in the appli-

Authors

Variable

Values

Working Area

[61,218]

[70,218]

[69,97,129]

[24,42,61,69,70,72,96,99,
103,143,167,168]

Temperature

Noise

Surrounding
variability

Environment Conditions

Controlled
Homogeneous
Temperature ranges !

Controlled
Homogeneous
Noise ranges !

Relative static
Static
Permanent change

Electrical noise

Dust

Dirty

Electromagnetic interference
Vibration

Grease
Weld sparks
[26,42,49,61,69,71,97-99, . .
129.141,161,167,197,228] Working Area Size Large | Small
Clutter ranges !
Textured ranges !
[12,49,90,96,98,143,167,192]  Background Color Similitude
Repetitive structure
Clear background
Homogeneous
[26,42,69,70,73,96,99, 143, Variability Natural variable (Outside)
Lighting 180,218, 236] Intensity changes !
Co
[69,71,87,99,100, 195] Intensity Range of lighting

Monotonous

Knowledge a
priori

[26,42,61,70,97,99,103,169]

[70,96,99,167,218]

Surrounding

Lighting

(Un) Expected
(Un) Prepared
(Un) Controlled
(Un) Expected
(Un) Prepared
(Un) Controlled

External
elements

[42,96,99,129]

General

Static surfaces

Distinguishable by user

Movable

Similarity to task parts
Resemble buttons
Self occluding

Linear
Curved
Planar

Intersection of hard edges
Dimples

Small holes

Raised geometry

Slide
Bend
Rotate
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Number of References of Parts Factors
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Figure 2.4: Number of references related to the Parts factors found in literature. Material (12), Geometry
(12), General Appearance (26), Set (14), Appearance change (5).

Usually, industrial scenarios can be described as cramped, cluttered with more parts that
the ones that are required [90,98, 180, 192].

Finally, all these variables could present some variation over the time, from a static
behavior up to permanently in change.

Further, a priori knowledge of the variables could be obtained in some cases as it is
the cases of controlled and expected behaviors. However, in literature, the lighting and
the surroundings were the most related factors. And, besides, critical situations arrive in
uncontrolled environments [70].

Additionally, shape characteristics of the objects surrounding could be of interest, be-
cause they can be used as a support for other functionalities of the system. Therefore, they
limit the surrounding geometries that can be presented [99]. In general, they are regard-
ing the shape characteristics such as their surface geometry, and features that could be
relevant to the user to make them distinguishable. Similarly, parts that allow user motion
could provide user feedback.

Figure 2.5 presents the number of found references related with each environment
factor.

2.4.4 Task Variables

The task variables are categorized into three groups, the characteristics of the task and
parts that affect the complexity, the variables which affect the user performs, and required
information to accomplish the task. Besides, all the variables are presented in Table 2.4.
The complexity is an inherent property of the systems, here we refer instead to the
perceived complexity. The perceived complexity is an observer-dependent property that
describes the observer to understand the system [202]. Further, the complexity of the task
should be high enough for the user of AR to be perceived as it worth the use of it [211].
Therefore, the suggested variables that could affect the user perception of complexity
are related to both parts and task properties, such as the presence of significant parts,
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Number of References of Environment Factors
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Figure 2.5: Number of references related to the Environment factors founded in literature. Working Area
(26), Lighting (15), Knowledge a priori (11), External elements (4).

which are the ones that produce main functions and, therefore, require more difficult task
activities than less significant ones [186].

Other factors that influence the difficulty of the task performance regarding the parts
are related to hidden parts and the number of degrees of freedom of alignment of the
parts [186]. Similarly, task ambiguity or complexity affects the amount of information
required for the user [97].

Additionally, variables related to the user perform are the error awareness, meaning
that according to the task it is necessary to consider user errors, where the most common
issues related are error detection and prevention [100, 139, 167, 240].

Likewise, the operation time is a requirement that needs to be considered in order to
provide uninterrupted support [26]. Furthermore, in the long term use, the strain caused
by technology issues that could be intensified by long periods of use should be considered
[218].

Finally, the different type of information could be required to fulfill some tasks, there-
fore, simulation of different characteristics is necessary. For instance, the weight of the
parts, the required movement to perform a task, the appearance of the part, among oth-
ers. Additionally, the characteristics of the used tools should be considered in order to be
recognized by the system.

Figure 2.6 presents the number of found references related with each task variable.

2.5 Influenced Process and Properties

The previous factors impact several areas of an AR implementation. These characteris-
tics of the domain could affect also other relevant issues such as ethical or legal, which
are out of scope. Therefore, this research is focused on how they affect the technical
implementation and user perception.

In this section, it is presented how the different domain factors found in literature in-
fluence some implementation characteristics according to the authors. The processes and
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Table 2.4: Task related DV and values founded in literature, both solved or mentioned in the applications

Authors Variable Values
Significant
Parts Hidden

[96-98,100,103,128,168, 186,

Complexity 104,197]

DOF of alignment

Ambiguity

Task Order

Wrong position
Error
[100,139,140,167,195,238,240] . .
Awareness Prevent continue in error
Perform Error feedback
Correct action

Time ranges !
[26,218] Time Uninterrumped
Long term use
Weight
Movement
Appearance
Machining
Assembly
Paths
Interferences
Disassembly

[12,71,102,105,125,192,236] Simulation

Information

Arrangement

Digitalized

Similar shape to task objects
Considered object of interest

[12,71,83,97-99,169] Tools

properties of the implementation that are influenced by the characteristics of the domain
can be grouped into five general categories: a) Surrounding understanding ») User under-
standing c¢) System d) User perceptions and performance e) Interfaces.

A summary of the implementation categories and the variables that have an influence
upon them can be seen in Figure 2.7.

Since the main field of interest of this thesis is the surrounding understanding, it is
presented in their own Chapter 3

2.5.1 User understanding

The User Understanding is a set of processes aimed to recognize, segment and interpret
the user of an AR system. Five main processes were identified: user recognition, tracking,
sensing, segmentation and task awareness.

As well as the Surrounding Understanding (Chapter 3) the boundaries that divide this
process in real implementations are diffuse, hence, they are treated as general processes
and not specific implementations.

The different processes influenced by the DV of the User Understanding can be seen in
Table 2.5. As expected, the process related to the user understanding is less influenced by
the characteristics related to the parts and more influenced by the user and environment
characteristics.

Similarly to the Surrounding Understanding, the DV cause issues in the process but
also constrain or impose boundaries to the used techniques. The main issues generated
by the DV are shown in Figure 2.8 where the features are related to the characteristics of
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Number of References of Task Factors

14

12

10

Complexity Perform Information

Figure 2.6: Number of references related to the Task factors found in literature. Complexity (10), Perform
(9), Information (12).

Table 2.5: Domain Variables that affect each one of the subprocess of the user understanding according to
authors.

. . User Understanding Process
Domain Variables - - - ;
Recognition Tracking Sensing Segmentation Task Awareness
User Movement
Hands

Ext. elements

Environment Area size _

Lighting
Task Errors

the user, such as skin or hand shape.
Therefore, the main issues caused by the DV can be grouped into:

Confusing actions. When interpreting the user, some approaches are based on the pat-
terns of the user motion. For instance, hands gestures that interact with virtual infor-
mation. Some patterns of motion do not necessarily indicate a wanted interaction.
Fiorentino proposes a virtual area in space where the hand gestures of the user are
recognized as intentional interactions [70].

Another approach for understanding the user is based on the errors that make while
performing an activity. Thus AR instructions are presented accordingly to the user
abilities. However, a withdraw of this approach is to rely on the object recognition
that is influenced by the previously presented DV [240].

Distortion of the features. Similar to the Surrounding Understanding, the characteristics
used to understand the user can be distorted by external elements. Fast movements
of the user and variations of lighting could affect the tracking of the user.
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Domain Variables vs. Influenced Process and Properties

Domain Variables

Surrounding
Understanding

User
Understanding

Interface

User
Parts

Environment

Task

Figure 2.7: General view of Domain Variables (user-red, parts-green, environment-clear blue, task-dark
blue) and their influenced implementation process.
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User Understanding Main Issues

Issues Domain Variables
Confusing actions Movements _
Distortion of the features Movements Ext. elements Lighting
Fake features Ext. elements
Incomplete features Hands User
Parts
Environment
Task

Figure 2.8: Main issues generated by the DV (user-red, parts-green, environment-clear blue, task-dark
blue)that influence User Understanding implementation in AR.

Henderson and Feiner [99] propose the use of hybrid inertial-optical tracker that
fusion inertial data with optical markers information, making it robust to movements
and intermittent lighting.

Likewise, color changes in lighting affect segmentation techniques that are based on
the color of the skin. The controlled environment has been proposed [96,99, 127].

Further, tracking systems that rely on magnetometers can interact with ferromagnetic
elements making it not suitable for most industrial tasks [99].

Fake features. Elements of the environment or the parts of the industrial operation that
have similar characteristics to the ones used in the processes for understanding the
user.

Objects that have the same color as the skin affect segmentation [96], shape for
gesture classification [249], or other properties (magnetic) [99].

Incomplete features. As mentioned before, there are approaches for understanding the
user by seeing what is (s)he doing with the objects.

Petersen and Stricker [180] proposed a framework for automatic define the step-by-
step documentation of a manual task from a video. Thus, it is required to handle
permanent occlusions that can be made by the user during the performance of the
task hiding useful features in task recognition. Instead of using OR, they propose to
use a robust distance function between frames of the video.

Besides the presented issues, constraints are imposed by the DV to the techniques used for
User Understanding. The main requisite regarding the use of AR in industrial applications
is about not constraining the free movement of the user with external hardware as much
as possible.

This involves, avoid the user to look for specific directions while performing the task.
Add external cameras to keep track of the user body of other elements if the input of the
system is from the user point of view [96]. Similarly, other sensors can be used for this
task [83].

27



Chapter 2. Industrial Augmented Reality General Framework

Also, mechanical based tracking systems to determine the position of the user body
parts constrain the user free motion being unsuitable for industrial tasks [99].

The second constraint is regarding the preference of the use of one side of the body
over the other (Laterality). For instance, the installation of devices needs to take into
account the hand dominance in two ways. The first one is to avoid to place devices that
hinder the user in the performing of the task.

The second one is to place devices in the dominant hand to ease the understanding of
the user. As an example, Zhang et al. [250] install a wireless RFID reader in the dominant
hand of the user to detect the interaction with objects with RFID tags.

Further, many segmentation approaches may rely on user skin pigmentation [96], but
other elements can cause unwanted interactions such as tattoos or nail polish that constrain
the use of such techniques.

2.5.2 System

Almost every AR application is supported by the use of hardware. In this section, is
presented how the DV constrain the characteristics of the used devices.

The influenced characteristics of the AR devices most relevant found in the literature
that are presented here are regarding size, displays, mobility, layout, autonomy, weight
and performance. And how they are related with the DV are shown in Table 2.6

Table 2.6: Domain Variables that affect the main system characteristics according to authors.

System Characteristics
Size Display Layout Autonomy Weight Performance

Domain Variables

Movement
Hands
Vision
Ergonomic
Psychological
Safety Awareness,
Occlusion
No. parts
Temperature
Knowledge
Surr. Variability
Environment Env. Conditions
Ext. elements
Working area
Lighting
Complexity
Tools
Simulation

Time e

User

e

The requirements for IAR devices based on the domain characteristics are as follows:
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Size The size of the AR devices always has to search for the user comfort. Three types
of device size cases were found: small for portability, fit user anatomy and large
enough to be comfortably used.

In industrial tasks, long time of use and user mobility are expected. Bulky hardware
result in an experience of fatigue [161].

Also taking into account that all of the elements held by the user should be portable
and for easy maneuverability such as portable batteries [26].

Further elements attached to the human body needs to fit the human anatomy. Zhang
et al. [250] attached a RFID antenna in the user’s hands but small enough to not
disrupt any assembly operation.

Moreover, the size of projective displays and screens need to take into account the
distance of the user during operation in order to allow to comfortably see the virtual
elements [71].

Display The display is a key element in AR, it delivers the final experience to the user
and it has been an area of great interest over time.

Given the context of being used in an industrial field, one of the most suggested
requirements regarding the displays is to allow the user to have the hands free.

Therefore, the use of tablets or any holding screen is not that well suited for many
industrial tasks [40, 227]. Alternatives include Head Mounted Displays (HMD)
[83,250], augmented desktops, augmented workbench and shared workspace [69],
projective displays [99], and magic windows that consists of a touch screen mounted
in joint arm [128].

On the other hand, HMD have also known for being bulky and uncomfortable in the
long-term use, where still further research is required for the development of lighter
AR glasses [128,167,227].

Another important characteristic of the displays that are relevant depending on the
level of detail required in the task is the display resolution. This characteristic de-
termines the level of detail presented in the virtual content in optical see-through
displays and the detail of both real and virtual in video see-through [99].

Further, optical see-through presents the advantage of not down-sampling by directly
displaying it the reality in contrast with video see-through [96]. Besides, computer
monitors have been shown good results in an assembly prototype regarding display
resolution and also, they do not down-sample the reality [105].

Another critical issue, especially in see-through devices, is their brightness. If the
brightness is less than the light coming from the environment, the virtual elements
are difficult to see. Filters have been used to compensate this issue in the displays,
but make difficult to see the real environment. Thus additional lighting needs to be
added to the environment [99].

Similarly, the use of projectors as spatial displays (project the information directly
into the real objects) may require a controlled lighting and a good contrast with the
environment light [167].

Also, with the use of projective displays is necessary to consider the surface where
the information is projected, and, both, the shape [99] and color [61] to guarantee
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good contrast and no deformation. And, also consider possible occlusions of the
projection with other elements [40].

And, on contrary to HMD less visual fatigue is presented with the projective displays
[40].

Further issues regarding the display technology should consider some medical visual
conditions of the user, such as the use of glasses or contact lenses that requires
devices calibration [98].

Layout Related to the architecture or configuration of the parts of an AR system. The
location of the different components of the system are mostly oriented to: map the
working environment, allow free user motion and comfort, user laterality, security.

The placement of sensors or cameras is oriented to cover the required areas of work.
Fiorentino [71] used cameras according to their functions: fixed pointing at the as-
sembly part and tools and personal camera handled by the user. This entails trying
to not hinder the mobility around the area, for instance, ceiling setups have been
used [61,99].

Also, a common arrangement is egocentric system, where the input camera is at-
tached to the users, allowing to see from their point of view [49, 71].

The architecture of the AR is required to ensure the user free motion as mentioned
before, wired connections are better to be avoided [71] as well as any mechanical
elements attached to the user [99]. And finally, avoid as much as possible any type
of devices that user is required to hold or wear [61].

These considerations are made with the final goal of the user comfort. Where the
location of the devices must search the use of the dominant part of the body. For in-
stance, Behzadan et al. [26] proposed the location of miniature keyboard positioned
on the opposite dominant hand.

Lastly, security considerations about the hardware. All the wired connections need
to be thermal and electric isolated in high-risk sites and protected against dust and
dirty [96,103]. Other adversary environment characteristics include electromagnetic
interference, vibration, heat, grease, and sparks. Therefore, adequate cooling and
isolating systems are required [61].

Autonomy Systems are intended to have extended use with uninterrupted operations.
Critical design considerations are regarding power source where it is not feasible for
the user to change the batteries especially if each component has one different [26].

Additionally, a cooling system to resist high temperatures and prolonged use times
[61].

Weight Lightweight hardware is one of the issues that has been an obstacle in the spread-
ing of AR especially HMD [99]. Also, any wearable device has to consider the
ergonomic analysis and weight distribution in order to avoid user fatigue after a pro-
longed time of use [26, 161].

Performance Main sources of resources consumption are related to large features size,
searching space and datasets used in OR, tracking, and registration.
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Large features descriptors can burden the memory (Ferns) or be computationally
expensive (SIFT). Several approaches to feature descriptors have been developed
for the use of mobile devices. Wagner et al. [228] proposed a modified version of
SIFT and Ferns that can be used in mobile phones for tracking.

Hagbi et al. [87] proposed a descriptor based on the 2D contour concavities that
provides accurate and real-time registration in mobile phones.

Another approach suggests the parallelizing of the process. On one thread track,
the erratic motion of the mobile device and on the other thread produce the 3D
map features. This provides quality tracking for small textured workspaces that are
relatively static [129].

A similar approach has been suggested by Ha et al. [86] but instead the process is
performed in a server-client architecture, the mobile device captures the features and
the heavy computations are performed on the server side.

Additionally to expensive computational features, the number of objects to be con-
sidered increase the complexity of the computations. Jo and Kim [117] propose to
only consider the objects that could be present at some locations by using [OT.

Further, the requirements of different levels of accuracy mean more or fewer data
processing complexity. And this finally depends on the type of the task and case
dependent of how much errors could affect the performance of the activity. Thus,
generic interfaces that allow having different modules of accuracy have been pro-
posed regarding GPS positioning [26].

For instance, complex procedures require more detailed information to be presented
[186]. Large 3D models require large amounts of memory and also computational
power to be rendered in real time. Hakkarainen et al. [88] propose as well a client-
server architecture in which the server is in charge of all complex model rendering
and the image is delivered to the client.

In both server-client architectures the communication of large 3D assets remains
unsolved and it is expected that 3D object streaming be a possible solution [86, 88].

2.5.3 User Perceptions and Performance

These are related to how some characteristics of the domain have influenced the user
perceptions of the interaction with AR in previous applications. Also, how they influenced
the performance of executing a task and the long-term use of AR.

Three main elements of the user perception were identified: the user experience, user
performance and the long-term use of the AR. The DV that influence them are shown in
Table 2.7.

User Experience User perceptions are about what the users think about the system and
how they feel after using it. The main elements that influence the user perceptions are
related to the user familiarization with the technology, the comfort of the hardware,
and the coherent stimulation of the senses.

Familiarization of the user with the task and AR not only influences the performance
but also because the user is aware of the limitations of the technology knows how to
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Table 2.7: Domain Variables that have affected the user perception and performance of performing a task
with the use of AR.

User Perceptions
Experience Performance Long term use

Domain Variables

Touch
Ergonomic
Cognitive & Skills
User Psychological
Familiarization
Safety & Danger
User. Experience
Gen. appearance
Gen. dimensions
Occlusion
Incomplete
Affine T.
Color
. Ext. elements

Environment . _ |
Lighting
Complexity
Simulation
Time
Errors

Parts

Task

Ll

use it. For instance, the awareness of markers occlusion hinder the user interactions
[139].

Further, at the beginning of the use of AR higher levels of user strain can be ob-
servable compared to the one at the end of the task. These levels of strain when
using AR to execute a task are even higher than using another tool such as paper
instructions. These findings suggest that AR needs more time of familiarization than
classical approaches [218].

Moreover, the coherent use of stimulation of the human senses can help to have a bet-
ter understanding of instructions, having more immerse experience and strengthen
the natural user interaction.

For instance, the use of haptic feedback can help the user to have a more immersive
experience when interacting with virtual controls [70, 161].

Further, a possible implementation for having tactile feedback without requiring ad-
ditional hardware is by using passive haptic feedback, where the virtual elements
are loaded over real ones with the same geometry, thus the user can touch these
virtual elements. This technique has proved to have beneficial results regarding per-
formance and user acceptance [96].

Also, the use of vibrotactile feedback can give clues to the user about the perfor-
mance of translational or rotational movements. Webel et al. [238] propose the use
of vibrotactile bracelet to communicate the direction of rotation (clockwise or anti-
clockwise) of an action that is difficult to see using another type of media.

32



2.5. Influenced Process and Properties

Other implementations propose the use of visual simulation of the movement re-
quired to perform a task. This type of simulation encourages the user to mimic the
actions changing the perceived task complexity and has a decreasing effect on the
cognitive load [105].

Finally, another variable that influences the user experience is the ergonomic con-
siderations, where devices should accommodate to the user. Avoiding heavy devices
hold by the user, low display contrast caused by environment lighting. This mini-
mizes the feelings of tiredness after the use of AR [99, 161, 192].

User Performance These are the DV that affect the performance of the user when execut-
ing a task using AR. Several elements could have an impact on the user performance
such as psychological, cognitive or motor skills. Here will be presented some of
them that were expressed by the authors regarding the conditions where a user can
have the most benefits of using AR.

The main issues developed in this section related with the performance of the user
are the use of haptics, user experience with the task and with AR, the characteristics
of the task, user skills and cognitive capacity, and the type of AR.

The use of haptic feedback to support user guidance has been already studied and
reported to present benefits [91, 220]. Also, as enhancing the AR experience, for
instance, Murakami et al. [161] reported that the average of success performing an
assembly task was 5.6 times with haptic feedback compared with 2.5 times without
using their proposed system.

Likewise, it is useful to communicate extra information to the visual, such as notify
the user if he or she has performed the right action. This is an important factor in the
prevention of errors at the initial steps of task [238].

This is also related to the type of information presented in the AR (simulation and
errors awareness on the DV). The presentation of the 3D models and animations, of
how to place parts in the right position and orientation, makes easier to follow the
instructions, being one of the most relevant features of AR [192].

Similarly, error prevention, avoid the user to continue the task with an incorrect solu-
tion [167,195,238] but also when the user is corrected using an Intelligent Tutoring
Systems (ITS), improves the user learning by 25% and was 30% faster compared
with AR without intelligent support [241].

Another element is that the benefits of AR are more remarkable when the task is
more complex and difficult to the user. And some reported elements that cause the
task complexity are linked with degrees of freedom of parts alignment and hidden
parts [186], parts with similar length and different shapes (in pipes) [105], the pres-
ence of external parts that are not required in task [192], shape and colors dispari-
ties [103].

Now, regarding the user, having experience regarding with both, the task and AR
influence the performance. Unexperienced users with respect to the task present
more benefits of using AR.

In one experiment, exploring the benefits of using AR versus paper instructions in
the replacement of a hard disk of a computer, results show that subjects that are used
to assembly computers take more time with AR than with paper instructions. But
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regarding subjects nor related with the task field a reduction of time was evidenced.
Further, only one subject has experience with AR [195].

In contrast, experience with the use of AR could present advantages in the perfor-
mance, due to the user knows the limitations an consideration of the technology.
Thus, depending on the case, experience is requested in order to avoid altering the
data because the technology is new and strange to users [218].

Therefore, for maximizing the effects of AR, users with experience with the technol-
ogy, but in complex tasks where they have little experience, could potentially show
better improvements regarding classical methods.

Additionally, Hou and Wang [102, 104] propose to discriminate the workload of
subjects using AR in an assembly task by their spatial cognitive capacity. The spatial
cognitive capacity is related to the ability of motion in mental space (mental rotation)
but also considers individual strategies, academic background and practice effect,
among others. This allows defining a baseline of the subjects in this domain.

Long Term Use Related to the DV that may affect the usage of IAR in the long term.
When proposing a new system, especially a disruptive one as AR, there is always a
risk of rejection by individuals or the whole community. A system is always prone to
have changes due to social factors and the instinct to resist to change. Particularly, in
a time constraint with zero tolerance to errors areas. One solution may be to include
the user in the design process to increase acceptance chance [99].

For instance, in the system proposed by Kleiber and Alexander [128], HMD was
initially suggested for allowing users hands-free. But this type of device had a lack
of acceptance by the personnel changing the design for using a touchscreen with
a joint arm. Although improvements in HMD have been done over the years still a
risk of rejection exists, by safety considerations, for example that this kind of devices
limits the user awareness of obstacles and dangers [99].

Additionally, the basis of acceptance of any new technology is the perception of
usefulness [133], in which AR has to be cost-beneficial convenient, scalable and
reproducible [74].

2.5.4 Interfaces

Although AR is considered a type of interface, a Natural User Interface (NUI), different
strategies can be used to allow the user to interact with the system. Thus, this section is
dedicated to the strategies used in IAR based on the influence of DV.

The DV influence the interfaces by defining the type of interaction used and the type
or what information is presented. The summary of this relationship can be seen in Table
2.8.

Type of interaction In this section are presented the different strategies used in AR:

— Tangible interfaces: They use elements of the environment as input or interac-
tion devices with the system.

Considerations are regarding the type of element used because industrial ele-
ments can result harmful to the user when being touched such as sharp or hot
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Table 2.8: Domain Variables that have affected the user interfaces strategies with the use of IAR.

User Interfaces
Type interaction Type of information

Domain variables

Movement
Touch sense
Vision
Hands
Ergonomic
Safety & Danger
Voice
Cognitive & Skills
Hearing
Psychological
Color
Parts General dimensions
No. parts
Noise
Working area
Environment Variability
Ext. elements
Env. conditions
Complexity
Task Tools
Errors

User

surfaces. The system that automatically design interaction surfaces needs to be
aware of this danger [96].

— Voice interaction: Voice interfaces allow a hand’s free usage of the system.
Voice commands can be used to control the steps od the instructions of the AR
system [167]. And as a response, the system can also narrate the instructions
for the user [71]. Also, sound alerts are used to warn the user about some
actions [167,227]. Main issues are regarding noisy environments and also the
use of headphones could be dangerous in some industrial scenarios.

— Haptic feedback: it is aimed to provide a stimulation of the sense of touch.
Benefits have been shown regarding to increase performance [161], feeling of
immersion [167], and add more dimension to the instruction presented by a
visual AR [238].

Some constraints are regarding the portability of haptic devices. Thus wear-
able devices for large workspaces [161] and passive haptic feedback have been
proposed [96].

— Wearables devices are not commonly used with AR systems. Nevertheless, a
general purpose modular system in which wearable mouse and keyboard could
help the user in case of changing configuration without the need to halt the
operation have been proposed [26].

— Gesture based: Systems controlled by gestures, performed by the hands, aim to
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deliver a more natural interaction. It is worth to highlight that such strategies
have to be robust regarding changes of skin pigmentation, bare hands or covered
by gloves and noisy and grimy environments [70].

— Magic window: Place a display screen between the user and the environment
that acts as a window with the virtual information added on top of the real
background. Combined with a head tracking, this configuration could achieve a
more natural result [14].

Desk configuration has been proposed for the assembly [167] and also over
multiple joint arms to improve user mobility [128]. However, this configuration
is for relative static industrial scenes.

Type of information Considerations presenting the virtual information to the user re-
garding where and how.

The placement of the virtual information could be tricky, due to the users changing
point of view and backgrounds, dimensionality variation of the devices, environ-
mental factors and a large number of labels. Thus, virtual annotations should be
projected accordingly to the user POV in order to be always visible [24,69,99].

For instance, the contrast between the background and the virtual element cannot
be always guaranteed if the virtual object is always of the same color, given that it
could encounter new objects with the same color [24]. Additionally, the connection
between the virtual information and the real one can be lost if the real element is
small.

Further, when placing text together with animations of actions required to perform
by the user, the principle of spatial contiguity has been used in AR [71]. The spatial
contiguity describes that information is more effective when is physically near to the
animation [158].

Additionally, complex tasks require more information and the understanding of this
information is limited by the user cognitive capacities. Also, understanding text
requires more cognitive process than images, therefore less complex task should
require less complex instructions [186].

Besides, the amount of information presented to the user should vary depending of
the level of expertise for training systems. Thus, detailed in the early stages and
gradually decrease [71].

2.6 Conclusions and Future Work

This study has been oriented to reach a general understanding of all the variables that
could affect an AR implementation and to present some solutions already developed.
Also, to propose to developers and researchers a global framework that could help to
analyze future implementations by taking into account each one of the variables.

In this chapter, the characteristics of the elements of an industrial field (Domain Vari-
ables (DV)) that influence technical implementation of AR according to a study of state
of art and previous implementations have been presented.
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The clustering of the Domain Variables indicates that there are four main groups of
influence related to the variables or characteristics of the user, the parts, the environment,
and the task.

Similarly, it was found that these four groups have an influence over five main pro-
cesses, two of them about how the AR system understand their surroundings and the user,
another process related with the characteristics of the hardware and the system itself, a
process about the strategies used in the interfaces, and, finally, the user perceptions and
performance.

Each process has the same importance and should have the same relevance to the
development. Systems should not focus only on the understanding of the parts and forget
the user and the interfaces. Neither have strong interfaces but not taking into account the
user performance.

Now, regarding the surrounding understanding, the main source of issues to be consid-
ered for any technique is that the systems encounter with many and very different "visual
versions" of the same object. The reasons are due to the object is very different when
is seen from different points of view, that is occluded, deformed, rusted, among others
(Extended in Chapter 3).

Marker-based solution works in some situations such as "laboratory conditions" where
it is possible to control the environment. But in real scenarios, it is not feasible to add
markers to each part, especially, standard parts, and, in some other fields, they could
change the perception of a user related to the part. Further, the markers are affected by
light variations, grime, and only reveal a part of the visual information of the elements
which is the relative position and orientation.

Moreover, there are two approaches for the use of the natural features of the elements
to understand the surroundings. The first one is related to Feature Engineering, where
the features used are predefined. The main withdraw of this technique is that it is time-
consuming, and only works with the elements of this kind of features. Therefore, it is
difficult to adapt it to new elements and new domain conditions that were not thought to
be used.

The second one, Feature Learning techniques, lets the system to define the most dis-
criminative features of the objects in a training phase. Thus, a large amount of training
data, containing all the possible variations of the domain that the parts could encounter,
is required. The methods for the acquisition of such training datasets still remain as a
challenge for the reason that in many situations taking labeled photos is not feasible.

Summarizing, the selection of the used technique is situational, depending on how
controlled are the conditions of the domain, how scalable for a new and large amount
of elements the system needs to be, and how easy is to get training data. The presented
DV in Chapter 3 could give a guide about the possible factors and how they influence the
implementations.

Nevertheless, the current level of understanding of the surroundings is basic, limited
only to deduce the characteristics, but not at abstract levels, such as reasoning about the
surroundings and their implications, for instance, what it is happening and why.

A similar concept could be applied to the user understanding techniques, where vari-
ations to the user representations are due to skin pigmentation, lighting conditions, and
user movements, among others. The use of external devices attached to the user is not
always possible because of issues like social acceptance, and they could restrict the user
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mobility.

Visual-based techniques have to deal with high levels of occlusions and not limit the
user to a restricted area. As well as in Surrounding Understanding, deeper levels of ab-
straction of the understanding of the user have not been reached. Issues such as being
aware of the user actions, consequences and dangers remain unsolved.

With respect to the systems, the portability and commodity of the wearable devices
still put on risk the acceptability of AR. Smaller, lighter wearable devices that do not
hinder the user mobility are still required.

Additionally, greater accessibility to processing systems with higher capabilities will
allow processing more complex and deeper scenarios, better understanding and human-
computer connection.

Besides, little or no research was found taking into account the aesthetics or style of
the devices used in AR, which could ease the user acceptability.

Regarding the user performance and perception, a balance needs to be taken into ac-
count regarding user immersion and user safety. In environments where there are a lot of
movement, the user has to be conscientious about the external dangers. Better immersion
leads to a better performance but also to less conscientious of the surroundings.

Further research is required about the user cognitive capacities and the interaction with
AR and how to personalize the AR support depending on the user and the task leading to
a better performance.

In relation to the user interfaces, the more senses are involved in an augmentation of
the reality and more coherent the interactions lead to a better human-computer commu-
nication, better the experience is. The addition of haptics to a visual interaction increases
the user immersion and performance, where a key element is a portability that allows the
user to work in larger areas.

The main elements to take into account are the security while interacting, and the
adaptability of the interfaces to changing environments and conditions of use. Further,
new strategies for interaction that include physical elements of the environment with other
senses are missing.

Finally, the key elements where the future research should focus are the ones that help
to a deeper and abstract understanding of the user and surroundings, scalable and adapt-
able systems to changing conditions focused in the user commodity and mobility, and
adaptability of the system to different tasks and users capacities to optimize the perfor-
mance.
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CHAPTER

Surrounding Understanding

3.1 Introduction

The Surrounding Understanding is composed of techniques that are aimed to interpret
the environment and users surrounding. Many different processes are required to achieve
an understanding of the real world. Some common process for performing this task are
related with: segmentation, tracking, registration, sensing technique and features extrac-
tion.

In the next paragraphs will be presented the definition of some of the processes related
with surrounding understanding as will be considered in this thesis. We use the definition
of the main levels of task of object vision based on [13].

— Detection determine the presence of an instance in a stimulus

— Localization detect and return the position of the instance

— Recognition localize all the instances in a stimuli

— Understanding recognize and infer the role of the stimuli in its context.

An "instance" is defined as an occurrence of something that is of interest to the per-
formed task. For example, for the task of object classification of industrial elements, an
instance could be a type of class such as nuts, screws or bearings. More abstracts in-
stances could described according to the proposed definition, if the task is related with
human actions, example of instances could be walking or sleeping.

Some other support processes related are Segmentation is the process of dividing an
image into its constituent parts and extract the one of interest. It has been considered one
of the fundamental process given that usually is performed at the beginnings of the image
analysis process affecting the subsequent activities [252].
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Tracking is a segmenting method of a region of interest while keeping track of its
motion and position. It solves the problem of the approximation of the path of an instance
in an image while its move around the scene [16].

Registration is the process of finding the correspondence between two related images
of the same instance. It is based on finding the geometric transformations (i.e affine)
that allows to overlay the two images through objects features that remain invariant (i.e
collinearity) to the transformations [57].

All of this processes relays on the identification of characteristics of the instances
(features) that allows to differentiate them from the other instances and the environment.
This features that can be previously defined (feature engineering) or automatically learned
(feature learning) are the building blocks of surrounding understanding algorithms. Some
example of features used in Object Recognition are: edges, vertex, color distributions,
image moments, area, color gradients among others.

It is difficult to define the boundaries of these process in real implementations as one
may contain or be required by another. For this reason here are treated as a general
process and not specific algorithms. Additionally Artificial Intelligence (Al) and Machine
Learning (ML) techniques have shaped the classical (feature engineer based Figure 1.4)
structure of perform image analysis becoming more data oriented (feature learning).

In this section are presented the influence of the DV on technical implementations
related to the processes intended to understand the surroundings. In table 3.1 are shown
the founded subprocesses used for understanding the surroundings linked with the DV
that have some influence on them.

3.2 Domain Variables (DV) Analysis

This analysis was made by first clustering the process that each one of the DV influences,
and also defining what issues cause each one of them. Finally, similar issues caused
by the DV were clustered (Figure 3.1). For instance, the presence of the user’s hands,
occlusions or incomplete parts, causes that the description of an object taken in real life
being incomplete (incomplete measurement).

The results of the clustering of issues show that the DV influence the technical process
in two ways. The first one is that they define boundaries in the characteristics of the
technology, and the second is that they cause issues in the process of understanding the
surrounding.

3.2.1 Boundaries or Domain Constraints

The elements of the domain that impose boundaries or constrain to the use of some tech-
niques are: a) General appearance, b) knowledge a priori, ¢) working area size, d) parts
dimensions.

For instance, depending on how important is the general appearance of the industrial
elements, some techniques maybe are not possible to use. Marks or sensors used to easy
recognition and tracking may generate the perception that the part is damaged, therefore,
the use of markerless techniques is preferred [162].

Similarly, the possibility of having some knowledge of the environment such as 3D
models, markers location or lighting colors define the available techniques to use. This
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Table 3.1: Domain Variables that affect each one of the subprocess of Surrounding Understanding accord-
ing to authors.

Surrounding Understanding Process
Object Recognition Segmentation Features Sensing Technique Registration Trackin;

Domain Variables

Movement
User Velocity
Hands
Knowledge
Variability
. Env. conditions
Environment
Ext. elements
Area size
Lighting
Tools
Errors
Gloss
Color
Texture
General appearance
Shape
Occlusion
Parts Affine Trans.
Gen. Dimensions
Deformation
Incomplete
Arrangement
No. parts
Equal parts

Task

knowledge is commonly found in indoors or laboratory scenarios. On the contrary, in
outdoors it is possible to have less infrastructure available and most of the techniques
based on pre-installed elements cannot be used [26].

The size of the working area of the industrial operation also defines the typical distance
at which the objects are viewed. This set constraints such as the features are large enough
to be visible at the distance and the precision of the position of the objects. Large working
areas allow the user to see objects from different distances which changes the available
features [42].

Similarly, the size of the parts made or not possible to attach sensors or markers to
them. Small parts are not feasible to use marker based solutions. Also, small parts cannot
be easily recognized when are hold by the user, therefore, some techniques tend to fail
[49].

3.2.2 Issues

The issues generated by the DV that affect the surrounding understanding process are
presented in Figure 3.1. Here, we consider that the measurement is the description of an
object.

The optimal measurement of the conditions of an object will be obtained by getting
the image projection (Pinhole model) of the object in perfect conditions. As if it was
taken in an empty space, with a homogeneous light coming from every direction, with no
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Surrounding Understanding Main Issues

Issues Domain Variables
Distortion of the measurement Veloci& Gloss Deformations Env. conditions
Hands Gloss Occlusion POV Equal parts

Incomplete measurement

. Incomplete Arrangement Env. conditions  Lighting
Transformation of the

measurement POV Lighting

Fake features Equal parts Arrangement Ext. elements _
Low feature differentiability Color Texture No. parts  Ext. elements _
Search size No. parts _

Not available features Geometry

Environment
Task

Figure 3.1: Main issues generated by the DV (user-red, parts-green, environment-clear blue, task-dark
blue)that influence Surrounding Understanding implementation in AR.

variations or errors in its surface appearance.
Therefore, the main issues caused by the DV can be grouped into:

Distortion of the Measurement

Considerable non homogeneously alteration of the optimal description of an object. For
instance, rapid camera movements (due to user motion) produce motion blur which causes
that techniques relying on corner detection to fail [129].

Similarly to the characteristics of the part, glossy or reflective surfaces can create false
features by reflecting parts of the environment. Steven Henderson et al. reported that the
use of passive markers illuminated by IR can cause fake reflections by metallic surfaces
that were controlled by the camera exposure settings [97].

Additionally, visual techniques that compare the intensity of small regions of the image
(patches) can produce erroneous matches dealing with glossy objects. Although, elements
with few reflections can be handled by discarding the regions with a posterior process (e.g.
pose estimation) or by simulating realistic reflections on training stages [143].

Another characteristic of the part that can distort the object’s representation is the
deformation or alteration of the objects shape. This alteration can affect techniques that
rely on geometric proportions. For instance, to estimate the camera position matching 2D
points present in an image with known 3D points, where it is usually assumed that the
corners are rigid and that their internal spatial relationship does not change [250].

A possible solution for dealing with deformable objects is to model them as deformable
meshes [182] and key points positions are defined by the weighted sum of the vertices in
the model image, that changes when it is deformed [143].

Additionally, unfriendly environments typically found in the industry could affect the
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appearance of objects by adding grease, grime, dust, bad lighting, among others issues.
Therefore in some cases, a marker-based solution may be not robust enough [72].

Likewise, electromagnetic and ultrasonic trackers may be affected by the interference
from magnetic fields, metals and echoes [99].

Incomplete measurement

If we consider the measurement as a chunk of information that describes an object, some
of this information can be missed compared to the optimal condition measurement.

This can be mainly due to occlusions caused by the user, highly reflective parts, other
objects interposed between the target object and the camera, changes of POV, environ-
ment grime (e.g. dust or grease), extreme lighting.

Another source of lost information could be due to a physical loss of parts of the
object or extreme deformation. In the next paragraphs, some common ways found in the
literature of lost information and how the authors controlled this issue, will be described.

Industrial operations usually involve the user to physically interact with the parts for
instance in an assembly operation. Thus, it is common that the user’s hands cover the
target parts that the object aims to recognize.

Therefore, recognition and tracking system is required to deal with small objects
mostly occluded by the hand during operation. Damen et al. [49] propose an RGB-D
system that jointly recognizes the hand and the handheld object. This approach works
with objects large enough to be distinguishable when being held.

Similarly, fiducial markers attached to parts can be easily occluded and not easily at-
tached to small parts. To overcome this limitation, Zhang et al. [250] suggest the use of IR
enhanced computer vision by attaching reflective tape to the feature points of each part.
The tape is not highly visible to human eyes and is only detected with IR cameras. Nev-
ertheless, some incorrect render was reported when the user occluded some IR features of
the objects [250].

Thus, one of the key points when dealing with occlusion caused by external elements
with local approaches is that the non-occluded part contains enough information to be
recognized [143]. For instance, the recognition system adopted by Hagbi et al. [87] use
concavities as object descriptor and it works as long as enough concavities are visible.

Further, the arrangement of the parts of an operation can be controlled in order to avoid
parts overlapping or stacking among them [126, 167].

Moreover, another form of losing information is when there are important changes of
the camera POV. In the case that relative position between the object and the camera is
just rotating, the amount of information starts to decrease [87] until it reaches the point
of having a completely different projective appearance, where new descriptors can be
calculated [143].

On the other hand, when the camera moves from the target object, some details of the
object are lost (too small). This issue can be solved by allowing to modify the model of
the object online and fixing the number of features to force an update over the time [42].

Additionally, when the object comes in and comes out of the camera view, the system
is forced to work with small regions of the object, where dynamic feature thresholds
become weaker by decreasing the threshold by the low number of features and requiring
several frames to increase it again [228].
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Lighting can also generate lost in the description of an object, when the reflected light
from the object’s surface hides details of the object appearance. Figure 3.2 shows an
example of a textured plane with a point light from the same point of view with different
light energy. In the case (b) light saturates the object and some information related to the
texture of the plane is lost.

(a) Light energy 0.5 (b) Light energy 1.5

Figure 3.2: Representation of lighting effect on lost of object description. A textured plane with a light
point with two different levels of light energy. In the case (a) Energy level is one unit more than (b). And
the features related with the texture are lost

This issue can be handled with local approaches, as mentioned before, where regions
of the object that does not match are discarded in posterior process [143].

Transformation over the measurement

Mainly two types of transformation were founded: geometric transformations given by
the projection into the camera’s plane with changes of POV, and, also changes in lighting
conditions. Regarding to the first point, it always have been of great interest to develop
system that are robust to the change of appearance of the objects when they are seen from
different points of view, and, to recover or infer the object position and orientation in
space relative with the camera.

Thus, conceptually, the main problem is the extreme change of appearance of the same
object depending on the POV where it is seen. In literature, two common approaches were
found.

The first one is to learn the typical view in which the object will appear but the features
of the object will decrease once the angle of inclination of the camera reaches certain tilt,
as it is shown in Figure 3.3 [86, 87].

The second one is to learn how the object looks from different POV. That can be
obtained by having several different photos of the object under different positions [143],
having projections (photos) from a viewing sphere around the object [47] or extracted
from a 3D model [12].

Changes of lighting also transform the appearance of the description of the objects
given different lighting intensities, colors or directions.
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Camera

N
Q//

Learned View

3D object

Figure 3.3: Approach of learned view that represent a 3d object with camera at different tilts. As tilt
increase less features are available.

Several authors have mentioned the importance of descriptions that exhibit some ro-
bustness to lightning changes [143, 180]. For instance, tracking based on 3D models
works independently of illumination and shadows conditions but requires the model of
the object in its different configurations [42, 195].

On the other hand, controlled lighting setup has been also used in AR implementations
[218]. The use of optical tracking systems, based on markers or light emitting sources,
such as LEDs [99], requires controlled lighting.

Fake features

This issue is related to features that describe the objects that are similar to the target. This
could be due to the presence of parts, tools or other external elements that exhibit patterns
that are very similar to the target.

The simple scenario is that all the parts that the system will encounter have a unique
shape, therefore, if there are several candidates that the system identify as the same, the
one with better recognition score is selected [167]. Similarly, if there are parts that are
exactly the same and can be used interchangeably.

Similarly, external tools used in the industrial operation could confuse the system if
they have similar shape to the target objects [12].

Further, segmentation issues can be presented when objects with similar features are
stacked or in overlapping. Additionally, the presence of objects with similar visual fea-
tures in the background, such as those found in untextured elements, can be differentiated
with the support of depth information [49].

Additionally, when dealing with assembly operations, many configurations or assem-
bly states could look very similar in order to allow the system to identify when they are
performed correctly and being aware of the errors.
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Low feature differentiability

When the surroundings or other objects different to the target objects present characteris-
tics very similar among them. For instance, when parts of the same class, such as different
types of screws or washers, are in the industrial operation, only small details allow to dif-
ferentiate them (intra-class).

Also, when the number of parts to be recognized increases, there is a chance that
the features that allow differentiating them get closer hindering the object recognition
(e.g [87]). A possible solution is presented by Jo and Kim [117] that consider only a
small subset of objects depending on the place that the user is located.

Additionally, the number of external elements also increase the possibility of having
objects with similar characteristics, that is common in industrial scenarios [12, 192]

Usually, in the applications it is searched to use features of the objects that present
dimensionality disparity to facilitate their recognition and segmentation [105, 162, 167].

Nevertheless, applications in the industry usually present low color differentiability
and lack of textures [49]. Thus, the use of local feature points and edges to generate
descriptors have been used [12,90]. Damen et al. [49] proposed the use of depth to
support the discrimination of interest parts.

Similarly, lack of textures in the environment limits the use of techniques based on
corner detectors,where a large number of this type of features is required, especially in
tracking. Another alternative feature is the use of image intensity edges [129].

Search size

This issue is related to the number of parameters required to handle a large number of parts
or variations of the objects. Given an increasing number of objects in the database, the
time to recognize the objects and error rates grows rapidly due to the number of possible
objects in the search space [117].

Further, an AR application that is used in many physical contexts encounters several
objects in its use. Thus, a possible solution, as mentioned before, is to load the information
only of the physical place where the user is located [117].

Another solution proposed by Ha et al. [86], for mobile implementations, is split the
processes required in AR. On the server side it performs the OR based on bag-of-words,
and, on the client side (mobile), it performs tracking and feature computation. Both parts
are connected through Wi-Fi.

Additionally to the recognition, in some industrial applications is required to con-
stantly keep tracking multiple objects including the user point of view at the same time.
Henderson and Feiner [100] propose the use of two types of optical tracking, using re-
flective markers and infrared cameras. Although in many applications this setup is not
feasible due the alteration of parts and controlled environment.

Besides the number of parts, considering the possible variations of the parts also in-
creases the search size, for instance, checking assembly operations where each assembly
step could be considered a new part. Solution based on the position of the objects has
already been proposed [167, 195], but this type of implementations is based on a global
coordinate system and is not fully aware of what was the error and how to return to a
correct solution.
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Not available features

Most of the survey implementations are tailored to specific industrial cases. For exam-
ple, most of them are based on Feature Engineered techniques where the features that
represent the object are explicit beforehand. This implies that future changes, such as
the introduction of new parts, environment or lighting, could present a problem if their
characteristics do not fit the previously defined system properties.

For instance, some of the more commonly found interest points (SIFT [147], ORB
[189]) are available only in textured objects that are not commonly found in industrial
elements [90]. Some others are constrained to objects with some characteristics, like the
type of surfaces [12, 117], convexity [87], or the presence of some geometry invariants
[167].

On contra proposition,Feature Learning techniques, such as Neural Network (NN), are
able to learn the features of the objects and have shown to work almost with any type of
object in any condition [94,212]. But, one main concern is that they require a lot of
labeled training data which in many situations is infeasible to get [45].

3.3 Object Recognition Methods

In this section it is presented how different proposed OR methods, over the pass years,
behave regarding the most relevant Domain Variables (DV) found in literature of AR
(Chapter 2). This survey is not exclusive for deep learning methods but a general overview
of latest proposed OR methods.

The main driver of this section is the lack of structured knowledge about the different
proposed approaches for performing OR, in the sense that, over the past years, several
methods have been proposed, being conditioned to work or that only work under some
restricted circumstances, such as requiring that the objects have some type of geometry
or texture. Another known issue is that, usually, only successful cases are reported (under
the conditions established by the method).

Besides, when large datasets are used, general measures can hide the failing cases. For
instance, in the evaluation of the performance of a method with large datasets that con-
tain objects with multiple characteristics, measures like Average Precision (AP) can hide
the low performance in elements with certain characteristics (e.g untextured elements).
Therefore, ablation studies should be performed, but in many cases, they require a lot
of effort to obtain the labeled material (for each desired characteristic) and perform the
necessary tests.

These issues make difficult to have a general map of what the limits of the current
methods are. This make difficult to reuse or apply the methods in real life or to have a
lot of experience in the field. Therefore, we propose to evaluate the approaches regarding
how much they are invariant or consider the relevant DV.

Initially, 54 articles of OR related methods from 2017 - 2000 were collected, but only
31 articles, that potentially could be invariant to the next DV and relevant for industrial
AR, were reviewed. Each DV is also described by the possible values or cases that it
could take in order to evaluate the methods:

Motion Blur It is caused by the relative motion of the camera and the parts.
- Possible values: [static, moderate motion, fast motion].
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Gloss It is related with the specular reflection of the parts. Therefore, the objects appear-
ance is dependent of the view point given the reflection of the surroundings and the
highlights produced by the lights.

-Possible values: [mate, fewer reflection, strong reflections, mirror like]

Occlusion It is the interference of other element and the camera’s rays. Elements such
as hands, same class element, tools, cut out of image (cropped), or other external
element.

-Possible values: [non-occluded, partial-occlusion, nearly-full-occlusion, occluded
by same class, occluded by other class, occluded by external element].

Point Of View (POV) These are the changes of the view point.
-Possible values: [translation, rotation, scaling, perspective, commonly viewed].

Scalability It is the behavior of OR with large number of parts and new cases (General-
ization). Also, the ease of implementation and the effort for handling a large number
of elements.

-Possible values: [minimal training data, synthetic data, multiple classes].

Texture It is the surface visual texture of the objects.
-Possible values: [strong textured (e.g patterns), textured, minimal textured, non-
textured]

Geometry It is (In)Dependent of the geometry type.
-Possible values: [exclusive, required, exclude, any type]

External elements It is the presence of similar objects to targets objects in the back-
ground, multiple classes present in one image, or cluttered background.
-Possible values:[same class, other class, unknown, cluttered]

Lighting These are changes in lighting temperature, intensity or direction.
-Possible variations:[temperature, intensity, direction, multiple lights, single light]

Errors Variations in the objects such as deformations, incomplete or object variations.
-Possible variations:[surface appearance, geometric, intra-class variations]
3.3.1 Evaluation Methods

The evaluation of the OR methods has been made according to if the author expresses
the influence of some variable, the characteristics of the testing database and the char-
acteristics of the proposed methods. Besides, each method was evaluated regarding if it
considers the possible values or cases that could take each DV with the next metric:

0. Not specified.
1. No present - minimum.
Low - fewer cases of the DV.

Medium - some cases of the DV.

el

Strong - most of the cases of the DV.
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5. Reconstruct - it is able to recover the variable.

The methods were classified by the matching method (main method of the approach
for finding the objects) and also by the type of used features. Table 3.2 presents the
summary of the evaluation, where the maximum evaluation for each Domain Variable is
picked from the methods with the same matching method.

Domain Variable Max. Value
Matching method | Motion Gloss Occlusion POV Scalability Texture Shape Ext. Light Errors
Blur elements
NN 0 B 4 3 4 4 4 4 4
Nearest Neighbor 2 2 4 4 4 4 4 4 4
Hierarchy Search 0 3 3 4 4 4 4 3 _
Boosting 3 2 3 4 4 4 3 4
SVM 2 4 3 4 4 4 4 4
Template Matching 3 2 4 2 3 2 4 4 3 3
CRF 0 2 2 2 3 3 0 4
MCMC 0 2 4 2 3 4 3 4
Minimization 0 B 4 4 4 2 2 4 4
Querying 0o |3 2 3 « I - N
Score
0 Not specified
No present
2 Low
3 Medium
4 Strong
Reconstruct

Table 3.2: Summary of the OR methods evaluation, the score of the Domain Variable corresponds to the
maximum score by the group of same matching methods for each Domain Variable

As result, 10 main matching methods were found. The most common matching method
together with Nearest Neighbor was Neural Network (NN) with 9 articles each one, fol-
lowed by Hierarchy Search (5), Boosting (3), Support Vector Machine (SVM) (2), and
one article for the others (Template Matching, Conditional Random Field (CRF), Markov
chain Monte Carlo (MCMC), Function Minimization and Querying). The evaluation of
all the reviewed articles is shown in Table 3.3.

The summary of the NN methods is shown in Table 3.4, where the most common used
feature was raw pixels. And, only two methods use synthetic data as main input of the
system [233,235]. The most used datasets are: ImageNet [191], Pascal 3D+ [246] and
CIFAR-10 [130].

Further, in the evaluation of the DV can be seen that glossy elements are merely con-
sidered with few elements in the evaluation datasets. As opposite, shape, lighting, erros
and texture ar mostly covered by this type of technique.

Additionally, other issues are found in scalability by requiring large number of real
labeled images, occlusion and external elements where most of the possible variations
are not considered. Moreover, POV is mostly supported and some methods allow to
reconstruct it from images [207,235] both trained with 3D models.

In the Nearest Neighbor based methods, most common used features are interest-point
based (SIFT, SURF, corners) followed by region based such as moments [155] and color
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histograms [39]. The datasets that were mostly used are proposed by their authors. And,
in general, less methods considered untextured and full POV cases compared to NN.
However, they have easier scalability compared to NN where some methods can be trained
just with one sample [205] or not in all conditions [67]. These methods are presented in
Table 3.5.

On the contrary, Hierarchy Search based methods (Table 3.6) did not consider the
variations among the same class objects (errors), occlusions and glossy elements. But,
they are robust in terms of lighting variations, external elements, shapes, textureless and
scalability.

Three boosting methods were found, and they are presented in Table 3.7. It is worth
noting that there is the only method that recover the occluded element and POV [245].
And, similarly to other methods, glossy elements were not considered.

Support Vector Machine (SVM) based methods are presented in Table 3.8 and other
methods are presented in Table 3.9.

3.3.2 Conclusions

In general, it was found little attention to motion blur. One possible explanation is that it
is not common and it is minimized using better cameras. Or, that most of the non-point
based methods are robust to this issue. The only two datasets that possibly contemplate
blur are the ones that contain elements in full motion such as KITTI [77] and UIUC [9]
datasets.

The elements of most datasets only contains elements with few specularities or high-
lights, and, only few datasets proposed by authors contemplate elements such as metallic
industrial parts [222] or methods working when minimal characteristics of the objects are
available [48,93,248].

Further, POV was the most recovered property using methods such as NN [207,235],
CRF, MCMC, Boosting [245], Nearest Neighbor [82] and Hierarchy Search [48, 198]

One of the major known issues for some of the methods is that they require to have
large amounts of labeled datasets that consider most of the variations that the target objects
will be subject to. Additionally, for each characteristic to be reconstructed, it is required
to be labeled. This increases the burden of getting datasets.

Further, the characteristics of the datasets have some bias that are usually not con-
trolled in real life, for instance, the distribution of POV, that can influence the performance
of the methods.

Regarding to the other DV (texture, shape, external elements, lighting and errors),
there are support of almost all variations in most of the methods. However, there are still
missing datasets and methods for creating them that allow the evaluation and study of
concrete values that allow to isolate the influence of the variables.
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Table 3.3: Evaluation of reviewed Object Recognition methods regarding to the main Domain Variables
of Industrial Augmented Reality. The methods are grouped by the main classification method. The
evaluation score is as follows: (0) Not specified. (1) No present - minimum. (2) Low - fewer cases of
the DV. (3) Medium - some cases of the DV. (4) Strong - most of the cases of the DV. (5) Reconstruct -
it is able to recover the variable. Abbreviations: Occ: Occlusion, Scal: Scalability, Text: Texture, Ext:
External Elements, Err: Errors

Method Article Blur Gloss Occ. POV Scal. Text. Shape Ext. Light Err.

NN [235] 0 2 1 5 2 3 4 3 3 3
NN [233] 0 2 3 3 3 4 4 3 3 4
NN [11] 0 2 3 3 2 2 4 3 0 3
NN [210] 0 3 4 3 1 4 3 3 3 4
NN [35] 1 2 1 4 1 4 4 1 4 3
NN [247] 0 1 2 2 1 1 3 2 2 4
NN [207] 0 2 3 5 3 3 4 3 4 3
NN [155] 0 2 1 3 3 4 4 1 4 1
NN [137] 1 1 2 4 1 4 4 4 4 4
CRF [245] 0 2 2 5 1 2 3 3 0 4
MCMC [245] 0 2 4 5 1 2 3 4 3 4
Nearest Neighbor  [208] 0 1 2 2 3 1 3 2 3 1
Nearest Neighbor  [82] 0 1 2 5 3 1 4 2 3 1
Nearest Neighbor  [155] 0 2 1 3 3 4 4 1 4 1
Nearest Neighbor  [39] 0 2 3 2 3 3 4 3 2 2
Nearest Neighbor  [67] 2 1 3 4 3 1 4 3 1 3
Nearest Neighbor ~ [137] 1 1 2 4 1 4 4 4 4 4
Nearest Neighbor  [27] 0 2 2 4 4 4 4 2 3 3
Nearest Neighbor  [58] 0 2 2 2 3 1 4 3 3 3
Nearest Neighbor  [205] 2 2 4 1 4 2 1 3 4 1
Boosting [201] 0 2 4 4 2 2 4 4 3 4
Boosting [149] 0 1 3 2 3 4 4 3 2 1
Boosting [245] 3 2 5 5 1 2 3 4 3 4
Minimization [248] 0 3 4 1 4 4 2 2 4 4
Querying [93] 0 3 1 2 3 4 3 1 4 1
Hierarchy Search [222] 0 3 3 5 3 4 4 3 3 1
Hierarchy Search [219] 0 1 2 2 3 4 4 2 3 1
Hierarchy Search [47] 0 1 2 3 3 4 4 3 3 1
Hierarchy Search [48] 0 3 2 5 4 4 3 4 3 1
Hierarchy Search [198] 0 1 2 5 4 4 1 1 3 1
SVM [95] 1 1 1 4 3 4 4 3 4 1
SVM [137] 1 1 2 4 1 4 4 4 4 4
Template

Matching [142] 3 2 4 2 3 2 4 4 3 3
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Table 3.4: Summary of reviewed Neural Network matching method based proposals that potentially could
be invariant or support main Domain Variables for Industrial Augmented Reality.

Year Article Features Contribution Experiments
Experiments in real photos from
. Recognition on real images only ImageNet (PASCAL 3D+)
2017 [235] Pixels based on 3DModels. databaseTrained with ShapeNet
classification accuracy of 50.5%
Deep learning pipeline including
?nacfgiai;ﬂce)znfr{ dcg(s)tr;ur;cc::ttl%nNN Accuracy of 47.2% with training
2017 [233] Pixels . . pa with Pascal 3d and testing with real
architecture design aiming at
; o photos of ImageNet
objects recognition on real photos
based on texture-less 3D model.
CNN scheme for domain specific
. objection recognition tasks. Use Experiment on CIFAR-10 accuracy
2017 [11] Pixels minimal hardware resources ideal of 81.46%
for low-end devices.
Weakly supervised CNN framework  CIFAR-10 error: 5.11%, CIFAR-100
2016 [210] Pixels to reduce the effect of noisy labels error: 26.42%, ILSVRC2015
due to data augmentation. 20.78% error
Proposes a trace rule based Test 10 elements from ALOI
self-organized map model built dataset. Results show that trace
upon a sparse 2-stage deep belief learning rule is an effective way to
2016 [35] Pixels network. That can generate more associate current stimulus with
neurons with high SSI value which historical activation from the same
is beneficial to convey more useful object and results in the
and discriminative information for development of transformation
recognition. invariance learning.
Examine CNN architectures which
are suitable for mobile
implementation, and propose . i R
2016 [247] Pixels multi-scale network-in-networks aDCa(;[ﬁfaeé' UEC-FOOD100: 75%
(NIN) in which users can adjust the y
trade-off between recognition time
and accuracy
Scalable and overfit-resistant image
. synthesis (render-based) pipeline, .
2015 [207] Pixels with a CNN specifically tailored for Dataset: PASCAL 3D+
the viewpoint estimation task
Flexible recognition system that can
2005 [155] Moments compu_te the good features .for hlgh Three tegtur.e-less squlpturgs of
classification of 3-D real objects is animals in different viewpoints
investigated
NORB dataset: 50 uniform-colored
Assess the applicability of several toys The objects were 10 instances
learning methods for the problem of  of 5 generic categories with various
2004 [137] Pixels recognizing generic visual amounts of variability and

categories with invariance to pose,
lighting, and surrounding clutter.

surrounding clutter, and lighting.
Test error rates: Uniform
background 7% error
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3.3. Object Recognition Methods

Table 3.5: Summary of reviewed Nearest Neighbor based methods proposals found in literature that poten-
tially could be invariant or support main Domain Variables for Industrial Augmented Reality.

Year Article Features Contribution Experiments
20 object models which are seen well in
daily life and 100 test images. Model
2008 [208] SIFT Method of OR and segmentation using images were taken from the angles of
SIFT and Graph Cuts. every 45°. Test images were taken from
various angles with various scales.
Precision 1, Recall 0.81
System for constructing 3D metric
models from multiple images taken with . . .
an uncalibrated handheld camera Aligned a virtual square withan
2006 [82] SIFT . - ’ ARToolKit marker present in a modeled
recognizing these models in new
. . : . scene
images, and precisely solving for object
pose
Recognition system that can compute Three texture-less sculptures of animals
2005 [155] Moments the good features for high classification in different viewpoints. Performance:
of 3D real objects is investigated 98-14%
Method performs color image Dataset: [JCV-data set: (Peformance:
segmentation by a simplified 41%). Their own dataset of 32 objects.
. pulse-coupled neural network (SPCNN)  Objects have between 10 and 40
2015 [39] Color histogram for the object model image and test possitive images. In total 783 positive
image, and then conducts a experimental images, 71% correct
region-based matching between them matching
2004 _Intengty—based OB apprgach “.’h'Ch overcomes strpng Own dataset of 9 model objects and 23
[67] invariant spite of viewpoint changes, occlusion .
. ) - test images
regions and clutter and flexible objects
NORB dataset: 50 uniform-colored toys
Assess the applicability of several The objects were 10 instances of 5
popular learning methods for the generic categories with various
2004 [137] PCA — Pixels problem of recognizing generic visual amounts of variability and surrounding
categories with invariance to pose, clutter, and lightinig. Test error rates:
lighting, and surrounding clutter. Uniform background 13% error, high
cluttered: impractical
Approach to measure similarity between
shapes and Use it for OR. The
Shape sampled  measurement of similarity is performed Datasets: 2D objects the MNIST. 3D
2002 [27] Points, Shape by 1. solving for correspondences objects Columbia COIL: retrieval rate of
context between points on the two shapes, 2. 76.51 percent.
using the correspondences to estimate
an aligning transform.
Corners, Use Graph-cuts as a segmentation
2017 (58] Histqgram of technique. The segmentgd object is ImageNet small subset
gradients. then recognized by mapping the feature
SURF descriptors of the images
OR system for industrial inspection. It
Image points uses similarity measures that are robust 500 images of an integrated circuit
2002 [205] ; against occlusion, clutter, and nonlinear ~ under occlusions and clutter of various

Direction vector

illumination change. Subpixel-accurate
poses are obtained

degrees.
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Chapter 3. Surrounding Understanding

Table 3.6: Summary of reviewed Hierarchy Search based methods proposals found in literature that poten-
tially could be invariant or support main Domain Variables for Industrial Augmented Reality.

Year Article Features Contribution Experiments
Method for recognizing 3D objects and
_for dgtermmmg their 3D pose. A model Own dataset of real objects. Images of
is trained solely based on the geometry 8bit gray scale (640x480px). Two
2009 [222] Vertex, Edges information of a 3D CAD model of the gray PX).
- elemenst used a clamp and a fuse. 50
object. They do not rely on texture or . R
. . o images of each object in different POV
reflectance information of the object’s
surface, useful for industrial elements
. Own dataset of 10 elements on clear
2013 [219] Edgelet Implement ”?e”‘°d that they believe has background with partial occlusions.
some potential to be yet uncovered
76% accuracy
OR method for rigid texture-less 3D Dataset: ETHZ dataset (apple logo:
objects for video input. The method is 73.2; swan: 66.1; bottle 68.97; giraffe
2012 [47] Edgelet based on edgelet constellations with 72,4; mug: 60.9). The method is tested
library lookup based on rotation and on a dataset of 30 texture-less objects:
scale invariant descriptors precision = 74%
Generic, scalable and fast framework
2011 (48] Edgelet for concurrent[y searchlng multiple rigid Own date'lse"r of 10 real tools sampled
textureless objects using edgelet around viewing sphere
constellations
address all the three major aspects of In one scenario a box is thrown on a
2002  [198] Lines image registration: feature detection, table and the system correctly detects

correspondence and pose estimation

the object and computes its pose.

Table 3.7: Summary of reviewed Boosting based methods proposals found in literature that potentially
could be invariant or support main Domain Variables for Industrial Augmented Reality.

Year Article Features Contribution Experiments
Approach for learning a discriminative
model of object classes, incorporating
appearance, shape and context ) .
2006 [201] Textons, Shape information. Given an image, the pr 21 classodatabase, our algorithm
filters . 2 achieves 70.5%
system automatically partition it into
semantically meaningful areas each
labeled with a specific object class
Edge maps, Show how maximum entropy framework  Testing: 24 images of each object (5
2002 [149] intensity can be used to combine simple objects) under varying levels of
histogram discriminators occlusion, total 120 images.
. OR pipeline that estimate multiple
sﬁuBelsurgg] ance detected objects such as 3D pose, Dataset: KITTI: (6% AP, Pose
2016 [245] shape! severely occluded by other objects, estimation: 12%), Xiang and Savarese

occlusion mask

accurately estimating the occlusion
boundaries

(2013)
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3.3. Object Recognition Methods

Table 3.8: Summary of reviewed Support Vector Machine (SVM) based methods proposals found in liter-
ature that potentially could be invariant or support main Domain Variables for Industrial Augmented

Reality.
Year Article Features Contribution Experiments
Pose-mvangnt obje_ct_recognmon The first set of experiments dealt with
. systems using realistic 3d computer . . Lo
Histograms of . : the pose-invariant discrimination
2009 [95] . graphics models. provide a method for . o
gradients NS o between two objects .EER 0.3%at
estimating the degree of difficulty of -
. ; 40,000 training samples per class.
detecting an object
NORB dataset: 50 uniform-colored toys
Assess the applicability of several The objects were 10 instances of 5
popular learning methods for the generic categories with various
2004 [137] PCA - Pixels problem of recognizing generic visual amounts of variability and surrounding

categories with invariance to pose,
lighting, and surrounding clutter.

clutter, and lighting. Test error rates:
Uniform background 13%, high

cluttered: impractical

Table 3.9: Summary of Conditional Random Field (CRF), Markov chain Monte Carlo (MCMC), Function
Minimization, Querying, Template Matching based methods proposals found in literature that poten-
tially could be invariant or support main Domain Variables for Industrial Augmented Reality.

Method Year Article Features Contribution Experiments
Datasets: - 3DObject
3D Aspect Part representation: g%e;(:;c’t\'foncgso%l c\;';eeromt
detec“’.‘g. ObJeCt. categories, (detection:48.7 | viewpoint:85.9
CRF 2016  [245] HOG determining their 3D poses and ) and the EPFL Car
eetimating ihe objects’ 3 (detection:97.5 | viewpoint: 64.8
y 9 ge- ), ImageNet (detection:90.4% |
viewpoint: 95.5%)
OR that handle occlusions from
a 3D perspective. From a single
image, is capable to detect PASCAL VOC, LabelMe ,
MCMC 2016 [245] HOG objects, determine their 3D ImageNet and our own photos
spatial layout and interpret
which object occludes which
Select a sparse
shapecombination from the
dictionary that best represents
Minimization 2012  [248] Probabilistic the shape. AI.so to accgrate;ly Own dataset of 10 real tools.
Shape segment the image taking into
account the sparse shape
combination and the image
information
Size. CIE LAB Given an image of several
color, Pairwise gzlc?(Ctrsom; ;t]reucturroedose a Pill recognition, four different
Querying 2010  [93] Geometric se rr?entatic;n anydphof/)v features shape classes and 13 color.
Histogram 9 : Highest recognition rate 100%
can be extracted for OR in
(PGH) )
mobile phones
Codebook, Automatically segments the
Template 2004  [142] Spatial obiect as a risul?of the Database: UIUC (Equal Error
Matching Probability jectasa Rate (EER) of 91%)
e categorization
Distribution
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CHAPTER

Physically Based Shading of Domain Variables for
the Generation of Synthetic Datasets

In this chapter, a method for recreating relevant Domain Variables (DV) using a Physically
Based Shading (PBS) approach is proposed, in order to create datasets for training and
testing surrounding understanding algorithms. This method is framed under the industrial
field, where the parts are very similar, present glossy effects and are subject to processes
that change their visual appearance (e.g. corrosion or grime).

Building datasets is a complex activity that involves time and resources that are not
aligned with the industrial world, that is in constant change and under considerable pres-
sure by the market. Therefore, obtaining training datasets could be a problem especially
when new products, procedures arrive constantly.

Synthetically generated datasets could be a solution to obtain almost free and fast
training data, given that usually the parts and related information is already available by
the companies. For instance, 3D models and visual appearance are known beforehand.

The problem with synthetically generated datasets is that usually, they underperform
compared to photos based datasets because of the domain adaptation that is required to
perform. Therefore in this research a method that blurs the difference between synthetic
and real by simulating in a realistic manner the imperfections that usually occur in the
industrial environment.

It is also known that although there are many available datasets with real photos, usu-
ally they are for general classes (i.e humans, cars, chairs...) as ImageNet dataset [191].
But in terms of parts of products produced by a company, there are limited options for
acquiring training datasets.

In the case that a similar dataset with the same parts is found, it is required also to
perform a Domain Adaptation (DA), in order to fit the statistics of the dataset to the target
domain. For instance, obtaining pixel-wise segmentation, where each pixel of an image
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is required to be defined to which class it belongs, or registration that requires defining
the exact position and rotation of the object regarding the camera. Additionally, each time
new parts are produced, it is required to obtain new photos and retrain the modes. Another
option is to take the real photos, requiring a lot of resources and time.

Therefore, a method for creating synthetic datasets of industrial parts using solely the
3D model of the parts is proposed. The method allows to input the distribution of the
characteristics of the real-life parts (i.e. lighting or pose) that influence the performance
of surrounding understanding algorithms.

Further, current methods for creating synthetic datasets [114, 160, 177, 183,214,234]
do not consider realistic shading or control the variations that are present in real life. And,
both data augmentation and DA require to have a labeled or unlabeled dataset of the target
objects.

Simulated variations are based on a previous study of the variables that influence the
surrounding understanding algorithms in Industrial Augmented Reality (IAR) (Chapters 2
and 3). Therefore, the considered variations are: POV, intraclass variations, occlusion and
external elements, appearance variations (surface roughness, grime, corrosion), no texture
differentiability between classes', not shape or size restriction, lighting, and environment
variations.

It is hypothesized that the proposed variables are the main source of the visual varia-
tions of an object in this context (industrial objects). It is worth to highlight that in this
case there are not so common human-made textures where there will be infinite of patterns
to recreate, but human variations are typically given by the geometry than usually serves
a function and do not have large variations as could be in decorative or artistic elements.

Thus, natural variations of the materials are the main source of distortion of the "ideal"
object representation such as corrosion or grime. The aim is to simulate realistic vi-
sual patterns from the interaction of light and relevant objects characteristics considering
enough variations to avoid overfitting and to get closer to possible combinations of reality.

Therefore, the recognition system could use these patterns, or to be invariant to these
variations, to identify visual patterns that could be useful in the recognition process.

This research proposes a set of variables that affect in larger scale the visual represen-
tation of objects, a method for physically based recreate these variables and automatically
produce datasets for training algorithms used for surrounding understanding. Addition-
ally, fully labeled data is produced where each one of the variations recreated is saved and
could be used in training of another process such as segmentation or registration.

4.1 Introduction

One of the major goals of computer vision is to understand the world around us through
images (2D projections of it). And it is a key component of other fields, such as robotics,
Augmented Reality (AR) and automation.

Many different methods contribute to acquire and process the information coming from
the images. High level process include image segmentation, Object Recognition (OR),
objects tracking, 3D reconstruction among others. Where a wide variety of approaches
have been proposed over the years for performing this processes [50].

Metals are the only ones that corrode but material variation among the same class is also considered
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Most recently, Machine Learning (ML) has been a powerful leverage for taking com-
puter vision to real-world applications. Allowing to expand beyond of restricted domains
to handle real-life complexity [196].

Further, Deep Learning methods have shown over the recent years a remarkable record-
breaking in different challenging computer vision tasks. Those methods have shown an
excellent performance not only in vision-related tasks such as segmentation, detection,
classification but also in other pattern recognition areas such as speech and text process-
ing [136,178].

Deep Learning, by being a set of data-driven techniques, they adapt to a large number
of perturbations (e.g. lighting conditions, occlusions, changes of Point Of View) that are
present in the input data by finding relevant patterns regarding a given task [137,253].

Nevertheless one of the most well-known drawbacks of having such versatility is that
in most of the cases (supervised and semi-supervised) they require a considerable amount
of labeled training data under a large number of variations [199].

Several alternatives have been proposed to decrease the dependence of manually la-
beled datasets and mitigate the efforts and resources of training deep learning models. To
the best of the author’s knowledge, there are four main approaches for dealing with this is-
sue, Transfer Learning (TL), synthetic datasets, data augmentation and effective learning
models.

TL is aimed to improve the learning of a predictive function (of a target task 7;) in a
target domain(D;) using the knowledge of a source domain (D)) and a source task (7%)
where the sources and targets are different (7; # T, or D; # D). Depending of these
relationships, there are different TL settings [174] (Further explained in Section 5.1.1).

In visual applications in real-life is common to have the same task (e.g. detect the
same class labels) but different domains for instance source of the images are different
photos and paintings. This is referred as Domain Adaptation (DA), and it is a special case
of TL [45].

Therefore DA and TL are aimed to take advantage of already labeled data from other
sources and unlabeled data to reduce training and datasets creation efforts.

Moreover, a set of transformation can be applied to each one of the samples of a
dataset to increase the number of variations, and this is known as data augmentation.
Some techniques commonly used are geometric and color transformations, noise and blur
addition, background blending and occlusions generation [10, 157,254].

Besides, efficient models that can be trained with fewer and high data dimensionality
have been proposed. This methods and models can handle strong overfitting allowing
more effective generalization [113, 146,229].

Another approach for easy the acquisition of labeled datasets for training Deep Neural
Network (DNN) models is to digitally create them (synthetic datasets). By recreating the
visual appearance and behavior of elements, external conditions, and variations that are
of interest or affect the target task.

The use of synthetically generated data has been increasing over the years given the
advances in computer graphics. Where some of the trends are related to the use of open
source, gaming engines and realistic visual and behavioral simulations. Some of the most
interest fields are features, scene and objects analysis in areas such as pedestrian, automo-
tive and discrete products understanding [231].

Besides, the use of procedural created data has shown to be useful by their ability
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to provide large labeled datasets under controlled conditions. Allowing to systematically
produce homogeneous training data, avoiding datasets bias (e.g. commonly viewed angles
of objects) as usually are present in real life datasets [216].

Additionally, their inclusion in the learning process has proven to increase performance
compared to the use of only real images [178,207]. Also by controlling the different ele-
ments that could intervene in the performance of the target task (occlusions, POV, lighting
among others) the synthetic datasets allows to make ablation studies for the understanding
of the behavior of the systems [178,214,251].

Thus, the use of synthetic datasets for visual tasks can be considered a feasible alter-
native to transfer knowledge when there are scarce real labeled datasets.

Finally, there is also worth to notice that the use of these approaches is not excluding
and that are commonly used together. For instance, perform a training with a synthetic
dataset, augment the samples to avoid over computation and increase variations and per-
form a TL for fit the target domain statistics [176,207].

Besides, one of the major concerns in the use of synthetically generated data is the in-
fluence of rendering technique and the fidelity in the reality recreation in the performance
and learning process. Where previous work has demonstrated that increasing the realism
improves the overall performance [178,251].

Therefore, different implementations have tried to recreate photo-realistic datasets
[118,251] where some external variation are considered such as lighting direction and
intensity, background and camera parameters. Nevertheless, realistic object’s appearance
variations have not fully considered (e.g Index Of Refraction (IOR), grime, corrosion,
surface micro displacements).

In this chapter is presented a method for the generation of synthetic datasets recreating
relevant domain variables, both own of the objects (e.g. IOR, corrosion) and external
(e.g. lighting, occlusions) using a Physically Based Shading (PBS) approach. And it is
analyzed their influence in the learning process of state-of-art of CNN models (MobileNet
[106]) in an Object Recognition (OR) task.

Further, with the premise that the recreation of realistic patterns in images, generated
through the simulation of physically based interactions of the light with objects and the
variations that affect their visual appearance in real life, can be an useful information in
the learning process of deep models.

A series experiments were performed training the CNN models with a synthetic dataset
created with the proposed method and evaluated with real images. The synthetic dataset
was created using 3D models and other required assets downloaded from online reposito-
ries and the synthetic data was automatically created from these using our method.

This chapter is organized as follows, in the next section,presented methods and studies
for the generation of synthetic datasets (Section 4.2). Afterward, the teorethical back-
ground of Physically Based Shading (PBS) is presented (Section 4.3. The method for
the creation of synthetic dataset and the process of simulation the Domain Variables is
developed in Section 4.4. In the next section the recreation of the intrinsic variation of the
objects is presented (Section 4.5). Similarly in the Section 4.6 the extrinsic variations are
described. The environmental variables are presented in Section 4.7. Finally, discussion
and future work is presented in Section 4.8.
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Figure 4.1: Number of cited works by years related with synthetic datasets usage in [231]. Adapted
from [231]

4.2 State of the Art

In this section are presented methods and studies for the generation of synthetic datasets
for training and evaluating Surrounding Understanding processes (e.g. Object Recogni-
tion, semantic segmentation, registration) are presented.

In 2017 Wang et al. surveyed the use of photo-realistic synthetic data for computer
visual perception and understanding support, and coined the term parallel vision to the
parallel interaction between synthetic and real data in vision problems. They found that
there is an increasing interest in synthetic data (Figure 4.1) since the advances in com-
puter graphics allows to create more realistic scenarios. And that their use is playing an
important role in scientific research [231].

Additionally, they categorized the previous work under three main categories of the
use of synthetic data: feature, object and scene analysis. Where three major trends were
found, the first one is the increasing of realism due to the availability of powerful open-
source and commercial simulation tools. The second is that synthetic data has permeated
many computer vision tasks from low level (feature analysis) to high level (understand-
ing). And the last one is the increase of interest and usage of synthetic data (Figure
4.1) [231].

In order to generate synthetic datasets, in 2017, Dosovitskiy et al. proposed a genera-
tive neural network for the creation of images of objects given a 3D model, object style,
viewpoint and color [62].

Further, the study of the influence of realism in the creation of synthetic datasets has
been studied. In 2017 Zhang et al. studied the influence of four rendering techniques,
OpenGL with directional lights, OpenGL with point lights, Physically Based Shading
(PBS) with outdoor lighting and PBS with outdoor and lighting objects such as lamps
[251].

The synthetic data was used for three computer vision tasks, surface normal prediction,
semantic segmentation and object boundary detection. The authors found that PBS with
realistic lighting have a performance above the other methods and also for the three tasks
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an improvement over the state-of-art [251].

In 2009, Heisele et al. performed a study using realistic rendering of untextured ob-
jects for training a Support Vector Machine (SVM) pose-invariant OR system. The same
objects were 3D printed and used of study the relation of training size and degree of de-
tection difficulty of the objects. They found invariance respect the backgrounds but the
accuracy was objects and view dependent [95].

Another source for obtaining realistic labeled data is from video games. In 2017,
Johnson-Roberson et al. proposed a method for extract photorealistic data from a video
game (GTA V) and used for automobile detection. Their results show that a state-of-art
CNN architecture performs better with the synthetic data that with the manual labeled
dataset [118].

Similarly, Richter et al. in 2016 presented an approach for creating pixel-wise seman-
tic labeling from modern video games. One of the main challenges from obtained material
from video games is that the internal content is inaccessible. They proposal consist of in-
jecting a wrapper between the video game and the operative system that allows to control
render commands of the game [188].

According to their experiments, they were able to produce labeled material correspond-
ing to the manual approach used in [32] that would take 12 person-years in 49 hours. Also,
they found that complementing real-life data with the one generated increase the accuracy
on semantic segmentation [188]

Bochinski et al. in 2016 used the game engine game Garry’s mod in order to generate
different scenarios of the city traffic. Different "bots" were used to simulate the interaction
between actors such as persons, cars, and animals with three different illumination setups
(dawn, day and dusk). They prove that it is possible to simulate and detect real-world
pedestrians, vehicles, and animals [31].

In 2017, Peng et al. proposed a Deep Generative Correlation Alignment Network in
order to merge 3D model images with backgrounds and textures of the real domain in a
realistic fashion. This approach aims to solve unrealistic match between foreground and
background and the high contrast in the edges present in synthetic images. This approach
shows to boost performance in pre-trained models on real image evaluation [176].

Another approach proposed by Tobin et al. in 2017, where instead of focus in achiev-
ing photorealistic results, they randomize different domain conditions such as distractor
elements, texture, and characteristics of the lights [214].

They demonstrate that with a large amount of data random initialization present almost
the same results as pre-trained models showing that is not necessary to generalize to the
real world. Nevertheless, when less training data is used starting with a pre-trained model
can significantly improve the performance [214].

Similarly, Peng et al. investigate how "low-level cues" such as realistic texture, pose
and background affect the learning process of CNN. Particularly they investigate the dif-
ference between realistic texture (taken from photos and projected into the 3D models)
and gray model rendering [177].

They found that when the trained model was fine-tuned for the task this low-level
features are not required to be simulated. However, models without fine-tuning are not
invariant to the cues. Additionally, in this study was not defined at up to what degree the
model is invariant to object pose given that the only dominant poses were used [177].

Moreover, Massa et al. proposed in 2016 a method for adapting real images to 3D
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model view to select the 3d pose and model exemplar for a given real image. In order
to avoid collecting labeled images, they used 3D models paired with their gray render
view [152].

They hypothesized that given the features of real images is easier to deduce the features
of a corresponding render point of view with a similar style and pose than "hallucinate"
missing features in the real image details such as real object texture [152].

Sun et al. proposed an adaptation method based on decorrelated features for address-
ing the different bias of the synthetic and real datasets. They show that it is possible to use
non-photo-realistic images that do not match the real images statistics by using the do-
main statistics. They showed that the difference between domain statistics leads to lower
performance confirming that both source and target statistics matter [209].

Jiang et al. proposed in 2017 a pipeline for recreating configurable rooms layouts to
generate photorealistic images using PBS and contextual relationship between objects,
such as the relation between furniture. They shown that their approach reach a similar
performance in different vision tasks (depth estimation, normal estimation, segmentation,
3D reconstruction and OR) than the NYU v2 dataset [163] using pre-trained models [116]

Another approach to reducing the burden of getting manual labeled material is to use
efficient CNN models. For instance, in 2016, Wang et al. modified a CNN that use large
amounts of synthetic data, with a multi-triplet cost function and a compact architecture
in order to overcome the overfitting. The results in the classification task shown that the
proposed CNN trained with only textureless 3D models is not lower that state-of-art CNN
architectures trained with real photos [233].

In 2016, Movshovitz-Attias et al. studied the effect of the render parameters and re-
alism in the creation of synthetic data on the performance in viewpoint estimation. They
used state-of-art software (VRAY rendering engine) to render evenly distributed POV
around cars 3D models and for each POV they explore different parameters (lighting,
camera parameters, backgrounds, compression effects, among others) [160].

Regarding the render quality, they found that increasing the level of realism, the error
is reduced, and that the error increase once the low quality renders are predominant in the
train set. Additionally that the synthetic domain adaptation is not more difficult than the
one required into real datasets. Further than combining synthetic images with a small set
of real images improves the POV estimation [160].

Additionally, Aubry et al. in 2015 proposed the use of renders for analyzing the fea-
tures generated by a CNN regarding domain factors such as object style, viewpoint, color
among others [17].

They presented two type of "stimuli", 2D abstract shapes and 3D rendered views with
a matte surface of their corresponding texture. They presented the different "stimuli" to a
pre-trained CNN and analyzed the features response with a Principal Component Analysis
(PCA) [17].

In another attempt for understanding what are the Neural Network (NN) learning by
the use of synthetic images is presented by Pepik et al. in 2015. They explored which
appearance factors are learned by the networks (POV, size, category and shape among
others) together with different rendering styles and which ones can be improved by adding
more data or there is required to have architectural changes [178].

Their results showed that state-of-art architectures are not invariant to some appearance
factors (truncated, occluded and small objects). Also, that simply adding more data is not
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helpful requiring some architectural changes. Additionally, that detection improvement
is proportional to the rendering realism when the synthetic data is combined with the real
data. Nevertheless, synthetic data alone underperforms the real data performance [178].

Additionally, they found that the mix of synthetic data with real data, even in low-
level of realism (wireframe), improve the performance of the trained models. And this
improvement is proportional to the realism of the synthetic data [178].

Further, Busto et al. in 2015 proposed to improve coarse POV data labels in real
datasets using synthetic data. They generated textured renders of cars with random back-
grounds with defined steps in the viewpoint in spherical coordinates. And cluster the
synthetic and real views for finding correspondences between them and mapping from
the two domains. Finally, the labels on the real images are refined with a SVM trained
with the transformed synthetic dataset [34].

Similarly, Su et al. presented in 2015 a pipeline for synthetic data generation for view-
point estimation with a tailored CNN. The synthetic data generation instead of lookout
for a realistic effect was focused on high variability in order to the CNN select robust
patterns [207].

As result, they achieve better performance using millions of "renders" than state-of-
art methods with real images. Where the accuracy was proportional to the number of
synthetic images until reaching a plateau [207].

4.3 Theoretical Background - PBS

In this sections is presented the technical background and brief introduction for PBS the
techniques used, the underlying physics and the description of the rendering problem.

Shading is the process of computing the color of objects of a 3D scene from a given
Point Of View (POV). And it is the product of two things:

1. Light
2. Objects properties:

(a) Geometric properties

(b) Light-object interactions

The goal of photo-realistic rendering is to create images that are indistinguishable
from a photograph from the same scene. Where Physically Based Shading (PBS) intents
to model the interaction between light and matter based on physical laws.

4.3.1 Physics of light

Light is an electromagnetic radiation that is generated by oscillating charged particles at
a given frequency. The visible light frequency lies between 4e 4 14 and 8e + 14Hz. Light
propagates both in the vacuum and in the matter. In matter, light is continuously absorbed
and re-emitted.

Therefore, the interaction with matter depends on the material electromagnetic proper-
ties. The physical property that defines this interaction is the Index Of Refraction (IOR).
It describes the ability of the matter to oscillate with the electromagnetic wave at a given
frequency (w) [23].
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The IOR of a medium is a complex number (Equation 4.2) which is real part is the
velocity of light in space divided by the velocity of light in the medium.

n=- (4.1)

v

And the complex part (k) that represents the attenuation of the light while passing
through the medium.

n(w) =n+ik (4.2)

In a micro scale, when the electromagnetic radiation enters the medium it shakes the
medium’s electrons. This originates an electromagnetic radiation at the same frequency
than the incoming radiation with a phase delay. Then the net field is the sum of the
incident and the radiated field of the electrons, where the last one masks the incident
one [150].

Depending on the characteristics (phase, direction or frequency) of the resulting waves
different possibilities could occur such as light scattering, reflection, transmission, or ab-
sorption. In light scattering the direction and intensity of light change in many directions
while in absorption the electromagnetic radiation is transformed into another form.

4.3.2 Material-Light interaction

Most of the PBS approaches are based on a simpler model where light propagation is
described using geometrical optics. Where light is modeled as a ray that travels in straight
lines and instantaneously, and that the interacted objects are bigger than the wavelength
of light.

Other assumptions made are that the optical systems are linear, energy conserving,
there is no light polarization and the light environments are in a steady state. Finally, that
light it can be emitted, reflected or transmitted [131, 181].

Therefore, most of the PBS models will focus on light scattering. Where there are typ-
ically found three reflectance mechanism, in Figure 4.2 are illustrated the three different
lobes from the reflection of light from surfaces [244].

In the first case (a), the reflection comes from a smooth surface, that can be considered
an infinite plane relative to the light waves between two different IOR mediums (Figure
4.3a).

Where the incident angle 6; is equal to the reflected angle 6, regarding the plane normal
N. And the refracted angle is governed by the Snell law (Equation 4.3):

sinb;  ny

— = 4.3)

sinf;  ny;

The reflection, in this case, is subject to the Fresnel theory, where light is attenuated

depending on the incident angle 6; and the IOR. Which main idea is that when the incident

angle is close to the surface’s normal the majority of light is transmitted, on contrast when

the incident light is near to the grazing angle, the glossy reflection is the main source as
is illustrated in Figure 4.4.

Thus, the Fresnel reflectance express the ratio between reflected and transmitted energy

in function of incident angle, polarization and IOR. The ratio of reflected light is given
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Figure 4.2: Commonly found reflectance lobes of light from surface. (a) spike from smooth surfaces, (b)
specular reflection from rough surfaces. (c) Diffuse lobe from subsurface scattering. Adapted from [244]

@ Z

(@ (b) (0)

Figure 4.3: (a) Interface between media with different Index Of Refraction or ideal reflection. (b) Specular
reflection on a rough surface. (c) Diffuse or body reflectance by subsurface scattering. Adapted from
[244]

by the Equation 4.4 that is the average of the polarized parallel 7 and perpendicular r
components of incident unpolarized light, where 0 < F,. < 1:

1
Fo= S0 +r1), (4.4)

For dielectrics or isolators, the polarized components are given by the Fresnel equa-
tions 4.5 and 4.6:

nocosl; — nqcost

T = , ' 4.5)
nocost; + nicost;

- nycosl; — nqycosb; 4.6)
nycost; + nycost,

For metals or conductive material, the visible effect is not that perceptible given that
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Figure 4.4: Fresnel effect, incident light near to the surface normal is transmitted while near to its grazing
angle is reflected

they present high reflectance in all the angles. The parallel and perpendicular oscillation
terms are expressed by equations 4.7 and 4.8 [135]:

cosb; — (n + k)cost, |*

_ 47

"l cost; + (n + k)cosb, “.7)
costy — (n + k)cosb; |

= 4.8

= cosb; + (n + k)cosb; (48)

On contrary, body or diffuse reflectance (Figure 4.3c), is generated from subsurface
scattering, where the light penetrates the material, is absorbed and scattered and finally
leaves the material. In this interaction process light at different wavelengths is distinc-
tively absorbed and scatter accordingly to the color of the material. As the bouncing of
light in the scattering process tend to be infinite the direction of the output ray becomes
random [92].

However, in the real world, few surfaces are perfect mirrors. Microscopic surface
imperfections can be though as broken mirrors that behave as a collection of tiny flat
surfaces. This is parametrized as surface roughness (Figure 4.3b) which produce a wider
reflectance lobe (Figure 4.2).

These micromirrors are smaller than a pixel but larger than light wavelength, hence
this imperfections can be seen or resolved. Usually, the roughness values of a surface go
from 0O perfectly smooth surface to 1 that uniformly scatter light an all directions making
blurrier reflections (Figure 4.5) [187].

It is worth notice that these micro bumps are at microscopic level and both surfaces as
shown in Figure 4.5 appear equally smooth at the touch and visual senses.

The micro-variations in the geometry makes that each point in the surface reflects
and refract light in different directions. The general appearance is therefore composed
by the sum of the reflections and refractions. These micro variations of the surface at a
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Figure 4.5: Roughness render comparison. Same glossy material with low roughness (a) and high rough-
ness value(b)

macroscopic level are treated statistically.

The Fresnel effect is less visible once the roughness of a surface increase due to nor-
mals of the surface diverge at a greater degree making blurrier reflections independent of
the Point Of View influencing the apparent reflectivity on the surface (Figure 4.5).

4.3.3 Materials

Light is electromagnetic radiation, therefore, the optical properties are strongly related
to the electric properties of the materials. Hence materials can be grouped into three
categories: metals (conductors), dielectric (insulators) and semiconductors. In the real
world, semiconductors surface are rarely visible. We will focus on metals and dielectrics
(Figure 4.6).

Likewise, pure materials are unusually found, in real life materials have variations and
impurities for instance metals can corrode and grime acting in cases as dielectrics. To
achieve realistic looking materials there is required to consider these variations [193].

C—

(a) (b)

Figure 4.6: Metal (taken from [2]) and dielectric (taken from [3]) examples

In the previous Section (4.3.5), some BRDF were introduced, they describe the light
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Figure 4.7: In the left The Fresnel effect of a metal with different IOR values for the (R, G, B) wavelenght.
At right the render illustrating the edgetint effect. Extracted from [85]

scattering process of a surface at a particular point. The real-life materials are simulated
by multiple low-level BRDF indicating which one use and their parameters.

Metals

Metals or conductors are materials that have good electrical and thermal conductivity,
thus the main optical response is due to the conduction of electrons.

The incident radiation in the range of visible light frequencies is absorbed in metals
because of the available empty electron states. Allowing an electron to jump into a higher
energy state, where the extra energy of the electron is equal to the energy of the photon.
Similarly, the photon is re-emitted by the transition of the electron to a lower energy state.
Thus the reflectivity of a metal is between [0.90, 0.95] and only a smaller fraction of the
energy is dissipated as heat [36].

Metals immediately absorb all the refracted visible light and re-emit at the same wave-
length. When the light gets through conductive materials it becomes attenuated by the
electrical conductivity with virtually none diffuse reflection. For this reason, the di-
electrics are the only ones with diffuse reflections [244]. Therefore, the Fresnel effect
is not that noticeable in metals as they are highly reflective from all angles.

Different metals absorb light depending on its wavelength, therefore they present tinted
reflections that is governed primary due to the distribution of the frequencies of the re-
flected light and Fresnel effect blending the reflected color with a white reflection reaching
grazing angles (Figure 4.7).

Their IOR depends strongly of the light wavelength an effect called edgetint illustrated
in Figure 4.7. Where the reflected color is bias to one wavelength as it approach to white
in the edge [85].
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Dielectrics

In dielectrics or isolators, the incoming light is both reflected at the surface (specular
component) and refracted, scattered (diffuse component) and absorbed in some degree to
then leave the material (Figure 4.8a).

The distribution of the incoming and outgoing light depends on the properties of the
material. For shading, these distances are smaller than our sampling unity (pixel), hence
we will assume that they are zero 4.8b

(a) (b)

Figure 4.8: Dielectric reflection with specular in yellow and body reflections in green. (a) theoretical
reflection and (b) assumed light where the distribution of incoming and outgoing rays are smaller than
the sampling unity

The absorption of radiation in dielectrics is performed once the energy provided by
the photon is greater than the band gap energy allowing the electron to leave the valence
band. The photon is re-emitted by the transition of the electron to the valence band [36].

Thus the color is given by the band gaps of the material, where the input energy of
the radiation is selectivity absorbed by the electron transition in the valence band and
re-emitted in a different frequency.

Blackbody

The radiation emitted by a body in thermal equilibrium with the surrounding electromag-
netic radiation is determined by its temperature. This type of matter is called blackbody
matter and the thermal radiation blackbody radiation. The law that describes the intensity
of such radiation was derived by Plank in 1900 and its illustrated in Figure 4.9 [23].

The energy is emitted and absorbed in packages (quantum) that are multiples of the
Planks constant A which relates the energy F and the frequency v of a quantum E = hov.
Thus at lower frequencies, many packages are emitted but their energy is minimal, and
with higher frequencies, there is required more energy to produce the packages up to the
point that it is not possible to produce more.

When the temperature of the blackbody decreases, the peak of its radiation curve
moves to lower intensities and larger wavelengths as there is not enough energy to pro-
duce higher frequency packages. The average of the energy of the packages is known as
the temperature of the body (Figure 4.9).
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Figure 4.9: Plank’s blackbody radiation law. The backbody radiation curves changes depending of its tem-
perature T. When the temperature decreases, the peak wavelength decrease moving to lower intensity
and longer wavelengths.

One of the main sources of visible light (0.4 —0.7um, Figure 4.9) is due to the emission
of electromagnetic radiation of matter heated at high temperatures (Incandescence). The
color of emitted light by a blackbody can be expressed in function of its temperature
(Color temperature (K)). This relationship is represented in the Planckian locus.

The Planckian locus is the path of an incandescence blackbody in a chromaticity space
as its temperature changes. The colors in the Planckian locus from 2500K to 20000K can
be considered as white, where 2500K is reddish in contrast with 20000K blueish white
(Figure 4.10) [46].

4.3.4 Radiometry

Radiometry studies the propagation of electromagnetic radiation and it’s interaction with
matter. The radiance one of the fundamental quantities of radiometry and it is a central
quantity for PBS allowing to quantify and structure the light transport.

The radiance that can be though as the amount of Flux (energy) passing through an
infinitely small solid angle hitting an infinitely small area.

Radiance is based on other radiometric quantities that are described in the next para-
graphs.

Radiant Flux is the energy () per unit of time and has the unit Watt (Joule per second
W =1J-s71)

dQ

Solid angle defined by a point P and a closed curve. Its magnitude is given by the
radial projection of the closed curve onto a sphere (A) of unit radius (R). Each point of
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Figure 4.10: Planckian locus in CIE 1931 chromaticity diagram. Taken from [46]

the curve is projected to the point from which the solid angle w is measured (Equation
4.10).

Figure 4.11: Illustration of the definition of solid angle. Curve in space radially projected to the sphere in
point P. Area of the projected curve A is the magnitude of the solid angle

The solid angle can be though as to how big an object is perceived by an observer
from a given point. And it is calculated by projecting the silhouette of the object onto the
surface of a unit sphere with center at the observing point (Figure 4.11).

A
TR

Radiant intensity the amount of radiant Flux per unit of solid angle, passing, incident
on, or emerging. It is described by equation 4.11:

w

(4.10)

_ do
 dw
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Thus, the radiance L, is defined in Equation 4.12 and in PBS it can be used to describe
the behavior of a single ray of light.

d*®

L= dwds,cost

(4.12)

Where, ® is the radiant flux, ds,cosf is the projected area influenced by the light from
the solid angle w, 6 is the angle between the direction of the solid angle and the surface
normal at the given point (Figure 4.12) [153].

Flux
d*®

Solid angle
do

Projected
area ds

Surface
ds0

Figure 4.12: Radiance geometric illustration. Adapted from [153]

Finally, the Irradiance F, is the radiant flux per unit area arriving at the point z from
all directions in the hemispherical solid angle above the surface. And can be compute
with the integral of the radiance L(6, ¢) over the hemisphere €2, shown in Equation 4.13:

E:/L(Q,qb)cosgdw (4.13)
Q

4.3.5 Light Reflectance Models

The material properties of the objects define how they appear in different lighting and
viewing conditions. In PBS systems the reflective behavior is described using a Bidirec-
tional Reflectance Distribution Function (BRDF) that is a function that relates the incom-
ing and outgoing radiance at a given point on a surface.

The sources of surface reflection models could be from [181]:

Measured data from real-world surfaces
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Phenomenological models that mimic qualitative properties such as roughness.
Simulation based on the components of the surface

Physical optics using detailed models of light behavior computing solution to Maxwell’s
equations

Geometric optics models derived from known low-level scattering and geometric prop-
erties

The BRDF is a function that takes as inputs the incoming w; and outgoing w, ray
directions and return the weighted contribution of the incoming ray to the final outgoing
contribution. It define how much of the incoming light is returned towards the outgoing
direction .The BRDF is formally defined in equation 4.14 [165]:

dL(w,)  dLp(w,)
fr(wi?wO) n dEz(wz) N Li(wi)cos@dwi (414)

The BRDF f, is defined in differential quantities because it relates only incoming
and outgoing directions independently of other sources that might illuminate the surface.
Where the outgoing radiance L, is weighted by the incoming irradiance ;.

The last step is derived from the definition of irradiance in terms of the radiance (Equa-
tion 4.13). Finally multiplying both sides of equation 4.14 by the denominator and inte-
grating over the hemisphere (2 regarding the incoming direction w; and is obtained the
generic reflectance equation 4.15 for surfaces that are not emitting light:

L, (w,) :/QLi(wi)f,n(wi,wo)COSQidwi (4.15)

This equation describes the output radiance L, in the = point with direction w, as the
integral over the hemisphere of the incoming radiance L; weighted by the Bidirectional
Reflectance Distribution Function f,, and by the Lambert cosine law, that express that
the amount of light is proportional to the angle between the surface normal and the light
direction cosf; = n - w;.

Adding the emission radiance term, the rendering equation proposed by [120] is shown
in equation 4.16. Almost all PBS models are an approximation of this equation which is
completely based on physics and a standard in realistic computer graphics.

L (w,) = Le(wo) + / Li(w;) fr(wiywo)|n - wi|dw; (4.16)
Q

Physically plausible BRDF are positive and real valued f, > 0, energy conserving,
a surface cannot reflect than the incident light and it is reciprocal (Helmholtz principle)
frwi,wo) = frwe, w;) .

One of the main differentiability from different PBS models comes from the char-
acteristics of its BRDF [187]. Some examples of famous analytical BRDF models are:
Cook-Torrance [44], Blinn—Phong [30], Oren—Nayar [172].
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4.3.6 Microfacets theory

Most of BRDF models are based on Microfacets theory which is an analysis of the effects
of the microscopic surface imperfection in the reflectance. Microfacet theory was intro-
duced to computer graphics Cook and Torrance [44] and since then many improvements
have been made to this model.

The Cook and Torrance model BRDF is based on the addition of two components
(Equation 4.17), the specular or surface reflectance f, and the diffuse or body reflectance
fa (Figure 4.3).

frzsfs+dfd (417)

This two components are weighted such that s + d = 1. The diffuse reflectance is
independent of the viewing point thus usually it is a constant. The specular component is
modeled using the Microfacet theory, where the microscopic imperfections of the surface
are view as microfacets, a small Fresnel mirrors, and the surface. As the microfacets
are smaller than the sampling unit, it can be resolved, hence is treated statistically at a
macroscopic level.

In the shading process of a sampling point on the surface, each of the microfacets on
the point has a normal m and share the viewing v and the outgoing direction /. Given that
the angle of the incoming and outgoing directions regarding the surface normal is equal
to the specular reflection.

1 1 1 1 1 1 1
h h h h h h h
Vm\\/\_&\

Figure 4.13: Microfacets that contribute to the reflectance at shading point with incoming direction v and
outgoing direction | are the ones that whose normal m are equal to the vector h (Equation 4.18).

Thus the microfacets that contribute are the ones whose normal is equal to the vector

that is in between the incoming and outgoing directions (Figure 4.13) Equation 4.18:
- I+
|+ 4]

Additionally, because of the microfacets are small structures, two important phenom-
ena occur, the shadowing and the masking. The shadowing is the occlusion of light and
masking is the occlusion of the viewing direction. Thus shadowed and masked surface
does not contribute although there are inter-reflections usually they are not taken into
account.

Therefore, the specular reflectance is parametrized by two statistical measures, the
microfacets surface normals distribution (Normal Distribution Function (NDF) D(h)) and
Shadowing-Masking Function G(I, v, h).
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The NDF D(h) is the distribution function of normals evaluated at the active micro-
facet normal A = m. Indicates the concentration of surface whose normals are equal to h.
This function defines the shape and intensity of the specular reflection. Usually, they are
a function of roughness parameter with a Gaussian-like distribution. Once the roughness
increases the concentration of microfacets around n decrease [110].

On the other hand, the Shadowing-Masking Function G({, v, h) or the geometry term
indicates the proportion of microfacets (with 1 = m) that are not occluded or masked.
Thus, G defines the probability of a microsurface under the conditions ([, v, h) of being
visible.

Finally the general form of the Cook and Torance specular term is presented in Equa-
tion 4.19, where I is the Fresnel reflectance at the active microfacet:

_ F D(h) G(l,v,h)

- 4.19
J T(n-1) (n-v) (419)

4.3.7 Light Transport

The visual result of a scene is the result of infinite bouncing coming from different light
sources and interacting with the objects present in the scene to finally arrive at the view-
point. Each interaction with the objects is composed of a complex combination of reflec-
tion, transmission and light scattering. PBS requires the simulation of all this interaction
known as Global lllumination (Figure 4.14).

Figure 4.14: Light rays are emitted from a light source (Lg) interacting with other objects. From this
interaction the light rays sent back reaching the viewer eye or camera center (F) and are called Direct
Light (Dy,). Others rays interact with other objects before reaching the viewer (Indirect Light Iy,)

In essence, light that interacts once with a surface is called direct lighting and can
be solved by solving the equation once, but the light that interacts multiple times with
different surfaces, indirect light is required to solve the equation recursively. Global illu-
mination involves solving both cases, direct and indirect lighting.
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As presented in the previous Section 4.3.5, Kajiya in 1986 [120] introduced the render-
ing equation (4.16) that formally defines the global illumination problem. And presented
a Monte Carlo algorithm called Path tracing in order to solve it. The main idea is to
perform a back-tracing sampling of the Flux from the observer pixels until a light source
gathering light from all light paths (Figure 4.15).

Light source

Sensor

Figure 4.15: Path tracing algorithm:

Where Monte Carlo integration is used to estimate using random samples a determin-
istic integral (/) (equation 4.20):

I:/Qf(:r)dx, (4.20)

This is performed to sampling random N points according to some density function p
and then computing the estimator (equation 4.21):

N
1 X;

Fo=— Z f(X)

NP (X5)

Therefore, to render the pixel’s area A composed by pixel’s intensities Iy, I5...1y;.
With W as the important function that describes how much of the arriving light from w;

contribute to the output. The pixel measurement (; = 1,..., M) is defined in equation
4.22 [131,224]:

4.21)

Ij:AAM(wi)L(wi)]nw-wi|dwidA(9:) (4.22)

This function run recursively as the light path bounce repeatedly between the scene
surfaces. Where using the Monte Carlo integration, the pixel measurement /; can be
evaluated using the estimator (equation 4.23) with some probability function p(x):

N
P 1 WX f(XG)
I, =— J (4.23)
s

i=1 v
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Since then, different variations of the algorithm such as Bi-directional path tracing
[132] or Metropolis light transport [224] have been proposed intending to make a more
efficient solution to the global illumination problem. Another type of approach for solving
the rendering equation called Radiosity that is based on finite element making it viewer
independent but requiring an expensive solution in complex scenes [80].

Path tracing is of unbiased nature, meaning that it does not introduce and any sys-
tematic error in the approximation of the rendering integral. The expected value of the
estimator will be the mean of the population. This cannot be confused with consistency.

4.3.8 Image Based lighting

There are have been explored another alternatives less expensive such as ambient light or
Image-Based Lighting (IBL). In ambient light indirect lighting is simulated as a constant
coming from everywhere giving unrealistic results.

On the other hand, IBL, Is the process of lighting virtual scenes with the light informa-
tion from the real world. It uses real-world illumination captured in an omnidirectional
High Dynamic Range (HDR). This light probe image has two properties, for every di-
rection in the world there is a pixel whose values are proportional to the real-world light
intensity [55].

Light probes are nowadays available on several websites as shown in figure 4.16a.
Figure 4.16b is shown the interaction of the light prove with the radiance calculation at
point p. The rays that are sampled from the hemisphere that does not encounter any object
cast the values from the light prove. That is the equivalent to get the light values from the
real environment.

(a) (b)

Figure 4.16: Probe light based lighting. In 4.16a and example of spherical light probe. In 4.16b Radiance
interaction at point p with two surfaces. The rays sampled over the hemisphere takes the values from
the light intensity of the light

The representation of the environment in light-based methods could be considered as
distant light containing the radiance information but not considering the BRDF material
properties. [56]

IBL is a technique that let integrate virtual with real information that delivers realistic
results without expensive calculations.
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4.4 Physically Based Domain Variations

In this section is proposed a method for recreating relevant Domain Variables (DV) using
a Physically Based Shading (PBS) approach.

The simulated variations are based on a previous study of the variables that influence
the surrounding understanding algorithms in Industrial Augmented Reality (IAR) (Chap-
ters 3).

Therefore, the considered variations are: POV, intraclass variations, occlusion and
external elements, appearance variations (surface roughness, grime, corrosion), no texture
differentiability between classes 2, not shape or size restriction, lighting, and environment
variations.An example of the considered (and not) objects in this method is presented in
Figure 4.17.

Figure 4.17: On red example of not considered elements: plants, animals, humans, fabrics, textured ob-
Jjects (artistic), transparent. On green example of considered objects: metals and dielectric materials,
complex an simple shapes, similar objects, glossy, with superficial variations, cluttered, multi-material
objects.

The domain variations proposed are shown in Figure 4.18 and can be classified into
three groups. The intrinsic properties of the material and the environmental conditions
that could be considered as general variations for many domains and the extrinsic varia-
tions that are not exclusive of the industrial domain but are the ones that most influence
the change of appearance of this domain.

It is hypothesized that the proposed variables are the main source of the visual varia-
tions of an object in this context (industrial objects). It is worth to highlight that in this
case there is not so common human-made decorative textures where there will be infinite
of patterns to recreate.

But the variation of industrial objects are typically given by the geometry and the raw
materials that usually serves a function and the sources of its variations are not as big as
could be in decorative or artistic elements that are a function of the human imagination.

Thus natural variations of the materials are the main source of distortion of the "ideal"
object representation such as corrosion or grime. The aim of this research is to simulate
realistic visual patterns from the interaction of light and relevant objects characteristics
considering enough variations to get closer to the possible characteristics of the reality.

2Metals are the only ones that corrode but material variation among the same class is also considered

79



Chapter 4. Physically Based Shading of Domain Variables for the Generation of Synthetic
Datasets

Material type

f Index Of Refraction
Intrinsic / Color intensity
Roughness
Geometry

Industrial objects domain variables

Corrosion

L - Extrinsic
Superficial imperfections

Micro displacements Observer position

) Surroundings
Environmental -
External objects

Lighting

Domain specific General variations

Figure 4.18: Industrial domain variations considered. In general are the variations that could apply to
other domains. The specific variations are proposed as main visual influence fro the industrial specific
domain

Therefore, the recognition system could use these patterns, or to be invariant to these
variations, to identify visual patterns that could be useful in the recognition process.

In this research is proposed a set of variables that affect in larger scale the visual repre-
sentation of objects, a method for physically based recreate these variables and produce an
automatically datasets for training algorithms used for surrounding understanding. Addi-
tionally, fully labeled data is produced where each one of the variations recreated is saved
and could be used in training of another process such as segmentation or registration.

This method could be applied to another type of elements where main variations could
be identified and recreated, for instance in plants, variations such as diseases of shape
deformations could be some of the main sources of visual variations.

4.4.1 Overview

The method propose an automatic form for generating fully labeled synthetic data with
each one of the images containing the information regarding:

— Pixel-wise segmentation
— Roughness

— Index Of Refraction (IOR)
— Color
— Material type

— Domain Variables:
— Surface micro-displacements type and amount

— Surface imperfections type and amount
— Grime type and amount

— Corrosion type and amount
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— Environment type and intensity

— Lights
— Direction

— Intensity
— Temperature

— Main objection
— 3D model

— Position

— Euler rotation

Further, the values of each one of the considered variations are drawn from a Proba-
bility Density Function (PDF). This helps to characterize in a more realistic way the form
that the variations appear. At the same time having more control over the whole dataset
ensuring the same distribution independently of its size.

The proposed method inputs are 3D models (with just the geometry, no UV mapping
is required), and a set of 2D maps that define the possible distributions of some of the
variations (e.g. grime, corrosion or environment).

With the previous assets, the first step is to prepare the 3D models which are performed
automatically and it is described in Section 4.7.3. The next step is to render the samples
which characteristics are defined in a configuration file in JSON format.

In this configuration file are defined the characteristics of the dataset such as renders
for class, image resolution, sampling for each pixel, the processing device (CPU or GPU),
number of samples per class or type of distribution and parameters for each one of the DV.
An example of the configuration file is shown in Appendix 4.9.1

4.4.2 General Process

The main task of the generation of the samples consists of creating labeled images of a
set of classes of objects. In summary, the proposed method consists of defining a number
of Point Of View from where is the object class viewed. We have defined the POV as the
position of the main object into space and their rotation in Euler angles thus the virtual
camera remains static. For each POV the object class is rendered with different variations.

It is worth noting that one of the variations for POV is the geometry to achieve intra-
class variation. Therefore for each sample generated for POV the 3D model corresponding
to the class is also changed.

The general samples generation process can be seen in Figure 4.22 and it is composed
by three main process:

1 Setup: Load configuration file in JSON format and set the next parameters:

— Rendering parameters: image resolution, sampling per pixel, processing device
(CPU or GPU), tiles size at rendering time
— Number of variations per POV and of POV per class

— Paths of the materials, environments, 3D models and maps files
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— Type and parameters of the distribution of the variations. Each one of the values
of the DV such as light intensity, POV or material type, among others, at render
time is drawn from a PDF specified in the configuration file. An example of
configuration file is shown in Figure 4.9.1.

All the maps and 3D models are saved in separate files and in this step are loaded
the available ones by listing the files in the path specified in the configuration file.

Additionally, are loaded from external files the base materials (Further described in
Section 4.3.3) and the environments (Section 4.7. These process correspond to the
(2) and (3) of the Figure 4.22.

After loading the main assets, a loop for each one of the classes start. For each of
the classes, a set of different POV of the main objects is defined. And for each one
of the POV, the samples are generated with different variations.

i1 Loading objects: In this step the class and the external 3D models (defined as triangle
meshes) are loaded from external files in OBJ format into the 3D space of the main
scene. In the main scene are located the virtual camera and a setup of lights (Section
4.7). Additionally, both external and main object meshes are previously prepared
given that they were downloaded from a web page (Process described in Section
4.7.3).

(a) Default scene (b) Load main object (¢) Position main object

Figure 4.19: (a) Default scene representation, contains the camera (C'), and the lights set up (L) pointing
all to one common point (lights center) that follows the center of the main object O. (b) 3D models
are loaded from external files to the main scene aligned with global coordinates. (c) The main object is
positioned in the visible volume (in blue V,,) and the materials are assigned to each one of the subparts)

First, it is loaded the main-object model that is aligned with the coordinate system of
the main scene. Therefore the object is located at (0, 0, 0) of the main scene with no
rotation. Then is positioned accordingly to the POV by setting object position and
rotation. Notice that the camera and lights remain static with this approach and only
the 3D models move (Figure 4.19).

After positioning the main object the material and its variations are defined and
assigned (7 in Figure 4.22). The main object 3D model is also loaded with the infor-
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mation of which part of the mesh correspond potentially to a different material. Thus
a loop for each one of the "subparts" is performed and defined the next parameters:

— Intrinsic:

— Type of material: metal or dielectric?.
— IOR

— Color intensity: In the case of dielectric material it refers to the color of the
diffuse component. And in the metals, it refers to the tint of the reflections.

— Roughness
— Extrinsic: defined by the type and amount

— Corrosion (Only for metals)
— Grime

— Superficial imperfections

— Micro-displacements

After defining all the materials of the main object, the process of loading external ob-
jects starts. They are meant to simulate occlusions, shadows and clutter in congruent
consistently with the main object (same environment and light directions).

(a) Load external element (b) Collision check (¢) Multiple elemens

Figure 4.20: (a) Process of loading external elements (O,) to main scene. (b) Collision check with other
elements in scene. (c) Assign materials to external elements

The process of loading external objects is fully explained in (Section 4.7.2). But in
summary it consist Figure 4.20.

Each one of the parameters is drawn from a Probability Density Function (PDF)
that were previously defined in the configuration file by specifying the type of the
distribution (i.e. Gaussian or Exponential) and hyper-parameters such as mean or
minimum or maximum range.

iii Generation: In this stage all the parameters are ready and the rendering process is
performed. The main light (Light direction) is defined form the lights available in

3The limit of the values and type of some of the variations will depend on the material type. This is further explained in Materials
Section (4.3.3)
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the main scene (Figure 4.19a) is turned on and moved to point directly to the main
object and similarly to the other variables its intensity is setup, and all the other lights
in the scene remain hidden to the rendering process. Besides the virtual environment
type and intensity are setups as well.

The rendering process is performed using the GPU and as result for each iteration the
main outputs are, the synthetic image (Figure 4.21a), the mask (Figure 4.21b) that
is an image of the same dimension of the render but in each pixel is specified with
1 if the pixel of the synthetic image corresponding to the main object or 0 otherwise
(Figure 4.21).

(a) Rendering (b) Mask generation (¢) Augmentation

Figure 4.21: (a) Generating render according to properties of material, lights and camera (Section 4.3).
(b) Pixel-wise segmentation of main object. (c) Data augmentation process, this is performed in real
time during training (Section 4.7.4)

As illustrated in Figure 4.21c a last process called Data augmentation require to
complete the generation of the sample. In this step, a random background is added
to the image as together with other transformations (Explained in Section 4.7.4).
This step is performed during the training of the CNN algorithm in order to create
more variation at the training time. Thus the rendered image is saved with the alpha
channel to allow this operation later.

Finally, all the assets that do not belong to the main scene are removed to avoid an
exponential consumption or resources, as it is an automatic process some of the 3D
models contain up to 30 materials and for each one an instance is created.

This process was developed in a script in Python 3 and used as main graphics library
Blender API v2.78. Blender is a cross-platform open-source 3D animation suite. It com-
pletely supports the 3d pipeline including modeling, rigging, animation, and rendering.
In addition, it allows employing Blender’s API for Python scripting in order to write per-
sonalized tools. It has an embedded Python interpreter that can run scripts, draws the user
interface and accesses to some internal tools.

The main reasons for used were that it is highly optimized for the render generation
allowing full GPU integration for the rendering process. It supports to be used as a library
from Python allowing the development of more complicated process (As the one pre-
sented here). It is free, open-source and allows to expand its functions if were required.
Uses an unbiased rendering technique. More important it support the PBS implementa-
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Figure 4.22: General flowchart of the method for generating synthetic samples considering the DV with a
Physically Based Shading approach. Performed in three main steps: (i) setup the type of distribution of
the variables, path of the maps and rendering, (ii) loading objects (iii) rendering and saving meta data.
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tion as it have incorporated Cycles a path tracing rendering motor with already packed
BRDF functions.

4.5 Intrinsic Variables

The intrinsic variables are related to the properties due to its own nature and not by its
relationship with other elements. Together with geometry, the type of the material are the
ones that properly defines an object.

The geometry variations are achieved through having different 3D models for the same
class of objects. These models were download and prepared in a semi-automatic process
explained in Section 4.7.3.

Accordingly to the types of material presented in Section 4.3.3, two main type of
materials dielectrics and metals were simulated and used as building blocks for other
variations such as corrosion.

Given that we decided to use Blender as our main rendering library, and in the moment
of development (Blender version 2.78) was not implemented as default some character-
istics such as Fresnel for metals and the interaction of Fresnel with roughness, there was
required some tweaking for implement some characteristics.

The two basic materials were implemented based on [33,154,193] as will be presented
below in this section. In Figure 4.23 were are shown the render of the two base material
implementation in an environment used for visual testing of the materials. The virtual
environment is composed of a surrounding lighting and the main light.

(a) (b)

Figure 4.23: Render of base materials, dielectric (b) and metal (a). Both were rendered in the test scene
with environment and a main light direction for visually debug of the material’s implementation. Metal
variables: IOR: 1.45, roughness: 0.2, specular intensity: 0.4. Dielectric variables:
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4.5.1 Base Materials

Dielectrics The dielectric shader is the composition of a specular BRDF (GGX micro-
facets distribution* [230]) and a diffuse BRDF (Oren—Nayar [172]). This two functions
are blended together according to the Fresnel effect (Figure 4.24a) using an weighted
mean function (Equation 4.24).

Inputs / Fresnel
Diff. Color Factor
-IOR
- Roughness <\> Specular BRDF —» Output
- Normal Weight i, | Surface
\ Function Shader
Diffuse BRDF —»

Dielectric Shader

(a)

Fresnel

Inputs

Factor Output
- Spec. Color Col
-I0R : Weight olor B Surface
- Roughness | {color|  Function Specular BRDE —*| gpader
- Normal

Metal Shader

(b)

Figure 4.24: Diagram of basic materials. The inputs of both shaders are the same but the color in dielectric
defines the diffuse and in metals the specular reflections. In (a) the Fresnel node defines the blending
factor between the specular and diffuse functions. In (b) the Fresnel function defines the weight factor
of the color mix of the specular reflections. The weight function used is a weighted mean operation

The weighted mean operation is performed according to equation 4.24, where the re-
sult value v,,, and the two inputs v, v3 are weighted according to the factor ¢ :

Uy = (V7€) + V3]c — 1] (4.24)

Metals the metal shader is composed by a single specular reflection BRDF [230]. And
a Fresnel function that defines the factor between the base color of the metal and a white
reflection in a weighted mean operation ((Equation 4.24)). The base color of the metal is
defined by (R, G, B) values (Figure 4.24b).

These materials are in agreement with the physical concepts presented in the previous
section because of they do not break energy conservation as any surface can reflect more
light than the incident, as long as the blending factor is between [0, 1] (Figure 4.24a).

4Different models are available in Blender
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Blender

Disney
Principled

Roughness 0 0,3 0,5

Figure 4.25: Visual comparison between dielectric Disney principled material model (lower row) and
developed materials. Both render in the same scene with same lighting. The IOR of the materials was
1.45 and the specular value for the Disney shader was 0.421

4.5.2 Fresnel

As mentioned before the used version of Blender does not account for the effect of rough-
ness in their Fresnel node. Blender already has implemented a physically based Fresnel
node for dielectrics. The only issue is that it does not take into account the roughness of
the material.

The Fresnel effect makes surfaces appear more reflective approaching to the grazing
angle. This effect decreases proportionally to the roughness increase. We have imple-
mented the workaround proposed by [193] to simulate this effect.

As the Fresnel effect is viewer dependent, The roughness value between [0, 1] act as a
factor between the weighted mean (Equation 4.24) of the surface normal and the incoming
light direction(w;), the result is used as the normal for the default Fresnel node.

As the roughness increases the resulting normal tend to rotate towards the incoming
direction. This effect makes that when roughness is set two one, the Fresnel effect is set
as if the point were looked from the incident angle making the Fresnel effect to disappear.
Additionally as in [33] the values of the roughness were mapping (squaring the input
value) to have a linear perception [193].

Although this is a rough approximation given the absence of Fresnel for metals. Where
input values are not physically but artistic descriptive. In our case, it is not relevant as our
approach simulates possible configuration of parameters, and it is not an experimental
simulation. Therefore while the parameters are in a range of possible values they will
produce physically viable renders, and the result will be the same as used physically
correct parameters.

As comparison, in Figure 4.25 are shown the comparison between the Blender pro-
posed materials (Top row) and PBS Disney principled model [33] (Lower row) at different
roughness.
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The specular value (s) equivalent from the two compared materials in the dielectric
materials is calculated using the equation for special case of the fresnel:

1 n—1\>
_ b 42
* 7 0.08 (n+1) (4.25)

The other parameters of the intrinsic variables are drawn from a range of possible
values in real-life and are set to the base materials (IOR, roughness, color(specular for
metals and diffuse for dielectrics)).

4.6 Extrinsic Variables

The extrinsic variables are given by the relationship with a foreign process and not prop-
erly of the objects.
4.6.1 Corrosion

Corrosion is a chemical or electrochemical reaction of a metal (usually) and its environ-
ment that produces the deterioration of the properties and the material. It is a natural
process as result of the tendency of materials to be in the lowest energy state. most com-
monly, is that the iron and steel combine with water and oxygen forming hydrated iron
oxide (rust) [52].

In order to simulate the corrosion process, it is important to know the different typol-
ogy of the corrosion. To our advantage, the visual classification is very important for
prevention and evaluation of metallic products. The NACE that is the primary society
dedicated to corrosion in the United States recognizes ten forms of corrosion [112]:

1 General Corrosion: Uniformly over the surface

ii Crevice Corrosion: occurs in tight spaces between surface. Not simulated required
external boundary parts knowledge, partially covered with different patterns of cor-
rosions

ii1 Pack Rust: massive deformation pushing parts of the surface
iv Stress Corrosion: Rust in the cracks created by the structural tension

v Galvanic corrosion: Occurs in the boundary of two metals. Not simulated required
external boundary parts knowledge, partially covered with different patterns of cor-
rosions

vi Pitting: Perforation of the metals

vii Flash Rust: simulated with general corrosion

viii Filiform Corrosion: Build under the paint of coated metals
ix Osmotic Blistering: Form blisters in the metal coatings

x Pinpoint Rust: Splatter pattern of rust formed in the metal

89



Chapter 4. Physically Based Shading of Domain Variables for the Generation of Synthetic
Datasets

Therefore, corrosion is simulated as the progressive mix of a dielectric material (cor-
rosion) and a conductor (metal). Depending on the type of corrosion it affects in different
levels (Figure 4.26):

— Distribution of dielectric material (Metalness)
— Roughness of the surface
— Surface displacement

The general procedure started collecting different images of corrosion types and create
maps (texture maps) with them. The maps are bitrmap images (a matrix whose values are
between [0, 1]) that indicates the value of one characteristic, for instance, the roughness
of the surface. These maps are unwrapped over the surface (Process described in Section
4.6.5) indicating the coordinates in the surface that correspond the map value.

We opted for this solution (image-based) instead of procedural as it allows to create
easily a specific type of variation when applied to a specific industrial case, it is just to
take pictures and some editing. Additionally, a procedural based algorithm will by also
prompt to be identified by a powerful NN leading to over-fitting.

All the maps have to contain congruent values regarding each other and have the
same UV coordinates. The characteristics of the maps for simulating the corrosion corre-
spond to: (a) Diffuse color, (b) Metalness, (c) Roughness, (d) Displacement (Figure 4.26).
Where the maps are the material at its maximum corroded level.

(a) The color map is an input of the color of the diffuse component in the rust material
(dielectric). (b) The "metalness" map define the type of material (rust or metal) at each
point of the surface, therefore its values are 1 or 0. (c) The roughness map contains
both the rust and the metal roughness information of each point of the surface. (d) The
displacement map values indicating real displacements of the mesh, the mechanism used
is explained in Section 4.6.4.

The oxidation function (Figure 4.26) takes as input the maps, the level of oxidation and
the base metal properties (IOR, color, and roughness). This function controls the level of
corrosion that governs how strong is the appearance of the oxidation maps. This level is
defined by a value called the corrosion status.

The corrosion status is an input value between [0, 1] that defines the amount of cor-
rosion of the metal. This means that O is the pure metal and 1 fully corroded, where the
appearance of the material is totally defined by the maps. The blend between this two
values is controlled by the oxidation function and it is explained in the next paragraphs.

The roughness of the metal is the result of the average weight (Equation 4.24) of the
roughness of the map and the base metal roughness, the factor of the average is the cor-
rosion status.

Similarly, the displacement is the weighted average of the map displacement and 0
that is no displacement. The mechanism of how the displacements work is presented in
Section 4.6.4.

The distribution of the rust is progressive increasing adding "particles" (small parts) of
rust to the metal, given that there is not a mix of two materials. Each particle is generated
using a Perling noise function [179] and the position of each particle is given by the
metalness map.

The "metalness" map is a binary matrix containing the values of what parts of surfaces
are rusted. We will consider that the input map M, is the most corrode state
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Figure 4.26: General corrosion shader description. As input different maps from a type of corrosion are
set into the oxidation node group that also takes an UV model coordinates. The oxidation group defines
the mix between metal and dielectric

The Perling noise is a gradient noise technique used to produce procedural textures.
It is generated by assigning pseudo-random gradients to each coordinate of a dimension,
then softly interpolate between the two coordinates. This technique has been used for the
recreation of textures of elements of nature given its organic looking appearance.

We set a small scale value for the Perling noise N, generator and increase (added)
to its output values a corrosion factor. These values are later thresholded creating a bi-
nary result, where O represents the rust and 1 the metal. Thus, the values will be 0 or 1
depending on the corrosion factor and the distribution of the Perlin noise.

The corrosion factor is between 0 < ¢y < 1, but is mapped (scaled s and translated t)
accordingly that when ¢y = 0 there will be only metal and c¢; = 1 totally rust. Later this
noise is mixed with the initial "metalness" map generating a new "metalness" map for a
given corrosion stage M/ is shown in Equation 4.26 for each pixel (i, j):

1 if (N,(¢,7) 4+ scg+1t) >05and M,,(2,5) =1
MG ) = ( p(. Jj) +scp+t) (4,7) 426)
0 otherwise

The rendering result of a metal with the same type but different levels of corrosion are
shown in Figure 4.28.
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0

Figure 4.27: Evolution of the distribution of rust (in black) over the metal (white). Controlled by the input
parameter "corrosion status".
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Figure 4.28: Render results of metal with the same type but different levels of corrosion. Material pa-
rameters, a conductor with IOR: 1.45, roughness 0.05, Specular color: 0.4. and Imperfection factor 1

4.6.2 Superficial imperfections

Represent the variation in the roughness of the material due to smudges, grease, dirt,
minimal scratches. The process is similar to the one followed in the corrosion where a
map (roughness map M, ) with values between [0, 1] defines the value of the roughness.
This map is multiplied by a value iy (Imperfection factor) that indicates the strength of
the superficial imperfection, such that 0 < ¢y < 1). When the factor is 1 the map affect
totally the roughness of the object:

M! =i/ M, (4.27)

In order to consider the previous roughness values A/, (the mix between the base
material and the corrosion roughness), the new roughness map M/ will be the factor that
defines the mix between the previous roughness 1/, and the initial roughness map M,.. In
this way when the imperfections factor iy = 0 the roughness of the material is defined by
the base or rust roughness M,,. And when ¢y > 0 the roughness is averagely weighted of
the previous roughness M, and the roughness map )/, using as weights the new roughness
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Figure 4.29: Superficial imperfections generated by three different maps (left corners). Material param-
eters, a conductor with IOR: 1.45, roughness 0.05, Specular color: 0.4. and Imperfection factor 1

map M.

- b=
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r

Figure 4.30: Roughness map mix R between previous roughness map M, and imperfections roughness
map M,

In this way both roughness are take into account. By replacing in Equation 4.24 the
calculated roughness R is computed with the equation 4.28. In this case all operation are
element wise operations (Figure 4.30).

R = M, o M.+ M,|M — 1| (4.28)

An example of the produced renders of three different roughness maps is shown in
Figure 4.29. All have the same factor 7y = 1. The material used was basic conductor with
IOR: 1.45, roughness 0.05, Specular color: 0.4.

4.6.3 Grime

The grime is a superficial layer of other material added to the main one. The material of
the grime is simulated as dielectric, some examples are grease or dust. The configuration
is similar as for how the corrosion works. Where there is one material (Grime) that is
overlaid over the main material distributed according to a map (Figure 4.31).
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Figure 4.31: Example of renders produced with different grime maps. The material used was basic con-
ductor with IOR: 1.45, roughness 0.2, Specular color: 0.4

The progression of the grime is defined by the parameter 0 < gy < 1 (Grime factor).
And the thresholded grime map M|, that govern the distribution of the grime is given by
the equation 4.29. Where the initial grime map M, is weighted by the grime factor and
thresholded:

1 if M, + —1/) > 0.6
M;:{ (9r My +|g; —1]) 4.29)

0 otherwise

The resulting map M, defines the distribution of the grime over the main material. For
each pixel of M if the value is 0 the material assigned to the object is the grime otherwise
the material is the main. Notice that the main material could be the one with already other
variations such as oxidation.

4.6.4 Micro-displacements

The micro displacements are real displacements of the model surface (mesh) and the
main difference with the surface imperfections is that the micro displacements are meant
to simulate deformations of the mesh (up to 4mm). The displacements are performed
at rendering time where the vertex of a mesh is translated along its normal (the vertex
normal [79]).

The amount of the displacement is proportional to a map (Displacement map) this
map contains values between [0, 1], one defining the parts where there are a maximum
displacement and 0 where there are not displacement.

This map is multiplied by a constant that defines the amount of displacement (Dis-
placement factor d¢) and a constant that scales all the values defining the maximum dis-
placement. Additionally, the displacements are added to the displacements coming from
the oxidation process.

In order to obtain high-resolution meshes, a Subdivision Surface operation is applied to
the models before rendering. A Subdivision Surface is a recursive operation in which the
mesh faces are divided into smallest ones in order to create a smooth surface or adding
resolution to the mesh. We applied a simple subdivision in which only more vertex is
added to the mesh without altering the model appearance (Simple subdivision).
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Besides for improving the performance and use of resources, a Adaptive Subdivision
were used. This technique subdivides the meshes based on how far they are from the
camera. Thus the polygons of the surface are divided into smaller ones (micropolygons)
whose size is controlled by their screen projection and a dicing rate [43].

The final result of micro-displacements is shown in Figure 4.32. Where a basic metal
is subject to different deformation patterns.

Figure 4.32: Example of renders produced with different displacement maps. The material used was basic
conductor with IOR: 1.45, roughness 0.2, Specular color: 0.4

4.6.5 Texture Mapping

A commonly used method for adding visual details to a 3D model is to map patterns
onto their surfaces. These texture patterns could be defined by procedural textures or by
a matrix of values (bitmaps). The methods for assigning this maps to the surfaces are
referred as texture mapping. Where a function ¢ maps from the surface S to the texture
space 1" (Equation 4.30) [151].

.5 T (4.30)

The texture space 7' is a rectangle where is placed the texture map and usually is
normalized and represented by the coordinates (u,v) € [0,1]?. The texture coordinate
function ® defines how to warp the texture map to fit the geometry of an object surface.
There are two main approaches for defining this function, geometrically for simple cases
(planar, spherical, cylindrical or cubic projections), and interpolation of texture coordi-
nates [151].

In the interpolation of texture coordinates, each vertex of a triangle mesh is projected
onto the texture space and the values inside the triangle are calculated using barycentric
coordinates. The quality of the "unwrapping" is given by where are assigned the vertex in
the map and the formal coherence regarding the simulated object.

This allows to assign values from a texture map to each point of the surface mesh and
having a finer control (by texel) than by each vertex.

In our case, all the maps that belong to the same extrinsic variation share the same
UV coordinates. The process of assigning the UV coordinates (UV mapping) usually is
performed manually by skilled designers. Nevertheless, we propose an automatic process
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to generate synthetic datasets given that for each class hundreds of 3D models may be
required to be processed.

Therefore, we assign automatically the coordinates using the Blender’s "Smart UV
Project". This method analyzes the input mesh and cuts it based on the angular changes
of the faces. It is suggested for complex geometric forms such as mechanical objects or
architecture [29].

In order to create more variations and avoid over-fitting to the texture of the models,
the UV coordinates of each variation are randomly modified, by applying a rotation and
scaling transformation in each sample generation.

Finally, all these variations are integrated together in two main materials (dielectric
and metal with variations). This configuration exposes the map corresponding to each
variation and its respective factors. The map and the factor are randomly drawn from the
distribution specified in the configuration file in order to create a dataset with different
statistics.

4.7 Environmental Variables

The environmental variables are composed by three main elements: a direct lighting that
is the main source of illumination of the object, the environment light that simulates the
indirect lighting coming from the surroundings and the external elements which are other
objects different to the ones to be recognized.

4.7.1 Lighting

Two different sources of light are used in the scene, the main (direct) and environment
(indirect) lighting. The main light is simulated as a plane the emit light at the normal
direction.

The variables that control the main light will randomly drawn from a specified distri-
bution from the configuration file and are defined as:

Direction is defined as the angle formed by the camera point direction and the normal of
the light. Hence, is a global direction as the camera remain static in all the samples
and the direction of the light will be regarding to the observer. The directions will
be the same no matter the rotation of the objects, but will always be pointing at the
center of the main object (Figure 4.33).

Additionally, only one of the lights will be turned on for render the rest of the lights
will appear as "invisible" in the rendering process.

Intensity defined as the radiant intensity of the plane (irradiance). Thus, we use the visual
flux density at 555nm the peak of the spectral sensitivity of the human eye [153]. The
intensity will be expressed in lumens using the conversion factor (1000W /m? =
683lm/m? at 555nm).

Color temperature The tint of the light is defined by the temperature(K) of a blackbody
radiation model (Section 4.3.3). Incandescent lights resemble the theoretical black-
body as they emit a continuous spectrum of all visible colors of light, therefore, the
color temperature accurately describe the incandescent spectrum [81].
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In the scene, 17 main lights are used and only one is used randomly chosen at the
rendering time in a specific POV. The lights are distributed in the hemisphere around a
point called the "light center". Thus all the lights normals are pointing the lights center.
The center of the object will always be equal to the center of the main object (Figure
4.33).
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(a) (b)

Figure 4.33: Blender main scene. (a) Front view of the main scene. On red global x axis, blue global z
axis, on purple the camera and on orange the center of the lights. The dashed lines indicate the normal
of the light planes. (b) Orthographic view of the main scene. In the scene, 17 main lights are used and
only one is used randomly chosen at the rendering time in a specific POV. The lights are distributed in
the hemisphere around a point called the "light center”. Thus all the lights normals are pointing the
lights center. The center of the object will always be equal to the center of the main object.

The Environment lighting is used to simulate light coming from every direction (di-
rect and indirect) as if the object were placed in some scene without the need to recreate
all the elements. We use the approximation (Image-Based Lighting (IBL)), that use light
proves images that records omnidirectional in HDR images of the incident illumination
conditions in a particular point in space (Section 4.3.8).

The simulation of indirect lighting is important because metals do not present dif-
fuse shader which means that in soft surfaces (low roughness) the incoming and outgoing
direction angle regarding the surface normal tend to be equal. Thus most of their appear-
ance is given by the mirror-like reflection of their surroundings. An example of renders
produced with this configuration is shown in Figure 4.34

4.7.2 Occlusion and External Elements

In order to recreate realistic occlusions and cluttered scenes that are congruent in terms of
all the parts have the same lighting, reflections, and shadows. Different external elements
(Elements not included in the dataset) were added to the scene together with the main
object.
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Figure 4.34: Example of renders produced with different environment light probes. The material used was
basic conductor with IOR: 1.45, roughness 0.2, Specular color: 0.4

In contrast with other methods for generating occlusion where parts of the main ele-
ments are covered or removed [254]. The proposed method creates distracting elements
that share the same environmental conditions in order to simulate realistic scenarios.

The external parts material are treated equally as one of the main objects, where their
parts have different materials that could be metal or dielectric with its respective variations
(intrinsic and extrinsic). The only difference is that their parameters are picked with a
random distribution.

The number of external elements to load for each sample is defined previously in the
configuration file with a type of distribution that indicates the possibility of each number
of elements.

Further, the scale of the external elements is performed in such a way that the larger
dimension of the object fit a specified dimension (limit size). A limit size is a number
randomly picked between two limits previously specified.

The process of position the external parts in the scene is performed in two subpro-
cesses, (1) position the part inside the visible volume, (ii) check collision with other parts
in the scene.

For the first subprocess, the visible volume is the area of the scene inside the visible
limits of the camera (Illustrated in Figure 4.19). First is computed the position of the
object z; in the axis of the direction of the camera x. The random position in this axis
is limited by two limits [L;, Lo] that define how close and how far the object is from the
viewer.

After the position in the axis, x is defined, the position in the other axis is defined in
the same way. A random value is computed inside two limits, but in this case, the limits
are set by the visible limit at the « coordinate. As the rays of the camera can be traced
with a linear equation, the limits of the other axis are [—mx;, mx] as shown in Figure
4.35.

The slope of the camera m is obtained by dividing the half of the sensor width IV with
the focal length f (Equation 4.31)

W2
- f

For the second subprocess, a routine tries to load the objects and avoid collisions with

m (4.31)
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Figure 4.35: Random coordinates (x1, z1) for position external elements inside visible volume (in gray).
First the coordinate x1 is computed inside the limits [L1, Ls]. The position zy is computed inside the
limits [-mx1, maq].

the already objects present in the virtual scene. A Bounding Box (BB) collision check,
run each time a part is randomly positioned if it is in a collision, it positions the part again
in another random position. It repeats this operation for a defined number of times. In the
end, there is the possibility that the part is in a collision but is saved in the label of the
render.

The BB collision check compare the BB representation of two objects. Each one of
the vertexes of the is checks if are inside the volume of the other BB. Thus a new object
to be placed is compared with each object present in the virtual scene.

Finally, after the render is finished the pixel-wise segmentation, that indicates which
pixel belongs to the main object is saved (Figure 4.21b). This file is a matrix of the same
dimensions of the rendered image (Figure 4.36). It is acquired by setting an index to the
main object that is later returned when a camera ray hits the object at rendering time.

4.7.3 Automatic model preparing

The model fixer is a semi-automatic routine that is aimed to prepare a 3D model for
rendering. It is semi-automatic because it displays the model and asks for a user to tell if
the final result is good enough, and if not it tries different patterns of importing (Figure
4.37).

This routine is composed of the next steps:

1 Import file: input files used are in DAE format

i1 Clear parts parent relationships. The parent relationships constrain the rotation, po-
sition, and scale of an object to the transformations performed to another object (the
parent). When the object is imported, the parent relationship between their parts is
cleared. Two types of clearing can be performed, conserving the transformation of
the child objects or that they return to the original position/scale/rotation.

First is performed one and asked the user if the object parts are located correctly if
not it tries the other parent cleaning.

111 Join all the parts into a single mesh
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Figure 4.36: Example of external elements and respective pixel wise segmentation. Main objects (a) lock,
(b) bearing, (c) gear.

iv Remove doubles vertex: merge the vertex that is at a distance less than a defined
value.

v Convert triangles to quads model: convert all the triangles of a mesh to quadrangles
by removing the shared edge between two adjacent triangles.

vi Make normals consistent: make all the face normals to face outside the object

vii UV mapping: assign UV coordinates to the mesh, the method used is the Blender’s
"Smart UV Project". This method analyzes the input mesh and cuts it based on the
angular changes of the faces. It is suggested for complex geometric forms such as
mechanical objects or architecture [29].

viii Remove external elements except for the main object, all the parts that were not
joined in the main mesh are removed

ix Rename mesh equal to save filename
x Assign the model center to be the geometry centroid
xi Apply all transformations (Location — Rotation - Scale) made to the object

xii Smooth Shading: surface normals will be interpolated at shading time, thus surfaces
will appear smooth

xiii Edge Split: modify the vertex normals according to the edge angles to make the
edges appear sharp

xiv Surface Subdivision to add resolution to the mesh

xv Save Blend file with name equal to mesh
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The materials are imported as assigned for the designers in the original files. Later
when generating the renders, each material is overridden for the ones presented here.
This allows keeping the link between the mesh and materials division.

Figure 4.37: From left to right: (i) Imported .dae file from 3dwarehouse.sketchup.com.(ii) Prepared model
(iii) Prepared model displaying UV coordinates.

4.7.4 Data Augmentation

Data Augmentation is a commonly used technique for increasing the number of variations
of datasets without the need acquiring new data. This is achieved by applying a set of
transformations to each one of the samples of a dataset.

In our case, the dataset is produced without any data augmentation but instead, it is
performed in real time during training allowing that each sample that is used for training
to be different. Thus it is avoided to save unnecessary data and be flexible to different
types of augmentation depending on the task.

For instance, a commonly used transformation is to rotate each sample at a random
angle. If this is performed the information of position and rotation of the camera regarding
the part is corrupted and can not be used for training a model for registratrion.

Therefore in order to allow the data augmentation in training time, all the samples are
saved with the alpha channel to allow the addition of backgrounds, a segmentation mask
and all the information used for generating each sample.

4.8 Discussion and Future Work

In this chapter has been presented a method for the creation of fully labeled synthetic
datasets for training and evaluating surrounding understanding algorithms. It is derived
from the physically based recreation of proposed relevant characteristics classified as in-
trinsic, extrinsic and environmental that typically influence surrounding understanding
methods.

Therefore it is based on typical factors that influence the visual characteristics of the
objects found in the literature. Specific cases in the industry could happen where there
are other factors, but the same method applies in order to recreate the domain variable of
interest.
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Each one of the parameters that define the characteristics of the renders is drawn from
determined Probability Density Function. This configuration allows to define ranges of
possible values that could take some properties of the real-life in physically accurate
terms, and how often is expected to find these values in a specific case.

Additionally, this defines the bias of the datasets in terms of high level of characteris-
tics, such as level of corrosion of the parts of the typical view of the objects. Instead of
low-level characteristics such as the histogram of colors or pixel by pixel comparisons.

Regarding the level of accuracy of the physical models used for the recreation of the re-
ality, there will be always a balance between deep and agility in terms of implementation
and performance. In our case, we have opted for simulating the most relevant factors (ac-
cording to literature) that cause larger and broader impact. For instance, smaller physical
phenomena (e.g. iridescence or caustics) were not considered as there were not favorable
in cost-benefice terms of visual impact.

Another point to consider is that the input assets (maps, 3D models and light probes)
define the bias and well performance of the proposed method. In the case of the texture
maps, we opted for this solution (image-based) instead of procedural as it allows to create
easily a specific type of variation when applied to a specific industrial case, it is just to
take pictures and some editing. Additionally, a procedural based algorithm will be also
prompt to be identified by a powerful NN leading to over-fitting. And the same applies to
the light probes.

Nevertheless the main issue will arrive when it is not aimed to recognize a particu-
lar case but instead a broader domain, for instance, all the nuts from ImageNet dataset.
The number of the assets and how well they fit the target domain statistics will play an
important role.

Further, automatic UV mapping play an important role given that it defines the location
of variations of the objects. The current implementation is purely based on geometric
characteristics and it is the same for all the variations. A future development could be
based on the implementation on a smart location of variation maps depending on the type
of the variations and distribution around the parts.

In many cases, the background where is placed an object could reveal information to
the surrounding understanding algorithm about the object. However, this information is
weak and could lead to learning features that are not by itself of the objects. This leads
to one of the major issues of feature learning techniques, that no one is really sure about
the features learned by the models. Therefore they could present a good performance
in laboratory tests, but in real-life miss-labeling could arise from weak features in novel
scenarios.

On the other hand, simulating coherent scenes will allow algorithms to learn the in-
teractions of the environment and objects present in the scene. Still, we believe that this
could be better achieved by a separate learning process. In the first one, robust character-
istics of the objects are learned. In the second one, interpretation of the surroundings and
the role of the objects could be inferred. Therefore, the presented method is located in the
first type of learning where only is simulated light-matter interactions.

Hence, the synthetic datasets could be an indirect form of controlling the features
learned by the NN based models by controlling the type and characteristics of the input
data.

Finally, this represents a method for easily generate training data that otherwise will be
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tedious such as pixel-wise segmentation or Point Of View (POV) that takes into account
realistic variations of the objects. In many cases, it could be mixed with other methods,
for instance, enhancing a real photos dataset or other DA methods.

In the next Chapter will be presented a study case of the proposed method for the task
of object classification framed into a domain adaptation problem.
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4.9 Appendix

4.9.1 Config file and DV distribution

Each one of the values of the DV such as light intensity, POV or material type among
others, at render time is drawn from a PDF specified in the configuration file. An example
of configuration file (Exponential distributions).

{
"saveFolder" : "/tmp/renders/",
"modelFolder" : "/3D_models/models/",
"ext_model_folder" : "/3D_models/ext_models/",
"envFolder" : "/Environment/",
"materialsFolder" : "/Material/",
"texturesFolder" : "/Material/textures/",
"main_blend_file" : "/Cycles/Scene.blend",
"classes_to_render" : ["nut", "shock", "key"],
"samples_render" : 10,
"img_res" : 128,
"render_processor" : "GPU",
"render_tile_size" : 128,
"num_pov" : 1000,
"num_rand_var" : 1,
"starting_pov" : 0,
"metal_probability": 0.5,
"pov_pos_distribution" : "normal",
"pov_rot_distribution" : "normal",
"pov_pos_sigma" : 100,
"pov_pos_mean" : [800,0,0],
"pov_rot_sigma" : 40,
"pov_rot_mean": [0,0,0],
"light_distribution" : "random_simple",
"light_int_lim" : [2600, 3300, 100],
"light_temp_lim" : [3000, 5500, 5007,
"environ_int_distribution" : "normal",
"environ_int_mean": 2.5,
"environ_int_sigma": 0.2,
"num_ext_elem_distribution": "random_simple",
"ext_elem_lim" : [0, 5, 1],
"color_distribution": "random_simple",
"color_dielectric_lim" : [0.1, 0.9, 0.1],
"color_metal_lim" : [0.5, 1, 0.1],
"ior_distribution": "random_simple",
"ior_dielectric_lim" : [1.3, 1.7, 0.1],
"ior_metal_lim" : [0.5, 4, 0.1],
"corrosion_distribution": "exponential",
"corrosion_beta": 0.1,
"grime_distribution": "exponential",
"grime_beta": 0.1,
"gloss_distribution": "exponential",
"gloss_beta": 0.2,
"displacement_distribution": "exponential",
"displacement_beta": 0.2,
"roughness_distribution": "normal",
"roughness_mean": 0.1,
"roughness_sigma": 0.05

}
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4.9.2 Renders Example

Examples of the renders produced with the presented method of recreating domain vari-

ables (Figure 4.38).
! T

Figure 4.38: Example of renders produced with the presented method.
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CHAPTER

Convolutional Neural Network for Domain
Adaptation a Study Case

5.1 Introduction

In this chapter is presented a series of experiments using the proposed method for the cre-
ation of synthetic datasets for training and evaluating surrounding understanding meth-
ods. Thus the proposed synthetic dataset could be used for other tasks such as segmenta-
tion or registration.

Nevertheless, this study will be focused on object detection due to the importance of
Industrial Augmented Reality (IAR) which is the frame of this work. Where CNN models
are trained with synthetic data in order to recognize real-life objects.

The differences with most of the previous research in the field of Domain Adaptation
(DA) is that usually is available a small representation of the target domain (real photos)
[45]. In contrast, this research deals with training solely with synthetic datasets, but
specifically, it is aimed to determine the influence of the variation of domain variables

Previous research has stated that increasing the realism in the synthetic datasets in-
crease the performance [160,178,251] and that mixing synthetic data with the real images
surpass the performance of the trained models with only real data. Even if the synthetic
data is in a lowest level of realism (wireframe) [160].

Similarly Physically Based Shading (PBS) have been proposed [116,251] showing that
it improves the performance over other shading methods. Nonetheless, these research use
perfect materials, in optimal conditions.

Another approach could be to create the data using random variations of some of the
characteristics of the domain without the intention of creating realist results (Domain
randomization ). By selecting a property and randomly assign values creating high levels
of variation in the dataset. This approach proves that using large enough datasets the

Juan Carlos Arbeldez Politecnico di Milano



Chapter 5. Convolutional Neural Network for Domain Adaptation a Study Case

performance achieved is useful for some visual tasks [214].

Although it is possible to create samples by assigning totally random values to each
part of the surface of the objects, the probability of creating patterns useful patterns will be
immense. Thus for domain randomization it is necessary to define rules for the variations.
[214] proposed to variate procedural textures (checkboard or gradients). It is hypothesized
by the authors that realistic variations could lead to improving the results because the
patterns recreated are similar to the ones found in real photos.

Following that line of ideas and that one of the keys to obtaining realistic renderings
is the simulation of the imperfections of reality, in Chapter 4 is proposed a method for
the creation of synthetic datasets that recreates relevant domain variations using a PBS
approach accounting the distribution of the variations.

From a Domain randomization perspective this approach is based on setting real-life
based rules in the possible variations of the domain. In order to recreate feasible patterns
that occur in reality, shorten the distance between domains.

Additionally, this applies to objects were their main visual variations are due to the
physical-chemical process of the rough materials. Another type of variations found in
products could be due to artistic textures in objects. But in general, the proposed method
could be applied to another type of elements were the main factors of the visual variation
could be identified.

5.1.1 Domain Adaptation (DA)

The problem faced in this research is framed under the field of Transfer Learning (TL). In
this section is presented a formal definition and notation of [45,174,239].

A Domain D is described by two parts, a feature space X and a marginal probability
distribution P(X) where X = {z1,...,x,}. The feature space X is composed of all
possible features and X is a particular learning sample set of the domain with n number
of features.

For a given domain D = {X, P(X)}, a task T could be defined by two components
as well, a label space ) and a predictive function f(-) trained from the feature-label z;, y;
where z; € Xandy; € Y. Where Y = {yy, ..., y, } are the corresponding labels of the
particular learning sample set X.

The function f(-) predicts the corresponding label f(x) of a new feature x. The pre-
dictive function can be seen as P(y|x), the probability of y given an unseen feature .

In a general case, we have two domains with their related tasks, the source domain
DS = {Xx5 P(X®)} and its respective task 7° = {¥°, P(YS|X®)}. Similarly, the
target domain D7 = {X7, P(XT)} with T7 = {Y7, P(YT|XT)}.

Therefore Transfer Learning is defined as the process of improve the target predictive
function P(YT|XT) using information from D° and 7° with the condition that D° #
D7 or TS # T7. When both (source and target) are equal, the problem correspond to a
classical ML application.

In DA methods, the task in the source and target are the same 7° = T (trans-
ductive TL). However the data representation is different or have different distributions
XS # XT. According to this definition label sets are shared J° = Y7 = ) and the
predictive functions are the same P(YT|XT) = P(YS|X5). In real application the sec-
ond supposition rarely holds, therefore the DA covers the cases where only the labels are
shared.

108



5.2. CNN Architecture

5.1.2 Hypotheses

We will refer to two domains, the real (target D7) and synthetic (source D). The target
domain is defined by a dataset that contains images obtained from photos of the objects.
The source refers to the one created with the proposed method (Chapter 4). Each one is
referred as a different domain (D® # D7) with its own marginal probability distribution
P(X)) and their share the same task 75 = 7.

1 The physically-based recreation of the possible variations of objects in real-life will
recreate also the visual patterns generated by the light-matter interaction that are
learned by NN models. This will lead to obtaining better performance results than
training in their absence (in datasets with similar characteristics).

i1 If two domains (source and target) are closely related, the differentiability of the
objects will be independent of the type of training (with synthetic or real images).
Performance no matter the type of training will depend on the chosen objects. There-
fore, the same groups of classes will have the same type of behavior in both domains.

ii1i Higher resolution samples contain more detailed information, therefore the differ-
ence between performance between domains will be proportional to the resolution
of the samples.

iv Pre-trained models in large real-life datasets learned basic features (edges, corners,
and curves among others) in their convolutional layers. Fine-tuning this model will
boost the performance but the domain performance difference will continue as this
differences should be caused by the characteristics difference but not for the recre-
ation of the basic features.

v In domains highly related, the updates of the parameters in the learning process
of NN using one domain, should affect the performance of both domains in equal
directions.

vi The major difference in performance of NN trained in different domains are due to
the mismatch of domain characteristics if they are coherent regarding the laws of
physics that govern the samples.

In the next Section 5.2 will be presented the architectures of trained CNN models, Next
the experiments design in Section 5.3 followed by the creation of the synthetic dataset
(Section 5.4) and finally the results are presented in Section 5.5

5.2 CNN Architecture

The used architecture for the tests is MobileNet [106]. MobileNet is an efficient CNN
architecture proposed to be used mobile vision applications, thus it fits the needs of the
framework of this thesis in Industrial Augmented Reality (IAR) applications. In this
section a brief introduction to the architecture is presented.

The core MobileNet architecture is their proposed depthwise separable filters. Where
the main intention of is to reduce the required computational power of traditional convo-
lution filters.
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The depthwise separable filters are composed by two standard convolutions, (i) Depth-
wise convolution, which is applied to each one of the channels of input and (ii) Pointwise
convolution, that is a 1x1 filter used to combine the outputs of the depthwise convolution.

In classic CNN architectures the convolution filter KX perform both filtering and com-
bining in a single step. Where the filtering process applies a set (/N) of convolutional
kernels (dimensions (Dg, Dy, M)) and combine when stacking the results of the convo-
lution of an input feature map F'. Therefore, the next filters are required to have an equal
depth of the previous activations (dimensions (Dg, D, M)) that the produced feature
map G (Figure 5.1).

1l
O

- Z

Figure 5.1: Classic convolution operation in CNN. An input feature map F with dimension (D, D)
and M channels is convoluted by the set of filters K producing a feature map G with dimensions
(Dr,Dfp,N)

On contra proposition in MobileNets, each operation of the convolution (filtering and
combining) is performed in a different layer. First, a convolution for each channel is
performed independently (depthwise K'), therefore the number of kernels is equal to the
number of input channels. Later the activation of these kernels is combined using point-
wise convolutions G with N number of filters (Figure 5.2).

Therefore, this architecture relies all on its computations in 1x1 computation that is
highly optimized. Additionally, each one of the convolutions is followed by a batch nor-
malization [111] and a RELU nonlinearity.

The total architecture is formed by initially a regular convolution, followed by depth-
wise filters and a final fully connected layer to sum 28 layers. In our case we used Adam
optimizer [123] and the width and resolution multipliers as default o = 1, p = 1.

Finally, in our experiments, we used a fine-tuning technique, where all the initial
weights of the convolutional filters are set from a pre-trained model and are not updated
in the training process. And only the last fully connected layer is updated in the training
process with the images from the new domain.

5.3 Experiments

The basic configuration of all the experiments consist of training several CNN models
with different source datasets under the same conditions (classes, resolution, initializa-
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Figure 5.2: MobileNet depthwise convolutions. For each channel is performed independently (depthwise
K), with the number of kernels is equal to the number of input channels M. Later the activation of these
kernels is combined using pointwise convolutions G with N number of filters.

tion). Then evaluate the predictions of the models taking as input data the target dataset
(Figure 5.3).
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Figure 5.3: Basic configuration of experiments. Two models (Model,cq; and M odelsyntn) trained with
its respective datasets and cross evaluated the evaluation datasets. The results are the Acc that stands
for accuracy. In red and green are process of mayor interest, compare the evaluation of models with
training with synthetic vs real.

The training of this two models (Figure 5.3) are performed using the same conditions:
— Classes: Number and type

— Samples Resolution and all the images were square (weight=width)

— Number of times each sample feed the training of the model (Epocs).

— Random initialization, the random initial weights are the same for both models

— Fine-tuning: initial weights are taken from a pre-trained model.

— Architecture type: internal configuration of the models
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— Regularization

This basic configuration is performed several times picking random classes and train-
ing both models. At the same time, fixing other parameters. Therefore the next variables
were considered across the experiments:

i Model of the same class

ii Number of models

ii1 Training samples resolution

iv Epochs

v Fine-tuning

vi Extrinsic variables distribution (Section 4.6)
vii Intrinsic variables distribution (Section 4.5)
viii Environmental variables

The experiments were divided into two main groups, the first one (Unknown char-
acteristics) without knowing the target domain characteristics or any information about
the classes, and the second with a crafted dataset (Known characteristics) with known
characteristics of their parts such as materials, backgrounds and extrinsic variations.

Further, the difference between the two types of experiments is that in the first one
(Unknown characteristics) the marginal probability distribution is totally unknown, while
in the known characteristics, the marginal probability distribution is partially known as
some of its characteristics and the possibility that they appear is known.

Additionally three datasets sources will be compared:

— Synth: the proposed method that in the case of the experiments with the unknown
statiscics is generated using three difference configuration aimed to produce datasets
with different marginal distributions

— Clay: is a state of the art, non-realistic rendering technique. It sets a dull gray
material for the objects and only diffuse reflections are calculated.

— Photos: is a subset (70%) of the target domain dataset. In the experiments of the
unknown statiscics is referred as imgnet.

Therefore, the datasets generated with the proposed method (synth) will have the same
feature space X’ but different marginal probability distribution P(X). They are aimed
to present a more similar feature space than the Clay rendering with respect the target
domain. On the other side the photos will have the same feature space and marginal
distribution that the target.

5.3.1 Known Characteristics

The experiments of the known characteristics are aimed to recreate an "industrial sce-
nario", where there is supposed to have the requirement of identifying the parts of a
crosshead gimbal. This object is composed of six parts, four metal components and two
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Figure 5.4: Samples of the parts of the crosshead gimbal used as a target domain with the index of the
experiments. The variation of the backgrounds were minimized using a white background.

dielectric parts (Figure 5.4). Hence the distribution of some of its characteristics is known
beforehand.

The photos of the gimbal were obtained recording videos around each one of the ob-
jects in a white background and sampling from the frames a defined number of images.
Additionally, 20% of the samples of each class were objects with some kind of extrinsic
variations (grime, corrosion among others). Thus, the photos will be taken controlling
as much as possible the intrinsic and environmental variables to study the effect of the
extrinsic variation. Thus the controlled variables are:

— Geometry: the exact 3D model of the part is known and there will not be intra-class
variations

— Material of the parts: all the parts will have the same material across all the samples
— Background of the parts: plain white color
— Number of samples per class

— External elements, there will be not external elements. In each sample only will be
a target class.

— Extrinsic variations (grime and corrosion)

The photos dataset is divided in two, 70% for training as if it was a regular ML prob-
lem and 30% for testing. This testing dataset is used to evaluate the performance of each
source dataset compared. In the experiments, the CNN models were trained with three
source datasets: proposed synthetic method (Chapter 4), Clay rendering and the real pho-
tos.

For each one of the methods was trained 8 acrshortcnn models using two approaches.
(1) fine tuning a pre-trained model in ImageNet with the source datasets. (ii) Trained the
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models from random initialization, where all of the layers of the model are updated in the
training process. The experiment was conducted several times (8 for each source method)
in order to have a statistical approach given the variations due to the random process of
CNN training.

For this experiment we used Mobilenet with the next parameters: Dropout 0.8, o = 1,
p = 1 and samples resolution 224px. For the fine tuning, the models were trained 10
epochs and for the random initialization 20 epochs

Finally for each trained model, is calculated the accuracy per class. That is obtained
by measuring the prediction of the model vs the ground truth when passing the images of
each class of the photos testing dataset.

5.3.2 Unknown characteristics

This set of experiments were made with a target domain with unknown characteristics
and their distribution. Where the only information is known is the general category of
the class name (e.g nuts, screwdrivers). There was not known the specific geometry of
the parts, materials or environments. The used target dataset is a subgroup of 28 classes
(Appendix 5.8.1) obtained from ImageNet [191].

The main experiments performed for unknown domains are summarized in Table 5.1.
Additionally, for each main experiment other variables were considered such as blurring
the images, the number of training epochs or changes in the target dataset that will explain
in deep in each experiment.

Table 5.1: Experiments summary with real dataset with unknown characteristics. List values indicates that
the experiment were conducted with each one of the values. The values of the last column (exp, fixed
and rand) make reference to three types of configuration used to create the synthetic datasets . Where
the parameters of the DV variables are drawn from specified the PDF

Exp. Models Classes Resolution  Fine-tune Epoch Configuration
1 25 5 224 no 10 [exp, fixed, rand, clay]
2 25 5 224 yes 5 [exp, fixed, rand, clay]
3 5 10 [64,128,256] no 10 exp
4 5 [5,10,20] 224 yes 5 exp

In the Table 5.1, the lists of values indicates that the experiment was conducted with
each one of the values. The last columns refer to the method used for creating the syn-
thetic dataset. As the method proposed for the synthetic generation allows to define the
parameters of the variables (light intensity, POV, amount of corrosion among others) from
Probability Density Function (PDF). Different configurations used for the creating of the
synthetic datasets:

Exp Intended to produce a smooth distribution of the parameters from an expected value.
The most relevant parameters are generated with the next configuration, full config-
uration is found in Appendix 4.9.1:

— POV: Gaussian with rotation: o = 40, 1 = [0, 0, 0], in this case is the typically
expected view that was acquired from the most common view angle of the 3D
models, the rotation is the Euler rotation of the 3D model. For the position:
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o = [800,0, 0], x = 100 where the camera is located at (0, 0, 0) and pointing to
the positive x axis.

— Lights intensity: temperature and direction: random

— Environment lights: Gaussian o = 0.2, i = 2.5

— Number of external elements: random pick of [0, 1, 5] number of elements
— Material probability: 50% metal

— Intrinsic variables: negative exponential distribution (Corrosion S = 0.1, grime
B = 0.1, superficial imperfections 5 = 0.2 and micro-displacements 5 = (.2)

Fixed : the extrinsic variables to be 0 and no external elements
Rand : all the variables are set to random without external elements

Additionally, a state of the art method for rendering called Clay rendering was used
to compare the use of PBS versus a not realistic approach for creating datasets.

Finally, in the fine-tuning process, a pre-trained model is loaded. In this case, we
choose to use a pre-trained model in /mageNet, and in this experiments do not use the
classes in which the model was pre-trained. In total 28 were used for this experiment
from a total of 45 classes that were used for initial experimentation. The process consists
in load the pre-trained model, set all the convolutional layers weights to be fixed (not
trained) and the weights at the top layers, the fully connected, are trained with the new
dataset.

5.4 Generation of Datasets

5.4.1 Synthetic dataset

The generation of the synthetic datasets is performed in two steps: First is to collect the
next assets:

3D models In the case of the unknown characteristics the 3D models from both target
classes and external models were download from 3D Warehouse [1] that is a free on-
line repository of 3D models. Different 3D models from each class were downloaded
in DAE format and prepared using the algorithm presented in Section 4.7.3. In total
2044 models were downloaded and fixed for the target elements and for the external
elements a total of 306 models.

Intrinsec Variation Maps The variation maps were also available in different web-pages
[5-7]. Additionally for them to work better, they were processed for make them
"seamless". The algorithm used is the one available in Gimp [4] that blend the op-
posite content of the borders, allowing to avoid strong variations of the texture when
it repeats over the surfaces.

Light probes Similarly light probes are available online in multiple websites. Some of
the used from the experiments were downloaded from [54].

Next step is to define the type of distribution of the creating a JSON configuration file
with the variables shown in Appendix 4.9.1. Additionally, this configuration file defines
another property of the renders, the ones used for the experiment were:
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— Resolution: 128px for unknown and 224px for known characteristics experiments
— Sampling: 10
— Number of renders per class: 1000

Some examples of the renders generated for the experiments by the proposed method
are shown in Figure 5.5. These examples were taken from the dataset generated using
the exponential distribution configuration (Appendix 4.9.1). In the Figure are shown the
classes (a) screw, (b) nut, (c) piston, and (d) gear.

(b) (c) (d)

Figure 5.5: Examples taken from the dataset generated by the proposed method using the exponential
distribution configuration (Appendix 4.9.1). In the Figure are shown the classes (a) screw, (b) nut, (c)
piston and (d) gear.

The examples of the samples generated with the Clay method are presented in Figure
5.6

Figure 5.6: Clay rendering examples taken from the dataset used for the experiments. In the Figure are
shown the classes (a) screw, (b) nut, (c) piston and (d) gear.

5.4.2 Real Photos Datasets

The acquisition of the real images, as mentioned in the previous (Section 5.3), two real
photos datasets were acquired. The first one a subset of ImageNet where each class is
access through an ID (The ID for the experiment are available in Section 5.8.1) and were
downloaded using [203].
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(d)

Figure 5.7: Example taken from the ImageNet dataset. In the Figure are shown the classes (a) screw, (b)
nut, (c) piston and (d) gear.

The example of images taken from the ImageNet dataset are showed in Figure 5.7

For the known characteristics dataset, the photos were taken. For this study, 6 indus-
trial parts of a crosshead gimbal were selected. For each one of the parts, different videos
of the parts in different positions were recorded. The backgrounds of all the parts were
the same, a white paper (Figure 5.4).

Additionally, the 20% of the samples of the gimbal dataset were composed of parts
with some kind of extrinsic variation (Section 4.6). In order to achieve this, different parts
were used and the samples were extracted from videos of the parts. For our experiments,
we sampled 800 frames of the video of parts without ! extrinsic variations and 200 from
the videos of objects with this variations.

5.5 Results

In this section are presented the results of the experiments for each type of dataset. The
metric used to measure the closeness of a prediction of the true value is the accuracy A..
defined in Equation 5.1. Where T, are true positive, 7;, true negative and m the number
of samples.

_ T+ T
a m

Aee 5.1

5.5.1 Known Characteristics Dataset Results

Fine tuning

In this section are presented the results of fine tuning a pre-trained model in ImageNet to
a specific domain (Section 5.3.1) using three different datasets. (i) Synthetic: the method
proposed in Chapter 4. (i1) Clay rendering and (iii) using real photos.

The process followed was to train only the fully connected layer of the pre-trained
model with each one of the datasets and evaluate how well they predict the appearance of
the classes in the images of the photos test dataset. The general results are shown in Table
5.2.

ISome variations as surface imperfections such as smudges or small scratches are always present in real life objects
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Table 5.2: Known statistic experiment results summary of fine tuning models with source datasets (Synth,
Clay and Photos) in the task of classification in the domain of the Photos. The distribution of the
accuracies per class were compared with the ones produced with the Synth training using Levene and
Monte Carlos randomization tests

Source Acc.(%) Levene pval (vs Synth) MC rand. Pval (vs Synth)

Synth 532 - -
Clay 10.9 5.90E-06 0
Photos 75.6 0.005 0.014

In the results are compared the distribution of the prediction accuracies per class of
the models trained with the Synth method versus the Photos and Clay trained models.
None of the distributions were Normal, thus a no parametric analysis was performed.
Nevertheless, the distribution of the accuracies seems to have a significance (p-value <
0.05) difference in the variance (Levene test). Therefore a mean analysis was performed
using a Monte Carlo Randomization [84] showing that the compared samples seem to be
drawn from the distribution with different means (Table 5.2).

The distribution of the accuracies per class of the models trained with Synth (red) and
Photos (blue) sources are shown in Figure 5.8. Further, the best accuracy model for source
training is shown in Table 5.3.
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Figure 5.8: Accuracy distribution per class of predictions of the models fine tuned with Synth (red) and
Photos (green) datasets. The models predict the presence of a class in an photo of a target testing
dataset

Additionally, as the synthetic images are saved with the alpha channel, allows to vari-
ates its background. Thus a comparison was made between augmenting the synthetic
dataset with random backgrounds or using the same as the target dataset. The results
showed no significant difference (Levene p-val: 0.64 and Kruskal-Wallis p-val: 0.5).

The models trained with the same background that the target obtained an accuracy
mean 6.4% better than the random backgrounds. Similarly, the best accuracy obtained by
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Table 5.3: Best accuracy obtained by one of the models fine tuned with the evaluated source datasets

Class idx
0 1 2 3 4 5

Synth 66.8 525 99.7 0 90.7 88.6 69.5
Clay 17.2 0 0 89.6 133 0 0
Photos 856 90.7 100 554 963 727 984

Source Mean

the models of the random backgrounds was 7.1% inferior.

Random initialization

In this case, all the models were trained from initial random values as well as all the layers
weight were updated during the training. The summary of the results are shown in Table
5.4 where is shown the mean accuracy of prediction of the models over the target domain
by each source training.

Table 5.4: Known statistic experiment results summary of comparing three source of training datasets
(Synth, Clay and Photos) in the task of classification in the domain of the Photos. The distribution of
the accuracies per class were compared with the ones produced with the Synth training using Levene
and Kruskal tests

Source Acc.(%) Levene pval (vs Synth) Kruskal-pval ( vs Synth )

Synth 23,6 - -
Clay 14,6 0.18 0.031
Photos 64.9 0.28 7.04E-08

Further, (Table 5.4) present the results of the homoscedasticity test (Levene) and vari-
ance analysis (Kruskal-Wallis) comparing the Photos and Clay methods with the Syn-
thetic. The best accuracy for each training type is found in Table 5.5.

Table 5.5: Best accuracy obtained by one of the models trained with the evaluated source datasets

Classes Index
0 1 2 3 4 5

Synth 285 156 14 0 80 62 0
Clay 17.2 0 97 0 0 0 5.6
Photos 934 99.7 87.8 957 96.7 80.1 100

Source Mean

The distribution of the accuracies per class is illustrated in Figure 5.9 comparing the
Synth (red) and Photos (green) predictions.

Comparing the models trained with the photos versus the models fine-tuned by Synth,
there was not a statistical difference between the accuracies achieved by both (Levene
p-val: 0.48 and Kruskal-Wallis p-val: 0.11). Where the models trained with the photos
obtained a 11.7% more in the average than the fine-tuned synthetically.

On contrary, fine tuned models by Clay source presented on average a lower perfor-
mance (3.7% of difference) than their counterpart trained from random initialization. This
difference was not significant under the Levene (p-val: 0.53) and Kruskal-Wallis (p-val:
0.61) tests.
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Figure 5.9: Accuracy distribution per class of predictions of the models trained with Synth (red) and Photos
(green) datasets. The models predict the presence of a class in an photo of a target testing dataset

Additionally, comparing the results of the models that were fine tuned by the pro-
posed method with the results obtained training with photos from random initialization,
no significant difference where found (Levene p-val: 0.48, Kruskal p-val: 0.11). The
comparison of the distribution of the accuracies is shown in Figure 5.10.

5.5.2 Unknown Characteristics Dataset Results
Experiment 1

In this experiment 25 models of 5 classes randomly picked and equal for all the evaluated
methods (exp, random, fixed, clay and photos) are trained from a random initialization
and all weights of the layers are updated during the back-propagation. Later the accuracy
of prediction of the target dataset for each class is calculated.

This is performed by passing each class of the target dataset for the trained model an
calculating the accuracy of the prediction (Equation 5.1). The statistical comparison of
the mean accuracy of the predictions of the target domain between the different sources
for training the CNN models from random initialization is shown in Table 5.6.

Further, for minimizing the noise in the comparison, a "clean" evaluation test was also
used (Acc-clean in Table 5.6) where samples that were not belonging to the proposed
problem were removed. Therefore samples with more than two target classes, or that
were miss labeled were removed.

Additionally, the accuracies from all the sources presented the same variance Levene
Test (p-val>0.05). But a significant difference between the medians (Kruskal-Wallis test)
between the proposed method (in all the configurations) and the Clay and using real im-
ages from the domain (imgnet) in Table 5.6. The comparison of the mean accuracies per
class of the sources can be seen in Figure 5.11.

Similarly the exponential configuration present a statistical difference with the random
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Figure 5.10: Accuracy distribution per class of predictions of the models fine tuned with Synth (red) and
models trained with Photos (green) from random initialization.

Table 5.6: Experiment 1 of unknown characteristics summary. Statistical comparison between the different
sources for generating synthetic datasets (except imgnet). The accuracy (Acc) is the mean of the predic-
tion accuracies of the models trained with the source evaluated with real photos from the testing set of
ImageNet. For the Acc-clean The ImageNet test dataset was cleaned of incorrect samples. The variance
of all the treats were equal according to the Levene Test (p-val>0.05).

Source Acc(%) Acc-clean(%) Kruskal (pval<(0.05)

Exp 23,9 26,3 Clay, Imgnet
Fixed 243 26,8 Clay, Imgnet
Rand 21,7 21,6 Clay, Imgnet
Clay 20,3 20,5 All
Imgnet 40 432 All

models in the target domain of the original ImageNet (Kruskal p-val: 0.03). Also the
random configuration presented significant difference (Kruskal p-val: 0.01) with the fixed
model regarding the clean ImageNet.

An example of the distribution of the accuracies per class trained with the synthetic
dataset with a fixed configuration can be seen in Figure 5.12. Where each point represents
the accuracy of prediction of a model regarding one class.

Experiment 2

In this experiment 25 models were trained for each source dataset (exp, random, fixed,
clay and real photos) and all the models were fine-tuned using a pre-trained ImageNet
model whose classes were not the same as the ones considered in the experiment.

The fine-tuned method consists of load the pre-trained model and freeze the weights of
the convolutional layers at training time and only update the fully connected layers. The
fully connected layers are randomly initialized. These random initial values are the same
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Figure 5.11: Mean of accuracies per class of models trained with source datasets (fixed, clay, imgnet).
Each model was trained in the same conditions with random initialization. A total of 25 models of 5
classes for each source was evaluated

across the methods together with same classes at training time. For each new comparison,
new random classes and initial values are computed.

Afterward, the accuracy of the prediction for class of each model is performed. This
is achieved by passing each class of the dataset for the models. In the Table 5.7 are
summarized the results of the mean accuracies of the prediction of the models. Similarly,
the models were also evaluated in a "cleaned" version of ImageNet.

In the case of fine-tuning, no significant difference between the median (Kruskal test
pval>0.05) and variance of the accuracies was found in the synthetic methods. In contrast,
all the methods were found to have a significant p-value for the Levene test (pval>0.05),
thus all the source groups accuracies seem to be originated from populations with the
same variance. In Figure 5.13 are shown the means of the accuracy of models for each

Table 5.7: Summary of mean accuracies achieved by models fine tuned using different source datasets. All
the methods were found to have a significant p-value for the Levene test (pval>0.05)

Source  Acc(%) Acc-clean(%) Kruskal (pval<0.05)

Exp 51,4 55,1 -
Fixed 50,4 53,8 -
Random 47,9 50,4 -
Clay 49,5 52,5 -
Imagenet 66 71,2 all
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Figure 5.12: Accuracy of ImageNet prediction for class of models trained with ImageNet (Green) and
synthetic-fixed (red) datasets. In total 50 models were trained with random classes equal for each type
of training. Similarly same initial values were set for the random initialization

source method.

Additionally, in Figure 5.14 is shown the accuracy distribution of predictions per class
of the fine-tuned models trained with ImageNet (green) and synthetic dataset generated
with the exponential configuration (red).

Further, another test was performed regarding the evolution of the models during the
training time. In this test was compared the accuracies of the prediction of the clay and
exponential method after the models being trained during [5, 10, 15, 20, 25] epochs. The
results are shown in Table 5.8.

An additional test was performed a random blurring filtering operation in the input
images of the synthetic (exp) dataset and the results show an underperform (blur 50.7%
vs no blur 51.4%) without a significant difference.

Compared with the results of using models with random initialization, all the methods
obtained a boost in their performance (exp +28.8%, random +28.8%), fixed +27%, clay
+32%, imgnet +28%).
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Figure 5.13: Mean of accuracies per class of models fine tuned with source datasets (exp, clay, imgnet).
Each model fine tuned a pretrained model of ImageNet. A total of 25 models of 5 classes for each source
was evaluated

Table 5.8: Mean accuracy evolution on target domain prediction after [5,10, 15, 20, 25] epochs of training
using exponential and clay datasets

Epochs Exp (acc. %) Clay (acc. %)

5 55,1 52,5
10 56,3 52,9
15 56,5 54,5
20 57,9 55,2
25 58,1 54,1

Experiment 3

The experiments 3 is aimed to show the influence of resolution of the training images
in types of source datasets. The resolutions (in pixels) investigated are [64, 128, 224].
Therefore the input images were all scaled up to the defined resolution before the training
process.

All the models were initialized from random values and trained for 10 epochs. Equally,
the models were trained for the visual problem of recognizing if an object is present in an
image from a total of 5 object categories. The configuration used to generate the synthetic
dataset was exp.

The summary of the results is shown in table 5.9. Where is shown an increasing
difference between the accuracies once the resolution of the images increases as well as
the difference in the distribution of the accuracies according to the statistic tests (Kruskal
and Levene) between the compared types of training.
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Figure 5.14: Accuracy of ImageNet prediction for class of models fine tuned with ImageNet (Green) and
synthetic-exp (red) datasets. In total 50 models fine tuned a pretrained model of ImageNet.

Table 5.9: Summary of the effects of training with different sample resolutions [64,128,256] in the
synthetic-exp and real photos (imgnet) training for domain adaptation

Resolution (px) Exp (acc. %) Imgnet (acc. %) Acc. Diff. (%) Levene (pval) Kruskal (pval)

64 23,7 32,6 8,8 0,28 0,06
128 24,9 37,5 12,6 0,28 8E-03
256 23,6 41,5 17,8 0,5 1.20E-03

The relationship between increasing the resolution and increasing the difference be-
tween the accuracies of the methods can be seen in Figure 5.15. Where is shown the
accuracy difference between the two methods per class in the 64px (blue) and 256px (or-
ange). Positive values indicate that the accuracy increased in the synthetic training. In
total, the difference increase a 9% from 64px to 256px.

Experiment 4

Investigate the effect of the number of classes in fine-tuned models with synthetic and real
datasets. The resolution used (224px) is derived from the one used in the proposed article
of the architecture used (MobileNet). The number of classes evaluated was [5, 10, 20, the
models were trained for 5 epochs and 5 models for each number of classes.

The summary of the results shown in Table 5.10. Is shown the decrease in accuracy
in both models once the number of classes increases, and it is more aggressive in the
photos than in the synthetic dataset. Further, no significant difference (Kruskal-Wallis
and Levene tests) in the accuracies were found in the models of the 5 and 20 classes.
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Figure 5.15: Accuracy difference between training with real photos (imgnet) and synthetic-exp. In the
x-axis are the evaluated class index and in y-axis the accuracy difference. Positive values indicates that
the accuracy increased in the synthetic training.

Table 5.10: Summary of mean accuracies achieved by models fine tuned with synthetic and target photos
variating the number of classes to classify.

No. Classes Exp (acc. %) Imgnet(acc. %) Acc. Diff (%) Exp Acc. Decr.(%) Imgnet Acc. Decr.(%)

5 48.7 62.4 13.7 0 0
10 26.7 474 20.7 22 15
20 20.9 343 13.4 5.8 13.1

Additionally in Figure 5.16 is plotted the mean accuracy per class of the two sources,
imgnet (left) and synthetic-exp (right) with the different learned number of classes (5-
blue, 10-orange, and 20-yellow)

Finally a comparison of the average accuracy obtained by the models between the
Known and Unknown experiments is showed in Table 5.11. Likewise is compared the
difference between models fine tuned and trained from random initialization.

Table 5.11: Comparison of the average accuracy obtained by the models between the Known and Unknown

experiments. Likewise is compared the difference between models fine tuned and trained from random
initialization.

Random Initialization Fine Tuning
Clay Synth Photos Clay Synth Photos

Unknown  20.3 24.3 40 49.5 50.4 66
Known 14.6 23.6 64.9 10.9 53.2 75.6

Diff. -5.7 -0.7 249  -38,66 2.8 9.6

The relation ship between the average accuracies in the Known (orange) and Unknown
(blue) experiments of the different source training (Clay, Synth and Photos) is shown in
Figure 5.17. On left the models trained with source from random initialization. On right
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Figure 5.16: Mean accuracy per class of the two sources, imgnet (left) and synthetic-exp (right) with the
different learned number of classes (5-blue, 10-orange, and 20-yellow).

models fine tuned with source datasets. These plots show a kind of symmetry regarding
the Synth dataset, a large difference between models fine tuned with Clay dataset. Similar
to a large difference between the models trained with Photos in the random initialization.
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Figure 5.17: The relation ship between the average accuracies in the Known (orange) and Unknown (blue)
experiments of the different source training (Clay, Synth and Photos). On right the models trained with
source from random initialization. On left models fine tuned with source datasets.

Additionally, the accuracy difference between the models in the experiments of known
and unknown characteristics is showed in Figure 5.18 (Last row of Table 5.11). Represent
the changes between a known small domain and a broader domain.
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Figure 5.18: Accuracy difference between the models trained and fine tuned with the different sources
(Clay, Synth and Photos) under known and unknown characteristics experiments.

5.6 Discussion

According to literature, increasing the level of realism in synthetic training datasets in-
crease the performance of prediction over the target domain [160,178,251]. Hence models
trained with shaded renders could surpass the performance of models trained with wire-
frame renders. Have been proved that using synthetic data created with PBS and realistic
lighting improves the overall performance of surrounding training methods.

Following that line of thought, the next step is to recreate the variations present in
real-life given that it is not enough with using physically accurate light-matter interaction
models that represent perfect materials if in reality objects are rarely or almost never found
in perfect conditions.

Additionally, of having physically based models that recreate light-matter with real-
life imperfections, the characteristics of the synthetic objects and environment needs to
be distributed with the same bias that the target ones.

The results of this research support these line of thoughts, given that there is a signifi-
cant difference in models trained with PBS approach than using clay rendering supporting
the idea that increasing realism boost the performance of the models.

Further, recreate the high-level bias (e.g POV or level of imperfections) equally affects
the performance in predicting on the target dataset. This is illustrated by the results of the
synthetic method that using different distributions (exp, fixed and random) reach statistical
different performances (Table 5.6).

Nevertheless, fine-tuning models that have been pre-trained in larger datasets that have
similar classes, can help to blur this differences (realism and bias). In the results of
Experiment 5.5.2, models were pre-trained in a different domain but it was linked to the
target domain as both were part of ImageNet. The results showed that there were no
significant differences in the means of realistic rendering versus clay rendering.

Such results support the research of [177] that realistic low-level features are not re-
quired to be simulated when models are pre-trained in a similar domain.

Several reasons could explain this results, first, the similarity in target datasets and
pre-trained datasets (both subgroups of ImageNet) overshadow the difference between the
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synthetic datasets. That there were many unknown variables (e.g. models, backgrounds,
lights) and the bias of the datasets overcome the difference in the realism of the source
datasets.

Therefore a difference in marginal distribution between the datasets were larger than
the difference in the recreated features, making less noticeable the difference between the
datasets.

However, when the target domain and the pre-trained model domain are different
(Known Experiments 5.5.1). The results show that there is a significant difference in
using the proposed method versus the Clay rendering in both fine tunings (Table 5.2) and
random initialization (Table 5.4).

On the other hand, the fine-tuned models with the Clay dataset showed on average
a larger difference (38.6%) between the known and unknown experiments (Table 5.11).
This is illustrated in Figure 5.17 on the right image. Showing a large difference in the
accuracies on the models fine-tuned with the Clay datasets.

This could be due to that the source dataset and target datasets are unrelated, thus the
training could tune the models to over-fit the incorrect features, non-realistic present in the
Clay dataset. But when the characteristics are unknown more variability in the datasets
avoid the over-fitting.

On the contrary, models trained from random initialization with photos in the known
characteristics achieve a higher accuracy given that they over-fit to the specific case with
the correct features. This is illustrated in Figure 5.17.

Worth noting the particular inverse symmetry that this two cases around the Synth
source dataset (Figure 5.17). Where the difference of the accuracies between known
and unknown experiments are minimal (Table 5.11). This shows that the features of the
proposed method (Synth) are not as close to the bias of the target but neither as far as the
Clay dataset.

Where the accuracy difference of the models trained with the sources (Clay and Pho-
tos) under known and unknown experiments shown an inverse behavior of fine tuning and
training from random initialization (Table 5.11).

Additionally, models trained from random initialization using the synthetic data (Clay
and Synth) obtained lower performance in both experiments (Known and Unknown). For
instance, the proposed method (Synth) in Known (26.3%) and unknown characteristics
(23.6%) (Figure 5.17).This could be interpreted as the variety of the features of objects
found in the training set is not as large as the ones found in the testing set which also
explain the better performance of the fine-tuned models.

Regarding the results of the experiment of the effect of the resolutions (Section 5.5.2).
The results showed that using the photos the as the resolution increase, the performance
increase. Nonetheless, regarding the synthetic data the performance clips at 128 pixels
that is the resolution of what the images were produced. These results suggest that the
details provided by a higher resolution in both synthetic help to increase the performance.
However when the training images are scaled the same amount of details prevail.

In all the experiments of the unknown characteristics, is shown how the performance
variates greatly with respect to the chosen classes. And that more or less the classes accu-
racies behaves with the same pattern across the different experiments (unknown charac-
teristics). This suggests that the accuracy depends on the differentiability between among
the selected classes and the background. And that this differentiability broadly is shared
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among the different types of representation (realistic, clay or photography).

This can be seen in the pattern formed by the mean accuracy of fine-tuned models
comparison in Figure 5.13.

Finally, fine tuning models with the proposed method when the characteristics achieved
comparable results (no statistic difference) with models that were trained with photos.
This suggest that the proposed method could be considered as an alternative for training
models for the object recognition task.

This task is fundamental in the development of AR applications, as it allows to link
the real and virtual elements. Besides as the method proposed is able to generate another
type of

Additionally, the proposed method can be used together with another DA in order to
increase the performance. Other alternatives are mixing with real photos that could be
from or outside the domain and hyper-parameters exploration regarding the specific case.

5.7 Conclusions

In this Chapter have been performed and ablation study related to the use of the proposed
method for the creation of synthetic datasets that simulates with a PBS approach variations
present in the domain of TAR.

The performed study included two types of experiments, one with unknown charac-
teristics about the target domain and other with known characteristics meaning that some
of the characteristics of their parts were known. The conclusion found in these set of
experiments were:

— Fine tuning models with proposed method reach comparable (No statistical differ-
ence) with models trained with photos with known characteristics (Figure 5.10).
These results validate the proposed method as a viable alternative for training sur-
rounding understanding algorithms applied to industrial cases.

— HI. Results suggest that the models trained with datasets generated with the pro-
posed method have a significant difference compared to models trained with the
datasets generated without taking into account realistic light-matter interaction when
the source and target domains bias are similar.

— H2. Similar patterns of performances were found across different training types
(synthetic and photos). Further, in almost all of the cases, no statistical difference
was found in the variance of the accuracies between the source methods. This sug-
gests that across the methods a comparable behavior occurs related with the classes
considered.

— H3. The result showed a statistical difference between the accuracies achieved by
models trained with synthetic and source domains at different resolutions. Further,
this difference of accuracies increases in a proportional relation with the resolution
of the input data.

— H4. Fine tuning models with synthetic data showed significant changes in the per-
formance of prediction of the target domain compared with models trained from
random initialization. The results suggest that the changes depend on the similarity
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with the target domain. Therefore this hypothesis is rejected as performance could
decrease if the features of the synthetic dataset mislead the training regarding the
target (Table 5.11).

HS. When the target and source domain are not highly related, the increase of the
performance in the source results in a decrease in the target as the model is fitted to
another domain. On contrary highly related domains when the model is fitted to the
source it is performed equally in the target (Figure 5.17).

H6. Datasets produced with different characteristics (random, exponential and fixed)
using the proposed method (Physically based) present significant difference in the
performance (Experiment 5.5.2). This difference could be attributed only to the bias
of the datasets.

Is equally important to recreate the feature space (simulate the same characteristics)
than using the same marginal probability distribution of the target dataset.

Models trained with realistic rendering but substantial difference in the marginal
distribution with the target underperformed equally than models trained with non-
realistic rendering.

Fine tuning models pre-trained in the same domain make irrelevant the recreation of
realistic low-level features when there is a considerable difference of the marginal
distribution of the source and target domains.

There is an increment of the average accuracy in models trained and fine-tuned that
is approximately proportional to the realism of the source datasets. The slope of
this increment is approximately proportional to the similitude between the marginal
distributions of source and target datasets.

The results found support the use of the proposed method as valid option to train
CNN models in the vision task of image classification. Where its use could reduce
the burden of implementation and development of IAR applications. By improve-
ments of the current method, it could be applied to other cases where the accuracy is
more significant.

131



Chapter 5. Convolutional Neural Network for Domain Adaptation a Study Case

5.8 Appendix

5.8.1 ImageNet Classes

List of ImageNet classes and experiments id.

{
"nut": 24,
"pen": 10,
"shock": 39,
"key": 31,
"telephone": 42,
"washer": 29,
"toilet": 2,
"drill": 17,
"pliers": 36,
"bottle": 7,
"sprocket": 14,
"carabiner": 27,
"hinge": 38,
"gear": 41,
"mouse": 23,
"lock": 3,
"joint": 12,
"screwdriver": 18,
"flashlight": 9,
"bearing": 5,
"lamp": 25,
"outlet": 6,
"chair": 21,
"gun": O,
"oring": 28,
"caster": 37,
"propeller": 30,
"valve": 40,
"pulley": 32,
"hammer": 34,
"screw": 20,
"spoon": 35,
"faucet": 8,
"rim": 22,
"scissors": 15,
"relay": 16,
"microphone": 26,
"clamp": 19,
"cup": 44,
"pump": 11,
"clock": 13,
"pin": 1,
"camera": 43,
"spring": 33,
"piston": 4

}
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CHAPTER

Concluding remarks

This research was focused on the analysis and development of methods for easy the im-
plementation of Augmented Reality (AR) applications in industry. This problem was
faced by two sides, developing a global framework that presents different variables that
are required to be taken into account at the time of developing new Industrial Augmented
Reality (IAR) applications.

This framework could be used to give developers or any researcher with interest in
the field key elements for implementing AR systems. Also to provide a list of elements
of the domain that are required to take into account and how they may interact with this
technology. Hence promote the reuse and implementation of state of art technologies in
the industry.

The second area of contribution was regarding the methods used for computer sur-
rounding understanding, that is a key element in AR applications. This research was
focused on the development of training datasets, that is one of the central elements in
modern computer vision (based on Machine Learning (ML)). In most of the cases, the
training data used generates the major impact on the performance of ML techniques.

Nevertheless, building datasets is a complex activity that involves time and resources
that are not aligned with the industrial world, that is in constant change and under consid-
erable pressure by the market. Therefore, obtaining training datasets could be a problem
especially when new products, procedures arrive constantly.

Synthetically generated datasets could be a solution to obtain almost free and fast
training data, given that usually the parts and related information is already available by
the companies. For instance, 3D models and visual appearance are known beforehand.

The problem with synthetically generated datasets is that usually, they underperform
compared to photos based datasets because of the domain adaptation that is required to
perform. Therefore in this research a method that blurs the difference between synthetic
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and real by simulating in a realistic manner the imperfections that usually occur in the
industrial environment.

Hence, using synthetic datasets that achieve comparable performance than real data
will allow reducing the burden, time and resources required to build AR applications.

In this chapter is summarized the contributions of previous chapters and discuss the
future research routes. For additional information related to this topics, the reader can
refer to each one of the chapters, where more detail is presented. The main contribution
of this research are:

— General framework of IAR applications based on the identification of elements of
the industry (Domain Variables (DV)) that could affect a technical implementation.
In total, 4 Domain factors with 66 variables that influenced 5 implementation factors
were identified.

This study has been oriented to reach a general understanding of all the variables that
could affect an AR implementation and to present some solutions already developed.
Also, to propose to developers and researchers a global framework that could help
to analyze future implementations by taking into account each one of the variables
(Chapter 2).

— DV effect on surrounding understanding algorithms, in this chapter is presented the
influence of the DV on technical implementations related to the processes intended
to understand the surroundings.This analysis was made by first clustering the process
that each one of the DV influences, and also defining what issues cause each one of
them. Finally, similar issues caused by the DV (Chapter 3).

— A method for recreating relevant Domain Variables (DV) using a Physically Based
Shading (PBS) approach is proposed, in order to create datasets for training and
testing surrounding understanding algorithms. This method is framed under the in-
dustrial field, where the parts are very similar, present glossy effects and are subject
to processes that change their visual appearance. The method allows generating
fully labeled synthetic datasets specifying the distribution of the relevant variables
that affect surrounding understanding algorithms (Chapter 4).

— Ablation study related to the use of the proposed method for the creation of syn-
thetic datasets. The performed study included two types of experiments, one with
unknown statistics about the target domain and other with known statistics meaning
that some of the characteristics of their parts were known. Further, were found that
fine-tuning models with proposed method reach comparable (No statistical differ-
ence) with models trained with photos. These results validate the proposed method
as a viable alternative for training surrounding understanding algorithms applied to
industrial cases (Chapter 5).

Future research can be oriented into different areas. Regarding the use synthetic
datasets, the proposed method could be tested in different vision tasks such as segmenta-
tion or registration.

Similarly using the additional information produced by the synthetic dataset (e.g. pose
or light direction) into the task of object recognition, it could generate more intelligent
and accurate models.
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Additionally, the synthetic datasets could be used to understand what is really learning
the ML models. Also, help to train NN models with controlled data forcing them to learn
strong features.

Further improvements to the proposed method by adding coherent backgrounds, more
accurate way of setting the marginal distribution of the source dataset or simulating more
accurately the extrinsic variations could lead to improvements of the performance and
use to train models in more critic situations where the prediction of accuracy is more
concerning.

Future work in this field could take the path of using synthetic datasets not only to
increase the performance but to understand and control the features learned by the ML
algorithms increasing its reliability.

Additionally implementations in another type of objects together with high-level be-
havioral simulations in order to be able to learn about the relationship between objects
and the context. To take a next step in the understanding of the surroundings.

Further, the synthetic methods could be embedded in self-learning systems order to
reinforce the learning and approaching to simulate self-teaching algorithms.
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